Pro-face

GP-PRO/PBIII

for Windows

Ver.4.0

PLC接続マニュアル

はじめに

このたびは、GP画面作成ソフト「GP-PRO/PB for Windows Ver.4.0」をご採用いただき、まことにありがとうございます。

この製品を正しくご使用いただくために、マニュアル類をよくお読みください。 また、マニュアル類は必ずご利用になる場所のお手元に保管し、いつでもご覧いただけるようにしておいてください。

おことわり

- (1) 「GP-PRO/PB for Windows Ver.4.0」(以下本製品といいます)のプログラムおよびマニュアル類は、すべて(株)デジタルの著作物であり、(株)デジタルがユーザーに対し「ソフトウェア使用条件」に記載の使用権を許諾したものです。当該「ソフトウェア使用条件」に反する行為は、日本国内外の法令により禁止されています。
- (2) 本書の内容については万全を期して作成しておりますが、万一お気づきの点が ありましたら、(株)デジタル「GPサポートダイヤル」までご連絡ください。
- (3) 前項にかかわらず、本製品を運用した結果の影響および第三者のいかなる請求にも、(株)デジタルは一切責任を負いません。
- (4) 製品の改良のため、本書の記述と本製品のソフトウェアとの間に異なった部分が生じることがあります。最新の説明は、別冊ないし電子的な情報として提供していますので、あわせてご参照ください。
- (5) 本書は、(株)デジタルから日本国内仕様として発売された製品専用です。
- (6) 本製品が記録・表示する情報の中に、(株)デジタルまたは第三者が権利を有する無体財産権、知的所有権に関わる内容を含むことがありますが、これは(株)デジタルがこれらの権利の利用について、ユーザーまたはその他の第三者に、何らの保証や許諾を与えるものではありません。
- © Copyright 1999 Digital Electronics Corporation. All rights reserved.

(株)デジタル 1999 Oct.

商標権などについて

本書に記載の会社名、商品名は、各社の商号、商標(登録商標を含む)またはサービスマークです。本製品の表示・記述の中では、これら権利に関する個別の表示は省略しております。

商標等	権利者
Microsoft, MS, MS-DOS, Windows, Windows 95, Windows 98, Windows NT, Windows エクスプローラ, Microsoft Excel 95	米国Microsoft社
Intel, Pentium	米国Intel社
Pro-face	(株)デジタル
NEC, PC-9800	日本電気(株)
Ethernet	米国Western Digital社
IBM, VGA, PC/AT	米国IBM社

なお、上記商号・商標類で、本書での表記が正式な表記と異なるものは以下の通りです。

本書での表記	正式な表記
Windows 95	Microsoft [®] Windows [®] 95 オペレーティングシステム
Windows 98	Microsoft [®] Windows [®] 98 オペレーティングシステム
Windows NT	Microsoft [®] Windows NT [®] オペレーティングシステム
MS-DOS	Microsoft [®] MS-DOS [®] オペレーティングシステム

マニュアルの読み方

マニュアルの構成

本書は「GP-PRO/PB for Windows Ver.4.0」(以下、本製品と呼びます)の使用方法を説明するマニュアル(6 巻構成)の第5巻、「PLC接続マニュアル」です。本書以外に、5種のマニュアルがありますので、あわせてご覧ください。

これらマニュアル類のほか、データファイルとして補足説明や機能の追加・修正情報が添付されていることがあります。

[スタート]ボタンをクリックし、[プログラム(P)] [ProPB3Win]の順にポイントし、[お読みください]をクリックし、表示された内容をご覧ください。

なお、GP に関する詳しい説明は、各機種ごとの「ユーザーズマニュアル」(別売)をご覧ください。

第1巻	インストレーションマニュアル	本製品の特徴、概要、インストール方法など 基本的な説明をします。 簡単な生産ラインの画面作成を例に、本製品 の操作練習と主な機能の説明を行います 第2巻以降の PDF マニュアルの見方も説明し ていますので必ずはじめにお読みください。
第2巻	オペレーションマニュアル	本製品を使うための操作手順と一部特殊な機能を除いたすべての機能について説明します。PDF データで収録されています。
第3巻	タグリファレンス マニュアル	GP の画面上機能を指定する「タグ」の詳細について、まとめて説明します。PDF データで収録されています。
第4巻	パーツリスト	本製品にあらかじめ用意されている部品と図記号をまとめて説明します。PDF データで収録されています。
第5巻	PLC 接続マニュアル (本書)	GP と各社の PLC の接続方法について説明します。 PDF データで収録されています。
第6巻	入門マニュアル	インストレーションマニュアルの画面作成例 に応用編を加えた内容です。 PDF データで収録されています。

マスターCD-ROMには、「画面レイアウトシート」のPDFファイルが保存されています。詳しい 使用方法については、インストレーションマニュアルをご覧ください。

タグなどのアドレス設定時は標準インストール時にインストールされるレイアウトシートを利用されると便利です。

レイアウトシートには「デバイス割り付け表」と「タグレイアウトシート」があります。 それぞれMicrosoft Excel 95のデータとしてインストールされているのでご利用ください。 各ファイルの場所とファイル名を以下に示します。

フォルダ名	ファイル名	内容
propbwin¥sheet	Device1J.xls	デバイス割り付け表
	TAG1J.xls	タグレイアウトシート
	TAG2J.xls	
	TAG3J.xls	
	TAG4J.xIs	

なお、Microsoft Excel 95のご利用方法は該当商品マニュアルを参照ください。

GP の名称について

GP-PRO/PB ではGPの機種ごとにサポートしている機能や設定が異なる場合があります。 本書では以下のようなシリーズ名または商品名を用いて説明します。

	シリ	ーズ名	商品名	型式
		GP-H70シリーズ	GP-H70L	GPH70-LG11-24V
				GPH70-LG41-24VP
			GP-H70S	GPH70-SC11-24V
				GPH70-SC41-24VP
		GP-270シリーズ	GP-270L	GP270-LG11-24V
				GP270-LG21-24VP
				GP270-LG31-24V
			GP-270S	GP270-SC11-24V
				GP270-SC21-24VP
				GP270-SC31-24V
		GP-370シリーズ	GP-370L	GP370-LG11-24V
				GP370-LG21-24VP
				GP370-LG31-24V
				GP370-LG41-24VP
			GP-370S	GP370-SC11-24V
POWER GPシリーズ	GP70シリーズ			GP370-SC21-24VP
				GP370-SC31-24V
				GP370-SC41-24VP
		GP-470シリーズ	GP-470E	GP470-EG11
				GP470-EG21-24VP
				GP470-EG31-24V
		GP-570シリーズ	GP-570S	GP570-SC11
				GP570-SC21-24VP
				GP570-SC31-24V
			GP-570T	GP570-TC11
				GP570-TC21-24VP
				GP570-TC31-24V
			GP-57JS	GP57J-SC11
			GP-570VM	GP570-TV11
			GP-571T	GP571-TC11
		GP-675シリーズ	GP-675T	GP675-TC11
				GP675-TC41-24VP
			GP-675S	GP675-SC11
		GP-870シリーズ	GP-870VM	GP870-PV11
		GP-377シリーズ	GP-377L	GP377-LG11-24V
			GP-377S	GP377-SC11-24V
		GP-377Rシリーズ	GP-377RT	GP377R-TC11-24V
		GP-477Rシリーズ	GP-477RE	GP477R-EG11
	GP77Rシリーズ			GP477R-EG41-24VP
		GP-577Rシリーズ	GP-577RT	GP577R-TC11
				GP577R-TC41-24VP
			GP-577RS	GP577R-SC11

目次

商 マニ	票権など ニュアル	について	2 3
	•	·ル	
第	1章	ダイレクトアクセス方式	
1.1	ダイレ	vクトアクセス方式のしくみ	1-1
	1.1.1	システムエリア先頭アドレスの設定	
	1.1.2	LS エリアの構成	
	1.1.3	各アドレスについて	
	1.1.4	システムデータエリアの内容と領域	
	1.1.5	特殊リレー	
1.2	効率よ	こく通信を行うには	1-15
	1.2.1	ブロック転送	
	1.2.2	LS エリア通信	
	1.2.3	書き込みエラー時の GP リセット設定	1-16
1.3	接続可	J能な PLC 一覧	1-18
第	2章	各社 PLC と GP の接続	
		5144 × 14 > 44 DI O	
2.1	三菱電	『機(株)製 PLC	2-1-1
2.1	三菱電 2.1.1	鬘機(秣)製 PLC システム構成	
2.1			2-1-1
2.1	2.1.1	システム構成	2-1-1 2-1-8
2.1	2.1.1 2.1.2	システム構成 結線図 使用可能デバイス 環境設定例	
	2.1.1 2.1.2 2.1.3 2.1.4 2.1.5	システム構成 結線図 使用可能デバイス 環境設定例 2ポート機能	
	2.1.1 2.1.2 2.1.3 2.1.4 2.1.5	システム構成 結線図 使用可能デバイス 環境設定例	
	2.1.1 2.1.2 2.1.3 2.1.4 2.1.5	システム構成 結線図 使用可能デバイス 環境設定例 2ポート機能	
	2.1.1 2.1.2 2.1.3 2.1.4 2.1.5	システム構成 結線図 使用可能デバイス 環境設定例 2ポート機能 コン (株)製 PLC システム構成 結線図	
	2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 才女口 2.2.1	システム構成 結線図 使用可能デバイス 環境設定例 2ポート機能 コン (株)製 PLC システム構成 結線図 使用可能デバイス	
2.2	2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 才女口 2.2.1 2.2.2 2.2.3 2.2.4	システム構成 結線図 使用可能デバイス 環境設定例 2ポート機能 コン (株)製 PLC システム構成 結線図 使用可能デバイス 環境設定例	
2.2	2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 才女口 2.2.1 2.2.2 2.2.3 2.2.4	システム構成 結線図 使用可能デバイス 環境設定例 2ポート機能 コン (株)製 PLC システム構成 結線図 使用可能デバイス	
2.2	2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 才女口 2.2.1 2.2.2 2.2.3 2.2.4	システム構成 結線図 使用可能デバイス 環境設定例 2ポート機能 コン (株)製 PLC システム構成 結線図 使用可能デバイス 環境設定例	
2.2	2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 才厶口 2.2.1 2.2.2 2.2.3 2.2.4 富士電	システム構成 結線図 使用可能デバイス 環境設定例 2ポート機能 コン (株)製 PLC システム構成 結線図 環境設定例 環境(株)製 PLC システム構成 おより 連携(株)製 PLC システム構成 およ線図	
2.2	2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 才人口 2.2.1 2.2.2 2.2.3 2.2.4 富士電 2.3.1 2.3.2 2.3.3	システム構成 結線図 使用可能デバイス 環境設定例 2ポート機能 コン (株) 製 PLC システム構成 結線図 使用可能デバイス 環境設定例 システム構成 システム構成 お線図 は線図 は線図 は線図 は線図 使用可能デバイス	
2.2	2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 才人口 2.2.1 2.2.2 2.2.3 2.2.4 富士電 2.3.1 2.3.2 2.3.3 2.3.4	システム構成 結線図 使用可能デバイス 環境設定例 2ポート機能 コン (株)製 PLC システム構成 結線図 使用可能デバイス 環境設定例 記機(株)製 PLC システム構成 おステム構成 結線図 使用可能デバイス 環境設定例	
2.2	2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 才人口 2.2.1 2.2.2 2.2.3 2.2.4 富士電 2.3.1 2.3.2 2.3.3 2.3.4	システム構成 結線図 使用可能デバイス 環境設定例 2ポート機能 コン (株) 製 PLC システム構成 結線図 使用可能デバイス 環境設定例 システム構成 システム構成 お線図 は線図 は線図 は線図 は線図 使用可能デバイス	
2.2	2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 才人口 2.2.1 2.2.2 2.2.3 2.2.4 富士電 2.3.1 2.3.2 2.3.3 2.3.4	システム構成 結線図 使用可能デバイス 環境設定例 2ポート機能 コン (株) 製 PLC システム構成 結線図 使用可能デバイス 環境設定例 結線図 使用可能デバイス 環境設定例 安川電機製 PLC システム構成 システム構成	
2.2	2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 才厶 2.2.1 2.2.2 2.2.3 2.2.4 富士電 2.3.1 2.3.2 2.3.3 2.3.4 (株)	システム構成 結線図 使用可能デバイス 環境設定例 2ポート機能 コン (株) 製 PLC システム構成 結線図 使用可能デバイス 環境設定例 安川電機製 PLC システム構成 結線図 システム構成 結線図 おま線図 おまま	
2.2	2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 才厶 2.2.1 2.2.2 2.2.3 2.2.4 富士 2.3.1 2.3.2 2.3.3 2.3.4 (株)	システム構成 結線図 使用可能デバイス 環境設定例 2ポート機能 コン (株) 製 PLC システム構成 結線図 使用可能デバイス 環境設定例 結線図 使用可能デバイス 環境設定例 安川電機製 PLC システム構成 システム構成	

2.5	(株)日]立製作所製 PLC	2-5-1
	2.5.1	システム構成	2-5-1
	2.5.2	結線図	2-5-3
	2.5.3	使用可能デバイス	2-5-7
	2.5.4	環境設定例	2-5-12
2.6	シャー	プ(株)製 PLC	2-6-1
	2.6.1	システム構成	2-6-1
	2.6.2	結線図	2-6-2
	2.6.3	使用可能デバイス	2-6-6
	2.6.4	環境設定例	2-6-8
2.7	松下電	工(株)製 PLC	2-7-1
	2.7.1	システム構成	2-7-1
	2.7.2	結線図	2-7-3
	2.7.3	使用可能デバイス	2-7-6
	2.7.4	環境設定例	2-7-8
2.8	横河電	機(株)製 PLC	2-8-1
	2.8.1	システム構成	2-8-1
	2.8.2	結線図	2-8-3
	2.8.3	 使用可能デバイス	2-8-6
	2.8.4	環境設定例	
2.9	豊田工	機 (株) 製 PLC	2-9-1
	2.9.1	システム構成	2-9-1
	2.9.2		2-9-3
	2.9.3	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2-9-11
	2.9.4	環境設定例	2-9-15
2.10	(株)東	夏芝製 PLC	2-10-1
	2.10.1	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	2.10.2	結線図	_
	-	使用可能デバイス	
	2.10.4	環境設定例	
2.11		械 (株) 製 PLC	
	2.11.1	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	2.11.2		
	2.11.3		
	2.11.4	環境設定例	
2.12			
	2.12.1	システム構成	
	2.12.2		
	2.12.3	使用可能デバイス	2-12-7
	2.12.4	環境設定例	2-12-10
2.13	GE Fani	uc Automation製PLC	2-13-1
	2.13.1	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	2.13.2		
	2.13.3	使用可能デバイス	
		環境設定例	

2.14 ファナ	ック(株)製モーションコントローラ	2-14-1
2.14.1	システム構成	2-14-1
2.14.2	結線図	2-14-2
2.14.3	使用可能デバイス	2-14-4
2.14.4	環境設定例	2-14-5
2.15 和泉電	!気(株)製 PLC	2-15-1
2.15.1	システム構成	2-15-1
2.15.2	結線図	2-15-3
2.15.3	使用可能デバイス	2-15-7
2.15.4	環境設定例	2-15-9
2.16 Siemen	ns 製 PLC	2-16-1
2.16.1	システム構成	2-16-1
2.16.2	結線図	2-16-3
2.16.3	使用可能デバイス	2-16-5
2.16.4	環境設定例	2-16-8
2.17 Rockwe	ell (Allen-Bradley) PLC	2-17-1
2.17.1	・ システム構成	2-17-1
2.17.2	結線図	
2.17.3	使用可能デバイス	2-17-6
2.17.4	環境設定例	2-17-12
2.18(株)=	キーエンス製 PLC	2-18-1
2.18.1	システム構成	2-18-1
2.18.2	結線図	
2.18.3	使用可能デバイス	2-18-6
2.18.4	環境設定例	2-18-9
2.19 神鋼電	機(株)製 PLC	2-19-1
2.19.1	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
2.19.2	結線図	2-19-2
2.19.3	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2-19-3
2.19.4	環境設定例	2-19-4
2.20 松下電	: 器産業(株)製 PLC	2-20-1
2.20.1	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
2.20.2	結線図	
2.20.3	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2-20-3
2.20.4	環境設定例	2-20-4
2.21 オリム	.ベクスタ(株)製 PLC	2-21-1
2.21.1	システム構成	
2.21.2	結線図	
2.21.3	使用可能デバイス	2-21-2
2.21.4	環境設定例	2-21-3
2.22(株)」	山武製 PLC	2-22-1
2.22.1	システム構成	
2.22.2	結線図	
2.22.3		
2.22.4		

	第3	3 章 メモリリンク方式	
	3.1	メモリリンク方式のしくみ	3-1
		3.1.1 システムエリアとは	3-2
		3.1.2 システムデータエリアの内容と領域	3-3
		3.1.3 特殊リレー	3-6
	3.2	結線図	3-8
		3.2.1 RS-232C 通信の場合	
		3.2.2 RS-422 通信の場合	
	3.3	メモリリンクコマンド	
		3.3.1 読み出しコマンド	
		3.3.2 応答コマンド	
		3.3.3 書き込みコマンド	
_	3.4	サンプルシステム	3-13
	第4	4章 n:1(マルチリンク)	
	4.1	n:1(マルチリンク)について	4-1
	4.2		
	4.3		
	4.4		
	4.5		
	4.6		
	4.7	. 5 11 5 11 W - 12 W -	
_	4.8	カスタマイズ機能	4-13
	第5	5 章 各社 PLC と GP の接続 < マルチリンク >	
	5.1		5-1-1
	0.1		
		5.1.2 結線図	
		5.1.3 使用可能デバイス	5-1-7
		5.1.4 環境設定例	5-1-11
	5.2	オムロン(株)製 PLC	5-2-1
		5.2.1 システム構成	5-2-1
		5.2.2 結線図	5-2-3
		5.2.3 使用可能デバイス	
		5.2.4 環境設定例	
	5.3	(株)日立製作所製 PLC	
		5.3.1 システム構成	
		5.3.2 結線図	
		5.3.3 使用可能デバイス	
		5.3.4 環境設定例	5-3-5

5.4	松下雷	工(株)製 PLC5-4-1
	5.4.1	
	5.4.2	結線図 5-4-2
	5.4.3	使用可能デバイス 5-4-4
	5.4.4	環境設定例 5-4-5
5.5	横河電	機(株)製 PLC5-5-1
	5.5.1	システム構成 5-5-1
	5.5.2	結線図 5-5-2
	5.5.3	使用可能デバイス 5-5-6
	5.5.4	環境設定例 5-5-8
5.6	(株)見	東芝製 PLC5-6-1
	5.6.1	システム構成 5-6-1
	5.6.2	結線図 5-6-2
	5.6.3	使用可能デバイス 5-6-4
	5.6.4	環境設定例 5-6-5
5.7	Rockwe	II (Allen-Bradley) 製 PLC5-7-1
	5.7.1	システム構成 5-7-1
	5.7.2	結線図 5-7-2
	5.7.3	使用可能デバイス 5-7-4
	5.7.4	環境設定例 5-7-6
5.8	,	キーエンス製 PLC5-8-1
	5.8.1	システム構成 5-8-1
	5.8.2	結線図 5-8-2
	5.8.3	使用可能デバイス 5-8-4
	5.8.4	環境設定例 5-8-5
5.9	, .	安川電機製 PLC5-9-1
	5.9.1	システム構成 5-9-1
	5.9.2	結線図 5-9-2
		使用可能デバイス 5-9-4
- 4	5.9.4	環境設定例 5-9-5
5.10		ープ(株)製 PLC5-10-1
	5.10.1	システム構成 5-10-1
	5.10.2	結線図
	5.10.3	使用可能デバイス 5-10-5 環境設定例 5-10-6
	5.10.4	-
第	5章	JPCN-1
6.1	接続可	
6.2		標準6-2-1
0.2	6.2.1	システム構成
	6.2.2	結線図
	6.2.3	環境設定例

6.3	(株)日立製作所製	6-3-1
	6.3.1 システム構成	6-3-1
	6.3.2 結線図	6-3-2
	6.3.3 使用可能デバイス	6-3-3
	6.3.4 環境設定例	6-3-4
6.4	三菱電機(株)製	6-4-1
	6.4.1 システム構成	6-4-1
	6.4.2 結線図	6-4-2
	6.4.3 使用可能デバイス	6-4-3
	6.4.4 環境設定例	6-4-4
6.5	I/0 通信について	6-5-1
第7	フロップ 章 Ethernet (イーサネ	ット)
7.1	・ ・	7-1-1
7.1		
1.2	• •	7-2-1 接続7-2-1
		接続
7 2		
1.3		7-3-1
7 1		
7.4		7-4-1
		7-4-2
7.5		コード7-5-1
7.5	プロトコルスタックのエラー。	1
第8	3章 CC-Link	
8.1	接続可能な別の一覧	8-1-1
_		8-2-1
0.2	` '	8-2-1
		8-2-2
		8-2-3
8.3		8-3-1
0.0		8-3-1
	. ,	8-3-1
		8-3-4
8.4		8-4-1
0.7	· — •	·
8.5		/ 人グル我 8-4-1 8-5-1
0.5		
	8.5.1 専用コマンドモニタ使用時	の GP レジスタ定義8-5-1

	8.6	占有局	8-6-1	
		8.6.1	2局占有8-6-1	
		8.6.2	3局占有8-6-2	2
		8.6.3	4局占有8-6-3	
	8.7	エラー	コード一覧8-7-1	
_		8.7.1	トラブルシューティング8-7-1	
	第9	章	DeviceNet Slave I/O	
	9.1	接続可		
	9.2	Rockwe	II (Allen-Bradley)9-2-1	
		9.2.1	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		9.2.2	結線図 9-2-2	2
		9.2.3	使用可能デバイス 9-2-3	3
		9.2.4	環境設定例 9-2-4	
_		9.2.5	エラーコード表9-2-6	5
	第1	0章	GP-H70 との接続	
	10.1	GP-H70	と接続するには10-1-1	
	10.2	システ	ム構成図	
			10-3-1	
				\
	付鎉	1 追	連続アドレスの最大データ数	
	付1.	.1 各社 [PLC の連続アドレスの最大データ数 付 1-1	
	付錄	₹2	デバイスコードとアドレスコード	
	付2.	.1 各社[PLC のデバイスコードとアドレスコード 付 2-1	
	付録	₹3	デバイスモニタ	
•	付3.	.1 機能	付 3-2	2
			操作	
	,, ,		起動	
			2 モニタメニュー 付 3-4	

表記のルール

本書は、以下のルールで表記します。

わかりにくいところなどは「GPサポートダイヤル」までお問い合わせください。「GPサポートダイヤル」では、(株)デジタル製品についての技術的なご質問・ご相談にお答えします。なお、パソコンやWindowsそのものに関することは、パソコンをお買い上げの販売店、メーカー

安全に関する注意表記

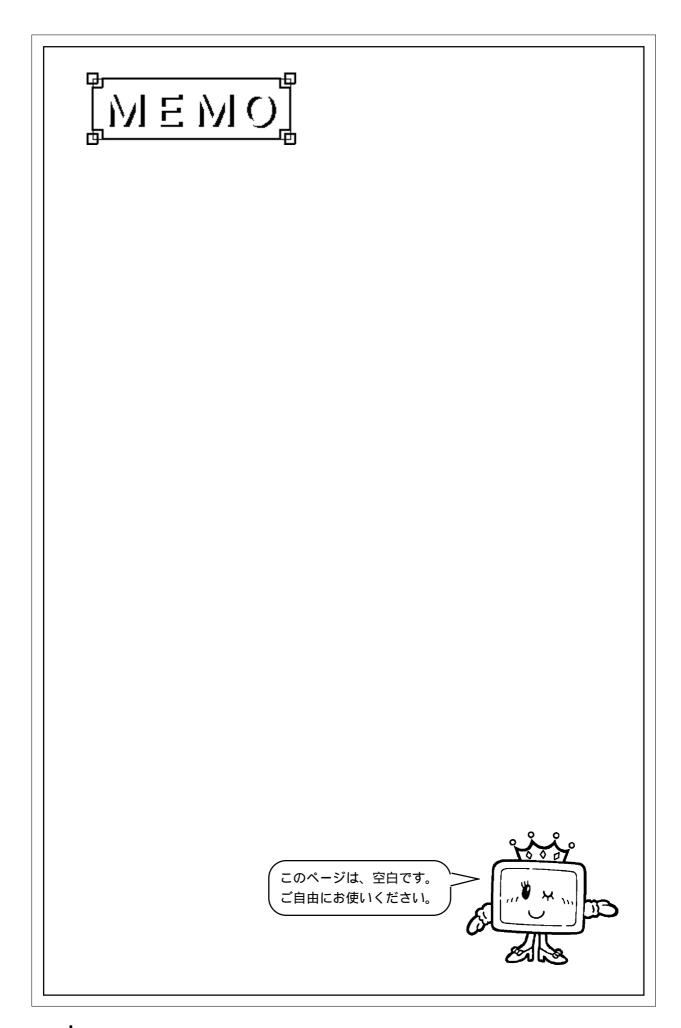
にお問い合わせください。

本製品のご使用上、安全に関して重要な説明には、以下の表示を添えています。

表示	意味内容
警告	この表示を無視して誤った取り扱いをすると、人が死亡または重傷を負う可能性が想定される内容を示します。
注意	この表示を無視して誤った取り扱いをすると、人が傷害を負ったり、物的損害の発生が想定される内容を示します。
重要	この表示の説明に従わない場合、機器の異常動作やデータの消失などの不都合が起こる可能性があります。
強制	必ず実施していただきたい操作、作業などを表します。
禁止	決して行ってはならない操作、作業などを表します。

説明のための表記

本書では、説明の便宜のため、以下のように表記します。


表記	意味内容
MEMO	参考になることがら、補足的な説明です。
参照	関連する説明が掲載されている項目(マニュアル名、章・節・項)を示します。
Esc Ctrl	パソコンのキーを表します。 <u>参照</u> キーボード対応表
PC/AT 98	PC/AT 互換機と PC-9800 シリーズ機とで差異がある場合、それぞれの機種ごとの説明であることを示します。
PLC	プログラマブルコントローラ、シーケンサの総称です。
GP	(株)デジタル製グラフィックパネル「GP シリーズ」の総称です。 本製品の対応機種名 <u>参照</u> マニュアルの読み方 GP の名称について

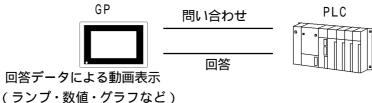
「第2章 各社PLCとGPの接続」「第5章 各社PLCとGPの接続<マルチリンク>」の各社PLCの「*-*-3 使用可能デバイス」の備考欄についているマークの意味は、以下のとおりです。

ост 8]	アドレスは8進数で指定します。
*** 0	ワードアドレスは、下1桁めが0の値のみ指定します。
÷16)	ワードアドレスは、16の倍数の値のみ指定します。
÷16+ 1	ワードアドレスは、16 の倍数 +1 の値のみ指定します。
<u>÷ 2) </u>	ワードアドレスは、偶数の値のみ指定します。
÷ 8)	ワードアドレスは、8の倍数の値のみ指定します。
B i t 15	ビット指定できます。ワードアドレスの後にビット位置をつけます。ビット位置は 0 ~ 15 で指定します。
Bit F	ビット指定できます。ワードアドレスの後にビット位置をつけます。 ビット位置は0~ F で指定します。
B i t 7	ビット指定できます。ワードアドレスの後にビット位置をつけます。ビット位置は0~7で指定します。
B i t 31	ビット指定できます。ワードアドレスの後にビット位置をつけます。 ビット位置は 0 ~ 31 で指定します。
L / H	2ワード(32ビットデータ)を使用する場合のデータの上下関係は、0 L(下位) です。 1 H(上位)
H/L	2ワード(32ビットデータ)を使用する場合のデータの上下関係は、0 H(上位) です。 1 L(下位)

「*-*-3 使用可能デバイス」のデバイス範囲はすべて最大設定範囲です。PLCによって記載の範囲より小さいものもあります。詳細は、ご利用になっているPLCのマニュアルをご参照ください。

□□□□□のついているデバイスは、システムエリアに指定できます。 システムエリア **参照** 1.1 ダイレクトアクセス方式のしくみ

第1章 ダイレクトアクセス方式

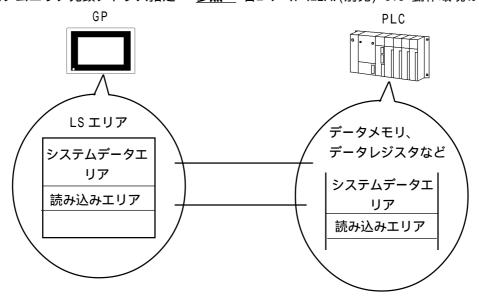

GPとPLCとの通信は、PLCにかかるプログラム負担が少ないダイレクトアクセス方式で行われ ます。この章では、ダイレクトアクセス方式について説明します。

1.1 ダイレクトアクセス方式のしくみ

GPは、部品やタグの設定によって、PLCのデバイスを自由に指定することができます。これによ り、自動的にPLCに対して、稼働に必要なデータ(システムデータ)や現在表示している画面の 表示用データの問い合わせを行っています。そして、GPはPLCからの応答により、動画項目の 設定に従って画面表示を変化させます。また、GPのタッチキーから入力されたデータもPLCに 送られます。

このように、GPとPLCとの通信では、常にGP側が主導権を持っています。

ダイレクトアクセス方式では、GPが画面表示に必要なデータの送受信を自動判別しています。し たがって、画面表示制御のプログラムが不要になり、PLCに負担をかけずにグラフィック操作パ ネルを実現できます。



\注 意・ PLCのデバイス範囲外に読み出し/書き込みを行ってエラーが 発生した場合、エラーが回復するまでリトライを行います。そ のため、表示上動作しないように見えることがあります。この ときは、画面上にある部品やタグに割り付けたデバイスが、ご 使用になるPLCの範囲内であるかどうかご確認ください。

1.1.1 システムエリア先頭アドレスの設定

GPオフラインモードの「初期設定」で「システムエリア先頭アドレス」を指定すると、自動的 にGPとの通信に使用できる領域(システムエリア)をPLC内部に設けます。

システムエリア先頭アドレス指定 参照 各ユーザーズマニュアル(別売) 5.5 動作環境の設定

- PLCにより、システムデータエリアとして使用できるデバイス が決まっています。そのデバイス内の未使用アドレスのみがシ ステムデータエリアに指定できます。
 - システムエリアに使用できるデバイスは「第2章 各社PLCとGPの接続」「第5章 各社PLCとGPの接続<マルチリンク>」の各「*-*-3 使用可能デバイス」の中で がついているデバイスです。
- システムデータエリアの先頭アドレスの指定方法には、GP-PRO/PB で「GPシステムの設定」を行う方法もあります。
 GPシステムの設定 参照 GP-PRO/PB オペレーションマニュアル

1.1.2 LS エリアの構成

LSエリアはGP内部にある運転のために使用するデバイスです。LSエリアの構成は次のとおりです。

LSO :	システムデータ エリア
LS19	197
LS20	読み込み
:	エリア
:	ユーザーエリア
:	
LS2032	
:	特殊リレー
LS2047	
LS2048	7 14
:	予約
LS2095	
LS2096	ユーザーエリア
:	
LS4095	

システムデータエリア

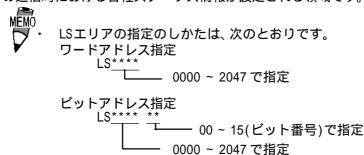
GPの画面制御データやエラー情報など稼働に必要なデータを書き込む領域です。

読み込みエリア

全画面共通で使用するデータや折れ線グラフの一括表示データ、ビデオ制御データ*1を格納する領域です。最大256ワードまで設定できます。

ユーザーエリア

PLC側には割付られないGP内部だけのデバイスです。GP内部だけで処理が可能な部品やタグのデバイスとして使用します。PLC側からの制御はできません。ビデオ制御データ *1 を格納することもできます。

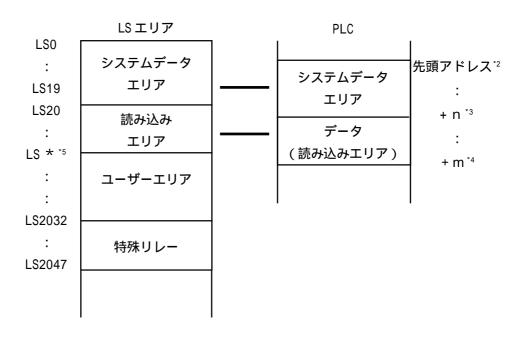

重要

デバイスモニタを使用する場合はユーザエリアLS2096~LS4095 は予約となり使用できません。

^{*1} GP-570VM、GP-870VMをご使用の場合、ビデオ制御エリア(22ワード)を設定します。ビデオ制御エリアには、読み込みエリアまたはユーザーエリアを指定します。参照 各ユーザーズマニュアル(別売)

特殊リレー

GPの通信時における各種ステータス情報が設定される領域です。



予約

GP内部で使用します。このエリアを使用しないでください。使用すると正常に動作しなくなります。

1.1.3 各アドレスについて

システムデータエリアは最大20ワード、読み込みエリアは最大256ワード¹¹まで設定できます。 これらのサイズにより、各エリアのアドレスが決まります。

- *1 PLCのデバイス範囲が256ワードより小さい場合、PLCのもつデバイスのサイズからシステムエリアサイズを除いたサイズが最大となります。
- *2 初期設定で指定したシステムエリア先頭アドレスのことです。

参照 _ 各ユーザーズマニュアル(別売) 5.5 動作環境の設定

- *3 n = 0~19 初期設定で指定したシステムデータエリアの選択項目数によって異なります。
- *4 m = 読み込みエリアサイズです。
- *5 *=読み込みエリア先頭アドレス(20)+ 読み込みエリアサイズです。
 - 重要 ・ システムデータエリアと読み込みエリア、読み込みエリアと ユーザエリアにまたがる部品やタグのアドレス設定はできません。
 - ・ システムデータエリア内のアドレスを部品やタグで設定すると きは、データ長を16ビットに指定してください。

1.1.4 システムデータエリアの内容と領域

システムデータエリアの各アドレスに書き込むデータの内容を示します。

1 アドレス 16 ビット長であるデバイスをもつ PLC をご使用の場合

- 重要・1アドレス8ビット長であるデバイスをもつPLCをご使用の場 合は、以下の表とは異なります。1-7ページをご参照ください。
 - ・通常、画面表示のOFFを行う場合には、+14番地(コントロー ル)のバックライトOFFのビットを使用せず、+9番地(画面表 示のON/OFF)をご使用ください。

- MEMO ・ ワードアドレスは、初期設定でシステムデータエリアの項目を 全て選択した場合の値です。
 - ・ 項目番号は、GPオフラインモードの「初期設定」の「システム環境 の設定」で表示される番号です。

	項目 番号	ワード アドレス	内容	ビット	備考
	1	+0	表示中画面番号	1 ~ 8999	(ただし、BCDで入力の場合は 1~1999)
	2	+1	エラーステータス	0、1	未使用
GP			GPのエラー発生時に、対応	2	システムROM/RAM
			するビットがONされます。	3	画面記憶メモリチェックサム
PLC			一度ONになったビットは、	4	SIOフレミング
書			電源をOFFしてから再度ON	5	SIOパリティ
き			するか、オフラインモード	6	SIOオーバーラン
込			から再度運転モードに切り	7、8	未使用
み			変わるまで保持されます。	9	内部記憶メモリの初期化が必要
専			エラーステータスの内容詳	10	タイマークロック異常
用			細と処理については、本頁	11	PLC通信異常
エ			末尾をご参照ください。	12 ~ 15	未使用
IJ	3	+2	時計「年」の現在値BCD2桁	西暦の下	2桁
ア		+3	時計「月」の現在値BCD2桁	01~12月	
		+4	時計「日」の現在値BCD2桁	01~31日	
		+5	時計「時分」の現在値 BCD4桁	00~23時	、00~59分
	4	+6	ステータス ^{*5}	0、1	予約
				2	プリント中 ^{*1}
				3	設定値書き込み ^{*2}
				4~6	予約
				7	PLC専有 ^{*3}
				8	Kタグ入力エラー ^{*4}
				9~15	予約
	5	+7	予約		

	項目 番号	ワード アドレス	内容	ビット	備考
	6	+8	切り替え画面番号	1~8999	(ただし、BCDで入力の場合は 1~1999)
PLC	7	+9	画面表示のON/OFF*13		ば画面表示が消えます。Ohの時は画面表 FFFFh、Oh以外の値は予約
GP	8	+10	時計「年」の設定値 BCD2桁+(設定フラグ)		行(15ビット目が時計データの書き換え ⁶ になります。)
読		.11	時計「月」の設定値BCD2桁	用フラク 01~12月	になりまり。)
		+11		+	
み 込		+12 +13	時計「日」の設定値BCD2桁	01~31日	、00~59分
み		+13	時計「時分」の設定値 BCD4桁	00~23時	、00~59万
専	9	+14	コントロール *12	0	バックライトOFF *7
用				1	ブザーON
ェ				2	プリント開始
IJ				3	予約
ア				4	ブザー音*8 0:出力、1:非出力
				5	AUX出力 ^{*8} 0:出力、1:非出力
				6	予約
				7	PLC専有 ^{*9} 0:非専有、1:専有
				8	VGA表示 ^{*10} 0:非表示、1:表示
				9、10	予約
				11	ハードコピー出力 ^{*14} 0:出力、1:非出力
				12~15	予約
	Α	+15	予約	0にしてくだ	だい。
	В	+16	ウインドウコントロール ^{*11}	0	表示 0:OFF、1:ON
				1	ウインドウの重なり順序の入れ替え
					0:可、1:不可
				2~15	予約
	С	+17	ウインドウ登録番号 ^{*11}	間接指定で	選択したグローバルウインドウ
				の登録番号	H(BIN、または、BCD)
	D	+18	ウインドウ表示位置 ^{*11} (X座標データ)	間接指定で	選択したグローバルウインドウ
		+19	ウインドウ表示位置 ^{*11} (Y座標データ)	の表示座標	『(BIN、または、BCD)

^{「*」}の説明は次ページに記載しています。

*1 <ステータス-プリント中>

プリント中にビットがONします。このビットのON中にオフラインモードへ切り替えると、プリント出力が乱れる場合があります。

*2 < ステータス - 設定値書き込み >

Kタグおよび設定値表示器による書き込みが発生するごとにビットが反転します。

*3 < ステータス - PLC 専有 >

マルチリンク使用時、PLC専有中にビットがONします。

*4 < ステータス - K タグ入力エラー >

現在入力中のKタグに警報が設定されている場合、警報レンジ外の値を入力すると、ビットがONします。警報レンジ内の値を入力する、または画面が切り替わるとOFFになります。

*5 <ステータス>

必要ビットのみをビット単位でモニタしてください。

なお、予約ビットはGPのシステムでメンテナンスなどに使用している場合がありますので、ON/OFF は不定です。

*6 < 時計「年」設定値 >

時計データはデータの書き換え用フラグが変化(OFF ONまたはON OFF)すると書き換えられます。

< 例 > 95年10月16日21時57分

現在のワードアドレス+10のデータが0000とします。

「月」「日」「時分」のデータを書き込みます。

- ・ワードアドレス+11に 0010
- ・ワードアドレス +12 に 0016
- ・ワードアドレス +13 に 2157

「年」の15ビット目をONしたデータを書き込みます。

・ワードアドレス+10に 8095と入力すると時計データは書き換えられます。

*7 < コントロール - バックライト OFF >

GP-477R/GP-470シリーズ以外の場合、ONでバックライトが消灯(LCD表示はそのまま)し、OFFで点灯します。

システムデータエリア + 14番地(コントロール)のバックライトOFFのビットをONにすると、バックライトのみがOFFになっている状態で、LCD(液晶)は表示ONのままになっています。また、画面に設定されているタッチスイッチなども動作する状態となっています。通常、画面表示のOFFを行う場合は、+9番地(画面表示のON/OFF)をご使用ください。

*8 < コントロール - ブザー音 /AUX 出力 >

コントロールのビット1(ブザーON)の出力先は以下のようになります。

ブザー音・・・コントロールのビット1がONの間、GP内部のブザーが鳴ります。

AUX 出力・・・コントロールのビット 1 が ON の間、AUX のブザー出力が ON します。

*9 < コントロール - PLC 専有 >

n:1(マルチリンク)使用時、ONでPLCを専有します。 参照 4.5 PLC専有

*10 < コントロール - VGA 表示 >

GP-570VM、GP-870VMの場合、ONで画面全体がVGA表示となります。VGA表示中に画面の任意の位置をタッチするとOFFします。

*12 < コントロール >

予約ビットはGPのシステムでメンテナンスなどに使用している場合がありますので、必ずOFFにしてください。

ニ・コントロール(アドレス+14)は、必ずビット単位で書き込んでく MEMO ださい。ワードデータで書き込と値が変わる場合があります.

*13 < 画面表示の ON/OFF >

システムデータエリア + 9番地(画面表示のON/OFF)で画面表示OFFを行うと、画面表示OFF後の1回目のタッチ入力は画面表示ONとしての動作となります。

*14 < ハードコピー出力 >

コントロールのビット11(ハードコピー出力)をONにすることにより、現在印字中の画面ハードコピーを中止します。

- ・ハードコピーの中止後、コントロールのビット11のOFFされませんので、ステータスのプリント中ステータスを監視するなどして、コントロールのビット11をOFFしてください。
- ・コントロールのビット11が0Nの間は、ハードコピーは行われません。すべて中止されることになります。印字途中で中止を行った場合、画面1ライン分のデータを出力し、終わってから中止されます。また、すでにプリンタ側のバッファに取り込まれているデータはクリアされません。

1 アドレス 8 ビット長のデバイスをもつ PLC をご使用の場合

- 重要 ・ バイトアドレスは初期設定でシステムデータエリアを全て選択 した場合の値です。
 - ・ 各内容の示すバイトアドレスの上下関係は、PLCによって異な ります。
 - ・ 通常、画面表示のOFFを行う場合には、+34番地(コントロー ル)のバックライトOFFのビットを使用せず、+22番地(画面 表示のON/OFF)をご使用ください。

項目番号は、GPオフラインモードの「初期設定」の「システム 環境の設定」で表示される番号です。

	項目 番号	バイト アドレス	内容	位	ビット	備考
	1	+0	表示中画面番号		1 ~ 8999	(ただし、BCDで入力の場合は
		+1				1 ~ 1999)
	2	+2	エラーステータス		0、1	未使用
GP			GPのエラー発生時に、対応		2	システムROM/RAM
			するビットがONされます。		3	画面記憶メモリチェックサム
PLC			一度ONになったビットは、		4	SI0フレミング
書			電源をOFFしてから再度ON		5	SIOパリティ
₹			するか、オフラインモード		6	SIOオーバーラン
込			から再度運転モードに切り		7	未使用
み		+3	替えるまで保持されます。		0	未使用
専			エラーステータスの詳細		1	内部記憶メモリの初期化が必要
用			内容と処理については、本頁		2	タイマークロック異常
エ			末尾をご参照ください。		3	PLC通信異常
リ					4~7	未使用
ア	3	+4	時計「年」の現在値BCD2桁		西暦の下	2桁
		+5	### [[04 40 🗆	
		+6	時計「月」の現在値BCD2桁		01~12月	
		+7 +10	時計「日」の現在値BCD2桁		01~31日	
		+10	时间 DDCD2代]		01~31 <u>D</u>	
		+12	 時計「時分」の現在値		00~23時	、00~59分
		+13	BCD4桁		00 ZJH J	(00 39)]
	4	+14	ステータス *5	下位	0、1	予約
			27 72		2	プリント中 *1
					3	設定値書き込み ^{*2}
					4~6	予約
					7	PLC専有 *3
		+15		上位	0	rcc等有 Kタグ入力エラー ^{*4}
					2~7	予約
	5	+16				33
	_	+17				

	項目		内容	位	ビット	備考
	番号 6	アドレス +20	切り替え画面番号		1 9000	【 C ただし、BCDで入力の場合は
	O	+20	切り音ん画画番号		1~0999	1~1999)
	7	+22	画面表示のON/OFF ^{*14}		FFFFhたら!	ず回面表示が消えます。Ohの時は画面表
PLC	'	+23	画面表示0JUN/UFF			FFFFh、Oh以外の値は予約
	8	+24	時計「年」の設定値			行(15ビット目が時計データの書き換え
GP		+25	BCD2桁+(設定フラグ)			⁶ になります。)
読		+26	時計「月」の設定値BCD2桁		<u> </u>	10.000
み		+27	10 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1		, ;	
込		+30	時計「日」の設定値BCD2桁		01~31日	
み		+31				
専		+32	時計「時分」の設定値		00~23時	、00~59分
用		+33	BCD4桁			
エ	9	+34	コントロール *12	下位	0	バックライトOFF ^{*7}
IJ					1	ブザーON
ア					2	プリント開始
					3	予約
					4	ブザー音*8 0:出力、1:非出力
					5	AUX出力 ^{*8} 0:出力、1:非出力
		+35			6	予約
					7	PLC専有 ^{*9} 0:非専有、1:専有
				上位	0	VGA表示 ^{*10} 0:非表示、1:表示
					1~2	予約
					3	ハードコピー出力 ^{*15} 0:出力、1:非出力
					4~7	予約
	Α	+36	予約		0にしてくた	ごい。
		+37				
	В	+40	ウインドウコントロール ^{*11 *13}	下位	0	表示 0:0FF、1:0N
					1	ウインドウの重なり順序の入れ替え 0:
		+41		L / 1 -	2~15	予約
	С	1.40	ウィン,ドウ登台来早 *11	上位	2~15 即按指字不	予約 選択したグローバルウインドウ
	C	+42	ウインドウ登録番号 ^{*11}			選択したグローバルワイントワ (BIN、または、BCD)
	D	+43	 ウインドウ表示位置 ^{*11}			(BIN、よたは、DOD) 選択したグローバルウインドウ
		+45	リイントリ表示位置 (X座標データ)			選択したグローバルウインドウ (BIN、または、BCD)
		+46	(<u>^/ 注 (</u>			選択したグローバルウインドウ
		+47	ソイントソ表示 101 (Y座標データ)			医肌したプローバルフィフィフ (BIN、または、BCD)
			\ · · · · · · /		VVI VII IV	1, 01/2/01/ 202/

^{「*」}の説明は次ページに記載しています。

*1 <ステータス-プリント中>

プリント中にビットがONします。このビットのON中にオフラインモードへ切り替えると、プリント出力が乱れる場合があります。

*2 < ステータス - 設定値書き込み >

Kタグおよび設定値表示器による書き込みが発生するごとにビットが反転します。

*3 <ステータス -PLC 専有 >

マルチリンク使用時、PLC専有中にビットがON します。

*4 <ステータス-Kタグ入力エラー>

現在入力中のKタグに警報が設定されている場合、警報レンジ外の値を入力すると、ビットがONします。警報レンジ内の値を入力する、または画面が切り替わるとOFFになります。

*5 <ステータス>

- ・アドレスの上下関係はPLCにより異なります。
- ・ 必要ビットのみをビット単位でモニタしてください。

なお、予約ビットはGPのシステムでメンテナンスなどに使用している場合がありますので、ON/OFF は不定です。

*6 < 時計「年」設定値 >

時計データはデータの書き換え用フラグが変化(OFF ONまたはON OFF)すると書き換えられます。

< 例 > 95年10月16日21時57分

現在のバイトアドレス+24,25のデータが0000とします。

「月」「日」「時分」のデータを書き込みます。

- ・バイトアドレス +26,27 に 0010
- ・バイトアドレス+30,31 に 0016
- ・バイトアドレス+32,33 に 2157

「年」の15ビット目をONしたデータを書き込みます。

・バイトアドレス+24,25に 8095と入力すると時計データは書き換えられます。

*7 < コントロール - バックライト OFF >

GP-570、GP-270、GP-370、GP-675、GP-H70、GP577R の場合、ON でバックライトが消灯(LCD 表示はそのまま)し、OFFで点灯します。

システムデータエリア + 34番地(コントロール)のバックライトOFFのビッ

トをONにすると、バックライトのみがOFFになっている状態で、LCD(液晶)

は表示ONのままになっています。また、画面に設定されているタッチスイッ

チなども動作する状態となっています。

通常、画面表示のOFFを行う場合は、+22番地(画面表示のON/OFF)をご使用ください。

*8 < コントロール - ブザー音 /AUX 出力 >

コントロールのビット1(ブザーON)の出力先は以下のようになります。

ブザー音・・・コントロールのビット1がONの間、GP内部のブザーが鳴ります。

AUX 出力・・・コントロールのビット 1 が ON の間、AUX のブザー出力が ON します。

*9 < コントロール - PLC 専有 >

n:1(マルチリンク)使用時、ONでPLCを専有します。 **参照** 4.5 PLC専有

*10 < コントロール - VGA 表示 >

GP-570VM、GP-870VMの場合、ONで画面全体がVGA表示となります。VGA表示中に画面の任意の位置をタッチするとOFFします。

*12 < コントロール >

- ・アドレスの上下関係はPLCにより異なります。
- ・予約ビットはGPのシステムでメンテナンスなどに使用している場合がありますので、必ず OFFにしてください。

*13<ウィンドウコントロール>

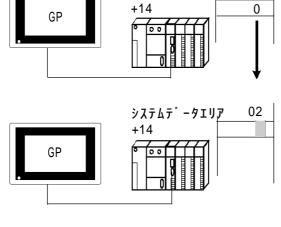
アドレスの上下関係は、PLCにより異なります。

*14 < 画面表示の ON/OFF >

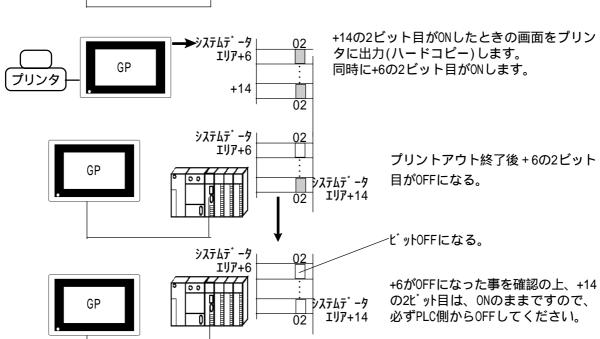
システムデータエリア + 22番地(画面表示のON/OFF)で画面表示OFFを行うと、画面表示OFF後の1回目のタッチ入力は画面表示ONとしての動作となります。

*15 < ハードコピー出力 >

コントロールのビット11(ハードコピー出力)をONにすることにより、現在印字中の画面ハードコピーを中止します。


- ・ハードコピーの中止後、コントロールのビット11のOFFされませんので、ステータスのプリント中ステータスを監視するなどして、コントロールのビット11をOFFしてください。
- ・コントロールのビット11が0Nの間は、ハードコピーは行われません。すべて中止されることになります。印字途中で中止を行った場合、画面1ライン分のデータを出力し、終わってから中止されます。また、すでにプリンタ側のバッファに取り込まれているデータはクリアされません。

エラーステータスの内容と処置方法


内容	原因	処置方法
システムROM/RAM	ハードウエアの異常です。	自己診断を行ってください。
画面記憶チェックサム	画面が壊れているために、画面記憶	電源投入直後に表示されるエラー発生画
	データのチェックサムが合いません。	面の番号を確認してください。 <u>参照</u>
		各ユーザーズマニュアル(別売)6-2エ
		ラーメッセージ/画面記憶データ異常
SI0フレミング	フレミングエラーが発生しました。	通信設定の確認をしてください。 <u>参照</u>
		各ユーザーズマニュアル(別売)6-
		2-3通信しないとき
SIOパリティ	パリティーエラーが発生しました。	
SIOオーバーラン	オーバーランエラーが発生しました。	
内部記憶メモリの初期化 が必要	内部記憶が初期化されていません。	内部記憶の初期化を行ってください。
タイマークロック異常	GP内部のタイマークロックが停止して	電池が切れている可能性があります。お
	います。	買い求めの代理店、または、(株)デジ
		タル サービス・リペアセンターまでご
		連絡ください。
PLC通信異常	GPとPLCの通信設定が一致していませ	通信設定の確認をしてください。 <u>参照</u>
(ダイレクトアクセス方式	ん。または、PLC側でエラーが発生し	各ユーザーズマニュアル(別売)6-
のみ)	ました。	2-3通信しないとき

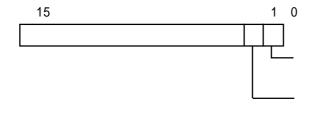
GP からのプリントアウトについて

システムテ゛ータエリア

PLC側から+14の2ビット目をON(データ4)を書き込みます。

1.1.5 特殊リレー

GP70シリーズの特殊リレーの構成は次のとおりです。


LS2032	共通リレー情報	
LS2033	ベース画面情報	
LS2034	予約	
LS2035	1秒バイナリカウンタ	
LS2036	タグのスキャンタイム	
LS2037	通信のサイクルタイム	
LS2038	タグのスキャンカウンタ	
LS2039	通信エラーコード	
LS2040	トークン周回速度最大値	1:1(マルチリンク)
LS2041	トークン周回速度現在値	接続時のみ使用
LS2042		
•	予約	
•		
LS2047		

共通リレー情報(LS2032)

•	15	12	11	10	9	8	7	6	5	4	3	3 2	2 1	i (0

ビット	内容
0	通信サイクルごとにON/OFFを繰り返します。
1	画面(ベース、ウィンドウ)切り替えからタグ処理が完了するまでの間ONになります。
2	通信エラー発生中のみONになります。
3	電源投入直後の初期画面を表示している間ONになります。
4	常時ONになっています。
5	常時OFFになっています。
6	バックアップSRAMのデータが消えたときにONします。(バックアップSRAM搭載のGPのみ)
7	Dスクリプト使用時、BCDエラーが発生するとONになります。 Dスクリプト <u>参照</u> タグリファレンスマニュアル 3.1 Dスクリプト
8	Dスクリプト使用時、ゼロ割算エラーが発生するとONになります。
9	ファイリングデータでバックアップSRAMに転送できなかった場合にONします。
10	ファイリングデータのコントロールワードアドレスによる転送で、PLC SRAMの 転送ができなかった場合にONします。 また、ファイル項目表示器によろPLC間の転送で、転送完了ビットアドレスがあ りの場合のみ、PLC エリア、PLC SRAMの転送ができなかった場合にONします。
11	ファイリングデータでファイル項目表示器によるSRAM LSエリア間の転送中の間ONになります。
12	Dスクリプト使用時、memcpy()、アドレスオフセット指定の読み出しで通信エラーが発生するとONになります。正常にデータ読み出しが終了するとOFFになります。
13-15	予約

ベース画面情報(LS2033)

ベース画面の通信の1サイクルごとにON/OFFを繰り返します。

ベース画面切り替えから、タグ処理が完了するまでの間 ON します。

予約(LS2034)

予約アドレスの値は不定です。使用しないでください。

1秒バイナリカウンタ(LS2035)

電源投入直後より1秒ごとにカウントアップします。データはバイナリです。

タグのスキャンタイム(LS2036)

表示画面に設定されているタグの一つめの処理開始から最後のタグの処理終了までの時間です。 データはバイナリで単位はmsで格納されます。データは対象タグの全処理が完了した時点で更 新されます。データの初期値は0です。±10msの誤差があります。

通信のサイクルタイム(LS2037)

通信対象となるPLC内部のシステムデータエリア、および各種デバイスの処理開始から終了までの1サイクルの時間です。データはバイナリで単位は10msで格納されます。データはシステムデータエリアと対象デバイスの全処理が完了した時点で更新されます。データの初期値は0です。 ± 10msの誤差があります。

タグのスキャンカウンタ(LS2038)

表示画面に設定されているタグの処理がひととおり完了するごとにカウントアップされます。 データはバイナリです。

通信エラーコード(LS2039)

通信エラー発生時、最後に表示された通信エラーコードがバイナリで格納されます。

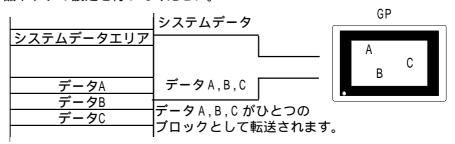
トークン周回速度最大値(LS2040) (n:1(マルチリンク)接続時のみ使用)

トークンパケット(PLCへのコマンド発行権)の受け渡しがn台接続されたGP間で一周する時間の最大値です。単位は10msです。データは最大値が変化するごと、または画面切り替えごとに更新されます。データの初期値は0です。±10msの誤差があります。

トークン周回速度現在値(LS2041) (n:1(マルチリンク)接続時のみ使用)

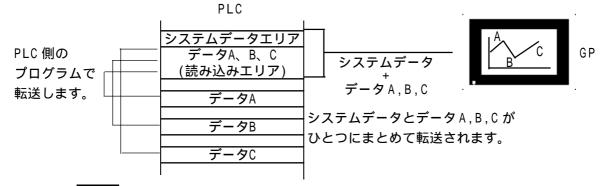
トークンパケット(PLCへのコマンド発行権)の受け渡しがn台接続されたGP間で一周する時間の現在値です。単位は10msです。データは現在値が変化するごと、または画面切り替えごとに更新されます。データの初期値は0です。±10msの誤差があります。

- 強制・ 通信ケーブルが外れているなどで通信エラー状態が長時間続く とシステムエラーが発生することがあります。この場合はGPを 一度リセットしてください。
 - ・ 1秒バイナリカウンタ、タグのスキャンカウンタの値をWタグの監視ビットやDスクリプトのトリガビットとして使用する場合、通信エラー状態が長時間続くとシステムエラーが発生することがあります。この場合はGPを一度リセットしてください。
- **禁止・**特殊リレーはライトプロテクトされていません。タグなどでON/OFFしないでください。


1:1接続で使用した場合、トークン周回速度最大値とトークン周回速度現在値は、初期値(ゼロ)のままです。

1.2 効率よく通信を行うには

ダイレクトアクセス方式では、表示画面に設定されている部品やタグ情報にもとづいて、PLCとデータのやり取りが行われています。部品やタグの個数が増えるとデータ量が多くなり、通信スピードが落ちてきます。そこで、通信のスピードアップをはかるために、効率よく通信を行う必要があります。GPでは、通常の通信方法のほかに「ブロック転送」や「LSエリア通信」といった通信方法をとることで効率のよい通信ができます。


1.2.1 ブロック転送

PLC の連続したデバイスを GP で表示する場合、GP は連続デバイスのデータの送受信を自動的にブロック化します。データをブロック化することで、通信は高速化されます。データをブロック転送するためには、決められたデータ数の範囲¹¹内でアドレスが連続していることが必要です。部品やタグで連続したアドレスを設定している場合、GP は自動的にデータ読み出しをブロック化します。プロック転送を行いたい場合は、アドレスが連続となるように部品やタグの設定を行ってください。

1.2.2 LSエリア通信

全画面共通で表示されるデータや折れ線グラフの一括表示用データがある場合、ビデオウインドウ表示を行う場合(GP-570VM、GP-870VMのみ)には、LS エリアを使用して通信を行います。LS エリア通信を行うためには、まず、GP オフラインモードの初期設定で「読み込みエリアサイズ」を指定します。そして、この設定によってPLC の内部メモリ領域に割り付けられた読み込みエリア内に、全画面共通で表示されるデータや折れ線グラフの一括表示用データを転送します。(転送は、PLC側のプログラムによって行います)そうすることにより、PLC内の読み込みエリアに転送されたデータとシステムデータが一度に GP に転送されます。LS エリア通信を行うと、GP は表示している画面に関係なく、PLC と常時データをやり取りします。したがって、ブロック転送よりも画面切り替え時のデータ表示を高速に行えます。

重要

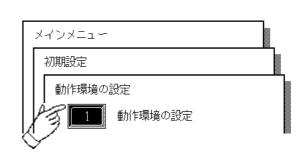
- ・全画面共通で表示されるデータや折れ線グラフの一括表示用 データがある場合やビデオウインドウ表示を行う場合以外は、 LS エリア通信を行わないでください。その他のデータではLS エリア通信を行っても通信効率はあがりません。
- ・ 読み込みエリアサイズを多く設定すると、読み込みエリアを使用していないタグの表示や通信が遅くなる場合があります。
- ・画面の部品数やタグ数が多い場合は、画面ごとに、部品やタグ の設定アドレスに連続性を持たせてください。そうすることに よってブロック転送が利用でき、通信のスピードアップをはか ることができます。

1.2.3 書き込みエラー時の GP リセット設定

GPに書き込みエラーが発生した場合、表示されたエラー画面より書き込み処理をキャンセルす ることができます。GPのオフラインモードで初期設定時に使用するかしないかの設定を行って ください。

オフラインモード 参照 各ユーザーズマニュアル(別売) 第4章 オフラインモード

- MEMO・ 書き込みエラー時のGPリセット機能は、GP77RシリーズとGP-377シ リーズで有効です。ただし、「メモリリンク SIO」、「メモリリンク Ethernet 」、「CC-LINK」、「JPCN-1(標準)」、「DeviceNet Slave I/O」、 「SIEMENS S7-200PPI」にこの機能はありません。
 - ・ 初期値は、「無」の設定になっています。

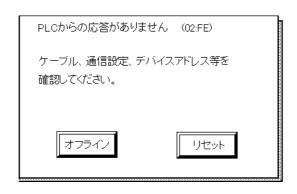

メニュー項目番号「1」をタッチします。

「初期設定」画面が表示されます。 メニュー項目番号「3」をタッチします。

「動作環境の設定」画面が表示されます。 メニュー項目番号「1」をタッチします。

設定画面が表示されます。

「書き込みエラー時のGPリセット」をタッチします。


動作環境の設定		
システムエリア先頭アドレス	[]	
号機No.	[]	
システムエリア 読み込みエリアサイズ(0-256)	[]	
書き込みエラー時の60リセット	有	
, アダプタ使用モード/直結専用モード	2ポート 値	直結
	システムエリア先頭アドレス 号機No. システムエリア 読み込みエリアサイズ(0-256)	システムエリア先頭アドレス [] 号機No. [] システムエリア 読み込みエリアサイズ(0-256) [] 書き込みエラー時の近り状態 有

「書き込みエラー時のGPリセット」が反転表示されます。

GPに書き込みエラーが発生した場合、書き込み処理をキャンセルする場合は、「有」を選択してください。

書き込みエラーが発生した場合、以下の画面が表示されます。 オフラインモード **参照** 各ユーザーズマニュアル(別売) 第4章 オフラインモード

- ・「オフライン」選択の場合:メインメニューが表示されます。
- ・「リセット」選択の場合:GPをリセットし、オンラインモードになります。 ただし、書き込み処理はおこなわれないままです。

1.3 接続可能な PLC 一覧

GP と接続可能なPLC の一覧を示します。 マルチリンクでの接続可能な PLC 一覧は**参照**__4.2 マルチリンク

	シリーズ名	CPU	リンクI/Fまたは CPU直結	特記事項	PRO/PB での 「PLCタイプ」	GP 対応	GLC 対応
三菱電機	MELSEC-A	A2A A3A A4U	AJ71C24-S6 AJ71C24-S8 AJ71UC24 CPU直結	別売のAシリーズ専用プ	三菱電機 MELSEC-AnA (LINK) 三菱雷機		
(株)			or o Ema	ロコンI/Fケーブル (GP430-IP10-0)が使用 できます。	MELSEC-AnA		×
		A2U A3U	AJ71C24-S6 AJ71C24-S8 AJ71UC24		三菱電機 MELSEC-AnA (LINK)		
		A2U-S1 A3U A2US-S1	CPU直結	別売のAシリーズ専用プロコンI/Fケーブル(GP430-IP10-0)が使用できます。	MELSEC-AnA		×
		A0J2 A0J2H A1N	A0J2-C214-S1 AJ71C24	AJ71UC24IJA2NCPU	三菱電機 MELSEC-AnN (LINK)		
	A2N A3N	AJ71C24-S3 AJ71C24-S6 AJ71C24-S8 AJ71UC24	でのみ接続確認し ています。			×	
		АЗН	CPU直結 CPU直結	別売のAシリーズ専用プロコンI/Fケーブル (GP430-IP10-0)が 使用できます。	三菱電機 MELSEC-AnN (CPU)		×
		A2CJ-S3 A1S	A1SJ71C24-R2 A1SJ71UC24-R2 A1SJ71C24-R4		三菱電機 MELSEC-AnN (LINK)		×
		CPU直結	別売のAシリーズ専用プロコンI/Fケーブル (GP430-IP10-0)が使用できます。	三菱電機 MELSEC-AnN		×	
		A2US	A1SJ71C24-R2 A1SJ71UC24-R2 A1SJ71C24-R4		三菱電機 MELSEC-AnA (LINK)		
		CPU直結	別売のAシリーズ専用プ ロコンI/Fケーブル (GP430-IP10-0)が使用 できます。	MELSEC-AnA		×	
		A1SJ A2SH A1SH	A1SJ71UC24-R4 A1SJ71UC24-R2		三菱電機 MELSEC-AnN (LINK)		×
		CPU直結	別売のAシリーズ専用プ ロコンI/Fケーブル (GP430-IP10-0)が使用 できます。	MELSEC-AnN		×	

	T	T	I=		1/		
	シリーズ名	CPU	リンクI/Fまたは CPU直結	特記事項		GP 対応	GLC 対応
	MELSEC-A	A2USH-S1	A1SJ71UC24-R4 A1SJ71UC24-R2		三菱電機 MELSEC-AnA (LINK)		
			CPU直結	別売のAシリーズ専用プロ コンI/Fケーブル(GP430- IP10-0)が使用できます。	三菱電機 MELSEC-AnA (CPU)		×
≡		A2CCPUC24	CPUユニット上 のリンクI/F (RS-232Cポート)		三菱電機 MELSEC-AnN (LINK)		
菱			CPU直結	別売のAシリーズ専用プロ コンI/Fケーブル(GP430- IP10-0)が使用できます。	三菱電機 MELSEC-AnN (CPU)		×
電機	MELSEC-F2	F2-20M F2-40M F2-60M	F2-232GF		三菱電機 MELSEC-F2 シリーズ 三菱電機		×
(株)	MELSEC-FX	$\begin{array}{c} Fx0 \\ Fx1 \\ Fx2 \\ Fx_{2C} \\ Fx2_{N}-64\text{MR} \\ FX_{2Nc}-32\text{MT} \\ FX_{0N}-60\text{MR} \end{array}$	CPU直結	・RS-232C接続する場合 RS-232C/RS-422変換 器としてインタ-フェ イスユニットFX-232 AWが必要です ・別売のFXシリーズ専用 プロコンI/Fケーブル (GP430-IP11-0)を使 用すれば変換器なしで CPUと直結できます。	三菱電機 MELSEC-FX (CPU)		×
		A1Fx	CPU直結		三菱電機 MELSEC-AnN (CPU)		
		FX _{2N}	FX2N-232-BD FX2N-485-BD	PLCのシステムのパージョ ンがVer.1.06以上必要。	三菱電機 MELSEC-FX2 (LINK)		
MELSEC-Q	MELSEC-QnA	Q2A Q2A-S1 Q4A	AJ71QC24 AJ71QC24N-R4		三菱電機 MELSEC-QnA (LINK)		
			AJ71UC24	使用できるデバイスに制 限があります。 	三菱電機 MELSEC-AnA (LINK)		
		Q2AS Q2ASH	A1SJ71QC24		三菱電機 MELSEC-QnA (LINK)		
			A1SJ71UC24	使用できるデバイスに制 限があります。	三菱電機 MELSEC-AnA (LINK)	†	
		Q2AS-S1	A1SJ71QC24N		三菱電機 MELSEC-QnA (LINK)		
			A1SJ71UC24-R2 A1SJ71UC24-R4	使用できるデバイスに制 限があります。 	三菱電機 MELSEC-AnA (LINK)		
		Q2A Q4A Q2AS Q2AS-S1	CPU直結	別売のAシリーズ専用プロ コンI/Fケーブル(GP430- IP10-0)が使用できます。			×

	シリーズ名	CPU	リンクI/Fまたは CPU直結	特記事項	PRO/PB での 「PLCタイプ 」	GP 対応	好心 GLC
	SYSMAC C	C500	C500-LK201-V1	C1000HFでは、	オムロン	ᄼᆁᄱ	∧ 1 // U
		C500F	C500-LK203	C500-LK203のみ	SYSMAC-C		
		C1000H		使用できます。	シリーズ		
		C1000HF					
		C2000					
		C2000H					
		C200H	C200H-LK201				
		C200HS	C200H-LK202				
		C20H	CPUユニット上の				
		C28H C40H	リンクI/F				
		C200HS	(RS-232Cポート)				
		CQM1 - CPU42					
		C120	C120-LK201-V1				
オ		C120F	C120-LK202-V1				
		C200H	C500-LK203				
ム		C500					
		C500F					
		C1000H					
\		C2000					
ン		C2000H C1000HF					
(株)		SRM1-C02	CPM1-CIF01				
		CPM1 - 20CDR - A	CPM1-CIF11				
		CPM2A					
		C200HS	CPU直結	オムロン(株)製			
		SRM1-C02		アイソレ-ション			
		CQM1-CPU11		ケーブル			
		CQM1-CPU42		(CQM1-CIF01)が			
		CPM1-20CDR-A CPM2A		必要です。			
	SYSMAC-	C200HX-CPU85-Z	C200HW-C0M06	RS-422は4線式			
		C200HX-CPU64	0_00	のみ使用できま			
		C200HX-CPU44		す。			
		C200HE-CPU42					
			CPUユニット上の				
			RS-232Cポート				
		C200HE-CPU42-Z	C200H-LK202-V1				
		C200HX-CPU64-Z	020011-LN202-V1				
		02001111 01 00 1 2	C200H-LK201-V1				
	SYSMAC CV	CV500	CPUユニット上の	CVM1はCVM1-CPU01			
		CV1000	リンクI/F(HOSTLINK				
	SASMVC CC1	CVM1 CS1H-CPU67)、CV500-LK201 CPUユニット上の	ます。	シリーズ オムロン		
	O I OWING GOT	CS1H-CPU66	RS-232Cポート		SYSMAC CS1		
		CS1H-CPU65	CPUユニット上の		シリーズ		
		CS1H-CPU64	ペリフェラルポート				×
		CS1H-CPU63	CS1W-SCB21				
		CS1G-CPU45	CS1W-SCB41				
		CS1G-CPU44	CS1W-SCU21				
		CS1G-CPU43 CS1G-CPU42					
<u> </u>	MICREX-F	F80H	FFU120B		 富士電機		
富士	mi VILA-I	F120H	01205		MICREX-F		
軍		F250			シリーズ		
機							×
(株)							
(1/1/)							

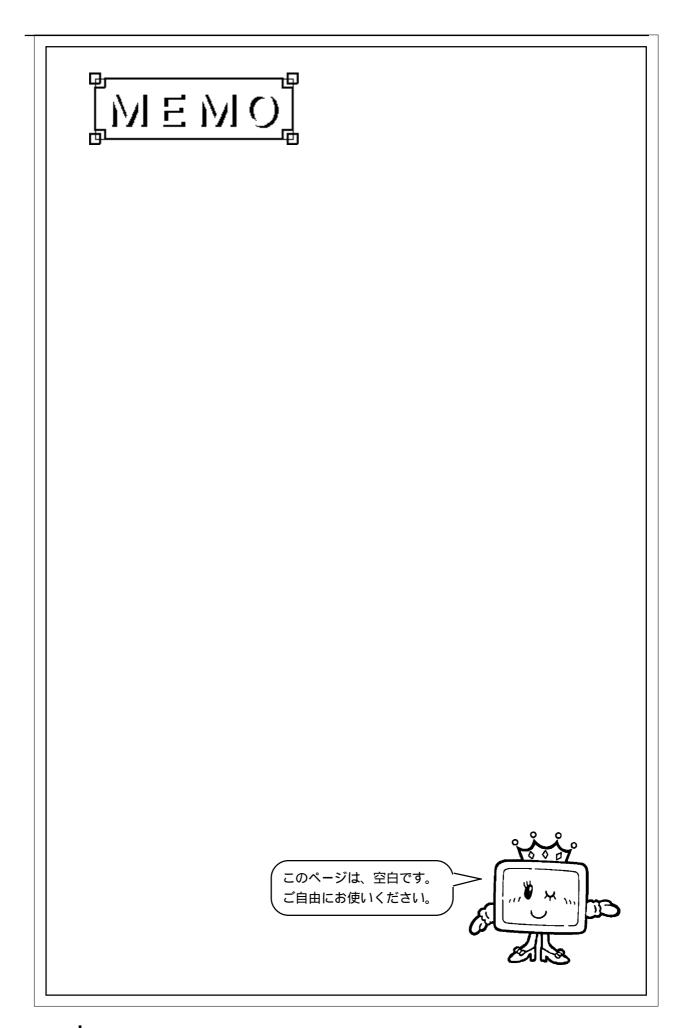
	シリーズ名	CPU	リンクI/Fまたは CPU直結	特記事項	PRO/PB での「PLCタイプ」		GLC 対応
富士電機株	MICREX-F	F80H F120H F250 F30 F50 F60 F80 F81 F120 F120S F200 F70S	FFK100A FFK120A-C10 NC1L-RS2 CPU直結 ローダポート使用	・FFK100A-C10を使用する場合はROMカセットFMC312A-T (パソコです。・FFK120A-C10を使用する場合は場上でする場合は調子ではいる場合は調子では、 ROMカセッ。 CPUはNC1P-SOで接続を確認しています。	富士電機 MICREX-F シリーズ 富士電機 MICREX-F シリーズ(FLT)		×
	FLEX-PC	NB1 NB2	TリンクI/F ユニット NB-RS1-AC	参照Tリンク I/Fユニットユー ザーズマニュアル	富士電機 MICREX-F シリーズ(Tリ ンク) 富士電機	 -	
		NB2 NB3 NJ NS NB1	NJ-RS2 NJ-RS4 NS-RS1 CPU直結		FLEX-PC シリーズ (LINK) 富士電機		
		NB2 NB3 NJ NS			FLEX-PC シリーズ (CPU)		
(株) 安川電	Memocon-SC	U84 U84J U84S GL40S GL60S GL60H GL70H GL60S	JAMSC-C8110 JAMSC-C8610 JAMSC-IF61 JAMSC-IF60 JAMSC-IF61 JAMSC-IF612		安川電機 Memocon-SC シリーズ 		
機			CPU直結 CPU直結 JACP-317217		安川電機		
	MP900	MP930 MP920	CPUユニット上の MEMOBUSポート CPUユニット上の MEMOBUSポート JEPMC-CM200		CP9200SH シリーズ 		×
	Memocon Micro	GL120	CPU直結 JAMSC-120M0N27100		安川電機 Memocon-SC シリーズ 安川電機]
	PROGIC-8	GL130 PROGIC-8 PC01	CPUユニット上の リンクI/F		GL120/130 シリーズ 安川電機 PROGIC8 シリーズ		

	シリーズ名	CPU	リンクI/Fまたは CPU直結	特記事項	PRO/PB での 「PLCタイプ」	GP 対応	GLC 対応
(株)	HIDIC-S10	2 2 E 2 H 4	CPUユニット上の リンクI/F(上位計算 機インターフェイス) LWE805		日立製作所 HIDIC-S10 シリーズ		
日		4 F					
立	HIDIC H	H20 H28 H40	CPU直結	従来のHIZAC Hシリーズです。 伝送制御手順1	日立製作所 HIDIC-H シリーズ		
製		H64					
作		H-200 H-300					
所		H-700 H-2000					
'''		H-2002					×
		H-252C H-4010					
		EH-150	00114				
		H-300 H-700	COMM-H COMM-2H				
		H-2000 H-2002					
		H-4010	COMM-2H				
		H-2002 H-4010	COMM-2H	伝送制御手順2	日立製作所 HIDIC H2シリーズ		
	HIZAC EC	EC-40HR	CPU直結		日立製作所 HIZAC-ECシリーズ		
シャープ	ニューサテ ライトJW	JW20 JW70 JW100 JW-32CUH JW-32CUH1 JW-33CUH3	クI/F(COMMポート)	コミニュケーションポートが装備されているCPU モジュールが必要です。 JW20はJW-22CU、JW70は JW-70CU、JW-100CUに標 準装備されています。	シャープニュー サテライトJWシ リーズ		
(株)		JW20 JW-32CUH JW-32CUH1 JW-33CUH3 JW50		JW-10CMは4線式のみ接			×
		JW70 JW100	JW-10CM	続確認しています。			
	MEWNET	FP3	AFP3462		松下電工		
		FP5 FP10(S)	AFP5462 CPUユニット上の		MEWNET-FP シリーズ		
		FF10(3)	COM. ポート AFP3462				
松 下 電		FP1	CPUユニット上のRS- 232Cポート CPU直結	CPUはC24C、C40Cで接続 確認しています。			
して エ (株)		FP-M	ポート上のシリアル ポートコネクタ CPU直結				×
		FP10SH	CPUユニット上の				
		FP2 FP0-C32CT FP0-C16T	COM. ポート CPUユニット上のRS- 232Cポート				
			CPU直結				

	シリーズ名	CPU	リンクI/Fまたは CPU直結	特記事項	PRO/PB での「PLCタイプ」	GP 対応	GLC 対応
	FACTORY ACE	FA500	LC01-0N LC02-0N	CPU MP*0/AP*0のAタイプはサポートしていません。Bタイプ以上の機種と組み合わせて使用してください。なあ、CPU MP*1/AP*1はAタイプより組み合わせて使用できます。	横河電機 *1		
横河電機		FA-M3	F3LC01-1N F3LC11-1N F3LC11-2N	CPUはF3SP10-ONで接続 確認しています。 CPUはF3SP20- ON,F3SP21-ON,F3SP25- 2N,F3FP36-3Nで接続確 認しています。			
(株)			F3LC11-2N CPU直結	CPUはF3SP35-5Nで接続 確認しています。			×
		FA500 (1:n接続)	LC02-ON	FA500のほか、デジタル 指示調節計 (UT37/38/2000)、記録 計(μRシリーズ)とのマ ルチリンク接続がプログ ラムレスで実現できま す。	FACTORY ACE 1:n通信		
		FA-M3 (1:n接続)	F3LC11-2N	FA-M3のほか、デジタル 指示調節計 (UT37/38/2000)、記録 計(μRシリーズ)との マルチリンク接続がプロ グラムレスで実現できま す。CPUはF3SP20-ON、 F3SP35-5Nで接続確認し ています。	横河電機 *2 FACTORY ACE 1:n通信		
	TOYOPUC-PC2	PC2 L2	TLU-2652		豊田工機 TOYOPUC-PC2 シリーズ		
豊田工機		PC2J PC2J (1:n接続)	THU-2755 THU-2755		豊田工機 TOYOPUC-PC2 1:n通信		
(株)	TOYOPUC-PC3	PC3J	CPUユニット上の リンクユニット THU-2755		豊田工機 TOYOPUC-PC3 シリーズ		
		PC3J (1:n)接続	CPUユニット上の リンクユニット THU-2755		豊田工機 TOYOPUC-PC3 1:n通信		×

^{*1} 従来の作画支援ソフト(GP-PRO 、GP-PRO)の「FA-500」に相当します。 *2 従来の作画支援ソフト(GP-PRO 、GP-PRO)の「FA-500M」に相当します。

	シリーズ名	CPU	リンクI/Fまたは CPU直結	特記事項	PRO/PB での 「PLC タイフ ゜」	GP 対応	GLC 対応
(株)	PROSEC EX	EX2000	CPUユニット上の リンクI/F		東芝 PROSEC- EX2000 シリーズ	XJFO	7,770
東芝	PROSEC T	T3 T3H T2N T2E T2E	CPUユニット上の リンクI/F CM231E		東芝 PROSEC-T シリーズ		×
東芝	PROVISOR B	B200CH B200CUF B200CURM B200CUFRM	B2000LM		東芝電機 TC200シリーズ		
機 械 (株)	PROVISOR TC200	TCCUH TCCUL	TCCMW TCCMO CPUユニット上の リンクI/F	CPUユニット上のリンク I/Fを使用する場合、動 作環境の設定の号機No. を64に設定してくださ い。			×
光 洋	KOSTAC SG	SG-8	リンクI/F G-01DM		光洋電子 KOSTAC-SG8 シリーズ		
電子工	KOSTAC SU	SU-5 SU-6 SU-6B	CPUユニット上の リンクI/F U-01DM CPUユニット上の				×
業	KOSTAC SZ	SZ-4	リンクI/F CPUユニット上の リンクI/F				
(株)	KOSTAC SR	SR-21 SR-22	E-02DM-R1		光洋電子 KOSTAC- SR21/22 シリーズ		
Automa GE F,	シリーズ90-30	CPU311 CPU331	CPU直結 IC693CMM311		GEファナック シリーズ90SPN		,
mation FANUC	シリーズ90-70	CPU771/772 CPU781/782	IC693CMM711				×
ファ ナッ クサ	FANUC Power Mate (モーションコントローラ)	Power Mate		リーズと接続することを 明確にオーダーしてくだ さい。GPシリーズ接続タ イプはCRT/MDIを接続で きません。ハンディタイ プのプログラマDPL/MDI はGPシリーズ接続タイプ でも併用できます。	FANUC Power Mate シリーズ		×
(株)	TANUC SETTES	TO-IVIC	UンクI/F	ファナック(株)にGPシ リーズと接続することを 明確にオーダーしてくだ さい。RS232Cシリアル ポート2(JP5B)のみ使 用可能。			


	シリーズ名	CPU	リンクI/Fまたは CPU直結	特記事項	PRO/PB での「PLC タイフ ゜」	GP 対応	GLC
	FA-2	PF2-CPU1 PF2-CPU5M	CPU直結	RS-232C接続の 場合はリンクア	*1下表をご参 照ください。	אין <i>ו</i> יג	אין ניא
和		112 01 00 11		ダプタPF2-CLA またはコンピュ	///		
	FA-2J	PF2J-CPU1	CPU直結	ータリンクイン ターフェイスユ			
泉	FA-3S	PF3S-CP11	CPU直結	ニット PFA - 1U51が必			×
電		PF3S-CP12 PF3S-CP13		要です。RS-422 接続の場合はリ ンクユニット PFJ-U21が必要			
気		PF3S-CP12	PF3S-S1F2	PFJ-021が必安 です。			
		PF3S-CP13	PF3S-S1F4				
(株)	MICRO ³	MICRO ³	CPU直結		和泉電気 MICRO3		×
	SIMATIC-S5	\$5 90U \$5 95U \$5 100U	CP521 SI		SIEMENS S5 3964(R) プロトコル		
			CPU直結		SIEMENS S5 90-115 シリーズ		
		S5 115U	CP524 CP525		SIEMENS S5 3964(R) プロトコル		×
			CPU直結		SIEMENS S5 90-115 シリーズ		,
S		S5 135U S5 155U	CP524 CP525		SIEMENS S5 3964(R) プロトコル		
I E M			CPU直結		SIEMENS S5 135-155 シリーズ		
E N	SIMATIC S7-200	CPU212 CPU214	CPU直結		SIEMENS S7-200PPI		
S	SIMATIC S7-300	CPU3121FM CPU313 CPU314 CPU315 CPU315-2DP	CPU直結 (MPIポート使用)		SIMATIC S7-300/400 via MPI		
		CPU313 CPU314 CPU315	CP340	3964R/RK512 プロトコル	SIMATIC S7 via 3964/		×
		CPU315-2DP	CP341		RK512		
	SIMATIC S7-400	CPU413-2DP	CPU直結 (MPIポート使用)		SIMATIC S70-300/400 via MPI		
			CP411-2		SIMATIC S7 via 3964/RK512		

*1 和泉電気(株)PLC「FAシリーズ」 とGP を接続する場合、使用する CPUに合せて対象 PLC を設定して ください。

CPU	PRO/PB での「PLCタイプ」
PF2-CPU1	和泉電気 IDEC_1
PF2J-CPU1、PF3S-CP11	和泉電気 IDEC_2
PF2-CPU5M、PF3S-CP12、PF3S-CP13	和泉電気 IDEC_3

	シリーズ名	CPU	リンクI/Fまたは CPU直結	特記事項	PRO/PB での 「PLCタイプ」	GP	GLC 対応
	AB SLC500	SCL-5/03 SLC-5/04	CPUユニット上の リンクI/F		Allen Bradley SLC500 シリーズ	AJFG	XJIO
Rock well	AB PLC-5	PLC-5シリーズの 全ての機種(ただ し、右記のリンク ユニットを接続で きるもの)	1785-KE 1770-KF2 1785-KE/C		Allen Bradley PLC-5 シリーズ		×
(Allen- Bradley)		PLC-5/11 PLC-5/20 PLC-5/30 PLC-5/40 PLC-5/40L PLC-5/60 PLC-5/60L	CPU直結				
(株)	KEYENCE	KZ-300 KZ-350	KZ-L2		KEYENCE KZ-300シリース [*]		
キ エ		KZ-A500	CPU直結		KEYENCE KZ-A500 シリーズ(CPU)		×
エンス			KZ-L10		KEYENCE KZ-A500 シリーズ(LINK)		
一 神 鋼電 機 (株)	SELMART	SELMART	UC1-6		神鋼電機 SELMART シリーズ		×
松下電器産業株	Panadac 7000	P7000-PLC-001 P7000-PLC-031H P7000-PLC-031S P7000-PLC-A01	GCP001		松下電器 Panadac 7000 シリーズ		×
オリムベクスタ 株)	E1	CPU11	MMO1		ORIM VEXTA E1 シリーズ		×
(株)	SDC	SDC20 SDC21 SDC30 SDC31			山武 ^{细統計SDC211-7°}		
武		SDC40A SDC40B SDC40G			調節計SDCシリーズ		

- 重要・PLCメーカーによってPLCのバージョンアップや仕様変更が行われた場合、 GPと接続できなくなる可能性があります。ご了承ください。
 - ・ 使用するCPUやリンク I/Fの種類により、通信スピードが異なります。通信 スピードを確認した上でシステム設計を行ってください。
 - ・ PLC 側で RUN 中書き込み可否の設定(CPU の RUN 中に、外部機器から PLC の デバイスへデータを書き込む処理を行えるか否かの設定)があるものは、「可」 にしてご使用ください。
 - ・ PLC接続マニュアルのデバイスの範囲は、GPとの通信確認済みの最大デバイ ス範囲です。そのため、PLC機種によっては、PLCシリーズが同じでもPLC 接続マニュアルに記載されている範囲まで使用できない場合があります。
 - ・ 今後新たに接続可能となったPLCに関しては、随時説明を追加します。あら かじめご了承ください。
 - ・ GP77R シリーズでは、通信ボーレートが 115.2Kbps または、57600bps に対 応しています。通信速度の設定を115.2Kbpsまたは57600bpsに設定したGP と115.2Kまたは57600bpsに対応していないPLCを接続した場合、GP画面に エラーメッセージ(表示されるメッセージは、対応 PLC によって異なりま す。)が表示されます。
 - ・ 通信ボーレートを 57600bps 以上に設定した画面データを 57600bps 以上の 設定をサポートしていないGP機種に転送した場合、GP上では通信ボーレート は38400bps になります。

第2章 各社PLCとGPの接続

各社PLCとGPとのシステム構成・結線図・使用可能デバイス・環境設定例を説明します。

三菱電機(株)製PLC 2.1

システム構成 2.1.1

三菱電機(株)製PLCとGPを接続する場合のシステム構成を示します。 <結線図>は2.1.2 結線図をご参照ください。

MELSEC-A シリーズ (リンク I/F 使用)

CPU	リンクI/F	結線図	使用可能ケーブル	GP
	計算機リンク・	•	•	
A2A,A3A,A2U,	AJ71C24-S6	RS-232C	(株)デジタル製	
A3U,A4U	AJ71C24-S8	<結線図1>	GP410-IS00-0(5m)	
	AJ71UC24	RS-422	㈱デジタル製	
		<結線図2>	GP230-IS11-0(5m)	
A2US	A1SJ71C24-R2	RS-232C	㈱デジタル製	
	A1SJ71UC24-R2	<結線図3>	GP000-IS02-MS(3m)	
	A1SJ71UC24-R4	RS-422	㈱デジタル製	GPシリーズ
		<結線図2>	GP230-IS11-0	
A2USH-S1	A1SJ71UC24-R4	RS-422	㈱デジタル製	
		<結線図2>	GP230-IS11-0	
	A1SJ71UC24-R2	RS-232C	㈱デジタル製	
		<結線図3>	GP000-IS02-MS(3m)	

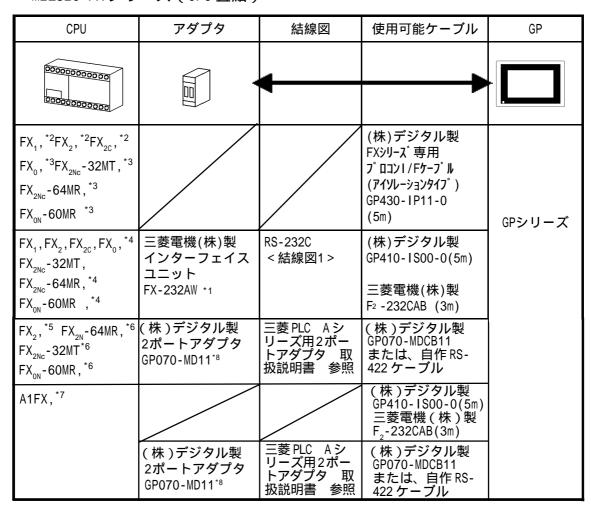
MELSEC-N シリーズ (リンク I/F 使用)

CPU	リンクI/F	結線図	使用可能ケーブル	GP
	計算機リンクユニット	•	•	-
A1N, A2N, A3N,	AJ71C24	RS-232C	㈱デジタル製	
	AJ71C24-S3	<結線図1>	GP410-IS00-0(5m)	
	AJ71C24-S6	RS-422	(株)デジタル製	
	AJ71C24-S8	<結線図2>	GP230-IS11-0	
	AJ71UC24(A2Nのみ)			
A0J2,A0J2H	A0J2-C214-S1			
A1S	A1SJ71C24-R2	RS-232C	㈱デジタル製	GPシリーズ
	A1SJ71UC24-R2	<結線図3>	GP000-IS02-MS(3m)	
	A1SJ71C24-R4	RS-422	㈱デジタル製	
A1SJ,A2SH,A1SH	A1SJ71UC24-R4	<結線図2>	GP230-IS11-0(5m)	
	A1SJ71UC24-R2	RS-232C	㈱デジタル製	
		<結線図3>	GP000-IS02-MS(3m)	
A2CCPU24	CPUユニット上の	RS-232C	㈱デジタル製	
	リンクユニット	<結線図3>	GP000-IS02-MS(3m)	

MELSEC-A シリーズ (CPU 直結)

CPU *1	アダプタ	結線図	使用可能ケーブル	GP
		◀	-	
A2A,A3A,A4U,A3U, A2U-S1,A2US-S1, A2USH-S1,A2US			㈱デジタル製 Aシリーズ用プロ コンI/Fケーブル	
A2A,A3A,A4U,A3U, A2U-S1,A2US-S1, A2USH-S1,A2US	(株)デジタル製 *2 2ポートアダプタ GP030-MD11-0	RS-422 (結線図については 「三菱PLC Aシリーズ 用2ポートアダプタ 取扱説明書」参照)	(アイソレーション タイプ)	GPシリーズ
A2A,A4U,A2U-S1 A2US,A3A,A2USH-S1	(株)デジタル製 *3 2ポートアダプタ GP070-MD11	RS-422 (結線図については 「三菱PLC Aシリーズ 用2ポートアダプタ 取扱説明書」参照)	(株)デジタル製 GP070-MDCB11(5m) または、自作 RS-422ケーブル	
	三菱電機㈱製 インターフェイス ユニット FX-2PIF			

MELSEC-N シリーズ (CPU 直結)

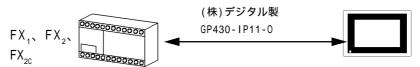

CPU *1	アダプタ	結線図	使用可能ケーブル	GP
		•	•	
A1N, A2N, A3N, A3H, A1S, A2SH, A2SH, A2CJ-S3, A1SH, A2CCPUC24, A1SJ			(株)デジタル製 Aシリーズ用プロ コンI/Fケーブル (アイソレーション	
A1N,A2N,A3N,A3H, A1S,A2SH,A1SJ A1SH	(株)デジタル製 ^{*2} 2ポートアダプタ GP030-MD11-0	RS-422 (結線図については 「三菱PLC Aシリーズ 用2ポートアダプタ 取扱説明書」参照)	タイプ)	GPシリーズ
A1S,A2N,A3H, A3N,A1SJ,A2SH A1SH,A2CJ-S3	(株)デジタル製 *3 2ポートアダプタ GP070-MD11	RS-422 (結線図については 「三菱PLC Aシリーズ 用2ポートアダプタ 取扱説明書」参照)	(株)デジタル製 GP070-MDCB11(5m) または、自作 RS-422ケーブル	
	三菱電機㈱製 インターフェイス ユニット FX-2PIF	三菱電機㈱製の マニュアルを参照 ください。		

- *1 プログラミングコンソールI/Fポートに接続します。
- *2 GPとPLCの通信中にラダーツールからプログラムの読み書きを行った場合、正常に終了しない事があります。その場合は一度、GPをオフラインモードにしてプログラムの読み書きを行ってください。
 - 注意・上記以外のCPUとCPU直結接続した場合、PLCが破損する可能性があります。
 ・ PLC側に2つのポートがある場合、同時にGPを接続することはできません。
- *3 2ポートアダプタ を使用する場合は、「三菱PLC Aシリーズ用2ポートアダプタ 取扱説明書」の 使用可能なPLCをご確認ください。

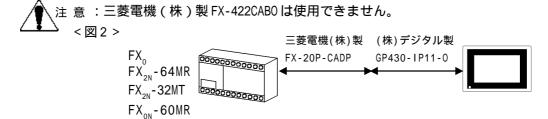
MELSEC-F。シリーズ(リンク I/F 使用)

CPU	リンクI/F	結線図	使用可能ケーブル	GP
00000000000	インターフェイス ユニット	•		
F ₂ -20M, F ₂ -40M, F ₂ -60M	F ₂ -232GF	RS-232C <結線図1>	(株)デジタル製 GP410-IS00-0(5m) 三菱電機(株)製 F ₂ -232CAB(3m)	GPシリーズ

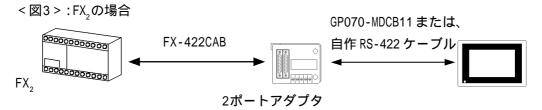
MELSEC-FX シリーズ (CPU 直結)

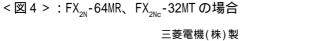


*1 MELSEC-FX シリーズと GP の接続は CPU 直結ですが、RS-422 の規格信号を RS-232C の規格信号 に変換するために、インターフェイスユニットFX-232AWが必要です。


 FX_1 、 FX_2 、 FX_2 と接続する場合は、インターフェイスユニットと PLC を三菱電機 (株) 製 RS-422CAB で接続する必要があります。(< 図 1 > 参照)

*2 FX₁、FX₂、FX₂と接続する場合(CPU直結ポートがD-SUB25ピン)は、(株)デジタル製GP430-IP11-0を使用して、PLCとGPを直接接続する必要があります。


*3 FX_0 、 FX_{2N} -64MR、 FX_{2NC} -32MT、 FX_{0N} -60MR と接続する場合(CPU 直結ポートが丸 8 L° ン)は、PLC を三菱電機(株)製 FX-20P-CADP とで接続する必要があります。

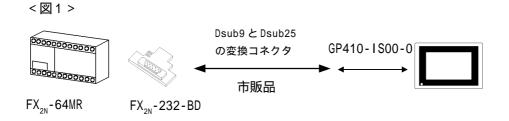

*4 FX_o、FX_{2N}-64MR、FX_{on}-60MR と接続する場合は、インターフェイスユニットと PLC を三菱電機 (株)製 FX-422CAB と FX-20P-CADP で接続する必要があります。(<図2>参照)

*5 デジタル製2ポートアダプタ をご使用になる場合は以下のように接続する必要があります。

*6 デジタル製2ポートアダプタ をご使用になる場合は以下のように接続する必要があります。

- *7 A1FXをご使用になる場合、PRO/PB での「PLCタイプ」はMELSEC-Nシリーズを選択してください。また、デバイス範囲もMELSEC-Nシリーズを参照してください。接続の際にはコネクタ部とCPUカバー部との段差がありますので、延長する必要があります。
- *8 2ポートアダプタ を使用する場合は、「三菱 PLC Aシリーズ用2ポートアダプタ 取扱説明書」の 使用可能な PLC をご確認ください。

MELSEC-FX シリーズ (機能拡張ボードを LINK プロトコルで使用する場合)*1


CPU	アダプタ	結線図	GP
	機能拡張ボード		
FX2N *2	FX2N-232-BD	<結線図6 > (RS-232C)	GPシリーズ
	FX2N-485-BD	<結線図7> (RS-422)	

- *1 GP 画面作成ソフト PRO/PB で「PLC タイプ」を < 三菱 MELSEC-FX2(LINK) > に設定してください。
- *2 PLCのシステムのバージョンがVer.1.06以上が必要です。バージョンの確認は、データレジスタ(D8001)を読み出すことで確認できます。詳細は、三菱電機(株)製「FX2Nシリーズマイクロシーケンサ」のマニュアルをご参照ください。

アダプタ CPU 結線図 使用可能ケーブル 機能拡張 000000000000 ボード FX_{2N} -64MR FX_{2N} -232-BD (株)デジタル RS-232C < 図1 > GP410-IS00-0 (5m) < 結線図1 > GPシリーズ 三菱電機(株)製 F_2 -232CAB (5m) RS-232C <結線図4> FX_{2N} -422-BD *3 (株)デジタル製 FXシリーズ専用プロ <図2> コン I/Fケーブル (アイソレーションタ イプ)GP430-IP11-0 (5m)

MELSEC-FXシリーズ(拡張拡張ボードをCPU直結プロトコルで使用する場合)*1

*2 PLC側は9ピンですので25ピンに変換するコネクタが必要です。

*3 丸コネクタ(8P)Dサブコネクタ(25P)の変換ケーブル三菱電機(株)製FX-20P-CADP が必要です。

^{*1}作画ソフトPRO/PB で「PLCタイプ」を<三菱MELSEC-FX(CPU)>に設定してください。

MELSEC-QnA (リンク I/F 使用)

CPU	リンクI/F	結線図	使用可能ケーブル	GP
	シリアルコミュニケーション ユニット /計算機リンク ユニット	•	-	
Q2A, Q2A-S1, Q4A	AJ71QC24(シリアルコ ミュニケーションユ ニット)*1	RS-232C <結線図1>	(株)デジタル製 GP410-IS00-0(5m)	
	AJ71UC24(計算機リン クユニット)	RS-422 <結線図2>	(株)デジタル製 GP230-IS11-0(5m)	
	AJ71QC24-R4	RS-422 <結線図2> CN-2用	(株)デジタル製 GP230-IS11-0(5m)	
		RS-422 <結線図5> CN-1用	(株)デジタル製 GP410-IS00-0(5m)	
Q2ASH	A1SJ71QC24 (シリア ルコミュニケーション ユニット)*2	RS-232C <結線図3>	(株)デジタル製 GP000-IS02-MS(3m)	GPシリーズ
	A1SJ71UC24 (計算機 リンクユニット)	RS-422 <結線図2>	(株)デジタル製 GP230-IS11-0(5m)	
Q2AS-S1	A1SJ71UC24-R2 A1SJ71UC24-R4	RS-232C <結線図3>	(株)デジタル製 GP000-IS02-MS(3m)	
		RS-422 <結線図2>	(株)デジタル製 GP230-IS11-0(5m)	
	A1SJ71QC24N	RS-232C <結線図3> RS-422 <結線図2>	(株)デジタル製 GP000-IS02-MS(3m) (株)デジタル製 GP230-IS11-0(5m)	

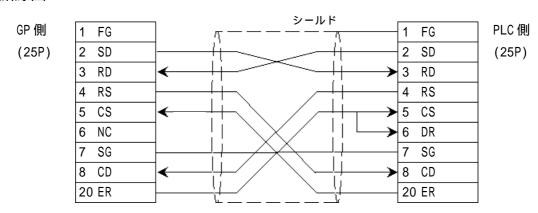
- *1 コミニュケーション側のバージョンは、ROM:7179B-以上が必要です。
- *2 コミニュケーション側のバージョンは、ROM:7179M-以上が必要です。

MELSEC-QnA (CPU 直結)

WEEGEG-WITH (·· · <u>— " </u>			
CPU	アダプタ	結線図	使用可能ケーブル	GP
		•		
Q4A, Q2A, Q2AS Q2AS-S1	(株)デジタル製 2ポートアダプタ GP030-MD11-0	RS-422 (結線図につい ては「三菱PLC 用2ポートアダ プタ取扱説明 書」参照	(株)デジタル製Aシリーズ用プロコンI/Fケーブル(アイソレーションタイプ)GP430-IP10-0(5m)	GPシリーズ
Q2A,Q4A,Q2AS-S1	(株)デジタル製 *3 2ポートアダプタ GP070-MD11	三菱 PLC A シリー ズ用 2 ポートアダ プタ 取説 参照	(株)デジタル製 GP070-MDCB11 または、 自作RS-422ーブル	

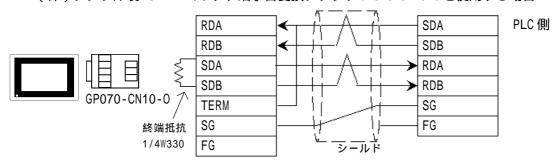
*3 GPとPLCの通信中にラダーツールからプログラムの読み書きを行った場合、正常に終了しない事があり ます。その場合は一度、GPをオフラインモードにしてプログラムの読み書きを行ってください。

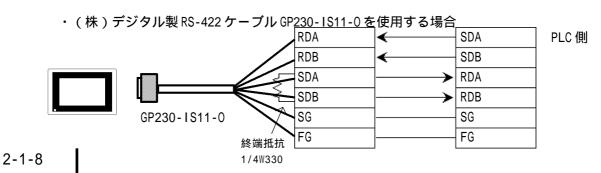
MEMO・ (株)デジタル製2ポートアダプタGP030-MD11-0には 右記のシールが貼られています。MELSEC-QnAに対応し ているものは、B以降に がついています。

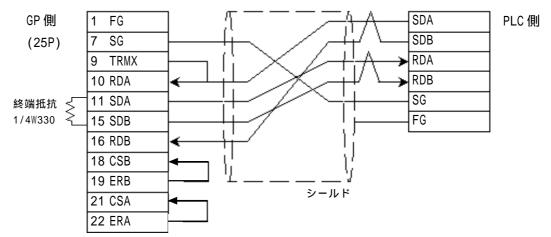

2.1.2 結線図

以下に示す結線図と三菱電機 株)の推奨する結線図が異なる場合がありますが、以下に示す結 線図でも動作上問題はありません。

禁止 ・ PLC本体のFG端子は、D種接地を行ってください。

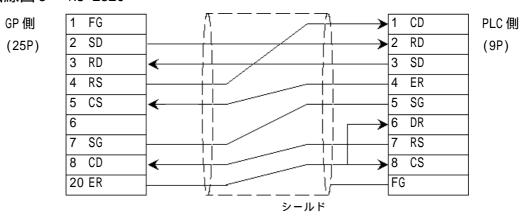

- 重要・ シールド線へのFGの接続は、設置環境によってPLC側、GP側の どちらかを選択してください。コネクタフードを使ってFGを落 とす場合は導電性のあるものをお使いください。(結線例はPLC側 に接続した場合の図です。)
 - ・ RS-232C接続の場合は、ケーブル長は15m以内にしてください。
 - ・ RS-422接続の場合は、ケーブル長は500m以内にしてください。
 - ・ 通信ケーブルを結線する場合は、必ずSGを接続してください。


<結線図1 > RS-232C

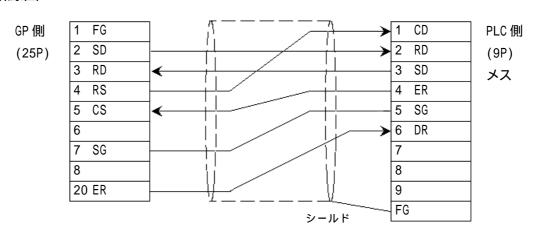

< 結線図 2 > RS-422

- 重要 · PLC側の終端抵抗スイッチをONにしてください。
 - PLC側において使用するユニットによりディップSWがついていな い場合、SDA-SDB 間と RDA-RDB 間のそれぞれに終端抵抗 330 1/2Wが必要となります。
- ・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

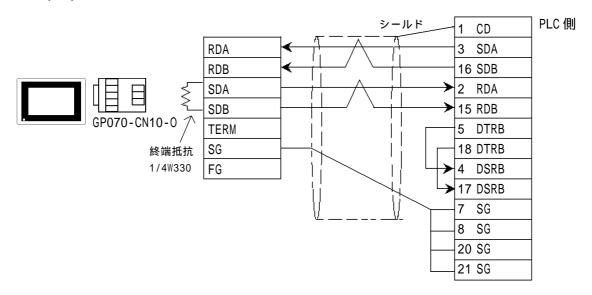
・ ケーブルを加工する場合



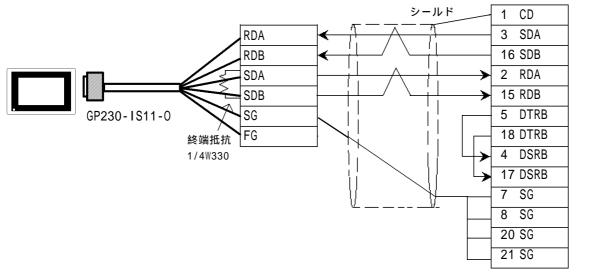
- MEMO ・ 接続ケーブルとして三菱電線工業(株)製 SPEV(SB)-MPC-0.2*3Pを推奨します。
 - ・ GP側シリアル I/Fの9番ピンと10番ピンを接続することによ リ、RDA-RDB間に100 の終端抵抗が挿入されます。


重要・ PLC側において使用するユニットによりディップSWがついていな い場合、SDA-SDB 間と RDA-RDB 間のそれぞれに終端抵抗 330 1/2Wが必要となります。

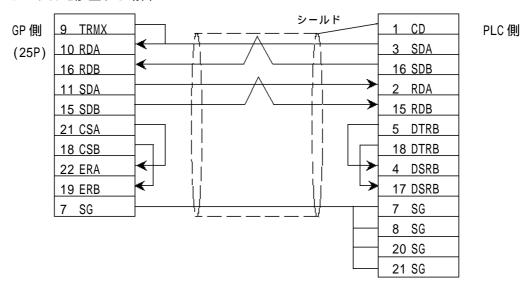
<結線図3 > RS-232C


強制・ シールド線は、PLC側の端子台のFGに接続してください。

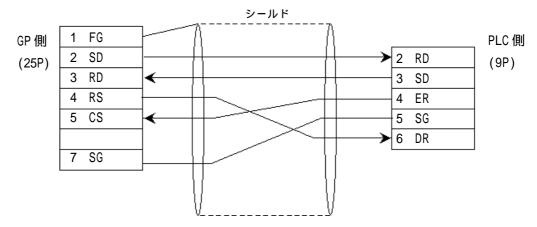
< 結線図4 > RS-232C


<結線図5 > RS-422

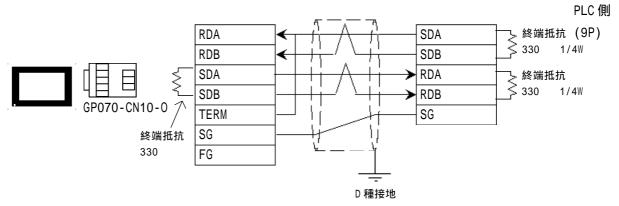
・ (株) デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合



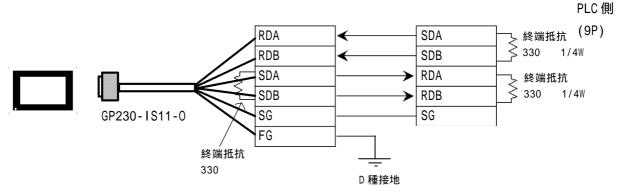
・(株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合


PLC 側

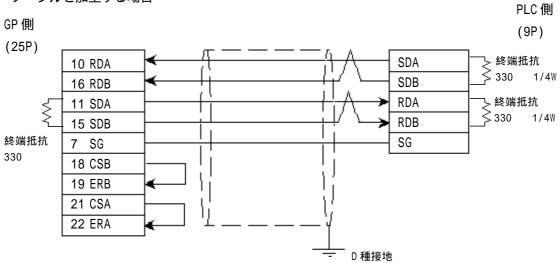
・ ケーブルを加工する場合



<結線図6 > RS-232C



<結線図7 > RS-422


- 重要 ・ PLC側において、SDA-SDB間とRDA-RDB間のそれぞれに終端抵抗 330 が必要となります。
 - ・ FX2N-485-BDを使用される場合は、ケーブル総延長距離は50m以内にしてください。
- ・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

・(株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合

・ ケーブルを加工する場合

MEMO ・ 接続ケーブルとして三菱電線工業(株)製SPEV(SB)-0.2-2Pを 推奨します。

2.1.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。

MELSEC-A シリーズ (AnA/AnU/A2US/A2USH-S1) は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考
入力リレー	X0000 ~ X1FFF	X0000 ~ X1FF0	*** 0
出力リレー	Y0000 ~ Y1FFF	Y0000 ~ Y1FF0	*** 0
内部リレー	M0000~M8191	M0000 ~ M8176	<u>÷16</u> 1
保持リレー	L0000 ~ L8191	L0000 ~ L8176	<u>÷16</u>)
特殊リレー	M9000 ~ M9255	M9000 ~ M9240	<u>÷16</u> j
アナンシェータ	F0000 ~ F2047	F0000 ~ F2032	<u>÷ 16</u> 1
リンクリレー	B0000 ~ B1FFF		
タイマ(接点)	TS0000 ~ TS2047		
タイマ (コイル)	TC0000 ~ TC2047		
カウンタ(接点)	CS0000 ~ CS1023		L/H
カウンタ (コイル)	CC0000 ~ CC1023		
タイマ(現在値)		TN0000 ~ TN2047	
カウンタ(現在値)		CN0000 ~ CN1023	
データレジスタ		D0000 ~ D8191	B i t 15)
特殊レジスタ		D9000 ~ D9255	B : t15
リンクレジスタ		W0000 ~ W1FFF	B i t F
ファイルレジスタ		R0000 ~ R8191	B : t 15 *1

- *1 AnA、AnUでファイルレジスタを使用する場合は、下記のメモリカセット内のユーザメモリエリアをご使用ください。
 - · A3NMCA-0 · A3NMCA-2 · A3NMCA-4 · A3NMCA-8 · A3NMCA-16 · A3NMCA-24
 - A3NMCA-40 A3MCA-56
 - ・A4UMCA-8E(CPU直結使用時のみ接続確認しています)

メモリカセット使用なしの場合にファイルレジスタを設定すると、通信時にエラーが発生します。

注 意 ・ 直結をご使用される際に、ラダープログラムをROM化された場合は、ファイルレジスタが使用できない場合があります。ご注意ください。

MELSEC-N シリーズ (AnN/A2C/A1S/A3H/A0J2/A1SJ/A2SH/A1SH/A2CJ-S3)

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考
入力リレー	X0000 ~ X07FF	X0000 ~ X07F0	***0]
出力リレー	Y0000 ~ Y07FF	Y0000 ~ Y07F0	<u>***</u> 0 *1
内部リレー	M0000 ~ M2047	M0000 ~ M2032	<u>÷ 16</u>)
保持リレー	L0000 ~ L2047		
特殊リレー	M9000 ~ M9255	M9000 ~ M9240	÷ 16) *2
アナンシェータ	F000 ~ F255	F000 ~ F240	<u>÷ 16</u>)
リンクリレー	B0000 ~ B03FF		
タイマ(接点)	T\$000 ~ T\$255		L/H
タイマ (コイル)	TC000 ~ TC255		
カウンタ(接点)	CS000 ~ CS255		
カウンタ (コイル)	CC000 ~ CC255		
タイマ (現在値)		TN000 ~ TN255	
カウンタ (現在値)		CN000 ~ CN255	
データレジスタ		D0000 ~ D1023	B i t 15
リンクレジスタ		W0000 ~ W03FF	Bit F
ファイルレジスタ		R0000 ~ R8191	B i t 15 *3

- *1 A2C使用の場合、出力リレーY01F0 ~ Y01FF (ワードはY01F0)はPLC側で使用のため設定できません。
- *2 AnN と AJ71C24-S3 (または AJ71C24)の組み合わせでは使用できません。
- *3 AnN、A3Hでファイルレジスタを使用する場合は、下記のメモリカセット内のユーザメモリエリアをご使用ください。
 - · A3NMCA-0 · A3NMCA-2 · A3NMCA-4 · A3NMCA-8 · A3NMCA-16 · A3NMCA-24
 - A3NMCA-40 A3MCA-56
 - ・A4UMCA-8E(CPU直結使用時のみ接続確認しています)

メモリカセット使用なしの場合にファイルレジスタを設定すると、通信時にエラーが発生します。

注 意 ・ 直結をご使用される際に、ラダープログラムをROM化された場合は、ファイルレジスタが使用できない場合があります。ご注意ください。

 $MELSEC-F_2$ シリーズ

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考
入力リレー(X)	000 ~ 013, 400 ~ 413, 500 ~ 513		ост 8)
出カリレー(Y)	030 ~ 037 , 430 ~ 437 , 530 ~ 537		<u>ост</u> 8)
タイマ (接点) (T)	050 ~ 057, 450 ~ 457, 550 ~ 557, 650 ~ 657		<u>ост</u> 8)
カウンタ (接点) (C)	060 ~ 067, 460 ~ 467, 560 ~ 567, 660 ~ 667		<u>ост</u> 8)
補助リレー(W)	070 ~ 077, 100 ~ 177, 200 ~ 277, 470 ~ 477, 570 ~ 577		<u>ост</u> 8]
キープリレー(M)	300 ~ 377		ост 8)
ステート(S)	800 ~ 877 , 900 ~ 977 , 600 ~ 647		<u>ост</u> 8]
タイマ(現在値)		TC050 ~ TC057 TC450 ~ TC457 TC550 ~ TC557 TC650 ~ TC657	ост 8]
タイマ(設定値)		TS050 ~ TS057 TS450 ~ TS457 TS550 ~ TS557 TS650 ~ TS657	ост 81
カウンタ(現在値)		CC060 ~ CC067 CC460 ~ CC467 CC560 ~ CC567 CC660 ~ CC667	<u>ост</u> 8]
カウンタ(設定値)		CS060 ~ CS067 CS460 ~ CS467 CS560 ~ CS567 CS660 ~ CS667	<u>ост</u> 8]
データレジスタ		DW700 ~ DW777	[ост 8] [ві t 15]

F2シリーズのタイマ・カウンタ・データレジスタは1アドレス 12 ビット長のため、一部のタグ(ex. Nタグ、Sタグ、Cタグ など)では使用上制限が生じますので、ご注意ください。

禁止・ 2ワード(32ビットデータ)を使用することはできません。

MELSEC-FX シリーズ (FX_0)

は、シ	ステムエリアに指定可能
-----	-------------

デバイス	ビットアドレス	ワードアドレス	備考
入力リレー	X000 ~ X017	X000	ост 8)
出力リレー	Y000 ~ Y015	Y000	<u>ост</u> 8]
内部リレー	M000 ~ M511	M000 ~ M496	<u>÷16</u> j
ステート	S000 ~ S063	S000 ~ S048	<u>÷16</u> j
タイマ(接点)	TS000 ~ TS055		L/H
カウンタ(接点)	CS000 ~ CS015		
タイマ (現在値)		TN000 ~ TN055	
カウンタ(現在値)		CN000 ~ CN015	
データレジスタ		D000 ~ D031	B i t 15

MELSEC-FX シリーズ(機能拡張ボードを LINK プロトコルで使用する場合)

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考
入力リレー	X0000 ~ X0267	X0000 ~ X0240	<u>ост</u> 8] [*** 0]
出力リレー	Y0000 ~ Y0267	Y0000 ~ Y0240	<u>ост</u> 8] [*** 0]
補助リレー	M0000 ~ M3071	M0000 ~ M3056	<u>÷16</u>)
ステート	S0000 ~ S0991	S0000 ~ S0976	<u>÷ 16</u>)
特殊補助リレー	M8000 ~ M8255	M8000 ~ M8240	<u>÷ 16)</u> *1
タイマ (接点)	TS000 ~ TS255		L/H
カウンタ(接点)	CS000 ~ CS255		
タイマ (現在値)		TN000 ~ TN255	
カウンタ(現在値)		CN000 ~ CN255	*2
データレジスタ		D0000 ~ D7999	B : ₹15]
特殊データレジスタ		D8000 ~ D8255	<u>₿; t</u> 15] *1

^{*1}特殊補助リレー及び特殊データレジスタは、読み出し専用、書き込み専用、システム用に分かれています。

詳細は、PLC本体のマニュアルを参照してください。

^{*2} CN200~CN255は、32ビット長カウンタです。

MELSEC-FXシリーズ(FX₁/FX₂/FX_{2N}-64MR/FX_{0N}-60MRのCPU直結で使用する場合)

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考	
入力リレー	X000 ~ X337	X000 ~ X320	<u>ост</u> 8] [*** 0] *2	
出力リレー	Y000 ~ Y337	Y000 ~ Y320	OCT 8 *** 0	
内部リレー	M0000 ~ M1535	M0000 ~ M1520	<u>÷16</u> 1	
ステート	S000 ~ S999	S000 ~ S976	<u>÷16</u> 1	
タイマ (接点)	TS000 ~ TS255			L/H
カウンタ(接点)	CS000 ~ CS255			
タイマ (現在値)		TN000 ~ TN255		
カウンタ (現在値)		CN000 ~ CN255 *1		
データレジスタ		D000 ~ D999	B i t 15]	

^{*1} CN200 ~ CN255 は32 ビット長カウンタです。

重要 · FX_{2N}-64MR は、上記のデバイス範囲のみ使用可能です。

・A1Fxのデバイス範囲は、MELSEC-Nシリーズを参照してください。

^{*2} データの書き込みはできません。

MELSEC-QnA(計算機リンクユニットAJ71QC24/A1SJ71QC24N/AJ71QC24N-R4使用の場合、CPU 直結の場合)

デバイス	ビットアドレス	ワードアドレス	備考
入力リレー	X0000 ~ X1FFF	X0000 ~ X1FF0	<u>***</u> 0]
出力リレー	Y0000 ~ Y1FFF	Y0000 ~ Y1FF0	<u>***</u> 0]
内部リレー	M00000 ~ M32767	M00000 ~ M32752	<u>÷16</u>)
特殊リレー	SM0000 ~ SM2047	SM0000~SM2032	<u>÷ 16</u>]
ラッチリレー	L00000 ~ L32767	L00000 ~ L32752	<u>÷16</u> j
アナンシェータ	F00000 ~ F32767	F00000 ~ F32752	<u>÷16</u> j
エッジリレー	V00000 ~ V32767	V00000 ~ V32752	<u>÷16</u> j
ステップリレー	S0000 ~ S8191	S0000 ~ S8176	<u>÷16</u>)
リンクリレー	B0000 ~ B7FFF	B0000 ~ B7FF0	*** 0
特殊リンクリレー	SB000 ~ SB7FF	SB000 ~ SB7F0	<u>***</u> 0]
タイマ(接点)	TS00000 ~ TS22527		
タイマ (コイル)	TC00000 ~ TC22527		
積算タイマ (接点)	SS00000 ~ SS22527		L/H
積算タイマ (コイル)	SC00000 ~ SC22527		
カウンタ(接点)	CS00000 ~ CS22527		
カウンタ (コイル)	CC00000 ~ CC22527		
タイマ (現在値)		TN00000 ~ TN22527	
積算タイマ (現在値)		SN00000 ~ SN22527	
カウンタ(現在値)		CN00000 ~ CN22527	
データレジスタ		D00000 ~ D25599	B i t 15]
特殊レジスタ		SD0000 ~ SD2047	B i t 15]
リンクレジスタ		W0000 ~ W63FF	Bit F)
特殊リンクレジスタ		SW000 ~ SW7FF	Bit F)
ファイルレジスタ(通常)		R00000 ~ R32767	_{В і t} 15] *1
ファイルレジスタ(連番)		0R0000 ~ 0R7FFF : 1R0000 ~ 1R7FFF	<u>Bit</u> F) ∗1

^{*1} ファイルレジスタを使用する場合は、メモリカードが必要です。 メモリカードの容量により、ファイルレジスタの使用可能容量が異なります。

MELSEC-QnA(計算機リンクユニットAJ71UC24/A1SJ71UC24-R2/A1SJ71UC24-R4使用の場合)

] は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考
入力リレー	X0000 ~ X03FF	X0000 ~ X03F0	*** 0
出力リレー	Y0000 ~ Y03FF	Y0000 ~ Y03F0	*** 0
内部リレー	M00000 ~ M8191	M00000 ~ M8176	<u>÷16</u>)
特殊リレー	SM1000~SM1255	SM1000~SM1240	<u>÷16</u>) *1
アナンシェータ	F0000 ~ F2047	F0000 ~ F2032	<u>÷16</u>)
リンクリレー	B0000 ~ B0FFF		*** 0
タイマ(接点)	TS0000 ~ TS2047		
タイマ (コイル)	TC0000 ~ TC2047		L/H
カウンタ(接点)	CS0000 ~ CS1023		
カウンタ (コイル)	CC0000 ~ CC1023		
タイマ(現在値)		TN0000 ~ TN2047	
カウンタ (現在値)		CN0000 ~ CN1023	
データレジスタ		D0000 ~ D6143	<u>□ 15</u>
特殊レジスタ		SD1000 ~ SD1255	<u>□ t 15</u>) *1
リンクレジスタ		W0000 ~ W0FFF	B i t F

*1 GP-PRO/PB と PLC 側で表記が 異なります。

デバイス	GP-PRO/PB	PLC
特殊リレー	M9000 ~ M9255	SM1000~SM1255 (SM0000~SM0999は使用不可)
特殊レジスタ	D9000 ~ D9255	SD1000~SD1255 (SD0000~SD0999は使用不可)

通信モード設定について < MELSEC-QnA シリーズ(リンクコニット使用の場合) > MELSEC-QnAシリーズをご使用される場合においてGPのオフラインモードで 初期設定時に「モード2」と「モード1」の設定が可能です。

GP-PRO/PB for Windows ではこの設定はできませんのでご注意ください。

- ・「モード2」・・新しく追加された通信方式です。このモードは、1画面に設定するタグの デバイスが64個未満の場合に有効です。通信速度を向上される効果があ ります。ご使用されるデバイスが少ない場合に設定してください。
- ・「モード1」・・従来と同等の通信方式です。このモードは、1画面に設定するタグのデバ イスが64個以上の場合に有効です。通信速度が向上される効果がありま す。ご使用されるデバイスが多い場合に設定してださい。

- 毎 要 ・ GP内部画面記憶エリアを初期化した場合また、作画ソフトより画 面を転送した場合は初期設定である「モード1」に戻ります。「モー ド2.設定される場合はオフラインにて設定しなおしてください。
 - ・「モード2」設定はご使用になるタグやシステムエリアや読み込み エリアの割付で必ずしも速度の向上が得られない場合がありま す。

2.1.4 環境設定例

(株)デジタルが推奨するPLC側の通信設定と、それに対応するGP側の通信設定を示します。

MEMO · PLCプログラムのサイクルタイムに与える影響

CPU直結の場合、GPとの通信が始まると、PLCプログラムのサイクルタイムが約8%程遅くなります。ご確認の上ご使用ください。

MELSEC-A シリーズ /N シリーズ (計算機リンクユニット使用の場合)

GPの設定		計算機リンクユニットの設定		
伝送速度	19200bps	伝送速度	19200bps	
データ長	7bit	データビット	7bit	
ストップビット	2bit	ストップビット	2bit	
パリティビット	偶数	パリティの有無 偶数/奇数パリティ	有 偶数	
制御方式	ER制御			
通信方式 (RS-232C使用時)	RS-232C	チャンネル設定 ¹ モード設定 (RS-232C使用時)	RS-232C 4(形式4のプロトコ ルモード)	
通信方式 (RS-422使用時)	4線式	チャンネル設定 ⁻¹ モード設定 (RS-422使用時)	RS-422 8(形式4のプロトコ ルモード)	
		RUN中書き込み可否	可能	
		サムチェックの有無	D有無 有	
		送信側終端抵抗有無 *2	有	
		受信側終端抵抗有無 2 有		
号機No.	0	局番	0	

MELSEC-A シリーズ /N シリーズ (CPU 直結の場合)

GPの設定		PLC側の設定
伝送速度	9600bps (固定)	
データ長	8bit(固定)	
ストップビット	1bit (固定)	
パリティビット	奇数 (固定)	
制御方式	ER制御	
通信方式 (RS-232C使用時) *3	RS-232C	
通信方式 (RS-422使用時)	4線式	
号機No.	0(固定)	

^{*1} A1SJ71C24-R2、A1SJ71UC24-R2、A1SJ71C24-R4には、この設定はありません。

^{*2} AJ71UC24には、この設定はありません。

^{*3 (}株) デジタル製 A シリーズ用プロコン I/F ケーブル GP430-IP10-0 を使用する場合を 指します。それ以外は4線式です。

MELSEC-A2C

GPの設定		MELSEC-A2Cの設定	
伝送速度	19200bps	伝送速度 19200bps	
データ長	8bit	データビット 8bit	
ストップビット	1bit	ストップビット	1bit
パリティビット	偶数	パリティの有無 (偶数/奇数パリティ 偶数	
制御方式	ER制御		
通信方式	RS-232C	チャンネル設定 RS-232C モード設定 4 (形式4のプロトコ ルモード)	
		RUN中書き込み可否 可能	
		サムチェックの有無 有	
号機No.	0	局番 0	

MELSEC- F_2 シリーズ

GPの設定		インターフェイスユニットの設定	
伝送速度	9600bps	伝送速度 9600bps	
データ長	7bit	データビット 7bit	
ストップビット	1bit (固定)	ストップビット 1bit (固定)	
パリティビット	偶数	パリティビット 偶数	
制御方式	ER制御		
通信方式	RS-232C		
		終端文字指定	有
		サムチェックの有無 有	
号機No.	0	局番 0	

MELSEC-FX シリーズ(機能拡張ボードを LINK プロトコルで使用する場合)

GPの設定		PLC側(データレジスタ)の設定		
伝送速度	19200	ボーレート 19200		
データ長	7	データ長	7	
ストップビット	2	ストップ	2	
パリティビット	偶数	パリティビット	偶数	
制御方式	E R		·	
通信方式	RS232C	計算機リンク	RS232C I/F	
(RS-232C使用時)				
通信方式	4線式	計算機リンク RS485(RS422) I		
(RS-422使用時)				
号機No.	0		0	
	<u> </u>	サムチェック	付加する	
		プロトコル	使用する	
		制御手順	形式4	
		ヘッダ	なし	
		ターミネータ	なし	

PLC側の設定は、号機番号はデータレジスタD8121に書きこみます。

それ以外の設定は、データレジスタD8120に書き込みます。

詳細は、三菱電機製「FX通信ユーザーズマニュアル」を参照してください。

MELSEC-FX シリーズ*1(CPU 直結の場合)

GPの設定		PLC側の設定
伝送速度	9600bps (固定)	
データ長	7bit (固定)	
ストップビット	1bit (固定)	
パリティビット	偶数(固定)	
制御方式	ER制御	
通信方式	RS-232C	
号機No.	0(固定)	

・ アダプタ(FX2N-232-BD)を使用する場合は、D8120にデータ "0"を格 納しご使用ください。

^{*1} A1Fx は MELSEC-N シリーズ(CPU 直結)の設定と同じです。

MELSEC-QnA (シリアルコミュニケーションユニット使用の場合)

GPの設定		シリアルコミュニケーションユニットの設定		
伝送速度	19200bps *1	伝送速度 19200bps		
データ長	7bit	データビット	7bit	
ストップビット	2bit	ストップビット	2bit	
パリティビット	偶数	パリティの有無 有 偶数/奇数パリティ 偶数		
制御方式	ER制御			
通信方式 (RS-232C使用時)	RS-232C	モード設定 (RS-232C使用時) 4(形式4のプロト:		
通信方式 (RS-422使用時)	4線式	モード設定 4 (形式4のプロトコ (RS-422使用時) ルモード)		
		サムチェックの有無	有	
		送信側終端抵抗有無 有		
		受信側終端抵抗有無 有		
号機No.	0	局番	0	

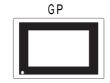
*1 AJ71QC24N-R4/A1SJ71QC24N は伝送速度 115200bps も可能です。

- ・ MELSEC-QnAと計算機リンクユニットAJ71UC24の組み合わせで 使用する場合の環境設定は、「MELSEC Aシリーズ」の表をご参 照ください。
- ・ シリアルコミュニケーションユニットの CH1、CH2 は、以下の 条件の1つでも条件を満たした場合は、同時通信を行うことが できます。

条件1: コミュニケーションユニット上面のシールのバージョンがAB以降

条件2: コミュニケーションユニット側面の DATE が9609 以降 条件3: コミュニケーションユニット ROM バージョンが7179M 以降

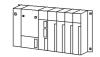
MELSEC-QnA (CPU 直結の場合)


GPの設定		PLC側の設定
伝送速度	19200bps (固定)	
データ長	8bit (固定)	
ストップビット	1bit (固定)	
パリティビット	奇数(固定)	
制御方式	ER制御	
通信方式 *1 (RS-232C使用時)	RS-232C	
通信方式 (RS-422使用時)	4線式	
号機No.	0(固定)	

^{*1(}株)デジタル製Aシリーズ用プロコンI/FケーブルGP430-IP10-0を使用する場合を指します。 それ以外は4線式です。

2.1.5 2ポート機能

2ポート機能は2ポート機能を内蔵しているCPを使用する場合と、外付けの2ポートアダプタを使用する場合の二通りがあります。 以下にそれぞれ説明いたします。


内蔵2ポート機能を使用する場合*1

GP はオンライン状態にする。

プロコン I / F ケーブルにて シリアル I / F に接続 転送ケーブル(GPW-CB02)にて ツールコネクタに接続

プロコンポートに接続

三菱電機(株)製PLC

三菱電機(株)製 GPP 機能ソフト ウェアパッケージがインストールさ れているパソコン

内蔵2ポート機能対象PLC

シリーズ名	CPU機種
MELSEC-AnAシリーズ	A2A、A2U-S1、A2USH-S1、A3A、A2US
MELSEC-AnNシリーズ	A1S、A1SH、A2N、A3H、A2SH、A3N
MELSEC-QnAシリーズ	Q2A、Q2A-S1、Q2AS-S1、Q2ASH、Q4A
MELSEC-FXシリーズ *2	FX2N、FX2NC、 FX0N

内蔵2ポート機能対象GP

シリーズ		商品名	
GP-377シリーズ		GP-377L	
		GP-377S	
	GP-377R シリーズ	GP-377RT	
GP77R シリーズ	GP-477R シリーズ	GP-477RE	
	GP-577R	GP-577RT	
	シリーズ	GP-577RS	

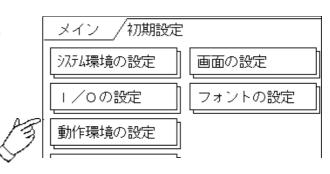
GPP機能ソフトウェアパッケージ

MELSEC-Aシリーズ	NEC98シリーズ SW2NX-GPPA形GPP機能ソフトウェアパッケージ以上 DOS/Vシリーズ SW31VD-GPPA形GPP機能ソフトウェアパッケージ以上 Windows95、Windows NT SW0D5*-GPPW形GPP機能ソフトウェアパッケージ以上
MELSEC-QnAシリーズ	NEC98シリーズ SWONX-GPPQ形GPP機能ソフトウェアパッケージ DOS/Vシリーズ SWO1VD-GPPQ形GPP機能ソフトウェアパッケージ Windows95、WindowsNT SWOD5*-GPPW形GPP機能ソフトウェアパッケージ以上
MELSEC-FXシリーズ	Windows95 SWOPC-FXGP/WIN形GPP機能ソフトウェアパッケージ Windows95, WindowsNT SW4D5C-GPPW形GPP機能ソフトウェアパッケージ

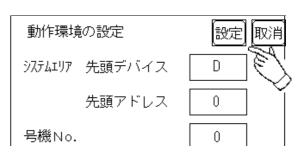
^{*1} デバイスモニタ機能との同時使用も可能です。

^{*2} MELSEC-FX シリーズの FX2 では内蔵 2ポート機能は使用できません。

内蔵2ポート機能を使用する場合の設定

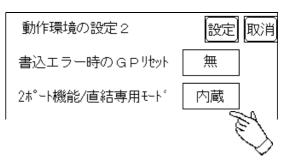

- ・「2ポート機能/直結専用モード」の設定は、CPU直結タイプのプロトコル使用時のみ表示されます。
- ・ 初期値は、「アダプタ (2ポートアダプタ 使用)の設定になっています。
- ・ 内蔵2ポート機能はGPがオンライン中(運転中)でのみ使用可能です。
- 転送ケーブルは(株)デジタル製GPW-CB02を使用してください。

重要

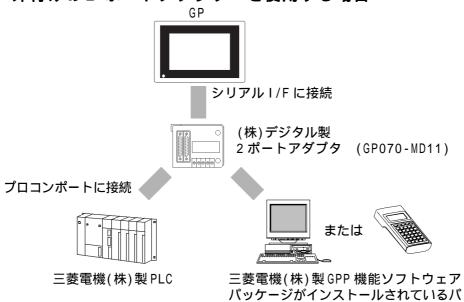

- ・ 内蔵2ポートの設定時は、GPがオンライン状態(運転中)では、画面 データの転送・システムの再セットアップはできません。 (オフラインメニューの「画面データ転送」で行う必要があります。)
- 内蔵2ポートの設定時は、キーボード・バーコードリーダの使用はできません。
- ・ 内蔵2ポート機能で、プロコンを接続することはできません。プロコンを使用する場合は2ポートアダプタ を使用してください。
- ・ 内蔵2ポート機能を使用して、GPP機能ソフトがPLCと通信中は、GPを オフラインにしないでください。オフラインにした場合、通信が中断 されます。
- ・ GP77Rシリーズでは、内蔵2ポート機能設定時は、シュミレーション 機能は使用できません。シュミレーション機能を使用する場合は「ア ダプタ」または「直結」を選択してください。

< 例: GP-377 の画面の場合 >

メニュー項目「動作環境の設定」を タッチします。



「動作環境の設定」画面が表示されます。 画面右上の「設定」ボタンをタッチします。



「動作環境の設定2」画面の次画面がが表示されます。

「2ポート機能/直結専用モード」のボタンをタッチし、「内蔵」を選択してください。2ポートアダプターを使用する場合は「アダプタ」を、CPU直結の場合は「直結」を選択してください。

外付けの2 ポートアダプタ を使用する場合・1

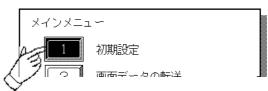
2ポートアダプタ 対象 PLC

2ポートアダプタ (GP070-MD11)を使用できるCPUについては2ポートアダプタ に同梱されている取扱説明書を参照してください。

ソコン、またはプロコン

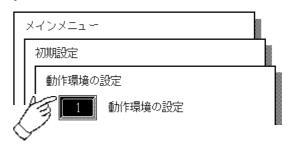
^{*1 2}ポート機能内蔵GPでも2ポートアダプタ は使用できます。

2 ポートアダプタ を使用する場合の設定

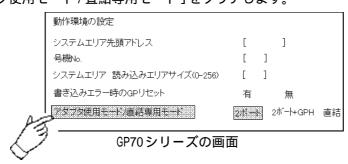

2ポートアダプタ を使用する場合、GPのオフラインモードにて設定を行ってください。 オフラインモード **参照** 各ユーザーズマニュアル(別売) 第4章 オフラインモード GP70シリーズ (GP-77R/GP-377シリーズを除く)の場合


- ・「アダプタ使用モード/直結専用モード」の設定は、CPU直結使 の 用時のみ表示されます。
 - ・ 初期値は、「2ポート」の設定になっています。

< 例: GP570 の画面の場合 >


メニュー項目番号「1」をタッチします。

「初期設定」画面が表示されます。 メニュー項目番号「3」をタッチします。



「動作環境の設定」画面が表示されます。 メニュー項目番号「1」をタッチします。

設定画面が表示されます。

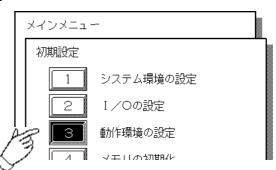
「アダプタ使用モード/直結専用モード」をタッチします。

「アダプタ使用モード/直結専用モード」が反転表示されます。

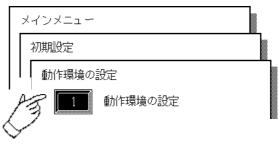
2ポートアダプタ (GP070-MD11)を使用する場合は、「2ポート」を選択してください。 GP-H70 で 2ポートアダプタ (GP070-MD11)を使用する場合は、「2ポート + GPH」を選択してください。

CPU直結の場合は、「直結」を選択してください。

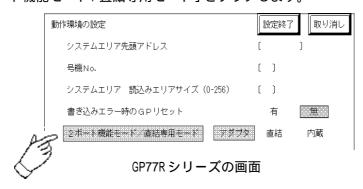
GP77R シリーズの場合


- ・「2ポート機能モード/直結専用モード」の設定は、CPU直結使用時のみ表示されます。
- 初期値は、「アダプタ」の設定になっています。

< 例: GP577R の画面の場合 >


メニュー項目番号「1」をタッチします。

「初期設定」画面が表示されます。 メニュー項目番号「3」をタッチします。



「動作環境の設定」画面が表示されます。 メニュー項目番号「1」をタッチします。

設定画面が表示されます。

「2ポート機能モード/直結専用モード」をタッチします。

「2ポート機能モード/直結専用モード」が反転表示されます。

2ポートアダプタ (GP070-MD11)を使用する場合は、「アダプタ」を選択してください。 CPU直結の場合は、「直結」を選択してください。

内蔵2ポート機能を使用する場合は、「内蔵」を選択してください。

2.2 オムロン(株)製PLC

2.2.1 システム構成

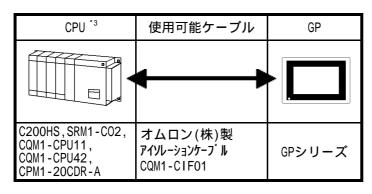
オムロン (株)製 PLC と GP を接続する場合のシステム構成を示します。 <結線図>は2-2-2 結線図をご参照ください。

重要・PLCを運転モードで使用した場合、一瞬「上位通信エラー(02:01)」が表示されることがあります。GPはこの後強制的にPLCをモニタモード(RUN中書き込み可能なモード)に切り替えます。通信に問題ありません。

SYSMAC Cシリーズ (リンク I/F 使用)

CPU	リンクI/F	結線図	使用可能ケーブル	GP
	上位リンクユニット			
C200H	C200H-LK201 *1 C120-LK201-V1 *2	RS-232C <結線図1>	(株)デジタル製 GP410-IS00-0(5m)	
	C200H-LK202 *1 C120-LK202-V1 *2	RS-422 <結線図2>		
C200HS	C200H-LK201 *1 C120-LK201-V1 *2	RS-232C <結線図1>	(株)デジタル製 GP410-IS00-0(5m)	
	C200H-LK202 *1	RS-422 <結線図2>		
	CPUユニット上の リンクI/F ³	RS-232C <結線図3>	(株)デジタル製 GP000-IS03-MS(3m)	
C500, C500F, C1000H, C2000,	C120-LK201-V1 *2	RS-232C <結線図1>	(株)デジタル製 GP410-IS00-0(5m)	
C2000H	C120-LK202-V1 *2	RS-422 <結線図2>		GPシリーズ
	C500-LK201-V1 *1	RS-232C <結線図1> RS-422 <結線図2>	RS-232C (株)デジタル製 GP410-IS00-0(5m)	
	C500-LK203 *1	RS-232C <結線図1>	RS-232C (株)デジタル製 GP410-IS00-0(5m)	
C1000HF	C500-LK203 *1	RS-422 <結線図4>		
C20H,C28H,C40H	CPUユニット上の リンクI/F ³	RS-232C <結線図5>		

^{*1} ベース取り付けタイプです。


^{*2} CPU取り付けタイプです。

^{*3} RS-232Cポートに接続します。

C120,C120F	C120-LK201-V1 *1	RS-232C <結線図1>	(株)デジタル製 GP410-IS00-0(5m)	
	C120-LK202-V1 *1	RS-422 <結線図2>		
CQM1-CPU42	CPUユニット上の RS-232Cポート	RS-232C <結線図3>	オムロン(株)製 RS-232Cケーブル XW2Z-200S(2m), XW2Z-500S(5m), (株)デジタル製 GP000-IS03-MS(3m)	GPシリーズ
SRM1-CO2 CPM2A	CPM1-CIF01 CPUユニット上の RS-232Cポート	RS-232C <結線図3>	オムロン(株)製 RS-232Cケーブル XW2Z-200S(2m), XW2Z-500S(5m), (株)デジタル製 GP000-IS03-MS(3m)	GPシリーズ
	CPM1-CIF11	RS-422 <結線図9>		
CPM1-20CDR-A	CPM1-CIF01	RS-232C <結線図3>	オムロン(株)製 RS-232Cケーブル XW2Z-200S(2m), XW2Z-500S(5m), (株)デジタル製 GP000-IS03-MS(3m)	GPシリーズ
	CPM1-CIF11	RS-422 <結線図9>		

^{*1} CPU取り付けタイプです。

SYSMAC Cシリーズ (CPU 直結)

*3 ペリフェラルポートに接続します。

禁止・CQM1-CPU11 はペリフェラルポートをひとつしか備えていないため、プロコンとの同時使用はできません。

強制・CQM1とGPの接続中にCQM1の電源をOFFするとRUNが止まります。 再度 ON したとき CQM1 を RUN 状態にするには、CQM1 の「電源 ON 時の動作モードの設定」を「運転」にしてください。

CPU	リンクI/F	結線図	使用可能ケーブル	GP
	コミュニケーションボード	•	•	
C200HX-CPU85-Z C200HX-CPU64 C200HX-CPU44 C200HE-CPU42 C200HG-CPU63 C200HG-CPU43	C200HW-C0M06 CPUユニット上の RS-232Cポート	RS-232C <結線図3 > RS-422 <結線図6 > RS-232C <結線図3 >	オムロン(株)製 RS-232Cケーブル XW2Z-200S(2m), XW2Z-500S(5m), (株)デジタル製 GP000-IS03-MS(3m) (RS-232C) オムロン(株)製 RS-232Cケーブル XW2Z-200S(2m), XW2Z-500S(5m), (株)デジタル製 GP000-IS03-MS(3m)	GPシリーズ
C200HX-CPU64-Z	C200H-LK202-V1	RS-422 <結線図2>		
	C200H-LK201-V1	RS-232C <結線図1>	(株)デジタル製 GP410-IS00-0(5m)	

SYSMAC - シリーズ (リンク I/F 使用)

SYSMAC CV シリーズ (リンク I/F 使用)

CPU	リンクI/F	結線図	使用可能ケーブル	GP
	上位 リンクユニット 田 ロ		•	
CV500,CV1000, CVM1	CV500-LK201	RS-232C (通信ポ-ト1 接続) <結線図1 > RS-232C (通信ポ-ト2 接続) <結線図7 > RS-422 (通信ポ-ト2 接続) <結線図8 >	RS-232C (通信ポート1接続) (株)デジタル製 GP410-IS00-0(5m)	GPシリーズ
	CPUユニット上の リンクI/F・1	RS-232C <結線図7> RS-422 <結線図8>		

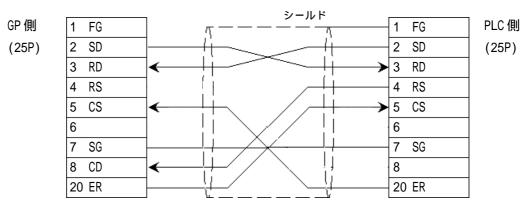
^{*1} HOSTLINKポートに接続してください。

SYSMAC CS1シリーズ(1:1)の場合

CPU	リンクI/F	結線図		GP
		-	•	
CS1H-CPU67	CPUユニット上	RS-232C	(株)デジタル製	
CS1H-CPU66	のRS-232Cポート	<結線図3>	GP000-IS03-MS(3m)	
CS1H-CPU65			オムロン(株)製	
CS1H-CPU64			XW2Z-200S(2m)	
CS1H-CPU63			XW2Z-500S(5m)	
CS1G-CPU45	CPUユニット上の	RS-232C *1	オムロン (株)製	
CS1G-CPU44	ペリフェラルポート	<結線図11>	CS1W-CN225 *1	
CS1G-CPU43			CS1W-CN625 *1	GPシリーズ
CS1G-CPU42	CS1W-SCU21	RS-232C(ポート1、2)	(株)デジタル製	0. 2 2 2
		< 結線図3 >	GP000-IS03-MS(3m)	
	CS1W-SCB21	RS-232C(ポート1、2)	オムロン(株)製	
		< 結線図3 >	XW2Z-200S(2m)	
	CS1W-SCB41	RS-232C(ポート1)	XW2Z-500S(5m)	
		< 結線図3 >		
		RS-422(ポート2)		
		<結線図10>		

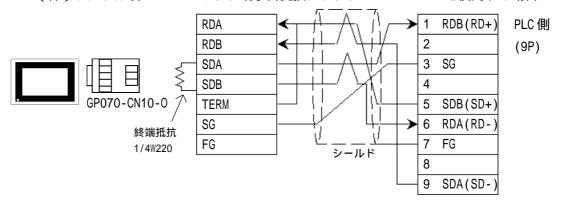
^{*1} ペリフェラルポートへの接続は CS1W-CN*25 のケーブルと GP の間には結線図 11 のケーブルが必要です。

2.2.2 結線図


以下に示す結線図とオムロン(株)の推奨する結線図が異なる場合がありますが、以下に示す 結線図でも動作上問題はありません。

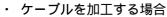
強制 ・ PLC 本体の FG 端子は D 種接地を行ってください。 詳細は PLC のマニュアルをご参照ください。

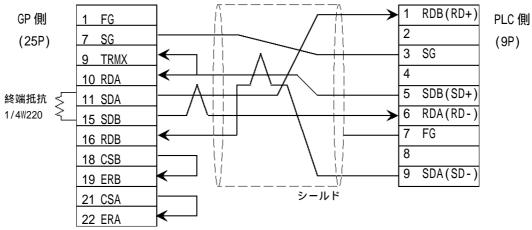
重要・シールド線へのFGの接続は、設置環境によってPLC側、GP側の どちらかを選択してください。コネクタフードを使ってFGを落 とす場合は導電性のあるもをお使いください。


・ RS-232C接続の場合は、ケーブル長は15m以内にしてください。

< 結線図1 > RS-232C

<結線図2 > RS-422

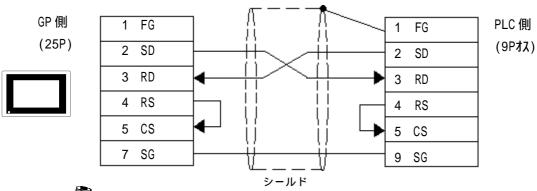

- 重要・ PLC側の終端抵抗スイッチを ON にしてください。
 - ・ GPとPLCとでは、A極とB極の呼称が逆になっていますのでご注意ください。
- ・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合



・(株)デジタル製 RS-422 ケーブル GP230- IS11-0 を使用する場合 ➤ 1 RDB(RD+) **RDA** PLC 側 RDB 2 (9P) 3 SG SDA SDB 4 5 SDB(SD+) GP230-IS11-0 SG FG 6 RDA(RD-) 7 FG 8

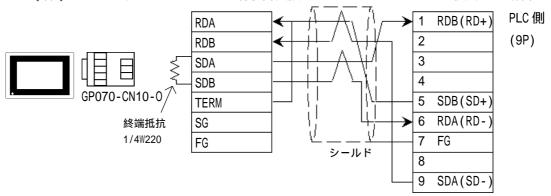
9

SDA(SD-)

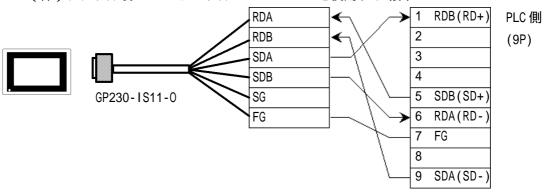


- 接続ケーブルとして平河電線(株)製H-9293A(CO-HC-ESV-3P*7/0.2)を推奨します。
- 重要 ・ GP側シリアルI/Fの9番ピンと10番ピンを接続することにより、 RDA-RDB間に100 の終端抵抗が挿入されます。
 - ・ RS-422接続の場合は、ケーブル長は500m以内にしてください。
 - ・ 通信ケーブルを結線する場合は、必ずSGを接続してください。

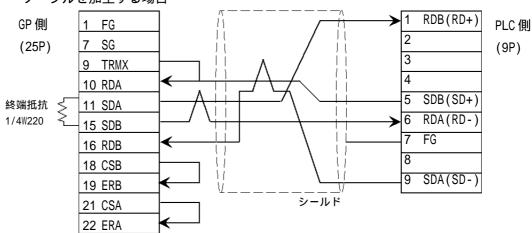
< 結線図3 > RS-232C



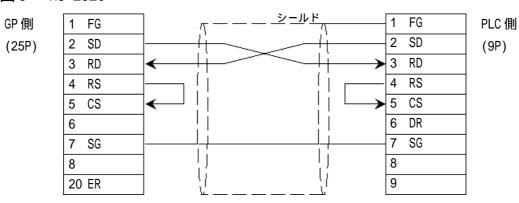
MEMO


・ オムロン (株)製 RS-232C ケーブル XW2Z-200S(2m)、XW2Z-500S(5m)の結線図と異なりますが、上記の結線図でも動作 上問題ありません。

<結線図4 > RS-422


- 重要・ PLC側の終端抵抗スイッチを ON にしてください。
 - ・ GPとPLCとでは、A極とB極の呼称が逆になっていますのでご注意ください。
- ・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

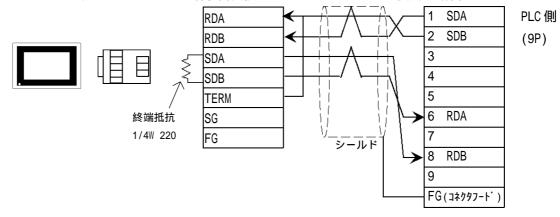
・(株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合



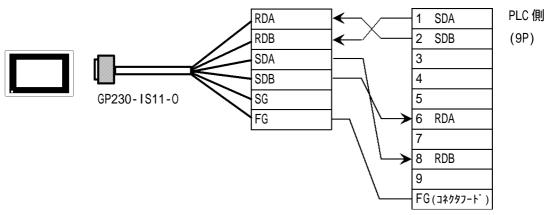
・ ケーブルを加工する場合

- MEMO
- 接続ケーブルとして平河電線(株)製H-9293A(CO-HC-ESV-3P*7/0.2)を推奨します。
- ・ GP側シリアルI/Fの9番ピンと10番ピンを接続することにより、RDA-RDB間に100 の終端抵抗が挿入されます。

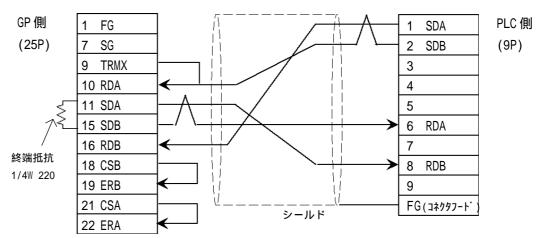
<結線図5 > RS-232C


接続ケーブルとして平河電線(株)製H-9293A(CO-HC-ESV-3P*7/0.2)を推奨します。

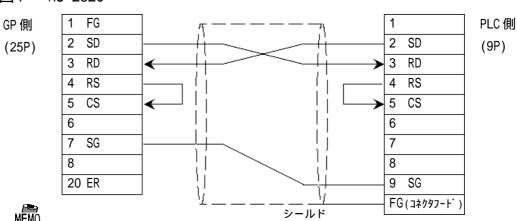
<結線図6 > RS-422


- 重要・ PLC側の終端抵抗スイッチをONにしてください。
 - ・ GPとPLCとでは、A極とB極の呼称が逆になっていますのでご注 意ください。
 - ・ コミュニケーションボードには、下記のコネクタおよびコネク タフードが各1個付属しています(オムロン製)。

コネクタ XM2A-0901 コネクタフード XM2S-0901


・ デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 使用の場合

・ デジタル製 RS-422 コネクタ端子台変換アダプタ GP230-IS11-0 使用の場合



・ ケーブルを加工する場合

- MEMO
- 接続ケーブルとして平河電線(株)製H-9293A(CO-HC-ESV-3P*7/0.2)を推奨します。
- ・ GP側シリアル I /F の9番ピンと10番ピンを接続することにより、RDA-RDB間に100 の終端抵抗が挿入されます。

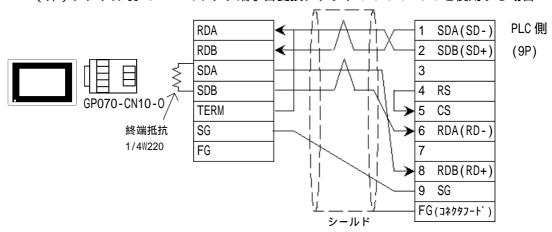
< 結線図7 > RS-232C

MEMO

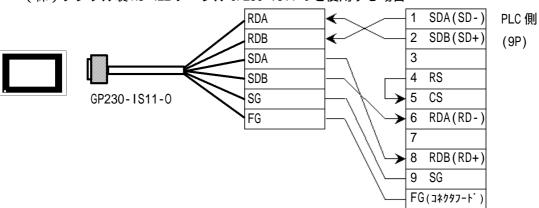
・ CV500/CV1000のCPUユニットには、下記のコネクタおよびコネクタフードが各1個付属しています(オムロン製)。下記以外のコネクタは使用できません。

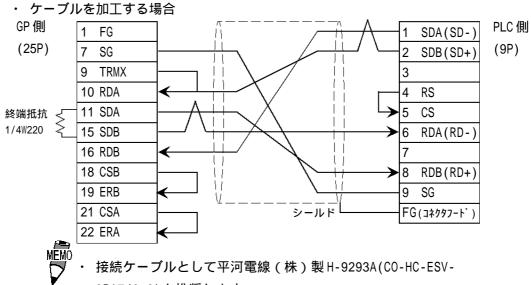
コネクタ XM2A-0901

コネクタフード XM2S-0911

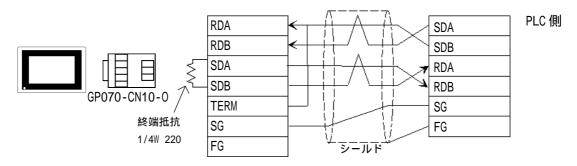

接続ケーブルとして平河電線(株)製H-9293A(CO-HC-ESV-3P*7/0.2)を推奨します。

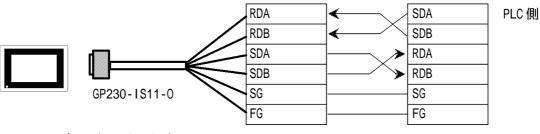
<結線図8 > RS-422


- 重 要 ・ PLC側のRS-232C/422の切り替えスイッチをRS-422側に設定し てください。
 - ・ PLC側の終端抵抗スイッチをONにしてください。
 - ・ GPとPLCとでは、A極とB極の呼称が逆になっていますのでご注 意ください。
 - ・ CV500/CV1000のCPUユニットには、下記のコネクタおよびコネ クタフードが各1個付属しています(オムロン製)。下記以外の コネクタは使用できません。

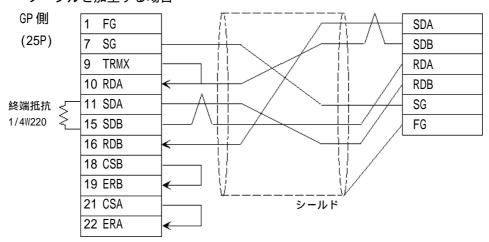

コネクタ XM2A-0901 コネクタフード XM2S-0911

・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

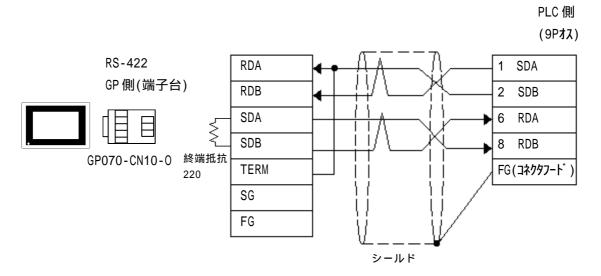

・(株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合



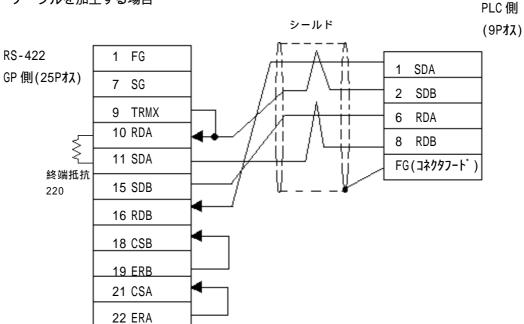
- 接続ケーブルとして平河電線(株)製H-9293A(CO-HC-ESV-3P*7/0.2)を推奨します。
- ・ GP側シリアルI/Fの9番ピンと10番ピンを接続することによ リ、RDA-RDB間に100 の終端抵抗が挿入されます。


< 結線図 9 > RS-422

・(株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合

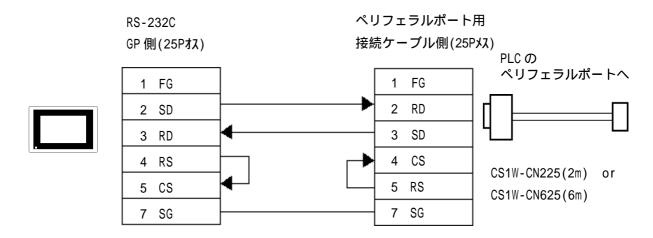


・ ケーブルを加工する場合



<結線図10 > RS-422

・ (株) デジタル製 RS-422 コネクタ端子台アダプタ(GP070-CN10-0)を使用する場合


・ ケーブルを加工する場合

- ・ PLC側の終端抵抗スイッチをONにしてください。
- ・ GP側シリアル I/Fの9番ピンと10番ピンを接続することにより RDA-RDB間に100 の終端抵抗が挿入されます。
- ・ GP と PLC では、A 極と B 極の呼称が逆になっていますので、ご 注意ください。
- ・ ケーブル長は500m以内にしてください。
- 接続ケーブルとして平河ヒューテック製 CO-HC-ESV-3PX7/0.2 を推奨します。

< 結線図 11 >

2.2.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。

SYSMAC Cシリーズ

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考	
入出力リレー	00000 ~ 51115	000 511		
内部補助リレー	00000~51115	000 ~ 511	*1	
アナログ設定値格納エリア	22000 ~ 22315	220 ~ 223	*2	
データリンクリレー	LR0000 ~ LR6315	LR00 ~ LR63		
特殊補助リレー	24400 ~ 25515	244 ~ 255	*3	
補助記憶リレー	AR0000 ~ AR2715	AR00 ~ AR27		L/H
保持リレー	HR0000 ~ HR9915	HR00 ~ HR99		L/n
タイマ (接点)	TIM000~TIM511			
カウンタ(接点)	CNT000 ~ CNT511			
タイマ (現在値)		TIM000 ~ TIM511		
カウンタ(現在値)		CNT000 ~ CNT511		
データメモリ		DM0000 ~ DM9999	_{в і 1} 15)	

- *1 CQM1-CPU42を使用する場合、22000 ~ 22315はアナログ設定値格納エリアのため、内部補助リレーとして使用できません。
- *2 CQM1-CPU42 のみ使用できます。
- *3 CQM1-CPU11/42のデバイス範囲です。CQM1-CPU11/42以外は入出力リレー/内部補助リレーで 設定を行ってください。

- GP-*30 系とGP-*50 系とGP70 シリーズでは、ビット書き込みの方法が以下のように異なります。
- ・ GP-*30系・・・ビット書き込み(「反転」以外)を行うと、該当するワードアドレスは指定したビット以外をすべてクリア(0)します。
- 禁止・ GP-*50系とGP70シリーズ・・・ビット書き込みを行うと、いったんGPがPLCの該当するワードアドレスを読み込み、読み込んだワードアドレスにビットを立ててPLCに戻します。GPがPLCのデータを読み込んで返す間に、そのワードアドレスへ、ラダープログラムで書き込み処理を行うと、正しいデータが書き込めない場合があるのでご注意ください。
 - GP-*30 系のラダープログラムを GP70 シリーズで流用するときは、上記の点にご注意ください。

SYSMAC - シリーズ

] は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考
入出力リレー	00000 ~ 02915	000 ~ 029	
入出力リレー	30000 ~ 30915	300 ~ 309	
内部補助リレー	03000 ~ 23515	030 ~ 235	
内部補助リレー	31000 ~ 51115	310 ~ 511	
特殊補助リレー	23600 ~ 25507	236 ~ 255	
特殊補助リレー	25600 ~ 29915	256 ~ 299	
保持リレー	HR0000 ~ HR9915	HR00 ~ HR99	L/H
補助記憶リレー	AR0000 ~ AR2715	AR00 ~ AR27	L/n
リンクリレー	LR0000 ~ LR6315	LR00 ~ LR63	
タイマ(接点)	TIM000~TIM511		
カウンタ(接点)	CNT000 ~ CNT511		
タイマ (現在値)		TIM000 ~ TIM511	
カウンタ(現在値)		CNT000 ~ CNT511	
データメモリ		DM0000 ~ DM6655	B : t 15

- ・ GP-*30 系とGP-*50 系とGP70 シリーズでは、ビット書き込み の方法が以下のように異なります。
- ・ GP-*30系・・・ビット書き込み(「反転」以外)を行うと、該当す るワードアドレスは指定したビット以外をすべてクリア(0)し ます。

禁止 · GP-*50系とGP70シリーズ・・・ビット書き込みを行うと、いっ たん GP が PLC の該当するワードアドレスを読み込み、読み込 んだワードアドレスにビットを立てて PLC に戻します。GP が PLCのデータを読み込んで返す間に、そのワードアドレスへ、ラ ダープログラムで書き込み処理を行うと、正しいデータが書き 込めない場合があるのでご注意ください。

GP-*30系のラダープログラムを GP70 シリーズで流用するとき は、上記の点にご注意ください。

通信モード設定について < SYSMAC C シリーズまたは、SYSMAC シリーズ > SYSMAC Cまたは、 シリーズをご使用される場合においてGPのオフラインモードで 初期設定時に「モード2」と「モード1」の設定が可能です。

GP-PRO/PB for Windows ではこの設定はできませんのでご注意ください。

- ・「モード2」・・新しく追加された通信方式です。このモードは、1画面に設定するタグの デバイスが64個未満の場合に有効です。通信速度を向上される効果があ ります。ご使用されるデバイスが少ない場合に設定してください。
- ・「モード1」・・従来と同等の通信方式です。このモードは、1画面に設定するタグのデバ イスが64個以上の場合に有効です。通信速度が向上される効果がありま す。ご使用されるデバイスが多い場合に設定してださい。

- 重要 · GP内部画面記憶エリアを初期化した場合また、作画ソフトより画 面を転送した場合は初期設定である「モード1」に戻ります。「モー ド2.設定される場合はオフラインにて設定しなおしてください。
 - ・「モード2」設定はご使用になるタグやシステムエリアや読み込み エリアの割付で必ずしも速度の向上が得られない場合がありま す。

SYSMAC CV シリーズ

	は、	システムエリアに指定可能
--	----	--------------

デバイス	ビットアドレス	ワードアドレス	備考	
入出力リレー	00000 40045	000 400		
内部補助リレー	00000 ~ 19915	000 ~ 199		
SYSMAC BUS/2 リモートI/0リレー	020000 ~ 099915	0200 ~ 0999		
データリンクリレー	100000 ~ 119915	1000 ~ 1199		
特殊補助リレー	A00000 ~ A51115	A000 ~ A511		
保持リレー	120000 ~ 149915	1200 ~ 1499		
内部補助リレー	190000 ~ 229915	1900 ~ 2299		L/H
SYSMAC BUS/2 リモートI/0リレー	230000 ~ 255515	2300 ~ 2555		
タイマ(接点)	T0000 ~ T1023			
カウンタ(接点)	C0000 ~ C1023			
タイマ(現在値)		T0000 ~ T1023		
カウンタ (現在値)		C0000 ~ C1023		
データメモリ		D0000 ~ D9999	B i t 15]	

禁止・ ビットデバイスのタイマ・カウンタには書き込みができません。

- ・ GP-*30 系とGP-*50 系とGP70 シリーズでは、ビット書き込み の方法が以下のように異なります。
- ・ GP-*30系・・・ビット書き込み(「反転」以外)を行うと、該当するワードアドレスは指定したビット以外をすべてクリア(0)します。

禁止・ GP-*50系とGP70シリーズ・・・ビット書き込み行うと、いったんGPがPLCの該当するワードアドレスを読み込み、読み込んだワードアドレスにビットを立ててPLCに戻します。GPがPLCのデータを読み込んで返す間に、そのワードアドレスへ、ラダープログラムで書き込み処理を行うと、正しいデータが書き込めない場合があるのでご注意ください。

GP-*30系のラダープログラムをGP70シリーズで流用するときは、上記の点にご注意ください。

SYSMAC CS1シリーズ

は、	システムエリアに指定可能
10.	

デバイス	ビットアドレス	ワードアドレス	備考	
チャンネル1/0	000000 ~ 614315	0000 ~ 6143		
内部補助リレー	W00000 ~ W51115	W000 ~ W511		
保持リレー	H00000 ~ H51115	H000 ~ H511		
特殊補助リレー	A00000 ~ A95915	A000 ~ A959	*1	
タイマ(接点)	T0000 ~ T4095		*3	
カウンタ(接点)	C0000 ~ C4095		*3	
タイマ(現在値)		T0000 ~ T4095		
カウンタ(現在値)		C0000 ~ C4095		L/H
データメモリ	D0000000 ~ D3276715	D00000 ~ D32767	*2	
拡張データメモリ (E0~EC)	E00000000 ~ EC3276715	E000000 ~ EC32767	*4	
拡張データメモリ (カレントバンク)		EM00000 ~ EM32767	B 15)	
タスクフラグ		TK0 ~ TK30	÷ 2] B; t15] *3	
インデックスレジスタ		IRO ~ IR15	B i t 31 *3	
データレジスタ		DRO ~ DR15	<u>ві т</u> 15] *3	

^{*1} A000 ~ A477 は書込み不可です。

^{*2} コミュニケーションユニット(CS1W-SCU21)を使用する場合は、D30000~D31599のアドレスは、PLC側でシステム設定用の領域として使用される場合がありますので、GPからの書込みは行わないでください。コミュニケーションボード(CS1W-SCB21/41) を使用する場合は、D32000~D32767のアドレスは、PLC側でシステム設定用の領域として使用されますので、GPからの書込みは行わないでください。参考 オムロン製[SYSMAC CS1シリーズ コミュニケーションボード CS1W-SCB21/41 コミュニケーションボード CS1W-SCU21]ユーザーズマニュアル

^{*3} 書込み不可です。

^{*4} 拡張データメモリは、CPUの機種によって範囲が異なります。

2.2.4 環境設定例

(株)デジタルが推奨する PLC 側の通信設定と、それに対応する GP 側の通信設定を示します。 SYSMAC C シリーズ

00.0	±n	DI O/Bil of	\+n-in
GP02)設定	PLC側σ)設正
伝送速度	19200bps	伝送速度	19200bps
データ長	7bit	データ長	7bit
ストップビット	2bit	ストップビット	2bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御 *3		
通信方式 (RS-232C使用時)	RS-232C	通信方式 *1 (RS-232C使用時)	RS-232C
通信方式 (RS-422使用時)	4線式	通信方式 *1 (RS-422使用時)	RS-422
		コマンドレベル *1	レベル1,2,3が有効
		手順 *1	1:N
		5V供給 *1	なし
		CTS設定 *1	常時ON
		モード指定 *2	上位リンク
		通信条件設定スイッチ *4	OFF
号機No.	0	局番	0

- *1 C200HS の RS-232C ポート、CQM1、CPH2A にはこの設定はありません。
- *2 C200HS の RS-232C ポート、CQM1 のみの設定です。
- *3 CQM1 の場合、XON/OFF 制御に設定してください。
- *4 CPM2A のみの設定です。

SYSMAC - シリーズ (コミュニケーションボード使用の場合)

GPの	設定	コミュニケーショ	ョンボードの設定
伝送速度	19200bps	伝送速度	19200bps
データ長	7bit	データビット	7bit
ストップビット	2bit	ストップビット	2bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式 (RS-232C使用時)	RS-232C		
通信方式 (RS-422使用時)	4線式	RS-422/485ケーブル (2線式 / 4線式)の 切り替え(ディップSW1)	4
号機No.	0	号機No.	0

・上表推奨設定で通信を行う場合は、

ポートAは、DM6555に「0001」をDM6556に「0304」 < HEX > を格納してください。 ポートBは、DM6550に「0001」をDM6551に「0304」 < HEX > を格納してください。

SYSMAC - シリーズ (CPU ユニット上の RS-232C ポート使用の場合)

GPの設定		RS-232Cポートの設定	
伝送速度	19200bps	伝送速度 19200bps	
データ長	7bit	データビット	7bit
ストップビット	2bit	ストップビット	2bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式	RS-232C	使用モード 上位リンク	
号機No.	0	号機No.	0

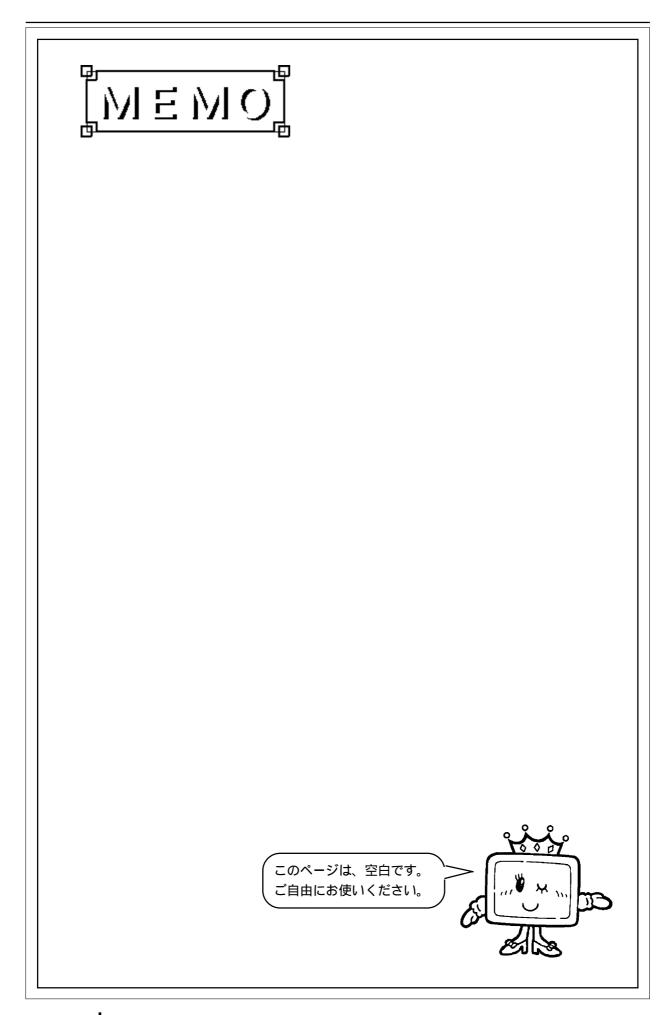
・上表推奨設定で通信を行う場合は、 CPUの232Cポートは、DM6645に「0001」をDM6646に「0304」 < HEX > を格納してください。

SYSMAC CV シリーズ

GPの設定		PLC側の設定	
伝送速度	19200bps	伝送速度 19200bps	
データ長	7bit	データビット	7bit
ストップビット	2bit	ストップビット	2bit
パリティビット	偶数	パリティビット 偶数	
制御方式	ER制御		
通信方式 (RS-232C使用時)	RS-232C	通信方式 (RS-232C使用時)	RS-232C
通信方式 (RS-422使用時)	4線式	通信方式 RS-422 (RS-422使用時)	
号機No.	0 *1	局番	0 *1

^{*1} 上位リンクユニット CV500-LK201 の通信ポート 1 接続の場合、「0」固定です。PLC 側に設定はありません。

SYSMAC CS1 シリーズ (CPU ユニット上の RS-232C ポート)


GPの設定		PLC側の設定	
伝送速度	19200bps	ボート通信速度	19200bps
データ長	7bit	データ長	7bit
ストップビット	2bit	ストップビット	2bit
パリティビット	偶数	パリティ	偶数
制御方式	ER制御		
通信方式	RS232C		
号機番号	0	号機No.	0
		ディップスイッチ	SW1: OFF SW5: OFF SW7: OFF SW8: OFF
		モード	上位リンク

SYSMAC CS1 シリーズ (CPU上のペリフェラルポート使用の場合)

GPの設定		PLC側の設定	
伝送速度	19200bps	ボート通信速度	19200bps
データ長	7bit	データ長	7bit
ストップビット	2bit	ストップビット	2bit
パリティビット	偶数	パリティ	偶数
制御方式	ER制御		
通信方式	RS232C		
号機番号	0	号機No.	0
		ディップスイッチ	SW1: OFF SW4: ON SW7: OFF SW8: OFF
		モード	上位リンク

SYSMAC CS1 シリーズ (コミュニケーションボード/ユニット使用の場合)

GPの設定		PLC側の設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	7bit	データ長	7bit
ストップビット	2bit	ストップビット	2bit
パリティビット	偶数	パリティ	偶数
制御方式	ER制御		
通信方式(RS232C使用時)	RS232C		
通信方式(RS422使用時)	4線式	WIRE(2線/4線式スイッチ)	4線式
		TERM(終端抵抗設定スイッチ)	終端抵抗ON
号機番号	0	上位リンク用号機No.	0
		シリアル通信モード	上位リンク
		送信ディレー時間	0
		CTS制御	なし

2.3 富士電機(株)製PLC

2.3.1 システム構成

富士電機(株)製PLCとGPを接続する場合のシステム構成を示します。

<結線図>は2.3.2 結線図をご参照ください。

MICREX-Fシリーズ(リンク I/F 使用)

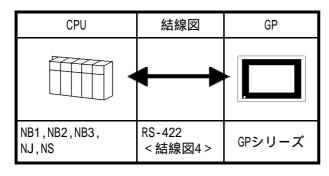
CPU	リンクI/F	結線図	使用可能ケーブル	GP
	パソコンインターフェイ スモジュール /汎用インター フェイス			
F80H, F120H, F250	FFU-120B (パソコンインター フェイスモジュー ル)	RS-232C <結線図1> RS-422 <結線図2>	RS-232C (株)デジタル製 GP410-IS00-0(5m)	GPシリーズ
F70S (NC1P-S0)	NC1L-RS2(汎用イン ターフェイス)	RS-232C <結線図1>	(株)デジタル製 GP410-IS00-0(5m)	

MICREX-Fシリーズ<Tリンク>(リンクI/F使用)

CPU	リンクI/F	結線図	使用可能ケーブル	GP
• T	パソコンインターフェイ スカプセル))))))			
F80H,F120H,F250, F30,F50,F60,F80, F81,F120,F120S, F200	FFK120A-C10	RS-232C <結線図1> RS-422 <結線図2>	RS-232C (株)デジタル製 GP410-IS00-0(5m)	GPシリーズ
	FFK100A-C10	RS-232C <結線図3>		

MICREX-F シリーズ (FLT-ASFK) (CPU 直結)

CPU	リンクI/F	結線図	使用可能ケーブル	GP
	パソコンローダアダプタ	—	-	Ď
F80H, F250	FLT-ASFK 富士電機(株)製	RS-232C <結線図1>	RS-232C (株)デジタル GP-410-IS00-0	GPシリーズ

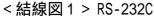

FLEX-PC シリーズ (リンク I/F 使用)

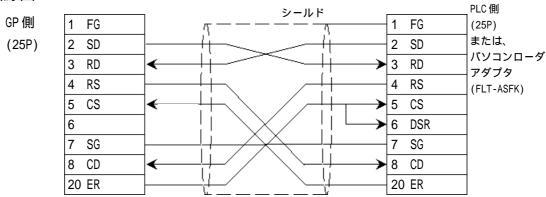
CPU	リンクI/F	結線図	使用可能ケーブル	GP
	汎用通信ユニット/インターフェイスモジュール	•		
NB1 , NB2 , NB3	NB-RS1-AC (汎用 RS-232C/485 通信ユニット)	RS-232C <結線図1> RS-422 <結線図2>	RS-232C (株)デジタル製 GP410-IS00-0(5m)	
NJ	NJ-RS2 (汎用RS-232C通信インター フェイスモジュール)	RS-232C <結線図1>	(株)デジタル製 GP410-IS00-0(5m)	GPシリーズ
	NJ-RS4 (汎用 RS-485 通信インター フェイスモジュール)	RS-422 <結線図2>		GPシリース
NS	NS-RS1 (汎用RS-232C/485 通信 インターフェイスモジュー ル)	RS-232C <結線図1> RS-422 <結線図2>	RS-232C (株)デジタル製 GP410-IS00-0(5m)	

• RS-422と表記してあるところは、PLC側がRS-485の場合も使用できます。

FLEX-PC シリーズ (CPU 直結)

・(株)デジタル製TリンクI/Fユニットを使用する場合は「GP-*50/70シリーズ TリンクI/Fユニットユーザーズマニュアル」をご 参照ください。

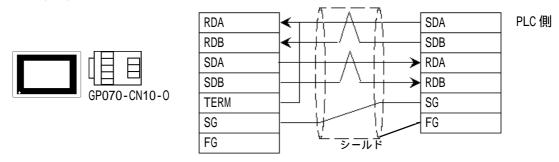

2.3.2 結線図

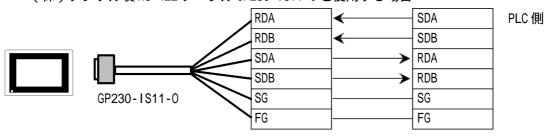

以下に示す結線図と富士電機(株)の推奨する結線図が異なる場合がありますが、問題ありません。

強制 ・ PLC本体のFG端子はD種接地を行ってください。 詳細はPLCのマニュアルをご参照ください。

重要・シールド線へのFGの接続は、設置環境によってPLC側、GP側の どちらかを選択してください。

- ・ RS-232C接続の場合は、ケーブル長は15m以内にしてください。
- ・ 通信ケーブルを結線する場合は、必ずSGを接続してください。




<結線図2 > RS-422

強制・ PLC側の終端抵抗スイッチを ON にしてください。

・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

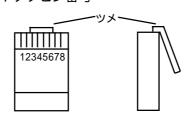
・(株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合


・ ケーブルを加工する場合

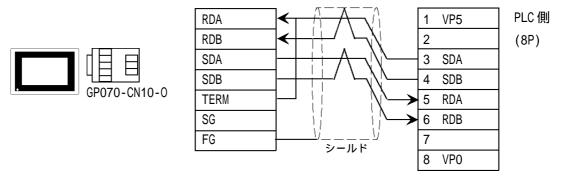
GP 側 SDA 1 FG PLC 側 SDB 7 SG (25P) 9 TRMX RDA RDB 10 RDA 11 SDA SG FG 15 SDB 16 RDB 18 CSB 19 ERB シールド 21 CSA 22 ERA

- ・ 接続ケーブル (推奨品)日立電線製 CO-SPEV-SB(A)3P*0.5S
- ・ GP側シリアル I /Fの9番ピンと10番ピンを接続することにより、RDA-RDB間に100 の終端抵抗が挿入されます。

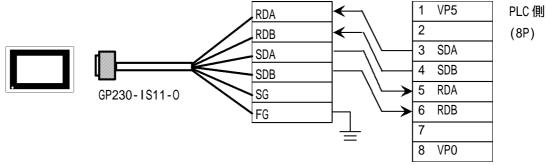
重 要 ・ RS-422接続の場合は、ケーブル長は600m以内にしてください。

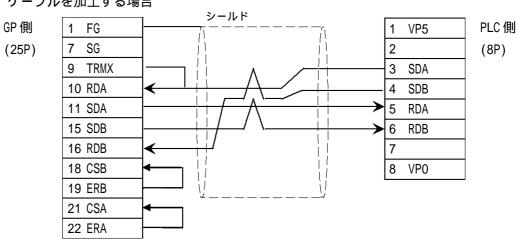


<結線図4 > RS-422



PLC側のコネクタ(モジュラージャックコネクタ)にはヒロセ (株)製 TM11P-88P が使用できます。


コネクタピン番号


・ (株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

・ (株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合

・ ケーブルを加工する場合

GP側シリアル I/Fの9番ピンと10番ピンを接続することにより、RDA-RDB間に100 の終端抵抗が挿入されます。

2.3.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。

MICREX-Fシリーズ

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考	
入力リレー	B0000 ~ B511F	WB0000 ~ WB0511	*1	
直接入出力		W24.0000 ~ W24.0159		
補助リレー	M0000 ~ M511F	WM0000 ~ WM0511	*1	
キープリレー	K0000 ~ K063F	WK000 ~ WK063	*1	
微分リレー	D0000 ~ D063F	WD000 ~ WD063	*1*4	
リンクリレー	L0000 ~ L511F	WL000 ~ WL511	*1	
特殊リレー	F00000 ~ F4095F	WF0000 ~ WF4095	*1*4	
アナウンスリレー	A00000 ~ A4095F	WA0000 ~ WA4095	*1*4	
タイマ0.01秒	T0000 ~ T0511			
タイマ0.1秒	T0512 ~ T1023			
カウンタ	C0000 ~ C0255			
タイマ0.01秒(現在値)		TR0000 ~ TR0511		H/L
タイマ0.01秒(設定値)		TS0000 ~ TS0511		11/ 🗠
タイマ0.1秒(現在値)		W9.000~W9.511		
カウンタ(現在値)		CR0000 ~ CR0255		
カウンタ (設定値)		CS0000 ~ CS0255		
		BD0000 ~ BD4095	B i t 31	
データメモリ		D10000 ~ D14095	B i t 31	
		S10000 ~ S14095	_{В і t} 15]	
		W30.0000 ~ W30.4094	<u>Ві t 15)</u> *2	
		W31.0000 ~ W31.4094	<u>Ві t 15</u>] *2	
ファイルメモリ		W32.0000 ~ W32.4094	<u>Ві t</u> 15] *2	
		W33.0000 ~ W33.4094	<u>Ві t 31)</u> *3	
		W34.0000 ~ W34.4094	B i t 31 *3	

^{*1} ワードデバイスでの最上位ビットは、ビットデバイスのビット0に対応します。また、ワードデバイスでの最下位ビットは、ビットデバイスのビットFに対応します。

<例>アドレス WB0002(ワードデバイス)に、16 進データ「0001」を書き込んだ場合 B002* (ピットデパイス) 0 1 2 3 4 5 6 7 8 9 A B C D E F

WB002 $(9-1^{\circ}\bar{\tau}^{\circ})^{\circ}(1^{\circ})$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

- *2 ユーザー定義において、必ず16ビットデータで使用してください。
- *3 ユーザー定義において、必ず32ビットデータで使用してください。
- *4 書き込み不可デバイスです。読み出しのみで使用してください。

- 重 要 ・ LSエリアでは、32ビット長のデバイスをサポートしていませ ん。そのため、システムエリアをBD、DI、W33に割り付けた場 合、システムエリア以外のLSエリアは使用できません。
 - GP-570VM、GP-870VM をご使用の場合、システムエリアをBD、 DI、W33に割り付けないでください。
 - · PLCの機種およびバージョンによりビット書き込み、ビット読 み出しが使用できないものがあります。

F30..... Ver. 0.9 未満は使用不可

F50 Ver. 1.4 未満は使用不可

F50H..... Ver. 0.7 未満は使用不可

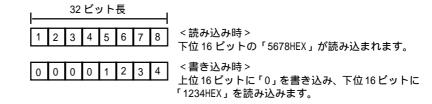
F80 全 Ver. 使用不可

F81 全 Ver . 使用不可

F120 全 Ver . 使用不可

F200 全 Ver . 使用不可

PLCのバージョンは、PLCに貼られているシールで確認してく ださい。


< 1 ワード 16 ビット長のデータ処理を行うとき >

GPの内部処理では基本的に1ワード16ビット長のデータを処 理します。したがって、32ビット長のデバイスでは読み込み と書き込みを次のように処理しています。

読み込み時 32 ビットのデータのうち、下位 16 ビット のデータを読み込みます。

書き込み時...... 32 ビットのデータのうち、下位16 ビット にデータを書き込み、上位16ビットに「0」 を書き込みます。

< 例 > データが「12345678HEX」の場合

- < 2 ワード 32 ビット長のデータ処理を行うとき > 16 ビット長のデバイスでは2 ワードアドレスで実現されていた 32 ビットのデータが、32 ビット長のデバイスでは1 ワードアドレスで実現できます。
- < 16 ビット長データの場合 >

< 32 ビット長データの場合 >

FLEX-PC シリーズ

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考	
入力リレー	X0000 ~ X07FF	WX000 ~ WX07F		
出力リレー	Y0000 ~ Y07FF	WY000 ~ WY07F		
内部リレー	M0000 ~ M03FF	WM000 ~ WM03F		
拡張内部リレー	M0400 ~ M1FFF	WM040 ~ WM1FF		
ラッチリレー	L0000 ~ L03FF	WL000 ~ WL1FF		
拡張ラッチリレー	L0400 ~ L1FFF	WL040 ~ WL1FF		
特殊リレー	M8000 ~ M81FF	WM800 ~ WM81F		
タイマ	T0000 ~ T03FF			
カウンタ	C0000 ~ C01FF		L	_/H
タイマ (現在値)		T0000 ~ T03FF		
タイマ (設定値)		TS0000 ~ TS03FF	*1	
カウンタ (現在値)		C0000 ~ C01FF		
カウンタ (設定値)		CS0000 ~ CS01FF	*1	
データレジスタ		D0000 ~ D2FFF	B i t 15	
特殊レジスタ		D8000 ~ D837F	<u>ві t</u> 15)	
リンクレジスタ		W0000 ~ W3FFF	B i t 15	
ファイルレジスタ		R0000 ~ R7EFF	B i t 15	

*1 ユーザー定義において、必ず16ビット長データで使用してください。

- タイマ・カウンタの設定値の読み出しはできません。ただし、 書き込みについては PLC 側がプログラムモードのときのみ可 能です。
- ・ GPからタイマ・カウンタの設定値に書き込んだ場合、設定値 を直接参照するようにラダーを書き換えてしまいます。この ためタイマ・カウンタの設定値を間接参照しているラダーの 場合、注意が必要です。通常は間接参照しているデバイスに 対してアクセスすることを推奨します。

2.3.4 環境設定例

(株)デジタルが推奨する PLC 側の通信設定と、それに対応する GP 側の通信設定を示します。

MICREX-F シリーズ (パソコンインターフェイスモジュール FFU120B 使用の場合)

GP Ø	設定	FFU120	3の設定
伝送速度	19200bps	伝送速度	19200bps
データ長	7bit	データ長	7bit
ストップビット	2bit	ストップビット	2bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御	送信条件	DTRon/CTSon
通信方式 (RS-232C使用時)	RS-232C	MODEスイッチ (RS-232C使用時)	1
通信方式 (RS-422使用時)	4線式	MODEスイッチ (RS-422使用時)	3
		キャラクタ構成ス イッチ	8(INIT)をOFF
		RS-485局番設定ス イッチ(RS-485使用時 のみ)	0
号機No.	0 (固定)		

注 意・ 必ずファイル定義で設定してください。リンクユニットのス イッチで設定すると通信しません。

MICREX-F シリーズ (汎用インターフェイスモジュール NC1L-RS2 使用の場合)

GPの設定		NC1L-RS2の設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	8bit	データ長	8bit
ストップビット	1bit	ストップビット	1bit
パリティビット	無	パリティビット	無
制御方式	ER制御	送信条件	DTRon/CTSon
通信方式	RS-232C	モード設定	1
		キャラクタ構成 スイッチ	8(初期設定方法)を OFF(イニシャルファ イル)
号機No.	0 (固定)		

注 意・ 必ずファイル定義で設定してください。リンクユニットのス イッチで設定すると通信しません。

MICREX-F シリーズ (パソコンインターフェイスカプセル FFK120A-C10 使用の場合)

GPの設定		FFK120A-C10の設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	7bit	データ長	7bit
ストップビット	2bit	ストップビット	2bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御	送信条件	無条件
通信方式 (RS-232C使用時)	RS-232C	MODEスイッチ (RS-232C使用時)	1
通信方式 (RS-422使用時)	4線式	MODEスイッチ (RS-422使用時)	3
		RS-485局番設定ス イッチ(RS-485使用時 のみ)	0
号機No.	0(固定)		

ႃ 注 意 ・ 必ずファイル定義で設定してください。リンクユニットのス イッチで設定すると通信しません。

MICREX-F シリーズ (パソコンインターフェイスカプセル FFK100A-C10 使用の場合)

GPの設定		NC1L-RS2の設定	
伝送速度	9600bps	伝送速度 9600bps	
データ長	7bit	データ長	7bit
ストップビット	2bit	ストップビット	2bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式	RS-232C		
号機No.	0 (固定)		
		PKアクセス	許可
		コード変換	有

🌓 注 意 ・ 必ずファイル定義で設定してください。リンクユニットのス イッチで設定すると通信しません。

MICREX-Fシリーズ (FLT-ASFK)

GPの設定		アダプタの設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	8bit	伝送ビット	8bit
ストップビット	1bit		
パリティビット	無	パリティビット	OFF(NON)
制御方式	ER制御		
通信方式	RS-232C		
号機No.	0		
		MODE	LOADER

FLEX-PC シリーズ (リンク I/F 使用の場合)

GPの設定		通信ユニット、インターフェイスモジュールの設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	7bit	データ長	7bit
ストップビット	1bit	ストップビット	1bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御	送信条件	DTRon/CTSon
通信方式 (RS-232C使用時)	RS-232C	モードスイッチ (RS-232C使用時)	1
通信方式 (RS-422使用時)	4線式	モードスイッチ (RS-422使用時)	3
号機No.	1	局番	1

FLEX-PC シリーズ (CPU 直結の場合)

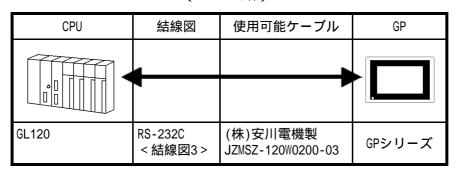
GP σ	設定	PLC側の設定
伝送速度	19200bps (固定)	
データ長	8bit(固定)	
ストップビット	1bit (固定)	
パリティビット	奇数 (固定)	
制御方式	ER制御(固定)	
通信方式	4線式(固定)	
号機No.	1(固定)	

2.4 (株)安川電機製 PLC

2.4.1 システム構成

安川電機(株)製PLCとGPを接続する場合のシステム構成を示します。 <結線図>は2.4.2 結線図をご参照ください。

Memocon-SC シリーズ (リンク I/F 使用)


CPU	リンクI/F	結線図	使用可能ケーブル	GP
	通信 モジュール			
	• 🗆	,	,	
U84,84 J	JAMSC-C8110	RS-232C	(株)安川電機製	
U84S	JAMSC-C8610	<結線図1>	メモバスケーブル JZMSZ-W1015-21 *1	
GL40S	JAMSC-IF61 JAMSC-IF41A			
GL60H,GL70H	JAMSC-IF60 JAMSC-IF61			GPシリーズ
GL60S	JAMSC-IF60 JAMSC-IF61			
	JAMSC-IF612	RS-422 <結線図2>		

*1 GP-270/GP-370/GP-377/GP-377R シリーズには、コネクタケースのサイズ上使用できません。

通信モジュールを複数使用して、同時に最大GP4台と接続ができます。

Memocon-SC シリーズ (CPU 直結)

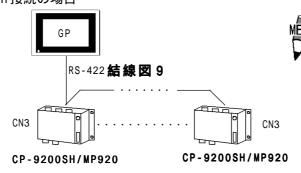
Control Pack シリーズ (CPU 直結)

CPU *1	結線図	使用可能ケーブル	GP
	4		
		•	
CP-9200, CP-9200H	RS-232C <結線図1>	(株)安川電機製 メモバスケーブル JZMSZ-W1015-21 *2	GPシリーズ

- CP-9200、CP-9200Hは同時に2台と接続ができます。2台のGP を同時に使用する場合は、GPのシステムエリアが重ならないように設定してください。
- *1 CP-9200、CP-9200Hのマシンコントローラ4CN、6CNに接続します。
- *2 GP-270/GP-370/GP-377/GP-377R シリーズには、コネクタケースのサイズ上使用できません。

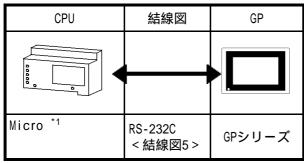
Control Pack シリーズ (リンク I/F 使用)

CPU	リンクI/F	結線図	GP
			▶
	JACP-317217(CN1)	結線図7 (RS-232C)	
CP-9200SH *3	JACP-317217(CN2)	結線図8 (RS-232C)	GPシリーズ
	JACP-317217(CN3)	結線図9 (RS-422)	


*3 1:1接続の場合

以下の示す図は1:1接続です。(CNとは回線番号を意味します。)

重要 ・ CN1、CN2、CN3の同時接続ができます。ただし、1つのCNにGP の複数台接続(マルチリンク)はできません。


1:n接続の場合

システムの中で使用するGPは、必ず 1台にしてください。

- ・ リンク上にはGP1台に対し、CPU最大 32台接続できます。
- ・ CPU設定はGPの仕様上により32号機 までの設定となり、32号機以上の設 定は使用できません。

Memocon Micro (CPU 直結)

*1 comm1ポートに接続します。

PROGIC-8 シリーズ (CPU 上のリンク I/F 使用)

CPU	結線図	使用可能ケーブル	GP
	•		
PROGIC-8 *2	RS-232C <結線図4>	(株)安川電機製 JEPMC-W5310-03 *3	GPシリーズ

- *2 PLC ユニット上の PORT1(9P)または PORT2(15P)に接続します。
- *3 PORT1 接続時のみ使用できます。PORT2 は 15P 仕様のため、使用できません。

Memocon-SC シリーズ (GL120/GL130)(リンク I/F 使用)

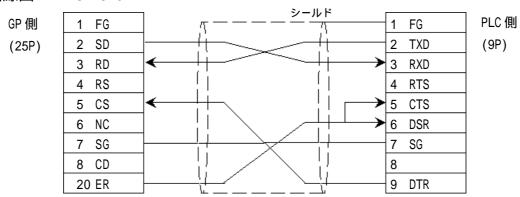
CPU	リンクI/F	結線図	GP
	計算機リンクユニット		
GL120 GL130	JAMSC-120N0M27100	RS-422 <結線図6>	GPシリーズ

MP900 シリーズ (リンク I/F 使用)

CPU	リンクI/F	結線図	GP
	計算機 リンクユニット	lack	
MP930	CPUユニット上の MEMOBUSポート (PORT1, PORT2)	RS-232C <結線図7>	
MP920	CPUユニット上の MEMOBUSポート (PORT1, PORT2)	RS-232C <結線図7>	GPシリーズ
	JEPMC-CM200 *4 (CN1,CN2)		
	JEPMC-CM200 *4 (CN3)	RS-422 <結線図9>	

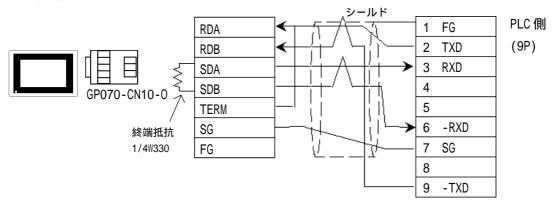
*4 接続方法の詳細説明はCP-9200SH(一頁前)を参照してください。

2.4.2 結線図

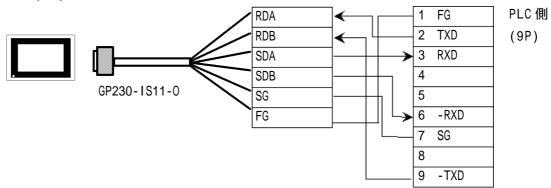

以下に示す結線図と(株)安川電機の推奨する結線図が異なる場合がありますが、以下に示す結線図でも動作上問題はありません。

強制 ・ PLC本体のFG端子はD種接地を行ってください。 詳細はPLCのマニュアルをご参照ください。

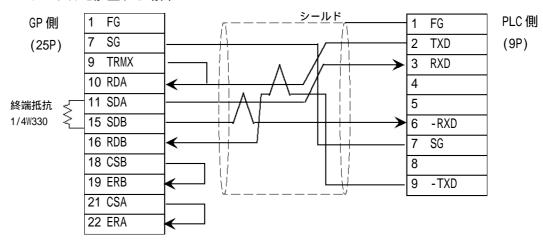
重要・シールド線へのFGの接続は、設置環境によってPLC側、GP側の どちらかを選択してください。(結線例はPLC側に接続した場合 の図です。)


- ・ RS-232C接続の場合は、ケーブル長は15m以内にしてください。
- ・ 通信ケーブルを結線する場合は、必ずSGを接続してください。

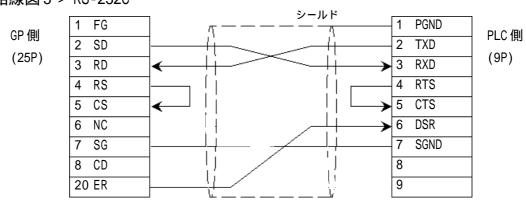
<結線図1 > RS-232C

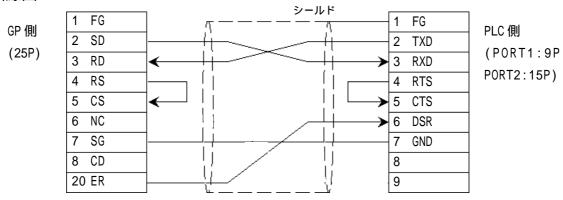


<結線図2 > RS-422

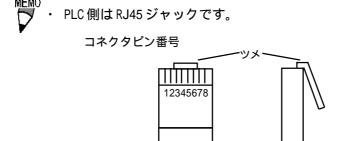

・(株)デジタル製RS-422コネクタ端子台変換アダプタGP070-CN10-0を使用する場合

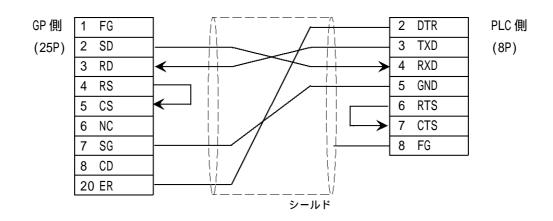
・(株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合


・ ケーブルを加工する場合

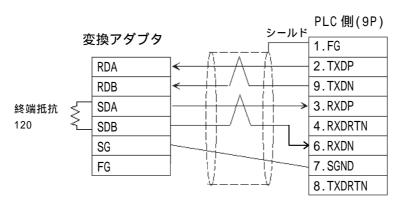

MEMO

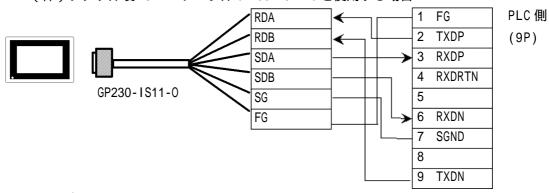
GP側シリアルI/Fの9番ピンと10番ピンを接続することにより、RDA-RDB間に100 の終端抵抗が挿入されます。


<結線図3 > RS-232C

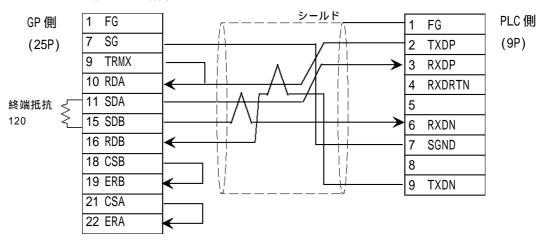


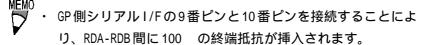
< 結線図4 > RS-232C


<結線図5 > RS-232C

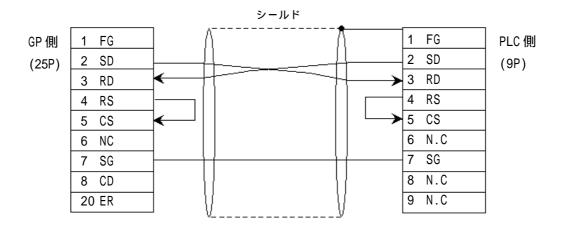


<結線図6 > RS-422

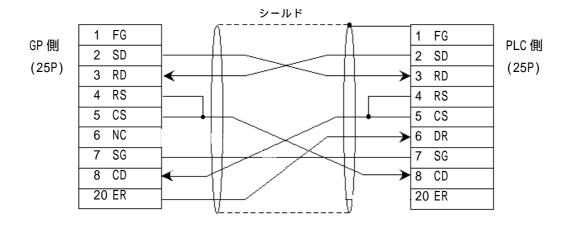

・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合



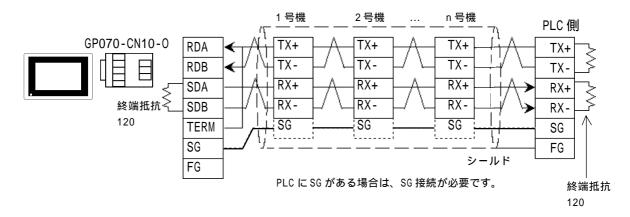
・(株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合



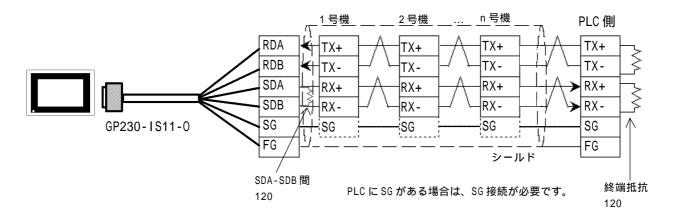
・ ケーブルを加工する場合



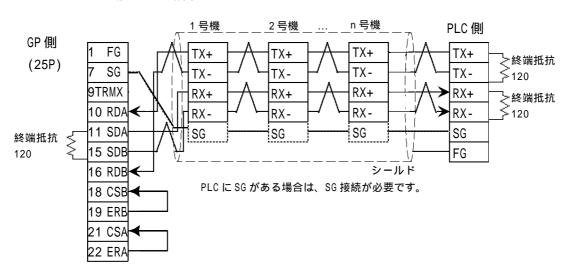
<結線図7 > RS-232C



<結線図8 > RS-232C



<結線図9 > RS-422


・(株)デジタル製RS-422コネクタ端子台変換アダプタGP070-CN10-0を使用する場合

・(株) デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合

・ ケーブルを加工する場合

2.4.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。

Memocon-SC シリーズ (U84/84J/U84S/GL40S/GL60H/GL70H/GL60S)

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考
コイル(出力/内部)	00001 ~ 08192		*1
入力リレー	10001 ~ 14096		*1*2
リンクコイル	D0001 ~ D1024		*1
入力レジスタ		30001 ~ 30512	B : t 15) *2
出力 / 保持レジスタ		40001 ~ 49999	B : t 15]
リンクレジスタ		R0001 ~ R1024	B : +15)
定数レジスタ		31001 ~ 35096	<u>₿; t</u> 15)
拡張レジスタ		A0000 ~ A7FFF	B i t 7

Memocon-SCシリーズ (GL120/GL130)

は、システムエリアに指定可能

		,	
デバイス	ビットアドレス	ワードアドレス	備考
コイル(出力/内部)	000001 ~ 008192		*1
入力リレー	100001 ~ 101024		*1*2
リンクコイル1	D10001 ~ D11024		*1
リンクコイル2	D20001 ~ D21024		*1*2
MCリレー1	X10001 ~ X10256		*1*2
MCリレー2	X20001 ~ X20256		*1*2
MCコイル1	Y10001 ~ Y10256		*1
MCコイル2	Y20001 ~ Y20256		*1*2
MCコードリレー1	M10001 ~ M10096		*1*2
MCコードリレー2	M20001 ~ M20096		*1*2 H/L
MC制御リレー1	P10001 ~ P10256		*1*2
MC制御リレー2	P20001 ~ P20256		*1*2
MC制御コイル1	Q10001 ~ Q10256		*1
MC制御コイル2	Q20001 ~ Q20256		*2
入力レジスタ		300001 ~ 300512	B i t 15 *2
出力レジスタ		300001 ~ 300512	B i t 15]
保持レジスタ		400001 ~ 409999	B i t 15
リンクレジスタ1		R10001 ~ R11024	B : t15]
リンクレジスタ2		R20001 ~ R21024	B i t 15
定数レジスタ		700001 ~ 704096	B i t 15

^{*1} ワード(16ビットデータ)指定することもできます。

^{*2} データの書き込みはできません。

Control Pack シリーズ

	13	システムエリアに指定可能
1 11	10~	ノヘノムエソノに旧たり配

デバイス	ビットアドレス	アドレスに対応する GP-9200, CP-9200Hの レジスタ番号	備考
入力レジスタ	00001 ~ 02048	IB00000 ~ IB007FF	*1
出力レジスタ	02049 ~ 04096	0B00000 ~ 0B007FF	*1 L/H
システムレジスタ	10001 ~ 12048	SB000000~SB00127F (CPU#0のSレジスタ)	*1

デバイス	ビットアドレス	アドレスに対応する GP-9200, CP-9200Hの レジスタ番号	備考
入力レジスタ	49744 ~ 49871	IB00000 ~ IB007FF	<u>₿; t</u> 15]
出力レジスタ	49872 ~ 49999	0B00000 ~ 0B007FF	B i t 15)
システムレジスタ	30001 ~ 30256	SW00000~SW00255 (CPU#0のSレジスタ)	_{В і t} 15)
データレジスタ	31001~33048 (CP-9200Hのみ)	DW00000~DW02047 (CPU#1のDレジスタ)	B t 15)
	40001 ~ 42048	DW00000~DW02047 (CPU#0のDレジスタ)	B : 15]
共通レジスタ	42049 ~ 49743	MW00000 ~ MW07694	B i t 15)

*1 ワード(16ビットデータ)指定することもできます。

- 強制 · Control Packシリーズで使用する場合は、上記のアドレス対応 表で変換しアドレス入力を行ってください。
 - ・ CP-9200でCPU#1のデータレジスタ、およびシステムレジスタを 使用したい場合は、共通レジスタ(MW00000~MW07694)にコピー して使用してください。

Memocon Micro

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考
コイル(出力/内部)	00001 ~ 01531		*1
入力リレー	10001 ~ 10511		*1
入力レジスタ		30001 ~ 30047	B : 15]
出力 / 保持レジスタ		40001 ~ 41871	B i t 15)

PROGIC-8シリーズ

| は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考
出力コイル	01 ~ 0512		*1
入力リレー	I1 ~ I512		*1*2
内部コイル	N1 ~ N1536		*1
リンクコイル	D1 ~ D1024		*1
データレジスタ		W1 ~ W2048	_{В і t} 15)
データレジスタ (1ワードデータ用)		SW1 ~ SW2048	<u>ві t15)</u> *3 _{Н/L}
データレジスタ (2ワードデータ用)		DW1 ~ DW2048	B i t 15) *3
入力レジスタ		Z1 ~ Z128	*2
リンクレジスタ		R1 ~ R1024	
リンク (1ワードデータ用)		SR1 ~ SR2048	*3
リンク (2ワードデータ用)		DR1 ~ DR2048	*3

- *1 ワード(16ビットデータ)指定することもできます。
- *2 データの書き込みはできません。
- *3 データ型式対応レジスタ。このレジスタは、PLC内部データに対応した架空のレジスタです。このレジスタは、データレジスタ(W)、リンクレジスタ(R)を使用していますが、
 - 1ワードで扱えるデータの範囲は、-9999~9999です。
 - 1ワードデータ対応レジスタデータレジスタ(SW)、リンクレジスタ(SR)を使用する場合の注意点
 - SW、SR を使用する場合は、必ず-9999~9999の値を使用してください。
 - 又、データを表示する場合は、4桁表示(10進数)で設定してください。

2ワードデータ対応レジスタを使用する場合の注意点

データレジスタ(DW)、リンクレジスタ(DR)について

- DW、DR を使用する場合は、必ず -99999999 ~ 99999999 の値を使用してください。
- 又、データを表示する場合は、8桁表示(10進数)で設定してください。

SW,SRとW,Rの表示値の違い

PLC内部データ	SW,SR	W,R
9999	9999	9999
1001	1001	1001
1000	1000	1000
999	999	999
0	0	0
-1	-1	32769
-999	-999	33767
-1000	-1000	33768
-1001	-1001	33769
-9999	-9999	42767

DW, DR とW, R(2 ワード) の表示値の違い

PLC内部データ	DW, DR	W,R
99999999	99999999	655304463
10000001	10000001	65536001
10000000	10000000	65536000
9999999	9999999	65535999
10000	10000	65536
9999	9999	9999
0	0	0
-1	-1	2147483649
-9999	-9999	2147493647
-10000	-10000	2147549184
-10001	-10001	2147549185
-9999999	-9999999	2212955111

CP-9200SH/MP900シリーズ

| は、システムエリアに指定可能

デバイス	GP上での表示	対応する デバイス	デバイス数	備考	
コイル(ビットデバイス)	GMB00000 ~ GMB0624E	MB00000+オフセット~ MB0624E+オフセット	9999点		
コイル(ワードデバイス)	GMB0000 ~ GMB0624	MB0000+オフセット~ MB0624+オフセット	625点	*2	
入力リレー(ビットデバ イス)	G1B00000 ~ G1B0270E	IB00000 + オフセット~ IB0270E + オフセット	9999点	*1	
入力リレー(ワードデバ イス)	G1B0000 ~ G1B0270	IB0000+オフセット~ IB0270+オフセット	625点	*1 *2	
保持レジスタ(ワードデ バイス)	GMW0000 ~ GMW1023	MW0000+オフセット~ MW1023+オフセット	1024点	Bit F	
	GMW1024 ~ GMW2047	MW1024+オフセット~ MW2047+オフセット	1024点	Bit F	
	GMW2048 ~ GMW3071	MW2048+オフセット~ MW3071+オフセット	1024点	B i t	
	GMW3072 ~ GMW4095	MW3072+オフセット~ MW4095+オフセット	1024点	<u>ві t</u> F)	
	GMW4096 ~ GMW5119	MW4096 + オフセット ~ MW5119 + オフセット	1024点	Bit F	
	GMW5120 ~ GMW6143	MW5120+オフセット~ MW6143+オフセット	1024点	Bit F	
	GMW6144 ~ GMW7167	MW6144+オフセット~ MW7167+オフセット	1024点	B i t F	L/H
	GMW7168 ~ GMW8191	MW7168+オフセット~ MW8191+オフセット	1024点	<u>ві t</u> F)	
	GMW8192 ~ GMW9215	MW8192+オフセット~ MW9215+オフセット	1024点	Bit F	
	GMW9216 ~ GMW9998	MW9216+オフセット~ W9998+オフセット	783点	Bit F	
入力レジスタ(ワードデ バイス)	GIW0000 ~ ~ GIW03FF	IW0000+オフセット~ ~IW03FF+オフセット	1024点	Bit F) *1	
	G1W0400~G1W07FF	IW0400+オフセット~ IW07FF+オフセット	1024点	Bit F] *1	
	G1W0800 ~ G1W08FF	IW0800+オフセット~ IW08FF+オフセット	1024点	B i t F) *1	
	GIWOCOO ~ GIWOFFF	IWOCOO+オフセット~ IWOFFF+オフセット	1024点	B i t F) *1	
	GIW1000~GIW13FF	IW1000+オフセット~ IW13FF+オフセット	1024点、注)デ バイス範囲の記 述で、0000のよ うに表記してあ る箇所は16進	Bit F) *1	

- *1 GPからの読み出しは可能ですが、書き込みはできません。
- *2 最後(GMB0624/G1B0270)の16ビット目の書き込みはできません。

重要

- ・CP-9200SHのプロトコルは1:n接続対応です。よって、従来のMEMCON-SCプロトコルとデバイスの内部表記方法が異なり、互換性がありません。従来のMEMCON-SCから画面を変更する場合は、デバイスの再入力が必要です。
- ・システムエリアの設定は、各ブロック内におさまるように設定してください。 ブロックをまたぐような設定はできません。

例)GMW1010から20ワード分の設定はできません。

MEMO.

GP-PRO/PB で部品やタグの設定を行う場合、アドレス入力時に PLC のステーションNo. の指定ができます。ステーションNo. を指定しなかった場合は、ひとつ前に入力された番号を継続します。(起動時のデフォルト値は「1」です)

2.4.4 環境設定例

(株)デジタルが推奨するPLC側の通信設定と、それに対応するGP側の通信設定を示します。

Memocon SC シリーズ (GL40S/GL60S/GL60H/GL70H)(GL120 CPU 直結)

GPの設定		通信モジュール/GL120の設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	8bit (固定)	伝送モード	RTUモード (固定)
ストップビット	1bit	ストップビット	1bit
パリティビット	偶数	パリティON/OFF EVEN/ODD	ON EVEN
制御方式	ER制御		
通信方式	RS-232C		
		ディレーカウント 1 0	
号機No.	1	号機No.	1

Memocon SC シリーズ (U84/U84J/U84S)

GPの設定		通信モジュールの設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	8bit	伝送モード	RTUモード
ストップビット	1bit	ストップビット	1bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式	RS-232C		
ポートディレータイマ 0		0	
号機No.	1	アドレス	1

Memocon SCシリーズ (GL120/GL130)

GPの設定		通信モジュールの設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	8bit		
ストップビット	1bit	ストップビット	1bit
パリティビット	偶数	ON/OFF	ON
制御方式	ER制御	EVEN/ODD	EVEN
通信方式	RS-422	通信ポート	RS-422
		スレーブアドレス	No. 1
号機No.	1	通信ビット	RTU モード(固定)

^{*1} GL120、通信モジュール JAMSC-IF60 にはこの設定はありません。

PROGIC-8

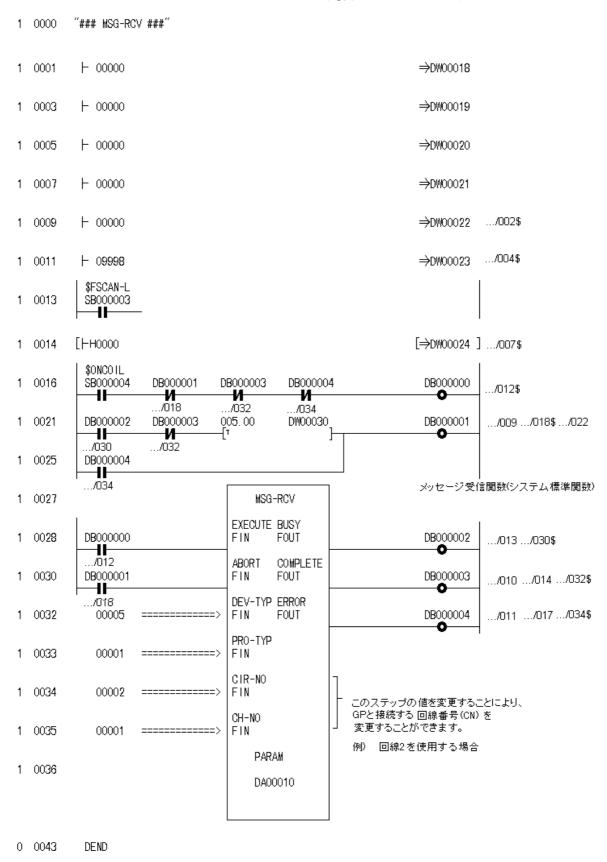
GPの設定		PORT1、PORT2の設定	
伝送速度 (PORT1接続の場合)	9600bps (固定)		
伝送速度 (PORT2接続の場合)	19200bps	伝送速度 (PORT2接続の場合) 19200bps	
データ長	8bit		
ストップビット	1bit		
パリティビット	偶数		
制御方式	ER制御		
通信方式	RS-232C		
号機No.	1		

Control-Pack シリーズ

GPの設定		マシンコントローラ4CN、6CNの設定	
伝送速度	9600bps	伝送速度 9600bps	
データ長	8bit	データビット	8bit
ストップビット	1bit	ストップビット	1bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式	RS-232C		
号機No.	1	局番	1

Memocon Micro

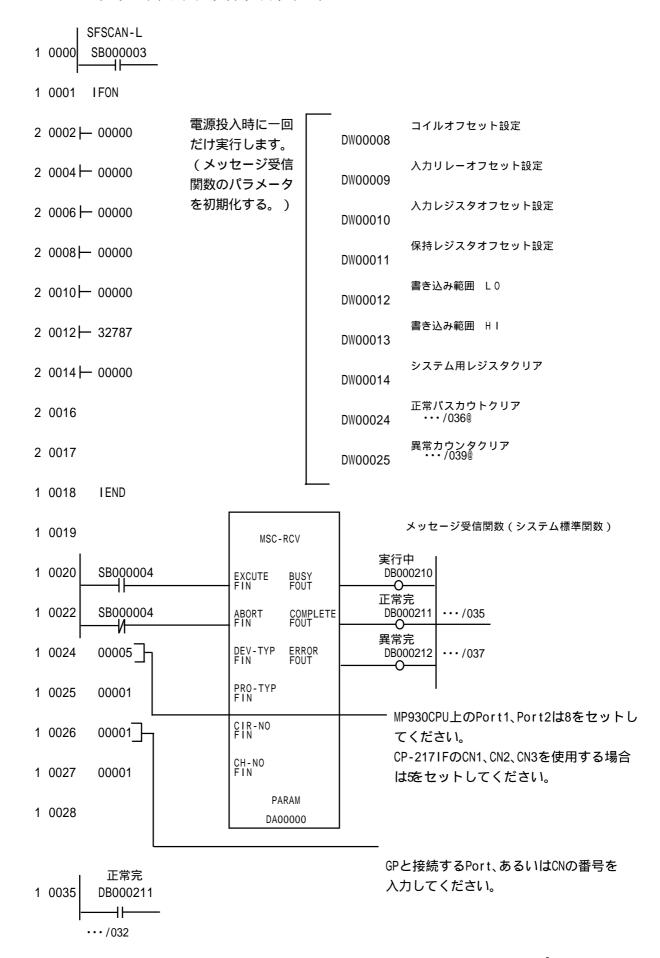
GPの設定		comm1ポートの設定	
伝送速度	9600bps	伝送速度 9600bps	
データ長	8bit	データビット	8bit
ストップビット	1bit	ストップビット	1bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式	RS-232C		
号機No.	1	局番	1


Control Pack シリーズの CP-9200SH 対応

	GPの設定	PLC設定
伝送速度(bps)	9600	9600
データ長	8	8
ストップビット	1	1
パリティビット	偶数	偶数
制御方式	ER制御	ER制御
通信方式:RS-232C	RS-232C	CN1 or CN2
:RS-422	4線式	CN3
システムエリア先頭アドレス	GMW0000	
号機No (ステ-ションNo.)	1 ~ 32	1 ~ 32

- バージョンが「*****_21700_*****」以下の217IFユニットとGP77Rシリーズを接続する場合は、GP画面作成ソフトGP-PRO/PB for Windows Ver.3.0以上の[GPシステムの設定」の「通信設定」を選択し、「拡張設定」の「送信ウェイト」を"20ms"にしてください。
- GPと安川電機(株)製リンクI/F CP-217IFを接続するには、ラダープログラムが必要です。
- ・ このサンプルプログラムは1つのCNとGPとの通信を可能にするものです。CN1 ~ CN3の複数同時通信をする場合は、各CNごとにラダープログラムが必要です。ご注意ください。
- ・ PLC側の通信設定は、このプログラムでは設定されないので、ラダーソフトより設定作業を行います。

Control Pack シリーズの CP-9200SH 対応サンプルプログラム


MP900 シリーズ

GPの設定		PLC側	の設定
伝送速度	19200bps	ボーレート	19.2Kbps
データ長	8bit	データ長	8bit
ストップビット	1bit	ストップビット	1stop
パリティビット	偶数	パリティビット	even
制御方式	ER制御	送信モード	RTU
通信方式 (RS-232C使用時)	RS-232C	シリアルI/F (RS-232C使用時)	RS-232C
通信方式 (RS-422使用時)	4線式	シリアルI/F (RS-422使用時)	RS-485
号機No.	1	デバイスアドレス	01
		マスタ/スレーブ	スレーブ
		伝送プロトコル	メモバス

- GPと安川電機(株)製伝送モジュールCP-217I/FのCN1、CN2、 CN3 を接続する場合、およびMP930CPU上のメモバスポート (Port1, Port2)を接続する場合はラダープログラムが必要です。
- ・ このサンプルプログラムは1つの通信ポートとGPとの通信を可能にするものです。複数の通信ポートで同時通信をする場合は、各通信ポートごとにラダープログラムが必要です。
- ・ PLC側の通信設定はラダープログラムのみでは設定されないので、ラダーソフトの設定も必要です。

MP900 シリーズのサンプルプログラム

1 0036[INC	正常カウンタ DW00024] ・・・/016		
1 0037	異常完 DB000212			
1 0038	···/034 IFON		'	
2 0039	INC	異常カウンタ DW00025 ・・・/017		処理結果保存
2 0040	DW00000	7017	DW00026	···/053S
2 0042	DW00001		DW00027	ステータス保存
2 0044	DW00002		DW00028	コマンド受信先ST#保持
2 0046	DW00005		DW00029	FC保存
2 0048	DW00006		DW00030	データアドレス保持
2 0050	DW00006		DW00031	データサイズ保持
2 0052	DW00007		DW00026	処理結果保存 ・・・/041S
1 0054	IEND			

0 0055 DEND

2.5 (株)日立製作所製 PLC

2.5.1 システム構成

(株)日立製作所製PLCとGPを接続する場合のシステム構成を示します。

< 結線図 > は2.5.2 結線図をご参照ください。

HIDIC-S10 シリーズ (リンク I/F 使用)

CPU	リンクI/F	結線図	GP
	上位リンク モジュール		
2 (LWP000) ¹ , 2 E(LWP040) ¹ 2 H(LWP070) ¹	CPUユニット上の リンクI/F	RS-422 (日立 H-7338 方式)	GPシリーズ
4 ,4 F	LWE805	<結線図1>	

HIDIC Hシリーズ(リンクI/F使用) 伝送制御手順1

CPU	リンクI/F	結線図	使用可能ケーブル	GP
	COMM モジュール	•		
H-300(CPU-03Ha), H-700(CPU-07Ha), H-2000(CPU-20Ha), H-2002(CPU2-20H)	COMM-H COMM-2H	RS-232C <結線図2> RS-422	RS-232C (株)日立製作所製 周辺機器用ケーブル GPCB05H ²	GPシリーズ
H-4010 (CPU3-40H)	COMM-2H	<結線図4 >		

HIDIC Hシリーズ / COMM-2H (リンク I / F 使用) 伝送制御手順2

CPU	リンクI/F	結線図	使用可能ケーブル	GP
	COMM Ey, 1-11	$\qquad \qquad $		
H-2002 (CPU2-20H) H-4010 (CPU3-40H)	COMM-2H	RS-232C <結線図2> RS-422 <結線図4>	RS-232C (株)日立製作所製 周辺機器用ケーブル GPCB05H	GPシリーズ

^{*1} CPU モジュールの HOST LINK COMPUTER LINK 入出力端子(上位計算機インターフェイス)に接続します。

^{*2} GP-270/GP-370/GP-377/GP-377R シリーズには、コネクタケースのサイズ上使用できません。

HIDIC Hシリーズ (CPU 直結)

CPU	結線図	使用可能ケーブル	GP
		•	
H20, H28, H40, H64	RS-232C <結線図2>		
H-200(CPU-02Ha) *1 H-300(CPU-03Ha) *1 H-700(CPU-07Ha) *1 H-2000(CPU-20Ha) *1 H-2002(CPU2-20H) *1	· 1141/33 (RS-232C (株)日立製作所製 周辺機器用ケーブル GPCB05H	
H-252C(CPU22-02HC)*1 *2 H-4010(CPU3-40H)*1 *4	<結線図2、3>*3		
EH-150(EH-CPU104, EH-CPU208)*5 *6	<結線図2、3>*7		

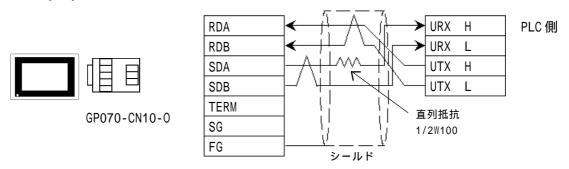
- *1 CPUモジュールのペリフェラルポートに接続します。

- *3 伝送速度により結線の変更が必要です。伝送速度4800bpsで通信する場合は < 結線図2 > を、伝送速度19200bpsで通信する場合は < 結線図3 > を使用してください。上記の < 図1 > は伝送速度4800bpsの場合の例です。
- *4 CPU のソフトウアレベジョン「J」以降では、DIPSW1 の No.3, No.4 を OFF にし、 < 結線図3 > を使用することにより、伝送速度38400bpsでの通信が可能です。
- *5 CPUモジュールのシリアルポートに接続します。
- *6 GP と接続する場合、モジュラージャック(8P)Dサブコネクタ(5P)の変換ケーブル(株)日立 製作所製 EH-RSO5 が必要です。
- *7 シリアルポート2に接続する場合、伝送速度により結線の変更が必要です。 伝送速度19200bps、38400bpsで通信する場合は < 結線図3 > を使用してください。

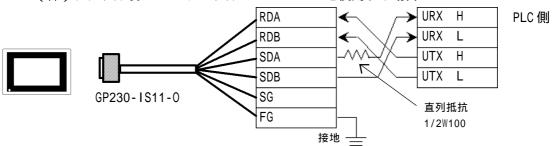
HIZAC EC シリーズ (CPU 直結)

CPU	結線図	GP
	←	
EC-40HR	RS-232C <結線図5>	GPシリーズ

2.5.2 結線図


以下に示す結線図と(株)日立製作所の推奨する結線図が異なる場合がありますが、以下に示す 結線図でも動作上問題はありません。

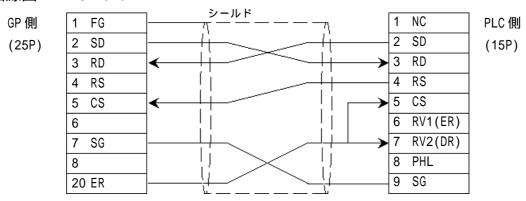
強制 ・ PLC本体の FG端子はD種接地を行ってください。詳細はPLCの マニュアルをご参照ください。


- 重要・ シールド線へのFGの接続は、設置環境によってPLC側、GP側の どちらかを選択してください。コネクタフードを使ってFGを落 とす場合は導電性のあるものをお使いください。(結線例はGP側 に接続した場合の図です。)
 - ・ RS-232C接続の場合、ケーブル長は15m以内にしてください。
 - ・ 通信ケーブルを結線する場合は、必ずSGを接続してください。
 - ・ RS-422 接続の場合、ケーブル長は(株)日立製作所のマニュア ルを参照してください。

< 結線図1 > RS-422

・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0を使用する場合

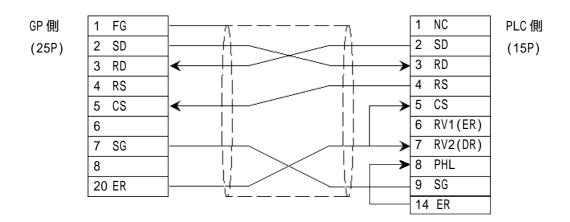
・(株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合



・ ケーブルを加工する場合 シールド URX H GP 側 PLC 側 1 FG URX L 7 SG (25P) UTX H 9 TRMX UTX L 10 RDA 11 SDA 15 SDB 16 RDB 18 CSB 19 ERB 21 CSA 直列抵抗 22 ERA 1/2W100

- 接続ケーブルとして日立電線製KPEV-SB-3P0.5mm²を推奨します。
- ・ GP側シリアル I /Fの9番ピンと10番ピンを接続することにより、RDA-RDB間に100 の終端抵抗が挿入されます。

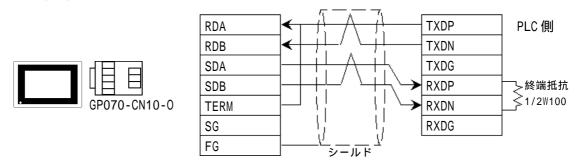
< 結線図 2 > RS-232C



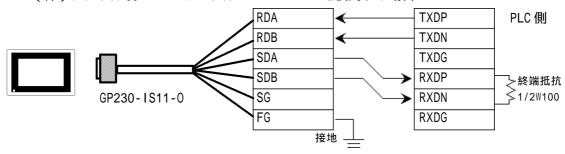
通信においてエラーが発生した場合、リトライ処理が行われる ため、エラー表示されるまでに時間がかかることがあります。

強制 ・ 伝送制御手順1においてGPとPLCのプログラムコンソール (GPCL)を同時に操作した場合、GPが「上位通信エラー(02:37)」を、GPCLが「CPU占有エラー」を発生することがあります。この場合、GPは自動復帰を行います。GPCLでは再操作を行ってください。

< 結線図3 > RS-232C



通信においてエラーが発生した場合、リトライ処理が行われる ため、エラー表示されるまでに時間がかかることがあります。


強制 ・ 伝送制御手順 1 において GP と PLC のプログラムコンソール (GPCL)を同時に操作した場合、GPが「上位通信エラー(02:37)」を、GPCLが「CPU占有エラー」を発生することがあります。この場合、GP は自動復帰を行います。GPCL では再操作を行ってください。

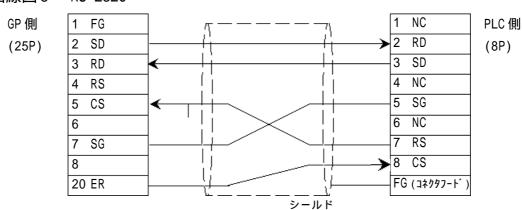
< 結線図4 > RS-422

・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

・(株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合

・ ケーブルを加工する場合 シールド **TXDP** GP 側 1 FG PLC 側 TXDN 7 SG (25P) **TXDG** 9 TRMX **RXDP** ← 10 RDA ≥終端抵抗 ≥1/2W100 **RXDN** 11 SDA **RXDG** 15 SDB 16 RDB 18 CSB 19 ERB 21 CBA 22 ERA

MEMO・ 通信においてエラーが発生した場合、リトライ処理が行われる ため、エラー表示されるまでに時間がかかることがあります。


強制 ・ GPとPLCのプログラムコンソール(GPCL)を同時に操作した場 合、GPが「上位通信エラー(02:37)」を、GPCLが「CPU占有エ ラー」を発生することがあります。この場合、GPは自動復帰を 行います。GPCLでは再操作を行ってください。

接続ケーブルとして日立電線製KPEV-SB-3P0.5mm²を推奨しま

・ GP側シリアル I/Fの9番ピンと10番ピンを接続することによ リ、RDA-RDB間に100 の終端抵抗が挿入されます。

<結線図5 > RS-232C

2.5.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。

HIDIC S10 シリーズ

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考	
入力リレー	X000 ~ X7FF	XW000 ~ XW7F0	***0]	
出力リレー	Y000 ~ Y7FF	YW000 ~ YW7F0	<u>***</u> 0]	
内部リレー	R000 ~ R7FF	RW000 ~ RW7F0	*** 0	
グローバルリンク	G000 ~ GFFF	GW000 ~ GWFF0	*** 0	
システムレジスタ	S000 ~ SBFF	SW000 ~ SWBF0	*** 0) *1	
Eワード	EW400 ~ EWFFF	EW400 ~ EWFF0	*** 0	H/L
イベント	E000 ~ E0FF	EW000 ~ EW0F0	<u>***</u> 0]	
キープリレー	K000 ~ K1FF	KW000 ~ KW1F0	***0]	
オンディレータイマ	T000 ~ T1FF	TW000 ~ TW1F0	*** 0 *2	
ワンショットタイマ	U000 ~ U07F	UW000 ~ UW070	*** 0) *2	
アップダウンカウンタ	C000 ~ C03F	CW000 ~ CW030	*** 0 *2	
オンディレータイマ (計数値)		TC000 ~ TC1FF		
オンディレータイマ (設定値)		TS000 ~ TS1FF		
ワンショットタイマ (計数値)		UC000 ~ UC07F		L/H
ワンショットタイマ (設定値)		US000 ~ US07F		L/11
アップダウンカウンタ (計数値)		CC000 ~ CC03F		
アップダウンカウンタ (設定値)		CS000 ~ CS03F		
データレジスタ		DW000 ~ DWFFF	Bit F	
ワークレジスタ		FW000 ~ FWBFF	Bit F	H/L
拡張レジスタ		MS000~MSFFF (GP-PRO/PB 側 アドレス)	B i t F] *3	11/ L

^{*1} データの書き込みはできません。

^{*2} 接点です。

^{*3} 拡張メモリ(1アドレス8ビット長)の4Kワードがアクセス可能です。アクセスする拡張メモリのトップアドレスは、初期設定の「動作環境の設定」で設定します(次頁参照)。PLC側で設定した拡張メモリ用アドレス領域の範囲内で、GPがアクセスするアドレスを設定します。PLC側の拡張メモリ用アドレス領域の設定方法は、PLCのマニュアルをご参照ください。

アクセスする拡張メモリのアドレス

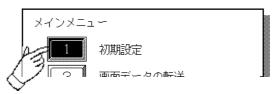
アクセスするアドレス = トップアドレス + GP-PRO/PB で設定するデバイスアドレス

<例> トップアドレス = 180000

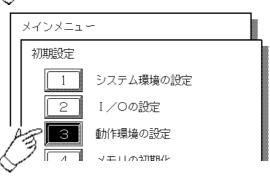
デバイスアドレス:MS 1FF

分場合 180000 + <u>3FE</u> = 1803FE

PLC側の拡張メモリは1アドレスが8ビット長のため、2倍になる


拡張メモリのトップアドレスの設定方法

GPのオフラインモードで初期設定時に「拡張メモリアドレス」の設定を行ってください。 オフラインモード 参照 各ユーザーズマニュアル(別売)第4章 オフラインモード



入力範囲はOHEX~FE000HEXで、これにオフセット値 100000HEXを加えた値が設定アドレスになります。GPが拡張メモリにアクセスしないときは設定する必要はありません。PLC側でプログラム等に使用している領域に、GPからタグや部品でアクセスするとPLCやGPにエラーが発生することがあります。PLC側が使用していない領域に「拡張メモリアドレス」を設定することをおすすめします。

メニュー項目番号「1」をタッチします。

「初期設定」画面が表示されます。 メニュー項目番号「3」をタッチします。

「動作環境の設定」画面が表示されます。 メニュー項目番号「1」をタッチします。

メインメニュー	
初期設定	
動作環境の設定	
動作環境	の設定

設定画面が表示されます。

「拡張メモリアドレス(HIDIC)」をタッチします。

動作環境の設定			
システムエリア先頭アドレス	()	
号機No.	()		
システムエリア 読込みエリアサイズ(0-256)	()		
加索 拡張メモリアドレス(HIDIC)	()	
()			

画面下部のタッチキーで数値を入力します。 <例 > 180000 に設定する場合、「80000」と 入力します。

HIDIC H(HIZAC H)シリーズ

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考	
外部入力	X00000 ~ X05A95	WX0000 ~ WX05A7	*1	
外部出力	Y00000 ~ Y05A95	WY0000 ~ WY05A7	*1	
リモート入力リレー	X10000 ~ X49A95	WX1000 ~ WX49A7	*1	
リモート出力リレー	Y10000 ~ Y49A95	WY1000 ~ WY49A7	*1	
内部出力	R000 ~ R7BF			
第 1 CPUリンク	L0000 ~ L3FFF	WL000 ~ WL3FF		
第 2 CPUリンク	L10000 ~ L13FFF	WL1000 ~ WL13FF		
データエリア	M0000~M3FFF	WM000 ~ WM3FF		
オンディレータイマ	TD000 ~ TD1024			
シングルショットタイマ	SS000 ~ SS1024			L/H
ウオッチドッグタイマ	WDT000 ~ WDT1024			
モノステーブルタイマ	MS000 ~ MS1024			
積算タイマ	TMR000 ~ TMR1024			
アップカウンタ	CU000 ~ CU2047			
リングカウンタ	RCU000 ~ RCU2047			
アップダウンカウンタ	CT000 ~ CT2047			
タイマ・カウンタ (経過値)		TC000 ~ TC2047		
ワード内部出力		WR0000 ~ WRC3FF	Bit F	
ネットワークリンクエリア		WN0000 ~ WN7FFF		

重要・第1CPU リンク(L0000~L3FFF)と第2CPU リンク(L10000~ for Windows95 V1.* 以前の作画ソフ L13FFF)をGP-PRO/PB トで使用される場合は、第1CPU リンクは、L00000 ~ L03FFF と入力し、第2CPU リンクでは、L100000 ~ L103FFF と1桁"0"を多く入力してください。 GP-PRO/PB for Windows95 V2.0 **以降**の作画ソフトを使用される場合は、上表どおり入力してください。 GP-PRO/PB for Windows95 V1.* **以前**から GP-PRO/PB for Windows95 V2.0**以降**にバージョンアップされても内部データに 支障はありません。入力方法が異なるだけです。

*1 次のように指定します。

< 例 > 外部入力ユニット No.1、スロット No.2、モジュール内ビット No.34 の場合

<例>外部入力ユニットNo.1、スロットNo.2、モジュール内ワードNo.3の場合

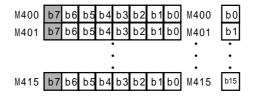
HIZAC ECシリーズ

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	垂直アドレス	備考	
外部入力	X000 ~ X015	WX000 ~ WX014	VX000	*1*3	
	X020 ~ X035	WX020 ~ WX034	VX020		
	X040 ~ X055	WX040 ~ WX054	VX040	<u>÷</u> 16)	
	X060 ~ X075	WX060 ~ WX074	VX060		
	X080 ~ X095	WX080 ~ WX094	VX080	(垂直アドレスのみ)	
	X100 ~ X115	WX100 ~ WX114	VX100		
	X120 ~ X135	WX120 ~ WX134	VX120		
	X140 ~ X155	WX140 ~ WX154	VX140		
	X160 ~ X175	WX160 ~ WX174	VX160		
	X180 ~ X195	WX180 ~ WX194	VX180		
外部出力	Y200 ~ Y215	WY200 ~ WY214	VY200	*2*3	
	Y220 ~ Y235	WY220 ~ WY234	VY220		L/H
	Y240 ~ Y255	WY240 ~ WY254	VY240		L/
	Y260 ~ Y275	WY260 ~ WY274	VY260	<u>= 16</u>)	
	Y280 ~ Y295	WY280 ~ WY294	VY280		
	Y300 ~ Y315	WY300 ~ WY314	VY300	(垂直アドレスのみ)	
	Y320 ~ Y335	WY320 ~ WY334	VY320		
	Y340 ~ Y355	WY340 ~ WY354	VY340		
	Y360 ~ Y375	WY360 ~ WY374	VY360		
	Y380 ~ Y395	WY380 ~ WY394	VY380		
内部出力	M400 ~ M655	WM400 ~ WM654	VM400 ~ VM640	∫ - 2)	
	M700 ~ M955	WM700 ~ WM954	VM700 ~ VM940		
	M960 ~ M991	WM960 ~ WM990	VM960 ~ VM976	÷ [b] (垂直 アドレスのみ)	
タイマ・カウンタ (接点 / コイル)	TC000 ~ TC095				
タイマ・カウンタ (経過値)		TC100 ~ TC195			
タイマ・カウンタ (設定値)		TC200 ~ TC295		*4	H/L

- *1 ハードの構成上、外部端子に出ていないアドレスを指定した場合、運転中はOFFになります。
- *2 ハードの構成上、外部端子に出ていないアドレスを指定した場合、内部出力(M)と同一機能となります。
- *3 ワード書き込みの場合、2ワード以上の連続したアドレスへの書き込みはできません。
- *4 PLCの運転中にT、W、Kタグなどで値を変更しても、運転再開始時には初期化(ラダープログラムで指定した値)されてしまいます。ご注意ください。
 - 重要・ 読み込みエリアサイズは、WM400、WM700から指定して最大108 ワードまでしか使用できません。また、EM960からの指定はできません。それ以上設定された場合は上位通信エラー(02:FA)が表示されます。

<ビットアドレスについて>


ビットアドレス(1点)に対して、1バイトのエリアを持っています。ビットアドレスのON/OFFは、データエリアの最上位ビット(b7) が対応しています。

M400 b7 b6 b5 b4 b3 b2 b1 b0
M401 b7 b6 b5 b4 b3 b2 b1 b0

くワードアドレスについて> ワードアドレスを指定すると、2バイトのデータエリアが使用 されます。

M400 b15 b14 b13 b12 b11 b10 b9 b8 M400を指定すると、次の番号の M401 b7 b6 b5 b4 b3 b2 b1 b0 アドレス M401 も指定されます。

・ <垂直アドレスについて> 指定したアドレスから上位16点の最上位ビット(b7)をワード データとして処理します。

垂直アドレスは、16で割り切れる数のみ指定可能です。

・ 内部出力(ビットアドレス)には、以下の機能があります。

M400 ~ M655停電記憶なしM700 ~ M955停電記憶ありM960 ~ M991特殊領域

2.5.4 環境設定例

(株)デジタルが推奨するPLC側の通信設定と、それに対応するGP側の通信設定を示します。 HIDIC-S10 シリーズ

GPの設定		上記計算機インターフェイス/上位リンクモジュールの設定	
伝送速度	19200bps	伝送速度	19200bps *1
データ長	8bit (固定)		
ストップビット	1bit (固定)		
パリティビット	奇数 (固定)		
制御方式	ER制御		
通信方式	4線式		
号機No.	0		

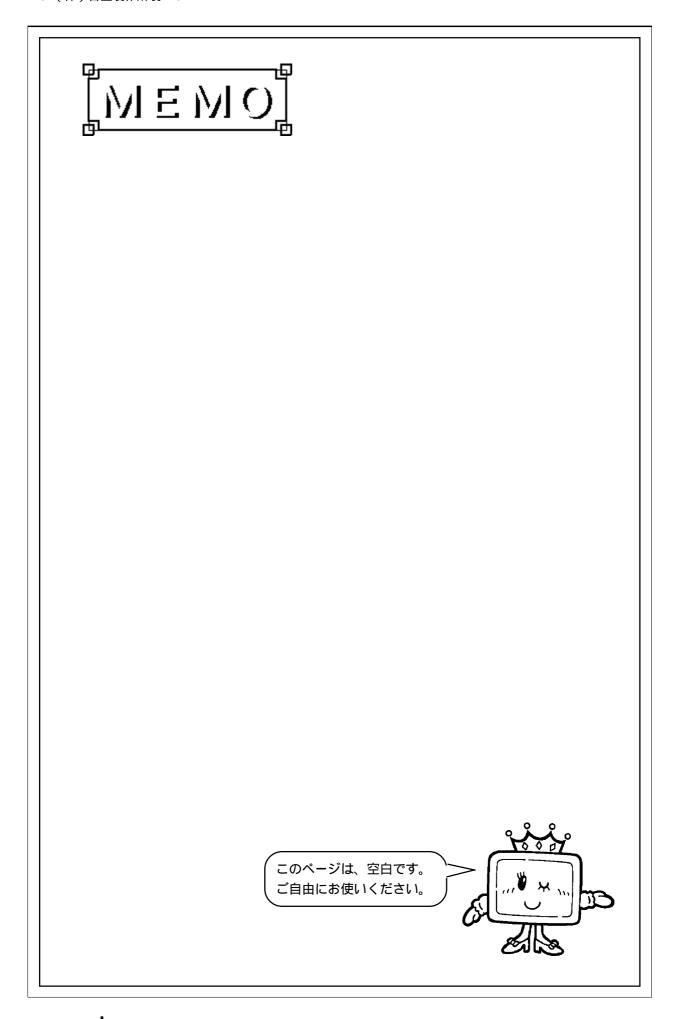
^{*1} LWP000をご使用の場合は、設定する必要はありません。

HIDIC Hシリーズ (COMM モジュール使用の場合) 伝送制御手順1

GP Ø	GPの設定		ールの設定
伝送速度	19200bps	伝送速度	19200bps
データ長	7bit	データビット	7bit
ストップビット	1bit	ストップビット	1bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式 (RS-232C使用時)	RS-232C	通信方式 (RS-232C使用時)	RS-232C
通信方式 (RS-422使用時)	4線式	通信方式 (RS-422使用時) MODEスイッチ	RS-422 2
		サムチェック	有
号機No. (RS-232C使用時)	0	ステーションNo. (RS-232C使用時)	0
号機No. (RS-422使用時)	1	ステーションNo. (RS-422使用時)	1

HIDIC Hシリーズ /COMM-2H 伝送制御手順2

GP σ	設定	COMMモジュ	ールの設定
伝送速度	19200bps	伝送速度	19200bps
データ長	7bit	データビット	7bit
ストップビット	1bit	ストップビット	1bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式 (RS-232C使用時)	RS-232C	通信方式 (RS-232C使用時) MODEスイッチ	RS-232C 9
通信方式 (RS-422使用時)	4線式	通信方式 (RS-422使用時) MODEスイッチ	RS-422 9
		サムチェック	有
号機No. (RS-232C使用時)	0	ステーションNo. (RS-232C使用時)	0
号機No. (RS-422使用時)	1	ステーションNo. (RS-422使用時)	1


HIDIC Hシリーズ (CPU 直結の場合)

GP σ	設定	PLC側(の設定
伝送速度	4800bps *1	伝送速度	4800bps *1
データ長	7bit	データビット	7bit
ストップビット	1bit	ストップビット	1bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御	制御方式	DTR制御
通信方式	RS-232C	通信方式	RS-232C
		動作モード	伝送手順1
号機No.	0	ステーションNo.	0

^{*1} 一部のCPUは伝送速度19200bpsもしくは38400bpsで通信が可能です。システム構成を参照してください。

HIZAC ECシリーズ

GP σ	設定	PLC側(の設定	
伝送速度	9600bps	伝送速度	9600bps	
データ長	7bit	データビット	7bit	
ストップビット	1bit	ストップビット	1bit	
パリティビット	偶数	パリティの有無 パリティ	有 偶数	
制御方式	ER制御	制御方式	DTR制御	
通信方式	RS-232C	通信方式	COM2モード (コマンドモード)	
		サムチェックの有無	有	
号機No.	0(固定)			

2.6 シャープ (株)製 PLC

2.6.1 システム構成

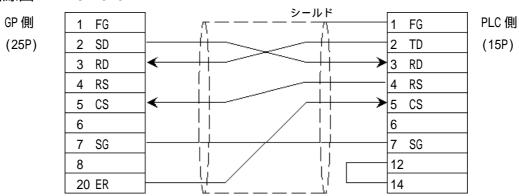
シャープ (株)製 PLC と GP を接続する場合のシステム構成を示します。 <結線図>は2.6.2 結線図をご参照ください。

ニューサテライト JW シリーズ (リンク I/F 使用)

CPU	リンクI/F	結線図	GP
	リンクユニット	←	
JW20	CPUユニット上の リンクI/F *1	RS-232C <結線図1>	
	JW-21CM	RS-422(4線式) <結線図3>	
		RS-422(2線式) <結線図4>	
JW-32CUH JW-32CUH1 JW-33CUH3	CPUユニット上の リンクI/F	RS-232C (PG/COMM2ポー ト接続) <結線図2>	
		RS-422(4線式) (PG/COMM1ポートまたは、 PG/COMM2ポート接続) <結線図5>	
	JW-21CM	RS-422(4線式) <結線図3>	GPシリーズ
JW50	JW-10CM	RS-422(4線式) <結線図3>	
	ZW-10CM	RS-422(4線式) <結線図3>	
		RS-422(2線式) <結線図4>	
JW70, JW100	CPUユニット上の リンクI/F ^{*1}	RS-232C <結線図1>	
	JW-10CM	RS-422(4線式) <結線図3>	
	ZW-10CM	RS-422(4線式) <結線図3>	
		RS-422(2線式) <結線図4>	

^{*1} CPU モジュール (JW-22CU、JW-70CU、JW-100CU) のコミュニケーションポートに接続します。

・ RS-422と表記してあるところは、PLC側がRS-485の場合も 使用できます。

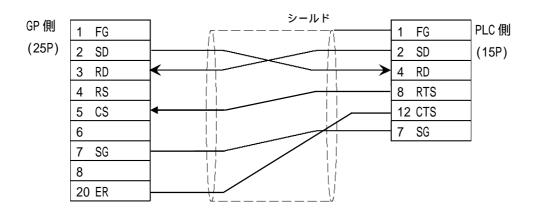

2.6.2 結線図

以下に示す結線図とシャープ(株)の推奨する結線図が異なる場合がありますが、以下に示す 結線図でも動作上問題はありません。

強制 ・ PLC本体のFG端子はD種接地を行ってください。 詳細はPLCのマニュアルをご参照ください。

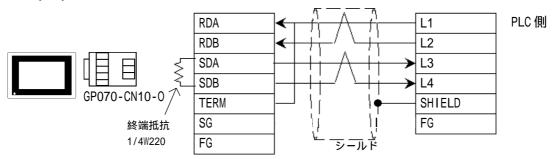
- 重要 ・ シールド線へのFGの接続は、設置環境によってPLC側、GP側の どちらかを選択してください。(結線例はPLC側に接続した場合 の図です。)
 - ・ RS-232C接続の場合は、ケーブル長は15m以内にしてください。
 - ・ 通信ケーブルを結線する場合は、必ずSGを接続してください。
 - ・ RS-422 接続の場合、ケーブル長はシャープ(株)のマニュアル を参照してください。

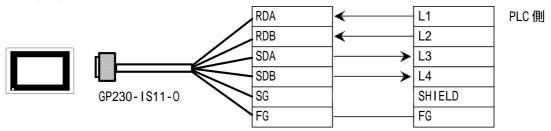
<結線図1 > RS-232C



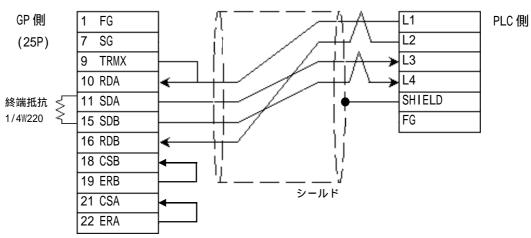
接続ケーブルとして藤倉電線製 7P*7/0.18 57W-SB を推奨し ます。

< 結線図 2 > RS-232C


禁止: ・ ピン番号14、15は、+5Vのため、GPとの接続に使用しない でください。

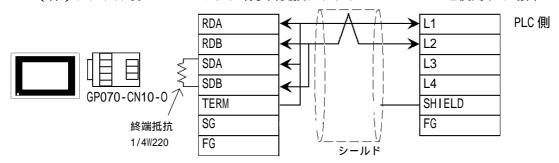

<結線図3 > RS-422

強制 ・ PLC側の終端抵抗スイッチを ON にしてください。

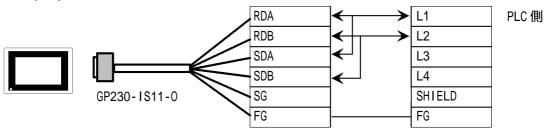

・ (株) デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

・(株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合

・ ケーブルを加工する場合

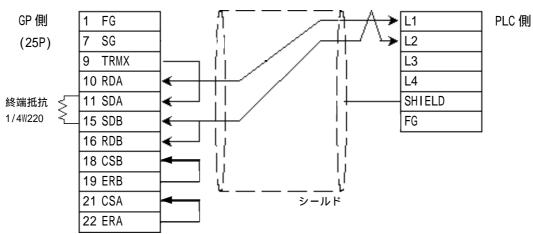


- 接続ケーブルとして日立電線製 CO-SPEV-SB(A)3P*0.5 を推奨 します。
- ・ GP側シリアル I / Fの9番ピンと10番ピンを接続することにより、RDA-RDB間に100 の終端抵抗が挿入されます。

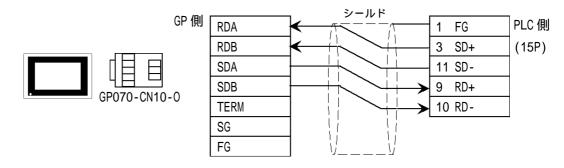

<結線図4 > RS-422

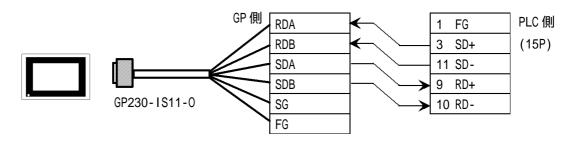
強制 ・ PLC側の終端抵抗スイッチを ON にしてください。

・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

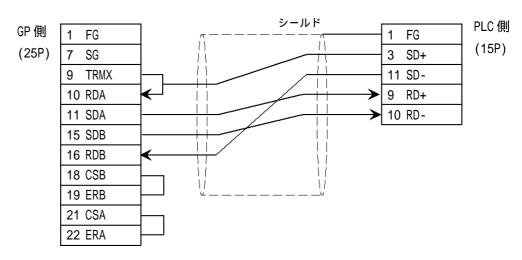


- MEMO
 - ・ 端子 SDA と RDA を端子台の L1 に、SDB と RDB を端子台の L2 に 重ね止めします。
- ・(株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合


- 端子 SDA と RDA を端子台の L1 に、SDB と RDB を端子台の L2 に 重ね止めします。
- ・ ケーブルを加工する場合


- MEMO
- ・ 接続ケーブルとして日立電線製 CO-SPEV-SB(A)3P*0.5 を推奨 します。
- ・ GP側シリアル I /Fの9番ピンと10番ピンを接続することにより、RDA-RDB間に100 の終端抵抗が挿入されます。

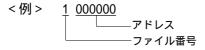
<結線図5 > RS-422


- 強制 ・ ピン番号2、4、8、12には接続しないでください。
 - ・ ピン番号14、15 は、+5Vのため、GPとの接続に使用しないでください。
- ・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

・(株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合

・ ケーブルを加工する場合

2.6.3 使用可能デバイス


GPでサポートしているデバイスの範囲を示します。

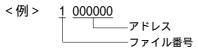
ニューサテライト JW シリーズ

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考
リレー	00000 ~ 15777	A0000 ~ A1576 (\(\pi 0000 ~ \pi 1576)	<u>÷ 2</u>)
タイマ(接点)	T0000 ~ T0776		
カウンタ(接点)	C0000 ~ C0776		
タイマ・カウンタ (現在値)		T0000 ~ T0777	
. 5		B0000 ~ B1776 (b0000 ~ b1776)	÷ 2) B; 15)
レジスタ		09000 ~ 09776	÷ 2) _{B i t} 15)
		19000 ~ 19776	÷ 2) _{B i t} 15)
		29000 ~ 29776	÷ 2) _{B i 1} 15) _{L/H}
		39000 ~ 39776	÷ 2) _{B i 1} 15)
		49000 ~ 49776	÷ 2] B ; t15]
		59000 ~ 59776	÷ 2) [B i t 15]
		69000 ~ 69776	<u>÷ 2] [Β ; 1</u> 15]
		79000 ~ 79776	÷ 2] B i t 15
		89000 ~ 89776	÷ 2) _{B i 1} 15)
		99000 ~ 99776	÷ 2] [B i t 15]
ファイルレジスタ		1000000 ~ 7177776	÷ 2] _{B i t} 15]*1

*1 ファイルレジスタはファイル番号とアドレスで構成されます。

強制 ・ ワードアドレスのリレーおよびタイマ・カウンタ現在値(B) は、PLCのマニュアルでは()内の表記になっていますが、GP-PRO/PB では必ず、「A****」、「B****」と入力してください。


PLC機種によって、使用できるアドレス範囲が異なりますのでご注意ください。

ニューサテライト JW-30H シリーズ

は、システムエリアに指定可能

ニッパノフ	ビ ュレフドレフ		供字	
デバイス	ビットアドレス	ワードアドレス	備考	
リレー	00000 ~ 15777	A0000 ~ A1576 (\(\pi 0000 ~ \pi 1576)	<u>= 2</u>)	
	20000 ~ 75777	A2000 ~ A7576		
カノフ(拉上)		(32000 ~ 37576)		
タイマ(接点)	T0000 ~ T1777			
カウンタ (接点)	C0000 ~ C1777			
タイマ・カウンタ (現在値)		B0000 ~ B3776 (b0000 ~ b3776)	<u>÷ 2)</u>	
レジスタ		09000 ~ 09776	÷ 2] B; 15]	
		19000 ~ 19776		
		29000 ~ 29776		
		39000 ~ 39776		
		49000 ~ 49776		
		59000 ~ 59776		
		69000 ~ 69776		
		79000 ~ 79776		
		89000 ~ 89776		L/H
		99000 ~ 99776		
		E0000 ~ E0776		
		E1000 ~ E1776		
		E2000 ~ E2776		
		E3000 ~ E3776		
		E4000 ~ E4776		
		E5000 ~ E5776		
		E6000 ~ E6776		
		E7000 ~ E7776		
ファイルレジスタ1		1000000 ~ 1037776	÷ 2) [B i t 15]	
ファイルレジスタ2		2000000 ~ 2177776	*1	
ファイルレジスタ3		3000000 ~ 3037776		
ファイルレジスタ10-1F		F10000000 ~ F1F177776		
ファイルレジスタ20-2C		F20000000 ~ F2C177776		

*1 ファイルレジスタはファイル番号とアドレスで構成されます。

強制 ・ ワードアドレスのリレーおよびタイマ・カウンタ現在値(B)は、PLCのマニュアルでは()内の表記になっていますが、GP-PRO/PB では必ず、「A****」、「B****」と入力してください。

2.6.4 環境設定例

(株)デジタルが推奨する PLC 側の通信設定と、それに対応する GP 側の通信設定を示します。

ニューサテライト JW シリーズ (RS-232C 接続の場合)

GPの設定		コミュニケーションポートの設定	
伝送速度	9600bps	伝送速度	9600bps
データ長	7bit	データビット	7bit
ストップビット	2bit	ストップビット	2bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式	RS-232C		
号機No.	1	ステーション番号	1

ニューサテライト JW シリーズ (RS-422 接続の場合)

GPの設定		リンクユニットの設定	
伝送速度 *1	19200bps	伝送速度	19200bps
データ長	7bit (固定)	データビット	7bit (固定)
ストップビット	2bit (固定)	ストップビット	2bit (固定)
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式 (4線式選択時)	4線式	通信モード(通信線数) (4線式選択時)	4線式
通信方式 (2線式選択時)	2線式	通信モード(通信線数) (2線式選択時)	2線式
		機能設定スイッチ (SO)	コンピュータリンク
号機No.	1	ステーションアドレス	1

^{*1} JW-32CUH1をご使用の場合は、伝送速度115200bpsでの通信が可能です。

2.7 松下電工(株)製PLC

2.7.1 システム構成

松下電工(株)製PLCとGPを接続する場合のシステム構成を示します。 <結線図>は2.7.2 結線図をご参照ください。

MEWNET シリーズ (リンク I/F 使用)

CPU	リンクユニット	結線図	使用可能ケーブル	GP
	コンピュータ コミュニケー ション ユニット (C.C.U)		•	
FP1(C24,C40C)	CPUユニット上の *1 リンクI/F	RS-232C *5 <結線図1>	松下電工(株)製 AFB85813 *4	
FP10SH . FP2	CPU ユニット上の リンクI/F	<結線図1>	松下電工(株)製 AFB85813 *4	
FP3	AFP3462			
FP5	AFP5462			
FP10(S)	AFP3462			GPシリーズ
	CPUユニット上の リンクI/F ^{*2}			
FP-M	CPUユニット上の リンクI/F ³	RS-232C *5 <結線図1>		
FP0-C32CT FP0-C16T	CPUユニット上の リンクI/F ^{*1}	RS-232C <結線図6>		

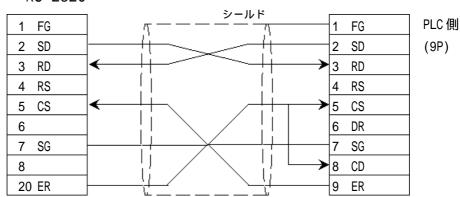
- *1 RS-232Cポートに接続します。
- *2 COMポートに接続します。
- *3 シリアルポートコネクタに接続します。
- *4 GP-270、GP-370、GP-377、GP-377R には、コネクタケースのサイズ上使用できません。
- *5 PLCのバーションが Ver.2.6以前の場合、 < 結線図2 > を使用してください。

MEWNET シリーズ (CPU 直結)

CPU	アダプタ	結線図	使用可能ケーブル	GP
		•		
FP1*1		RS-422 <結線図3>		
	松下電工(株)製 RS-422/232C変換 アダプタAFP8550 *2	RS-232C <結線図4>		GPシリーズ
FP-M *3		RS-232C <結線図5>		
FP0-C32CT FP0-C16T FP2*1		RS-232C	松下電工製FPパソ コンM5タイプ (AFC8513)	

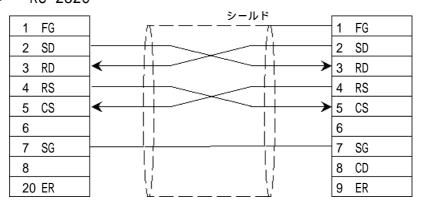
- *1 プログラミングツール接続コネクタに接続します。
- *2 RS-422/232C 変換アダプタと PLC を松下電工 (株)製 FP1 周辺機器接続プログラマブルケーブル AFP15205 で接続する必要があります。
- *3 プログラマコネクタに接続します。

2.7.2 結線図


以下に示す結線図と松下電工(株)の推奨する結線図が異なる場合がありますが、以下に示す 結線図でも動作上問題はありません。

強制 ・ PLC 本体の FG 端子は D 種接地を行ってください。 詳細はPLCのマニュアルをご参照ください。

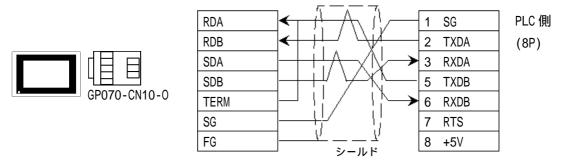
- 重要・ シールド線へのFGは、設置環境によってPLC側、GP側のどちらか を選択してください。コネクタフードを使ってFGを落とす場合は 導電性のあるものをお使いください。
 - ・ RS-232C接続の場合は、ケーブル長は15m以内にしてください。
 - ・ 通信ケーブルを結線する場合は、必ずSGを接続してください。
 - ・ RS-422接続の場合、ケーブル長は松下電工(株)のマニュアル を参照してください。


< 結線図1 > RS-232C

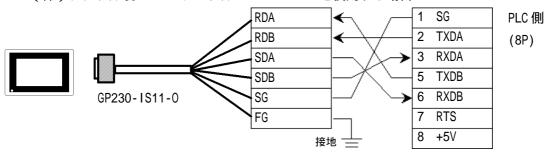
GP 側 (25P)

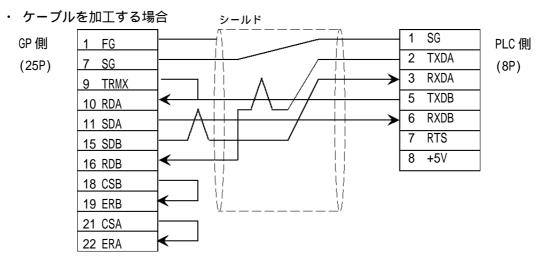
<結線図2> RS-232C

GP 側 (25P)


PLC 側

(9P)


<結線図3 > RS-422

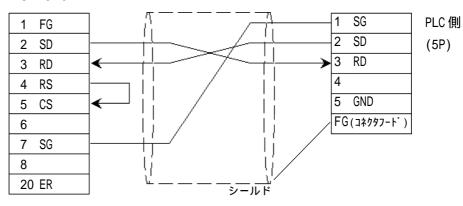


- ・ PLC 側のコネクタにはヒロセ (株) 製丸型 HR212-10P-8P が使用できます。
- ・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

・(株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合

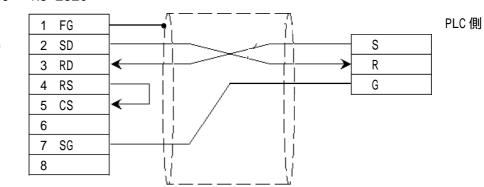
GP側シリアル I/Fの9番ピンと10番ピンを接続することにより、RDA-RDB間に100 の終端抵抗が挿入されます。

<結線図4 > RS-232C


GP側 (25P)

1 FG	
2 SD	2 SD
3 RD	3 RD
4 RS	4 RS
5 CS	5 CS
6	6 DR
7 SG	
8	8 CD
20 ER	20 ER

変換 アダプタ側 (25P)


<結線図5 > RS-232C

GP側 (25P)

<結線図6 > RS-232C

GP側 (25P)

2.7.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。

MEWNET シリーズ

は、	システムエリアに指定可能
----	--------------

デバイス	ビットアドレス	ワードアドレス	備考	
入力リレー	X0000 ~ X255F	WX000 ~ WX255	*1	
出力リレー	Y0000 ~ Y255F	WY000 ~ WY255		
内部リレー	R0000 ~ R875F	WR000 ~ WR875		
リンクリレー	L000 ~ L639F	WL000 ~ WL639		
特殊リレー	R9000 ~ R910F	WR900 ~ WR910	*1	
タイマ(接点)	T0000 ~ T2047		*1	
カウンタ(接点)	C0000 ~ C2047		*1 L	/H
タイマ・カウンタ (経過値)		EV0000 ~ EV2047	*1	
タイマ・カウンタ (設定値)		SV0000 ~ SV2047	*1	
データレジスタ		DT0000 ~ DT9999	B i t 15)	
リンクレジスタ		Ld0000 ~ Ld8447	B i t 15)	
ファイルレジスタ		FL00000 ~ FL32764	B i t 15)	

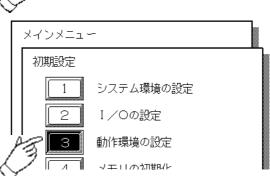
*1 データの書き込みはできません。

FP-Mでタイマ、カウンタを使用する場合は、それぞれの範 囲をシステムレジスタで指定してください。

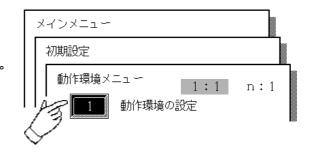
- 重要 ・ 一部CPUでは、デバイスが拡張されていますが上記デバイス範囲 のみ使用可能です。
 - ・ システムエリアは DT0000 ~ DT8999 範囲のみ指定可能です。

モニタ登録の設定

MEWNET-FPシリーズを使用する場合、GPのオフラインモードで初期設定時にモニタ登録の設定を行ってください。

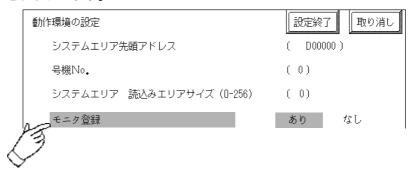

オフラインモード 参照 各ユーザーズマニュアル 第4章 オフラインモード

強制 ・ 初期値は、「モニタ登録 あり」の設定になっています。1台 の CPU に設置した 2 台以上のコミュニケーションユニット (C.C.U)にそれぞれ GP を接続する場合は、「なし」を選択して ください。


メニュー項目番号「1」をタッチします。

メインメニュー 初期設定 両面データの転送

「初期設定」画面が表示されます。 メニュー項目番号「3」をタッチします。



「動作環境メニュー」画面が表示されます。 「1:1」をタッチしてから メニュー項目番号「1」をタッチします。

設定画面が表示されます。

「モニタ登録」をタッチします。

「モニタ登録」が反転表示されます。

1台のコミュニケーションユニット(C.C.U)に GP を接続する場合は、「あり」を選択してください。

1台の CPU に設置した 2台以上のコミュニケーションユニット(C.C.U) にそれぞれ GP を接続する場合は、「なし」を選択してください。

2.7.4 環境設定例

(株)デジタルが推奨する PLC 側の通信設定と、それに対応する GP 側の通信設定を示します。

FP1 (CPU 上のリンク I/F 使用の場合)

GPの設定		FP1の設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	8bit	データ長	8bit
ストップビット	1bit	ストップビット	1bit
パリティビット	奇数	パリティビット	奇数
制御方式	ER制御		
通信方式	RS-232C		
		RS-232Cポートの 1 (コンピュータ 動作選択 リンク)	
		RS-422ポートの ユニットNo.	1
号機No.	1	ユニットNo.	1

FP1 (CPU 直結の場合)

GPの設定		FP1の設定	
伝送速度	19200bps		
データ長	8bit (固定)		
ストップビット	1bit (固定)		
パリティビット	奇数 (固定)		
制御方式	ER制御		
通信方式	4線式 *1		
		RS-232Cポートの 1 (コンピュータ 動作選択 リンク)	
		RS-422ポートの ユニットNo.	1
号機No.	1 (固定)		

FP3/FP5/FP10(S)(コンピュータコミュニケーションユニット使用の場合)

GPの設定		コンピュータコミュニケーションユニットの設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	8bit	データ長	8bit
ストップビット	1bit	ストップビット	1bit
パリティビット	奇数	パリティビット	奇数
制御方式	ER制御	制御信号 *2	CS、CPを無効にする
通信方式	RS-232C		
号機No.	1	ステーション番号	1

^{*1} RS-422/232C 変換アダプタを使用の場合は、「RS-232C」に設定してください。

^{*2} FP-10(S)には、制御信号の設定はありません。

FP10(S)/FP10SH/FP2(COMポート使用の場合)

GPの設定		COMポートの設定	
伝送速度	19200bps	伝送速度	19200bps *1
データ長	8bit	データ長	8bit
ストップビット	1bit	ストップビット	1bit
パリティビット	奇数	パリティビット	奇数
制御方式	ER制御		
通信方式	RS-232C		
号機No.	1	ユニットNo.	1

^{*1} FP10SH は 115200bps も可能です。

FP2 (CPU 直結の場合)

GPの設定		ツールポートの設定	
伝送速度	19200bps	ボーレート	19200bps
データ長	8bit	動作モード設定スイッチ	SW1:0FF
ストップビット	1bit	データ長	8ビット
パリティビット	奇数		
制御方式	ER制御		
通信方式	RS-232C		
号機No.	1	ユニットNo.	1
		モデム接続	しない

FP-M (シリアルポートコネクタ使用の場合)

GPの設定		FP-Mの設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	8bit	データ長	8bit
ストップビット	2bit	ストップビット	2bit
パリティビット	無	パリティビット	無
制御方式	ER制御	始端コード 終端コード	STX無 CR
通信方式	RS-232C	通信方式	RS-232C
		シリアルポートの 動作選択	1(コンピュータ リンク)
号機No.	1	局番	1

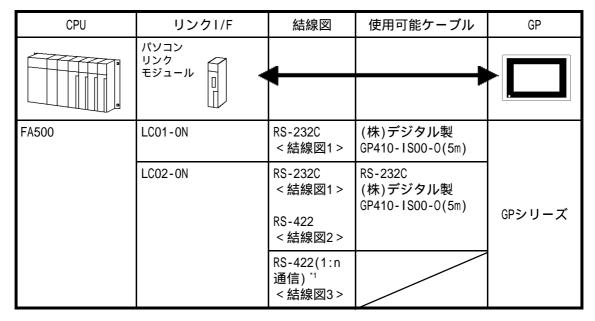
FP-M(プログラマコネクタ使用の場合)

GPの設定		FP-Mの設定	
伝送速度	19200bps	伝送速度 19200bps	
データ長	8bit	データ長	8bit
ストップビット	1bit (固定)		
パリティビット	奇数 (固定)		
制御方式	ER制御		
通信方式	RS-232C		
号機No.	1	局番	1

FPO (CPU 上のリンク I/F 使用の場合)

GPの設定		FP0の設定	
伝送速度	9600bps	伝送速度	9600bps
データ長	8bit	データ長	8bit
ストップビット	1bit	ストップビット	1bit
パリティビット	奇数	パリティビット	奇数
制御方法	ER制御	制御方法	ER制御
号機番号	1号機	号機番号	1号機

FPO (CPU 直結の場合)


GPの設定		FP0の設定	
伝送速度	9600bps	伝送速度	9600bps
データ長	8bit	データ長	8bit
ストップビット	1bit(固定)	ストップビット	
パリティビット	奇数(固定)	パリティビット	
制御方法	ER制御	制御方法	ER制御
号機番号	1号機	号機番号	1号機

2.8 横河電機(株)製 PLC

2.8.1 システム構成

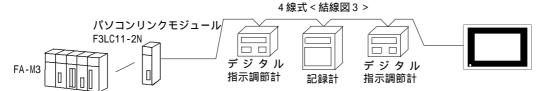
横河電機(株)製 PLC と GP を接続する場合のシステム構成を示します。 <結線図>は2.8.2 結線図をご参照ください。

FACTORY ACE シリーズ /FA500 (リンク I /F 使用)

*1 横河電機(株)製PLC「FA500」または同プロトコルをサポートする機器(n台)と、GP(1台)を、上位リンクプロトコルを利用して1:nの通信を実現する場合のシステム構成を示します。

FA500と同プロトコルをサポートする機器(デジタル指示調節計 < UT37/38/2000 > や記録計 < µ R シリーズ > など)を、以下 PA 機器と称します。

- ・ システムの中で使用する GP は、必ず 1 台にしてください。
- ・ リンク上には GP1 台に対し、FA500 または PA 機器は最大 32 台接続できます。
- ・ シーケンス制御の必要がない場合、PLCなしでのシステム構成も可能です。
- ・ PA機器は仕様上1~16号機までの設定となり、17号機以上の設定では使用できません。

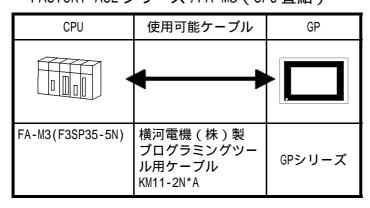


・ RS-422と表記してあるところは、PLC側がRS-485の場合も使 用できます。

CPU リンクI/F GP 結線図 使用可能ケーブル パソコン リンク モジュール F3SP10-0N F3LC01-1N RS-232C < 結線図4 > F3SP20-0N, F3SP21-0N, F3LC11-1N RS-232C F3SP25-2N, F3FP36-3N < 結線図4 > F3SP20-0N, F3SP35-5N, GPシリーズ F3LC11-2N RS-422 F3SP21-0N.F3SP25-2N. < 結線図2 > F3FP36-3N F3SP20-0N, F3SP35-5N, F3LC11-2N RS-422(1:n 通信) *1 < 結線図3 >

FACTORY ACE シリーズ /FA-M3 (リンク I /F 使用)

*1 横河電機(株)製PLC「FA-M3」または同プロトコルをサポートする機器(n台)と、GP(1台)を、上位リンクプロトコルを利用して1:nの通信を実現する場合のシステム構成を示します。

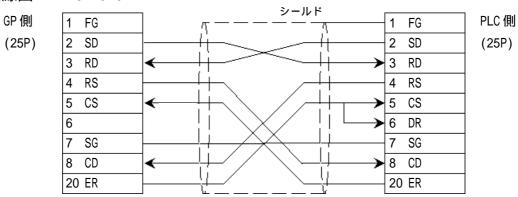

FA-M3と同プロトコルをサポートする機器(デジタル指示調節計 < UT37/38/2000 > や記録計 < µ R シリーズ > など)を、以下 PA 機器と称します。

- ・ システムの中で使用する GP は、必ず1台にしてください。
- ・ リンク上には GP1 台に対し、FA-M3 または PA 機器は最大 32 台接続できます。
- ・ シーケンス制御の必要がない場合、PLCなしでのシステム構成も可能です。
- ・ PA機器は仕様上1~16号機までの設定となり、17号機以上の設定では使用できません。

・ RS-422 と表記してあるところは、PLC側がRS-485 の場合も使用できます。

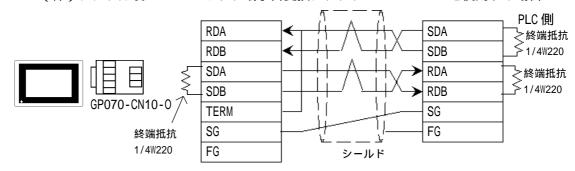
FACTORY ACE シリーズ /FA-M3 (CPU 直結)

禁止: ・パソコンリンクモジュールを使用してGP2台を同時接続する ことはできません。

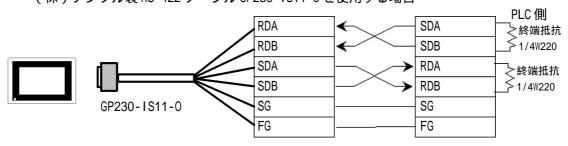

2.8.2 結線図

以下に示す結線図と横河電機(株)の推奨する結線図が異なる場合がありますが、以下に示す 結線図でも動作上問題はありません。

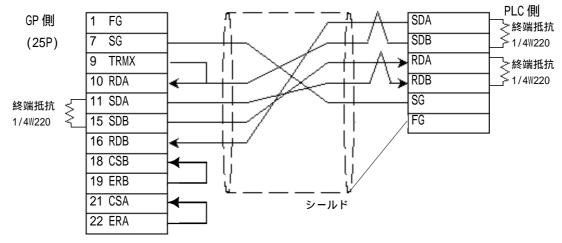
強制 ・ PLC本体のFG端子はD種接地を行ってください。 詳細はPLCのマニュアルをご参照ください。


- 重要・ シールド線へのFGの接続は、設置環境によってPLC側、GP側の どちらかを選択してください。コネクタフードを使ってFGを落 とす場合は導電性のあるものをお使いください。(結線例はPLC 側に接続した場合の図です。)
 - ・ RS-232C接続の場合は、ケーブル長は15m以内にしてください。
 - ・ 通信ケーブルを結線する場合は、必ずSGを接続してください。

<結線図1 > RS-232C

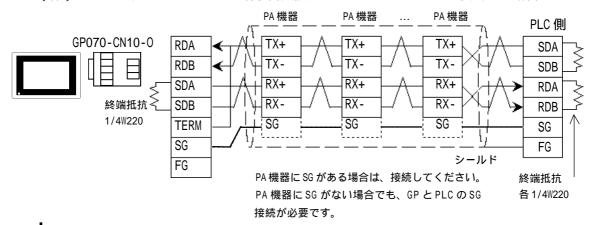


< 結線図 2 > RS-422

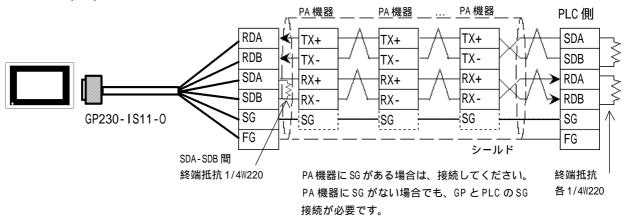

・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

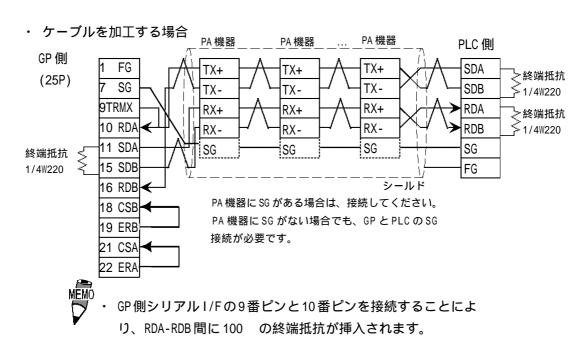
・(株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合

・ ケーブルを加工する場合

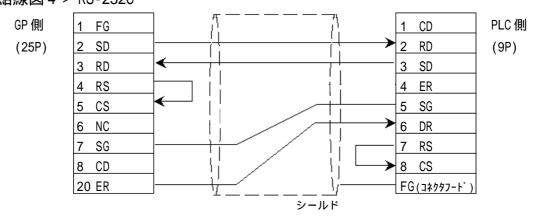


- 接続ケーブルとして日立電線製 CO-SPEV-SB(A)3P*0.5SQ を推 奨します。
- ・ GP側シリアル I/Fの9番ピンと10番ピンを接続することによ り、RDA-RDB間に100 の終端抵抗が挿入されます。
- ・ RS-422接続の場合、ケーブル長は600m以内にしてください。


<結線図3 > RS-422


下図は GP と PLC が配線の両端にある場合の例です。図のように終端抵抗は両端の機器に取り 付けてください。

- 重要 ・ GPとPLC側では、A極とB極の呼び方が逆になっていますのでご 注意ください。
 - ・ パソコンリンクモジュールのステーション No. は2~32 にして ください。
 - ・ GPに接続するPA機器の号機No.はすべて異なるように設定して ください。同じ号機 No. の PA 機器が 2 台以上あると、エラーが 発生します。
 - ・ GP (1台) と PA 機器 (n台) の通信設定はすべて同じにしてく ださい。
- ・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合



・(株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合

< 結線図4 > RS-232C

2.8.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。

FA500 (1:1 通信する場合)

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考
入力リレー	X00201 ~ X61164	X00201 ~ X61149	÷16+ 1 *1*2
出力リレー	Y00201 ~ Y61164	Y00201 ~ Y61149	÷16+ 1 *1*2
内部リレー	I0001 ~ I2048	10001 ~ 12033	÷16+ 1 *2
共有リレー	E0001 ~ E2048	E0001 ~ E2033	÷16+ 1
特殊リレー	M001 ~ M512	M001 ~ M497	÷16+ 1 *2*3
リンクリレー	L0001 ~ L1024	L0001 ~ L1009	÷16+1 *2*3
タイマ(接点)	T001 ~ T256		*2
カウンタ(接点)	C001 ~ C256		*2 L/H
タイマ (現在値)		TP001 ~ TP256	*2
タイマ (設定値)		TS001 ~ TS256	*2
カウンタ (現在値)		CP001 ~ CP256	*2
カウンタ (設定値)		CS001 ~ CS256	*2
データレジスタ		D0001 ~ D2048	B i t 15 *2
コモンレジスタ		B0001 ~ B2048	B i t 15 *2
特殊レジスタ	-	Z001 ~ Z128	B i t 15 *2*3
リンクレジスタ		W0001 ~ W1024	B i t 15 *2*3

*1 入力リレーと出力リレーは下2桁の端子番号(ビット)01~49が16の倍数+1の値のみです。 < 例 > X00201の場合

*2 デバイス名の前にCPU 番号(1~4)をつけます。

< 例 > CPU 番号3の内部リレー 10001の場合

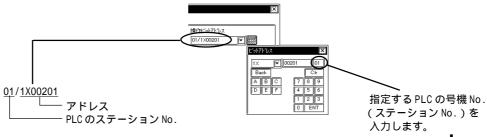
*3 データの書き込みはできません。

FA500 (1:n 通信する場合)

は	システムエリアに指定可能
100	ノスノムエックに消化った

デバイス	ビットアドレス	ワードアドレス	備考
入力リレー	X00201 ~ X61164	X00201 ~ X61149	<u>+16+</u> 1 *1*2
出力リレー	Y00201 ~ Y61164	Y00201 ~ Y61149	<u>+16+</u> 1 *1*2
内部リレー	10001 ~ 12048	10001 ~ 12033	<u>+16+</u> 1] *2
共有リレー	E0001 ~ E2048	E0001 ~ E2033	<u>÷16+</u> 1
特殊リレー	M001 ~ M512	M001 ~ M497	<u>+16+</u> 1] *2*3
リンクリレー	L0001 ~ L1024	L0001 ~ L1009	<u>+16+</u> 1] *2*3
タイマ(接点)	T001 ~ T256		*2
カウンタ(接点)	C001 ~ C256		*2
タイマ (現在値)		TP001 ~ TP256	*2
タイマ (設定値)		TS001 ~ TS256	*2
カウンタ (現在値)		CP001 ~ CP256	*2
カウンタ (設定値)		CS001 ~ CS256	*2
データレジスタ		D0001 ~ D2047	B : 1 15) *2
コモンレジスタ		B0001 ~ B2047	<u>B i t</u> 15 *2
特殊レジスタ		Z001 ~ Z128	B i t 15 *2*3
リンクレジスタ		W0001 ~ W1024	B i t 15 *2*3

*1 入力リレーと出力リレーは下2桁の端子番号(ビット)01~49が16の倍数+1の値のみです。 <例> X00201の場合

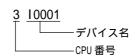

*2 デバイス名の前に CPU 番号 (1~4) をつけます。

< 例 > CPU 番号3の内部リレー 10001の場合

*3 データの書き込みはできません。

GP-PRO/PB で部品やタグの設定を行う場合、アドレス入力時に PLC のステーション No. の指定ができます。 ステーション No. を指定しなかった場合は、ひとつ前に入力された番号を継続します。(起動時のデフォルト値は「1」です)

FA-M3 (1:1 通信する場合)


は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考	
7717	しットアトレス	ソードアドレス	4.	
入力リレー	X00201 ~ X71364	X00201 ~ X71349	<u>+16+</u> 1] *1*2*3	
出力リレー	Y00201 ~ Y71364	Y00201 ~ Y71349	<u>+16+</u> 1 *1*2	
内部リレー	100001 ~ I16384	100001 ~ 116369	<u>+16+</u> 1] *2*4	
共有リレー	E0001 ~ E4096	E0001 ~ E4081	<u>+16+</u> 1 *2*4	
特殊リレー	M0001 ~ M9984	M0001 ~ M9969	<u>+16+</u> 1] *2	
リンクリレー	L00001 ~ L71024	L00001 ~ L71009	<u>+16+</u> 1 *2*5	
タイマ(接点)	T0001 ~ T3072		*2*3*6	
カウンタ(接点)	C0001 ~ C3072		*2*3*6	
タイマ (現在値)		TP0001 ~ TP3072	*2*6	L/H
タイマ (設定値)		TS0001 ~ TS3072	*2*6	
カウンタ (現在値)		CP0001 ~ CP3072	*2*6	
カウンタ (設定値)		CS0001 ~ CS3072	*2*6	
データレジスタ		D0001 ~ D8192	B i t 15 *2*7	
ファイルレジスタ		B00001 ~ B32768	B i t 15 *2	
共有レジスタ		R0001 ~ R4096	B i t 15 *2*7	
特殊レジスタ		Z001 ~ Z512	<u>ві t 15</u>] *2	
リンクレジスタ		W00001 ~ W71024	B i t 15 *2*8	

*1 入力リレーと出力リレーは下2桁の端子番号(ビット)01~49が16の倍数+1の値のみです。

*2 デバイス名の前にCPU 番号(1~4)をつけます。

< 例 > CPU 番号3の内部リレー 10001の場合

- *3 データの書き込みはできません。
- *4 共有リレー・内部リレーは合計で16384点まで使用できます。
- *5 リンクリレーは8192点まで使用できます。
- *6 タイマ・カウンタは合計で3072点まで使用できます。
- *7 データレジスタ・共有レジスタは合計で8192点まで使用できます。
- *8 リンクレジスタは8192点まで使用できます。

FA-M3 (1:n 通信する場合)

は、システムエリアに指定可能

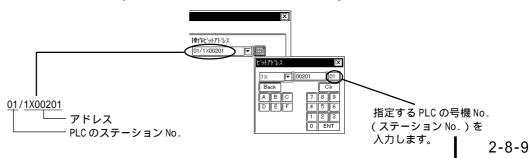
デバイス	ビットアドレス	ワードアドレス	備考
入力リレー	X00201 ~ X71364	X00201 ~ X71349	*1*2*3
出力リレー	Y00201 ~ Y71364	Y00201 ~ Y71349	*1*2
内部リレー	10001 ~ 116384	10001 ~ 116369	÷16+ 1 *2
共有リレー	E0001 ~ E4096	E0001 ~ E4081	<u>÷16+</u> 1) *2
特殊リレー	M0001 ~ M9984	M0001 ~ M9969	<u>+16+</u> 1 *2
リンクリレー	L00001 ~ L71024	L00001 ~ L71009	<u>+16+</u> 1 *2*4
タイマ(接点)	T0001 ~ T2047		*2*3*5
カウンタ(接点)	C0001 ~ C2047		*2*3*5
タイマ (現在値)		TP0001 ~ TP2047	*2*5 L/H
タイマ (設定値)		TS0001 ~ TS2047	*2*5
カウンタ (現在値)		CP0001 ~ CP2047	*2*5
カウンタ (設定値)		CS0001 ~ CS2047	*2*5
データレジスタ		D0001 ~ D2047	B i t 15) *2
ファイルレジスタ		B0001 ~ B2047	B i t 15) *2
共有レジスタ		R0001 ~ R2047	B i t 15 *2
特殊レジスタ		Z001 ~ Z512	B i t 15) *2
リンクレジスタ		W0001 ~ W11023	B i t 15 *2*6

*1 入力リレーと出力リレーは下2桁の端子番号(ビット)01~49が16の倍数+1の値のみです。

<例> X00201 の場合

X <u>002</u> <u>01</u> 端子番号 スロット No.

3 10001


デバイス名

CPU 番号

- *2 デバイス名の前にCPU 番号(1~4)をつけます。
 - < 例 > CPU 番号3の内部リレー 10001の場合
- *3 データの書き込みはできません。
- *4 リンクリレーは8192点まで使用できます。
- *5 タイマ・カウンタは合計で3072点まで使用できます。
- *6 リンクレジスタは2047点まで使用できます。

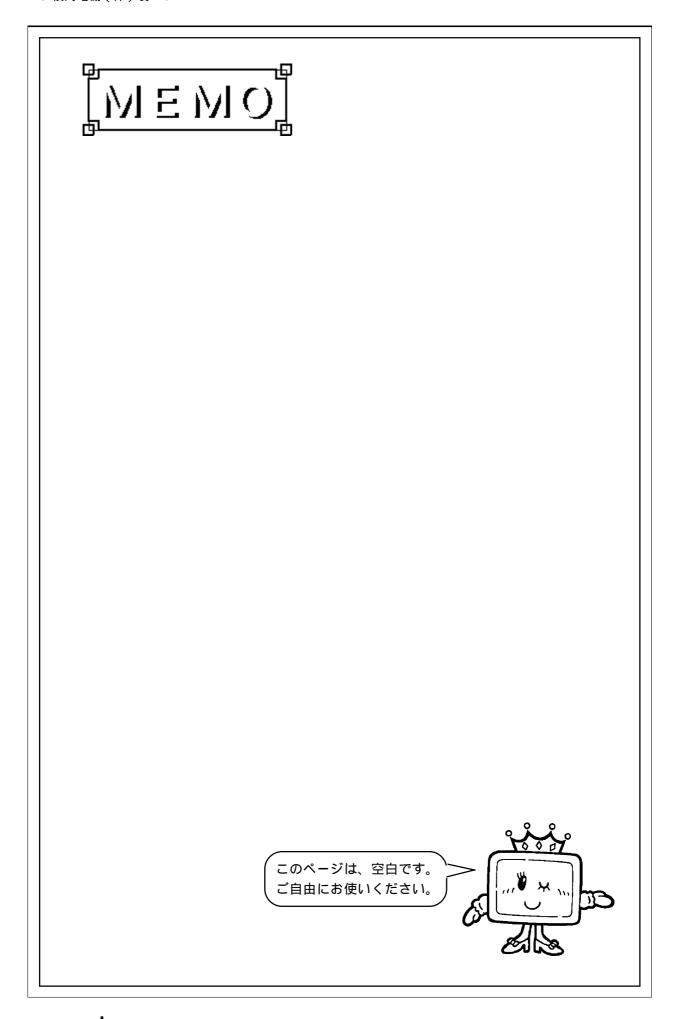
GP-PRO/PB で部品やタグの設定を行う場合、アドレス入力時に PLC のステーション No. の指定ができます。 ステーション No. を指定しなかった場合は、ひとつ前に入力された番号を継続します。(起動時のデフォルト値は「1」です)

2.8.4 環境設定例

(株)デジタルが推奨する PLC 側の通信設定と、それに対応する GP 側の通信設定を示します。

FACTORY ACE シリーズ (リンク I/F で RS-232C 接続の場合)

GPの設定		パソコンリンクモジュールの設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	8bit	データ長	8bit
ストップビット	1bit	ストップビット	1bit
パリティビット	無	パリティビット	無
制御方式	ER制御		
通信方式	RS-232C		
		チェックサム	無
		終端文字指定	有
		プロテクト機能	無
		データ形式設定スイッチ	8を0FF
号機No.	1	ステーションNo. *1	1


^{*1} パソコンリンクモジュールF3LC01-1Nにはこの設定はありません。

FACTORY ACE シリーズ (リンク I/F で RS-422 接続の場合)

GPの設定		パソコンリンクモジュール、PA機器の設定	
伝送速度 (1:1通信時)	19200bps	伝送速度 (1:1通信時)	19200bps
伝送速度 (1:n通信時)	9600bps	伝送速度 (1:n通信時)	9600bps
データ長	8bit	データ長	8bit
ストップビット	1bit	ストップビット	1bit
パリティビット	無	パリティビット	無
制御方式	ER制御		
通信方式	4線式		
		チェックサム	無
		終端文字指定	有
		プロテクト機能	無
		データ形式設定スイッチ	8を0FF
号機No. (FA500/1:1通信時)	2	ステーションNo. (FA500/1:1通信時)	2
号機No. (FA-M3/1:1通信時)	1	ステーションNo. (FA-M3/1:1通信時)	1
号機No. (1:n通信時)	パソコンリンクモジュ ールのステーションNo. と合わせてください	ステーションNo. (1:n通信時)	すべてのPA機器、パソ コンリンクモジュール のNo.を異なるように設 定してください

FACTORY ACE シリーズ (FA-M3 で CPU 直結の場合)

GPの設定		CPU通信ポートの設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	8bit		
ストップビット	1bit		
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式	RS-232C		
		パソコンリンク機能	使用する
		チェックサム	無
		終端文字指定	有
		プロテクト機能	無
号機No.	1		

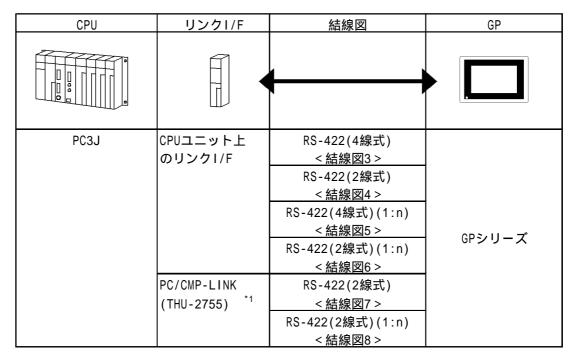


2.9 豊田工機(株)製PLC


2.9.1 システム構成

豊田工機(株)製PLCとGPを接続する場合のシステム構成を示します。 <結線図>は2.9.2 結線図をご参照ください。

TOYOPUC-PC2 シリーズ (リンク I/F 使用)



*1 豊田工機(株)製 PLC「PC2J」(n台)と、GP(1台)を、上位リンクプロトコルを利用して1: nの通信を実現する場合のシステム構成を示します。

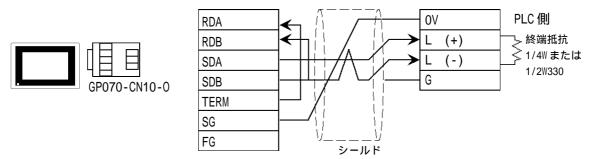
- ・ システムの中で使用する GP は、必ず1台にしてください。
- ・ リンク上には GP1 台に対し、PC2J は最大 16 台接続できます。

TOYOPUC-PC3J

*1 PC/CMP-LINK(THU-2755)をPC3Jのコマンドで使用する場合には、Ver.5.00以上が必要です。また、リンクユニットにはPC2JもしくはPC3Jの切り替えスイッチ(SW)等の設定はありません。Ver.5.00未満のリンクユニットに対してPC3Jのコマンドを送るとエラーとなります。

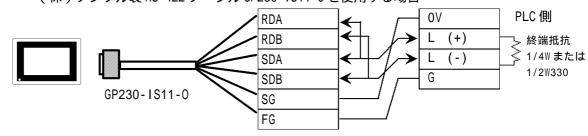
- PLC は最大 16 台接続できます。
- ・接続ケーブルとして中国電線工業(株)製 2 重シールド 0-VCTF-SS 2C*0.75mm² を推奨 します。
- ・ケーブルの長さは最長 600m です。

2.9.2 結線図

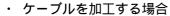

以下に示す結線図と豊田工機(株)の推奨する結線図が異なる場合がありますが、以下に示す 結線図でも動作上問題はありません。

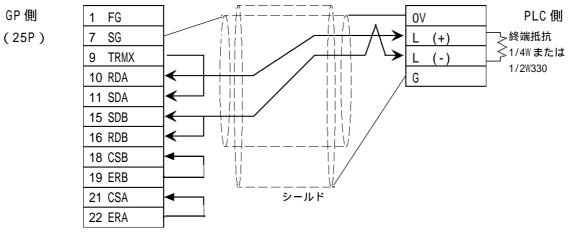
強制 ・ PLC本体のFG端子は、D種接地を行ってください。

- 重要・ シールド線へのFGの接続は、設置環境によってPLC側、GP側の どちらかを選択してください。
 - ・ 通信ケーブルを結線する場合は、必ずSGを接続してください。
 - ・ RS-422 接続の場合、ケーブル長は豊田工機(株)のマニュアル を参照してください。

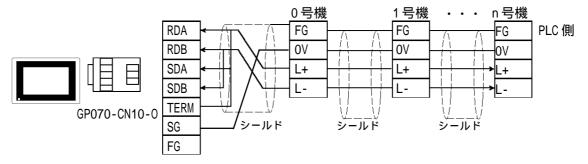

<結線図1 > RS-422

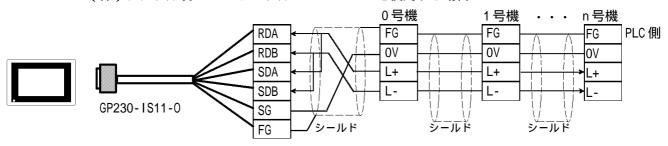
・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

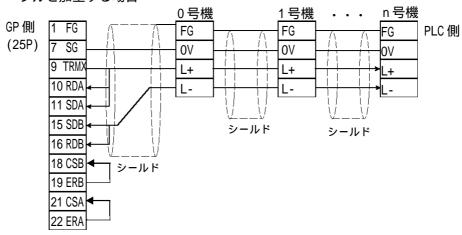



- 端子 SDA と RDA を端子台の L (+) に、また SDB と RDB を端子 台のL(-)に重ね止めします。
- ・(株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合

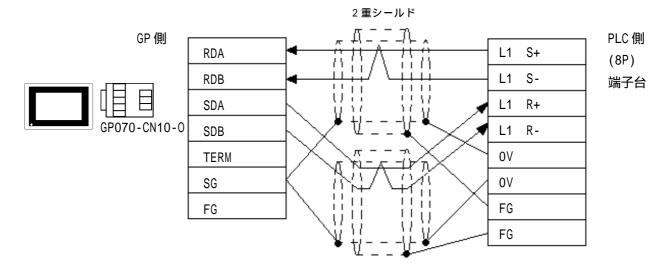
- 端子 SDA と RDA を端子台の L (+) に、また SDB と RDB を端子 台のL(-)に重ね止めします。
- ・ RS-422接続の場合、ケーブル長は豊田工機(株)のマニュアル を参照してください。

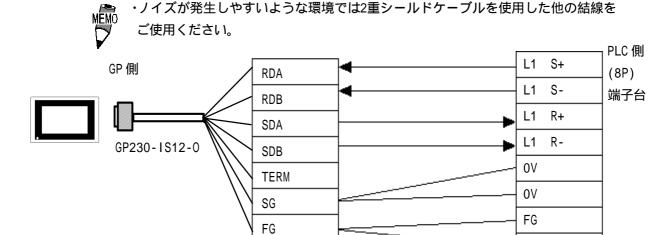



- MEMO
- MEMO ・ 接続ケーブルとして2重シールドツイストペアケーブル
 - ・中国電線工業(株)製 0-VCTF-SS2C*0.75mm² を推奨します。
 - ・ GP側シリアル I / Fの9番ピンと10番ピンを接続することにより、RDA-RDB間に100 の終端抵抗が挿入されます。

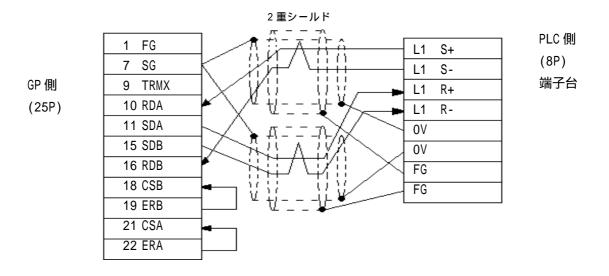

<結線図2 > RS-422

・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

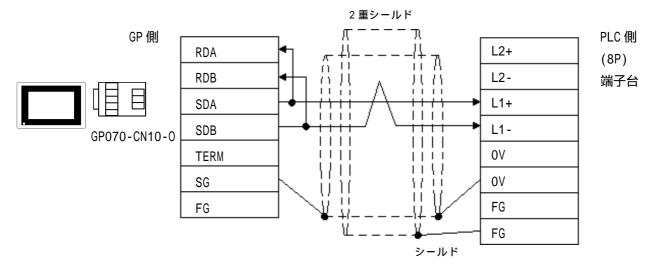

・(株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合



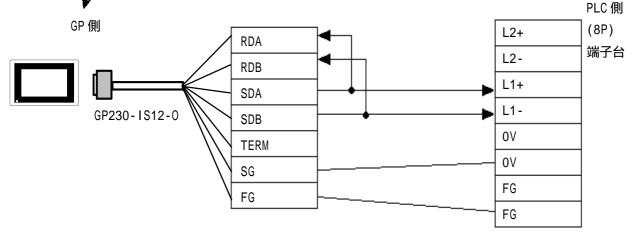
<結線図3>1:1 RS-422 (4線式)

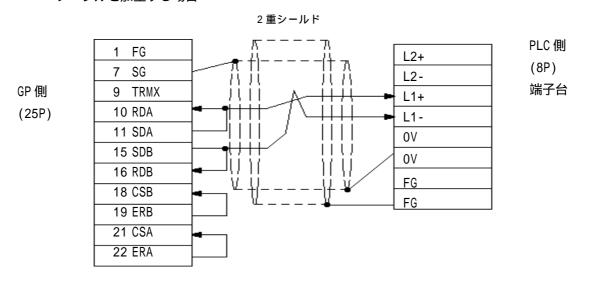

・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

・(株)デジタル製 RS-422 ケーブル GP230-IS12-0 を使用する場合

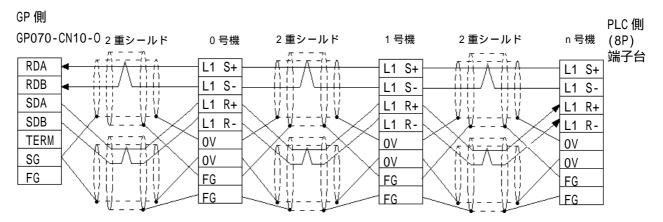

・ ケーブルを加工する場合

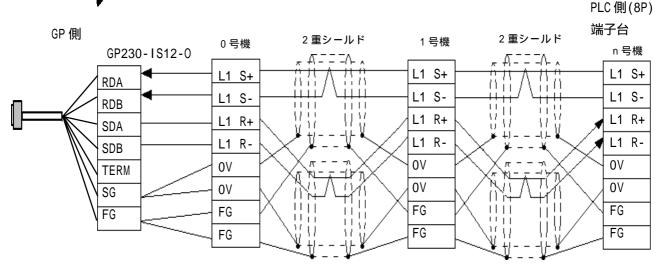
FG

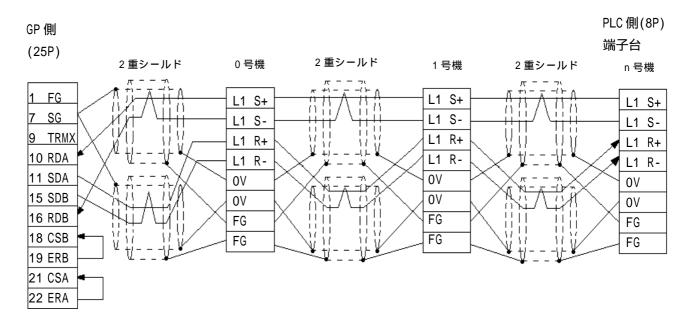

< 結線図4 > 1:1 RS-422 (2線式、CPU ユニット上の I/F ユニット)


・(株)デジタル製RS-422コネクタ端子台変換アダプタGP070-CN10-0を使用する場合

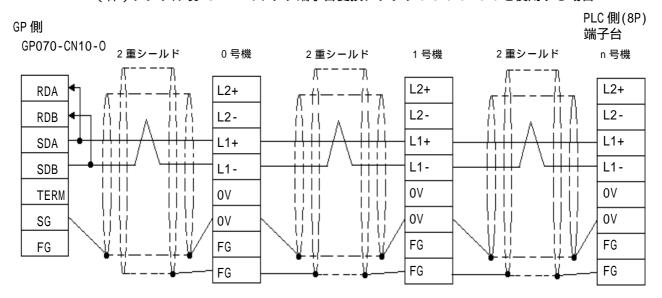
・(株)デジタル製RS-422ケーブルGP230-IS12-0を使用する場合


・ノイズが発生しやすいような環境では2重シールドケーブルを使用した他の結線を ご使用ください。

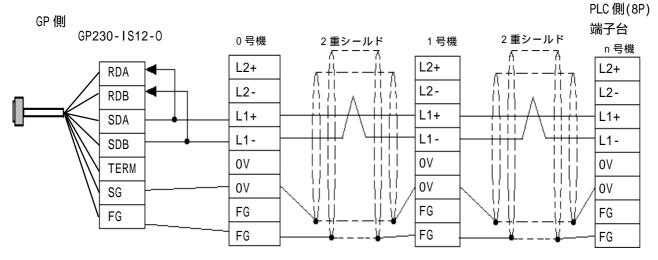

<結線図5 > 1:n接続 RS-422 (4線式)

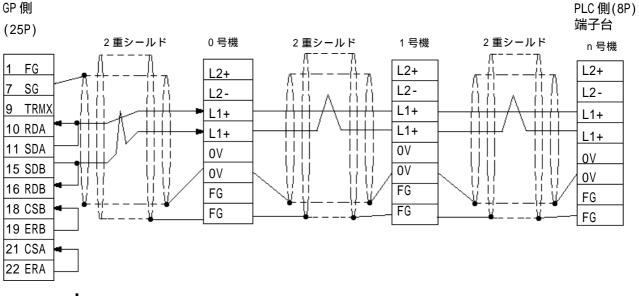

・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

・(株) デジタル製 RS-422 ケーブル GP230-IS12-0 を使用する場合

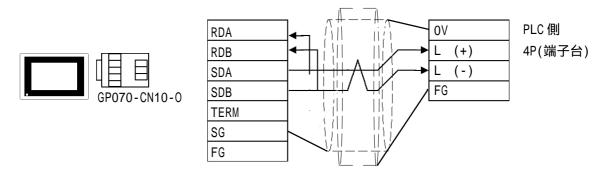

MEMO・ノイズが発生しやすいような環境では2重シールドケーブルを使用した他の結線を ご使用ください。

< 結線図 6 > 1:n RS-422 (2 線式、CPU ユニット上の I/F ユニット)

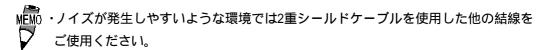

・(株)デジタル製RS-422コネクタ端子台変換アダプタGP070-CN10-0を使用する場合

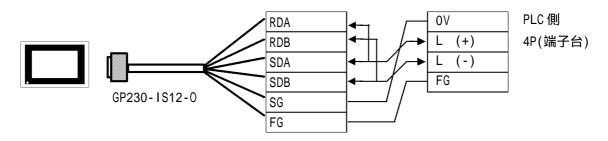


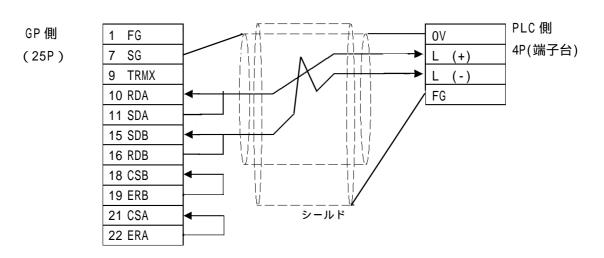
・(株)デジタル製 RS-422 ケーブル GP230-IS12-0 を使用する場合


MEMO

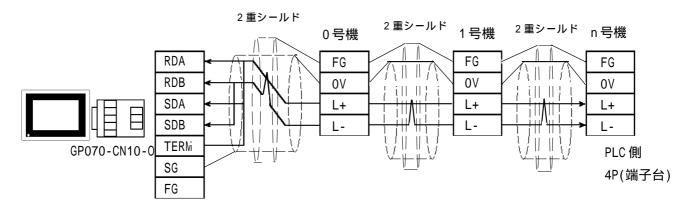
・ノイズが発生しやすいような環境では2重シールドケーブルを使用した他の結線を ご使用ください。



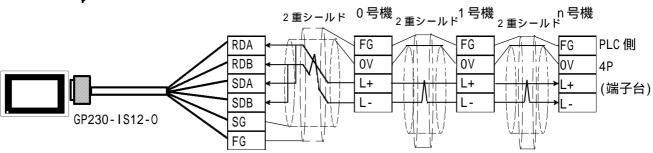


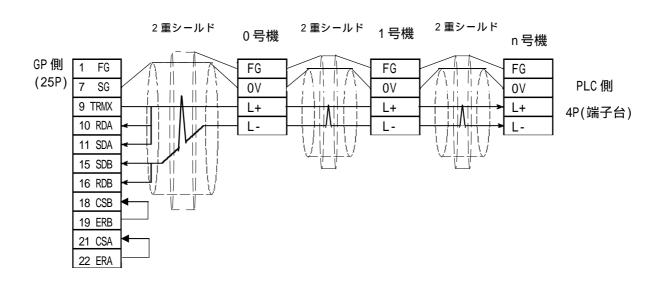

- <結線図7 > 1:1 RS-422 < PC/CMP-LINK > (2線式)
 - ・ (株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0を使用する場合

・(株) デジタル製 RS-422 ケーブル GP230-IS12-0 を使用する場合



<結線図8>1:n RS-422 < PC/CMP-LINK > (2線式)


・(株)デジタル製RS-422コネクタ端子台変換アダプタGP070-CN10-0を使用する場合



・(株)デジタル製RS-422ケーブルGP230-IS12-0を使用する場合

MEMO

・ノイズが発生しやすいような環境では2重シールドケーブルを使用した他の結線を ご使用ください。

2.9.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。

TOYOPUC-PC2 シリーズ

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考
入力リレー	X000 ~ X7FF	X000 ~ X07F	
出力リレー	Y000 ~ Y7FF	Y000 ~ Y07F	
内部リレー	M000 ~ M7FF	M000 ~ M07F	
キープリレー	K000 ~ K2FF	K000 ~ K02F	
リンクリレー	L000 ~ L7FF	L000 ~ L07F	
特殊リレー	V000 ~ V0FF	V000 ~ V00F	
エッジ検出	P000 ~ P1FF	P000 ~ P01F	L/I
タイマ(接点)	T000 ~ T1FF	T000 ~ T01F	
カウンタ(接点)	C000 ~ C1FF	C000 ~ C01F	
現在値レジスタ	N0000 ~ N01FFF	N0000 ~ N01FF	Bit F
データレジスタ	D00000 ~ D0FFFF	D0000 ~ D0FFF	Bit F)
リンクレジスタ	R00000 ~ R07FFF	R0000 ~ R07FF	Bit F)
特殊レジスタ	S0000 ~ S03FFF	S0000 ~ S03FF	B i t F

TOYOPUC-PC2 シリーズ (1:n 接続)

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考
入力リレー	X0000 ~ X07FF	X0000 ~ X007F	
出力リレー	Y0000 ~ Y07FF	Y0000 ~ Y007F	
内部リレー	M0000 ~ M07FF	M0000 ~ M007F	
キープリレー	K0000 ~ K02FF	K0000 ~ K002F	
リンクリレー	L0000 ~ L07FF		
特殊リレー	V0000 ~ V00FF		
エッジ検出	P0000 ~ P01FF		1.711
タイマ (接点)	T0000 ~ T01FF		L/H
カウンタ(接点)	C0000 ~ C01FF		
現在値レジスタ		N0000 ~ N01FF	
データレジスタ		D0000 ~ D2FFF	
リンクレジスタ		R0000 ~ R07FF	Bit F
ファイルレジスタ		B0000 ~ B1FFF	B i t F
特殊レジスタ		S0000 ~ S03FF	B i t F

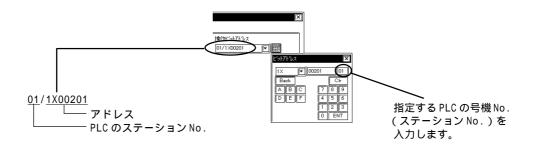
TOYOPUC-PC3Jシリーズ (1:1接続)

は、	システムエリアに指定可能
1001	

デバイス	ビットアドレス	ワードアドレス	備考
	1X0000 ~ 1X03FF	1X0000 ~ 1X003F	
入力	2X0000 ~ 2X03FF	2X0000 ~ 2X003F	
	3X0000 ~ 3X03FF	3X0000 ~ 3X003F	
	1Y0000 ~ 1Y03FF	1Y0000 ~ 1Y003F	1
出力	2Y0000 ~ 2Y03FF	2Y0000 ~ 2Y003F	
	3Y0000 ~ 3Y03FF	3Y0000 ~ 3Y003F]
	1M0000 ~ 1M07FF	1M0000 ~ 1M007F]
内部リレー	2M0000 ~ 2M07FF	2M0000 ~ 2M007F]
	3M0000 ~ 3M07FF	3M0000 ~ 3M007F]
	1K0000 ~ 1K02FF	1K0000 ~ 1K002F	
キープリレー	2K0000 ~ 2K02FF	2K0000 ~ 2K002F	
	3K0000 ~ 3K02FF	3K0000 ~ 3K002F	
	1L0000 ~ 1L07FF	1L0000 ~ 1L007F	
リンクリレー	2L0000 ~ 2L07FF	2L0000 ~ 2L007F	
	3L0000 ~ 3L07FF	3L0000 ~ 3L007F	
	1V0000 ~ 1V00FF	1V0000 ~ 1V000F	
特殊リレー	2V0000 ~ 2V00FF	2V0000 ~ 2V000F	
	3V0000 ~ 3V00FF	3V0000 ~ 3V000F	
	1P0000 ~ 1P01FF		
エッジ検出	2P0000 ~ 2P01FF		
	3P0000 ~ 3P01FF		
	1T0000 ~ 1T01FF	1T0000 ~ 1T001F	
タイマ	2T0000 ~ 2T01FF	2T0000 ~ 2T001F	
	3T0000 ~ 3T01FF	3T0000 ~ 3T001F	
	1C0000 ~ 1C01FF	1C0000 ~ 1C001F	
カウンタ	2C0000 ~ 2C01FF	2C0000 ~ 2C001F]
	3C0000 ~ 3C01FF	3C0000 ~ 3C001F	<u> </u> L/H
	1D0000 ~ 2FFFF	1D0000 ~ 1D2FFF	
データレジスタ	2D0000 ~ 2FFFF	2D0000 ~ 2D2FFF	
	3D0000 ~ 2FFFF	3D0000 ~ 3D2FFF]
	1R0000 ~ 07FFF	1R0000 ~ 1R07FF]
リンクレジスタ	2R0000 ~ 07FFF	2R0000 ~ 2R07FF	
	3R0000 ~ 07FFF	3R0000 ~ 3R07FF	
	1S0000 ~ 03FFF	1S0000 ~ 1S03FF	
特殊レジスタ	2S0000 ~ 03FFF	2S0000 ~ 2S03FF	
	3\$0000 ~ 03FFF	3S0000 ~ 3S03FF	
	1N0000 ~ 01FFF	1N0000 ~ 1N01FF	
現在値レジスタ	2N0000 ~ 01FFF	2N0000 ~ 2N01FF	1
	3N0000 ~ 01FFF	3N0000 ~ 3N01FF	1
ファイルレジスタ	B0000 ~ B1FFFF	B0000 ~ B1FFF	1
拡張入力	EX0000 ~ EX07FF	EX0000 ~ EX007F]
拡張出力	EY0000 ~ EY07FF	EY0000 ~ EY007F	
拡張内蔵リレー	EM0000 ~ EM1FFF	EM0000 ~ EM01FF	<u> </u>
拡張キープリレー	EK0000 ~ EK0FFF	EK0000 ~ EK00FF	
拡張リンクリレー	EL0000 ~ EL1FFF	EL0000 ~ EL01FF	
拡張特殊リレー	EV0000 ~ EV0FFF	EV0000 ~ EV00FF	<u> </u>
拡張エッジリレー	EP0000 ~ EP0FFF		
拡張タイマ	ET0000 ~ ET07FF	ET0000 ~ ET007F	
拡張カウンタ	EC0000 ~ EC07FF	EC0000 ~ EC007F	
拡張特殊レジスタ	ES0000 ~ ES07FF	ES0000 ~ ES07FF	
拡張現在値レジスタ	EN0000 ~ EN07FFF	EN0000 ~ EN07FF	
拡張設定値レジスタ	H0000 ~ H07FFF	H0000 ~ H07FF	
拡張データレジスタ	U0000 ~ U7FFFF	U0000 ~ 7FFF	

TOYOPUC-PC3Jシリーズ (1:n接続)

	は、	システムエリアに指定可能	
_			


デバイス	ビットアドレス	ワードアドレス	備考	
7717	1X0000 ~ 1X03FF	1X0000 ~ 1X003F	相写	
入力	2X0000 ~ 2X03FF	2X0000 ~ 2X003F	1	
////	3X0000 ~ 3X03FF	3X0000 ~ 3X003F	1	
	1Y0000 ~ 1Y03FF	1Y0000 ~ 1Y003F	1	
出力	2Y0000 ~ 2Y03FF	2Y0000 ~ 2Y003F	1	
Щ/)	3Y0000 ~ 3Y03FF	3Y0000 ~ 3Y003F	1	
	1M0000 ~ 1M07FF	1M0000 ~ 007F	1	
内部リレー	2M0000 ~ 2M07FF	2M0000 ~ 007F	1	
P360 2 D	3M0000 ~ 3M07FF	3M0000 ~ 007F	1	
	1K0000 ~ 1K02FF	1K0000 ~ 1K002F	1	
キープリレー	2K0000 ~ 2K02FF	2K0000 ~ 2K002F		
	3K0000 ~ 3K02FF	3K0000 ~ 3K002F	1	
	1L0000 ~ 1L07FF	1L0000 ~ 007F		
リンクリレー	2L0000 ~ 2L07FF	2L0000 ~ 007F		
	3L0000 ~ 3L07FF	3L0000 ~ 007F		
	1V0000 ~ 1V00FF	1V0000 ~ 000F	1	
特殊リレー	2V0000 ~ 2V00FF	2V0000 ~ 000F	1	
197/1/20	3V0000 ~ 3V00FF	3V0000 ~ 000F		
	1P0000 ~ 1P01FF		i	
エッジ検出	2P0000 ~ 2P01FF		i	
	3P0000 ~ 3P01FF		1	
	1T0000 ~ 1T01FF	1T0000 ~ 1T001F	1	
タイマ	2T0000 ~ 2T01FF	2T0000 ~ 2T001F	1	
	3T0000 ~ 3T01FF	3T0000 ~ 3T001F	1	
	1C0000 ~ 1C01FF	1C0000 ~ 1C001F	1	
カウンタ	2C0000 ~ 2C01FF	2C0000 ~ 2C001F	1	
	3C0000 ~ 3C01FF	3C0000 ~ 3C001F		L/H
	1D0000 ~ 0FFFF	1D0000 ~ 1D0FFF		
データレジスタ	2D0000 ~ 0FFFF	2D0000 ~ 2D0FFF		
	3D0000 ~ 0FFFF	3D0000 ~ 3D0FFF		
	1R0000 ~ 07FFF	1R0000 ~ 1R07FF		
リンクレジスタ	2R0000 ~ 07FFF	2R0000 ~ 2R07FF		
	3R0000 ~ 07FFF	3R0000 ~ 3R07FF		
	1S0000 ~ 03FFF	1S0000 ~ 1S03FF		
特殊レジスタ	2\$0000 ~ 03FFF	2S0000 ~ 2S03FF		
	3S0000 ~ 03FFF	3S0000 ~ 3S03FF		
	1N0000 ~ 01FFF	1N0000 ~ 1N01FF		
現在値レジスタ	2N0000 ~ 01FFF	2N0000 ~ 2N01FF		
	3N0000 ~ 01FFF	3N0000 ~ 3N01FF		
ファイルレジスタ	B0000 ~ B0FFFF	B0000 ~ B0FFF		
拡張入力	EX0000 ~ EX07FF	EX0000 ~ EX007F		
拡張出力	EY0000 ~ EY07FF	EY0000 ~ EY007F		
拡張内蔵リレー	EM0000 ~ EM0FFF	EM0000 ~ EM01FF		
拡張キープリレー	EK0000 ~ EK0FFF	EK0000 ~ EK00FF		
拡張リンクリレー	EL0000 ~ EL0FFF	EL0000 ~ EL01FF		
拡張特殊リレー	EV0000 ~ EV0FFF	EV0000 ~ EV00FF		
拡張エッジリレー	EP0000 ~ EP0FFF			
拡張タイマ	ET0000 ~ ET07FF	ET0000 ~ ET007F		
拡張カウンタ	EC0000 ~ EC07FF	EC0000 ~ EC007F		
拡張特殊レジスタ	ES0000 ~ ES07FFF	ES0000 ~ ES07FF		
拡張現在値レジスタ	EN0000 ~ EN07FFF	EN0000 ~ EN07FF		
拡張設定値レジスター	H0000 ~ H07FFF	H0000 ~ H07FF		
拡張データレジスタ	U0000 ~ U0FFFF	U0000 ~ U0FFF		

MEMO・ 1:1接続と1:n接続の場合のデバイス範囲が一部異なります。また、PLC の最大接続数は16台です。

GP-PRO/PB で部品やタグの設定を行う場合、アドレス入力時にPLCのステーションNo.の指定ができます。ステーションNo.を指定しなかった場合は、ひとつ前(前回)に入力された番号を継続します。(起動時のデフォルト値は「0」です) TOYOPUC-PC3Jの場合、PLC側の局番は8進数表記となりますが、GP側では10進数表記となります。入力時には、ご注意ください。

2.9.4 環境設定例

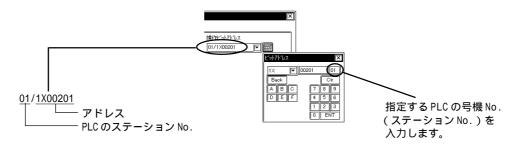
(株)デジタルが推奨するPLC側の通信設定と、それに対応するGP側の通信設定を示します。

TOYOPUC-PC2シリーズ (PC2/L2)

GP <i>σ</i> .	設定	コンピュータリング	7モジュールの設定
伝送速度	19200bps	伝送速度	19200bps
データ長	8bit	データビット	8bit
ストップビット	1bit	ストップビット	1bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式	2線式		
		カード種別	CMPリンク
		SET5	ウォッチドグタイマ をON
号機No.	0	局番	0

TOYOPUC-PC2 シリーズ (PC2J)

GP σ	設定	PC/CMPリンクコ	ュニットの設定
伝送速度	19200bps	伝送速度	19200bps
データ長	8bit	データビット	8bit
ストップビット	1bit	ストップビット	1bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式	2線式		
		内部スイッチ (SW4)	1を0FF 2を0N
号機No.	1	局番	1


TOYOPUC-PC2シリーズ (PC2、	J)(1:n 接続)
-----------------------	------------

GPの	設定	PC/CMP-LINKの設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	8bit	データ長	8bit
ストップビット	1bit	ストップビット	1bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式	2線式		
号機No. *1	どれかのPC/CMP-LINK のNo.と合わせてくだ さい。	局番 *1	すべてのPC/CMP-LINK のNo.を異なるように 設定してください。
		内部スイッチ (SW4)	1を0FF 2を0N

*1 GPの号機No. と同じNo. を設定したPLCにシステムエリア、読み込みエリアなどに使用するメモリが割り当てられます。

GP-PRO/PB で部品やタグの設定を行う場合、アドレス入力時に PLC のステーション No. の指定ができます。 ステーション No. を指定しなかった場合は、ひとつ前に入力された番号を継続します。(起動時のデフォルト値は「1」です)

TOYOPUC-PC3J シリーズ (1:1 接続) < CPU ユニット上のリンク I/F >

GP側(GP側の設定 PLC側の		の設定
通信速度 *1	19200bps	ボーレート	19200bps
データ長	8bit	データ長	8bit
ストップビット	1bit	ストップビット	1bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式 *2	4線式または2線式	RS-422通信ポート ^{*2}	4線式または2線式
号機No.	0	STATION No.	0

^{*1} CPUユニット上のリンケ1/Fでは最高57600bpsまで使用可能です。115.2kbpsはサポートしていません。
*2 使用する結線に対応した設定をしてください。

TOYOPUC-PC3J シリーズ (1:n 接続) < CPU ユニット上のリンク I/F >

GP側(の設定	PLC側	の設定
通信速度 *1	19200bps	ボーレート	19200bps
データ長	8bit	データ長	8bit
ストップビット	1bit	ストップビット	1bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式 *2	4線式または2線式	RS-422通信ポート ^{*2}	4線式または2線式
────────────────────────────────────	0~15号機までの任意 の号機No.	STATION No.	すべてのPLCの号機 No.を異なるように設 定してください。

^{*1} CPUユニット上のリンケ1/Fでは最高57600bpsまで使用可能です。115.2kbpsはサポートしていません。
*2 使用する結線に対応した設定をしてください。

^{*3} PLCの最大接続台数は16台です。また、号機番号はPLC側では8進数表記ですが、GP側では10進数表記になります。

TOYOPUC-PC3J (1:1接続) < PC/CMP-LINK >

GP側(の設定	PLC側	の設定
通信速度 *1	19200bps	ボーレート	19200bps
データ長	8bit	データ長	8bit
ストップビット	1bit	ストップビット	1bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式	2線式	RS-422通信ポート ^{*2}	2線式
号機No.	0	STATION No.	0

- *1 PC/CMP-LINKでは最高57600bpsまで使用可能です。115.2kbpsはサポートしていません。
- *2 PC/CMP-LINK(THU-2755)を使用する場合には、2線式のみ使用可能です。 また、PC3J用のコマンドを使用する場合には、Ver.5.00以上のリンクユニットが必要です。

TOYOPUC-PC3J (1:n接続) < PC/CMP-LINK >

GP側の設定		PLC側の設定	
通信速度 *1	19200bps	ボーレート	19200bps
データ長	8bit	データ長	8bit
ストップビット	1bit	ストップビット	1bit
パリティビット	偶数	パリティビット	偶数
制御方式	制御		
通信方式	2線式	RS-422通信ポート ^{*2}	2線式
号機No. *3	0~15号機までの任意 の号機No.	STATION No.	すべてのPC/CMP- LINKの号機Noを異な るように設定してく ださい。
		内部スイッチ	SW4-1 OFF SW4-2 ON

- *1 PC/CMP-LINKでは最高57600bpsまで使用可能です。115.2kbpsはサポートしていません。
- *2 PC/CMP-LINK(THU-2755)を使用する場合には、2線式のみ使用可能です。 また、PC3J用のコマンドを使用する場合には、Ver.5.00以上のリンクユニットが必要です。
- *3 PLCの最大接続台数は16台です。また、号機番号はPLC側では8進数表記ですが、GP側では10進数表記になります。

2.10 (株)東芝製 PLC

2.10.1 システム構成

(株)東芝製PLCとGPを接続する場合のシステム構成を示します。 <結線図>は2.10.2 結線図をご参照ください。

PROSEC EX シリーズ (CPU ユニット上のリンク I/F 使用)

CPU	結線図	GP
	\longleftrightarrow	
EX2000 *1	RS-422 <結線図1>	GPシリーズ

*1 メインプロセッサモジュール (MPU6620) に接続します。

・ RS-422 と表記してあるところは、PLC側がRS-485の場合も使用できます。

PROSEC Tシリーズ (CPU ユニット上のリンク I/F 使用)

CPU	リンクI/F	結線図	GP
	リンク マスター モジュール	+	
T3 ^{*2} ,T3H,	CPUユニット上の リンクI/F	RS-422 <結線図2>	GPシリーズ
T2E	CPUユニット上のプ ログラマ用ポート	RS-232C <結線図4>	
T2N	CPUユニット上の リンクI/F	RS-422 <結線図2> RS-232C <結線図5>	
T2E	CM231E	RS-422 <結線図1>	

*2 CPUモジュールのコンピュータ用ポートに接続します。

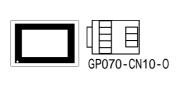
・ RS-422と表記してあるところは、PLC側がRS-485の場合も使 用できます。

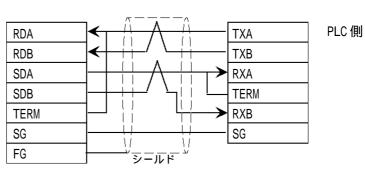
PROVISOR Bシリーズ(リンクI/F使用)

CPU	リンクユニット	結線図	GP
	リンクマスタ モジュール □	$ \qquad \qquad$	
B200CU, B200CUF, B200CURM, B200CUFRM	B2000LM	RS-232C <結線図3>	GPシリーズ

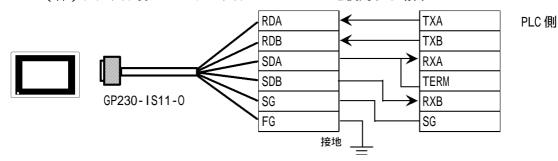
強制: ・ GPとB200シリーズを接続する場合、リンクマスタモジュール 側のモード設定のデリミタはCRの設定にしてください。

2.10.2 結線図


以下に示す結線図と(株)東芝の推奨する結線図が異なる場合がありますが、以下に示す結 線図でも動作上問題はありません。

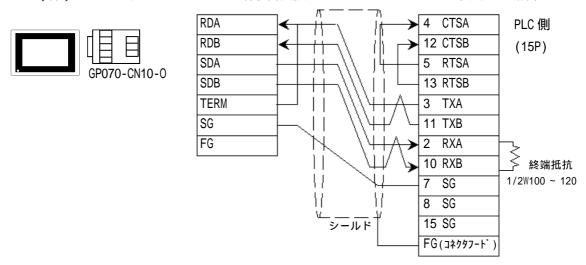

強制 ・ PLC本体のFG端子は、D種接地を行ってください。

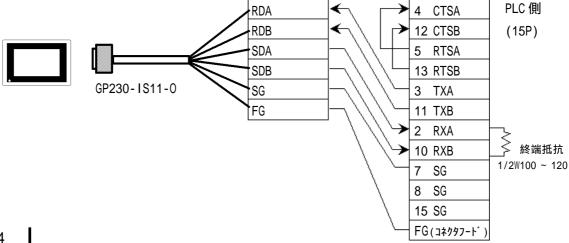
- 重要・ シールド線へのFGの接続は、設置環境によってPLC側、GP側の どちらかを選択してください。コネクタフードを使ってFGを落 とす場合は導電性のあるものをお使いください。
 - ・ RS-232C接続の場合は、ケーブル長は15m以内にしてください。
 - ・ 通信ケーブルを結線する場合は、必ずSGを接続してください。
 - ・ RS-422 接続の場合、ケーブル長は(株)東芝のマニュアルを参 照してください。


< 結線図 1 > RS-422

・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

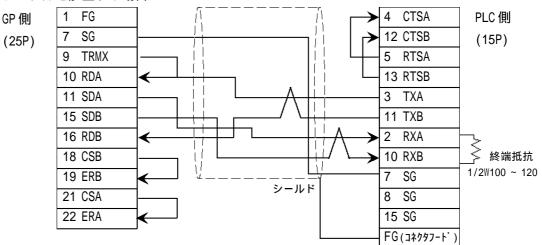
・(株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合


・ ケーブルを加工する場合 シールド GP 側 PLC 側 1 FG TXA (25P) 7 SG TXB 9 TRMX RXA 10 RDA **TERM** 11 SDA RXB SG 15 SDB 16 RDB 18 CSB 19 ERB 21 CSA 22 ERA


- 接続ケーブルとして日立電線製CO-SPEV-SB(A)3P*0.5を推奨 します。
- ・ GP側シリアル I /Fの9番ピンと10番ピンを接続することにより、RDA-RDB間に100 の終端抵抗が挿入されます。

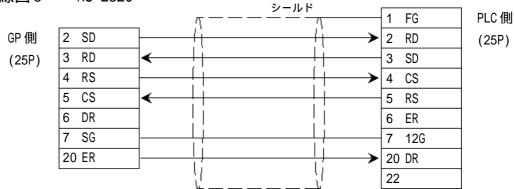
< 結線図 2 > RS-422

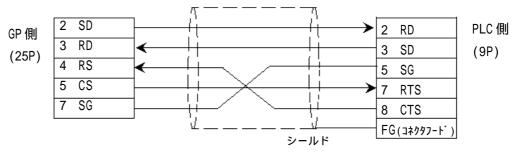
・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

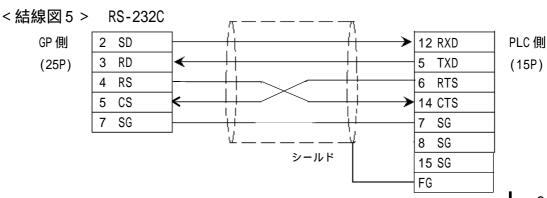


・(株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合

2-10-4


・ ケーブルを加工する場合




- 接続ケーブルとして日立電線製CO-SPEV-SB(A)3P*0.5を推奨 します。
- ・ GP 側シリアル I / F の 9 番ピンと 10 番ピンを接続することにより、RDA-RDB 間に 100 の終端抵抗が挿入されます。
- ・ RS-422接続の場合、ケーブル長は(株)東芝のマニュアルを参照してください。

< 結線図3 > RS-232C

< 結線図4 > RS-232C

2.10.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。

PROSEC EXシリーズ

」 は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考
外部入力	X00000 ~ X0499F	XW0000 ~ XW0499	
外部出力	Y00000 ~ Y0499F	YW0000 ~ YW0499	
補助リレー	R00000 ~ R0999F	RW0000 ~ RW0999	
リンクレジスタ (リレー)	Z00000 ~ Z0999F	ZW0000 ~ ZW1999	H/L
タイマ(接点)	T0000 ~ T0499		
カウンタ(接点)	C0000 ~ C0499		
タイマ (現在値)		T0000 ~ T0499	L/H
カウンタ(現在値)		C0000 ~ C0499	
データレジスタ		D00000 ~ D16383	_{В і 1} 15) H/L

PROSEC Tシリーズ(T3,T3H,T2N,T2E)

」 は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考	
外部入力	X0000 ~ X511F	XW000 ~ XW511		
外部出力	Y0000 ~ Y511F	YW000 ~ YW511		
内部リレー	R0000 ~ R999F	RW000 ~ RW999		
特殊リレー	\$0000 ~ \$255F	SW000 ~ SW255		
リンクレジスタリレー	Z0000 ~ Z999F			
リンクリレー	L0000 ~ L255F			
タイマ(接点)	T000 ~ T999		* 1	L/H
カウンタ (接点)	C000 ~ C511		*1	
タイマ (現在値)		T000 ~ T999		
カウンタ(現在値)		C000 ~ C511		
データレジスタ		D0000 ~ D8191	B i t 15]	
リンクレジスタ		W0000 ~ W2047	<u>в і т</u> 15)	
ファイルレジスタ		F0000 ~ F32767	_{в і т} 15)	

^{*1} データの書き込みはできません。

MEMO · デバイス範囲はご使用のCPUで異なる場合があります。各CPU のデバイス範囲は、(株)東芝製のPLCマニュアルでご確認くだ さい。

PROVISOR Bシリーズ

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考
入力リレー	X000 ~ XF7F	XW00 ~ XWF7	*1
出力リレー	Y000 ~ YF7F	YW00 ~ YWF7	*1
内部リレー	R000 ~ R77F	RW00 ~ RW77	*1
拡張内部リレー 1	G000 ~ GF7F	GW00 ~ GWF7	*1
拡張内部リレー 2	H000 ~ HF7F	HW00 ~ HWF7	*1
特殊補助リレー	A000 ~ A16F	AW00 ~ AW16	*1
ラッチリレー	L000 ~ L07F	LW00 ~ LW07	*1
シフトレジスタ	S000 ~ S07F	SW00 ~ SW07	*1 L/H
エッジリレー	E000 ~ E77F	EW00 ~ EW77	*1
タイマ (接点)	T000 ~ T77F	TW00 ~ TW77	*1
カウンタ(接点)	C000 ~ C77F	CW00 ~ CW77	*1
タイマ・カウンタ (現在値)	P0000 ~ P77FF	P000 ~ P77F	
タイマ・カウンタ (設定値)	V0000 ~ V77FF	V000 ~ V77F	
汎用レジスタ 1	D0000 ~ DF7FF	D000 ~ DF7F	
汎用レジスタ 2	B0000 ~ BF7FF	B000 ~ BF7F	

*1 ワードアドレスは、GP作画支援ソフト「GP-PRO/PB 」では、PLCのマニュアルの表記方法と 異なりますので、ご注意ください。

< 例 > 入力リレー

GP-PRO/PB	PLCのマニュアル
XW00 ~ XWF7	X00W ~ XF7W

禁止 ・ ラダープログラムの入力部で設定しているアドレスが入力リレー(X)の場合、GPよりセット/リセットはできません。また、出力部で設定しているアドレス(全デバイス)についても同様です。

2.10.4 環境設定例

(株)デジタルが推奨する PLC 側の通信設定と、それに対応する GP 側の通信設定を示します。

PROSEC EXシリーズ

GPの	設定	メインプ [°] ロセッサモシ [*] ュール、	CPUモジュールの設定
伝送速度	9600bps	伝送速度	9600bps
データ長	8bit	データビット	8bit
ストップビット	1bit	ストップビット	1bit
パリティビット	奇数	パリティビット	奇数
制御方式	ER制御		
通信方式	4線式		
号機No.	1	ステーションNo.	1

PROSEC Tシリーズ

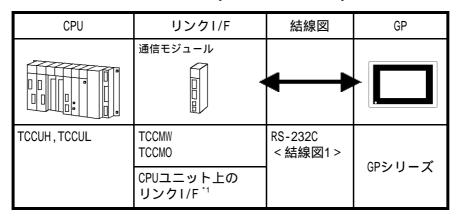
GPの	設定	CPUモジュ	ールの設定
伝送速度	19200bps *1 *2	伝送速度	19200bps *1 *2
データ長	8bit *2	データビット	8bit *2
ストップビット	2bit *2	ストップビット	2bit *2
パリティビット	奇数	パリティビット	奇数
制御方式	ER制御		
通信方式 (RS-232C使用時)	RS-232C		
通信方式 (RS-422使用時)	4線式		
号機No.	1	ステーションNo.	1

- *1 PLCの仕様上、PROSEC T3がVer.1.4未満の場合、9600bps以下で通信可能です。
- *2 T2E のみ伝送速度:9600bps、データ長:8bit、ストップビット:1bit 固定です。

PROVISOR Bシリーズ

GPの	設定	リンクマスタモ	ジュールの設定
伝送速度	9600bps	伝送速度	9600bps
データ長	8bit	データビット	8bit
ストップビット	2bit	ストップビット	2bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式	RS-232C		
		動作モード	リンクモード
号機No.	0	局番	0

2.11 東芝機械(株)製PLC

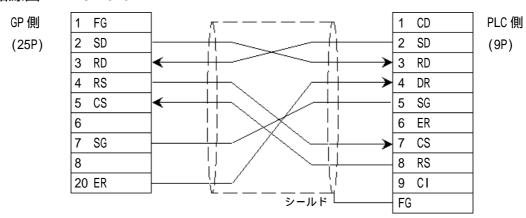

2.11.1 システム構成

東芝機械(株)製PLCとGPを接続する場合のシステム構成を示します。 <結線図>は2.11.2 結線図をご参照ください。

・ PCリンクで接続されている複数台の各PCの番号と、GPで設定した号機No.を合わせてください。

PROVISOR TC200 シリーズ (リンク I/F 使用)

^{*1} RS-232C用コネクタに接続します。


2.11.2 結線図

以下に示す結線図と東芝機械(株)の推奨する結線図が異なる場合がありますが、以下に示す 結線図でも動作上問題はありません。

強制 ・ PLC本体のFG端子は、D種接地を行ってください。

- 重要・シールド線へのFGの接続は、設置環境によってPLC側、GP側の どちらかを選択してください。
 - ・ RS-232C接続の場合は、ケーブル長は15m以内にしてください。
 - ・ 通信ケーブルを結線する場合は、必ずSGを接続してください。

< 結線図1 > RS-232C

2.11.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。

PROVISOR TC200シリーズ

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考	
入力リレー	X000 ~ XF7F	XW00 ~ XWF7	*1*2	
出力リレー	Y000 ~ YF7F	YW00 ~ YWF7	*1*2	
内部リレー	R000 ~ R77F	RW00 ~ RW77	*1*2	
拡張内部リレー 1	G000 ~ GF7F	GW00 ~ GWF7	*1*2	
拡張内部リレー 2	H000 ~ HF7F	HW00 ~ HWF7	*1*2	
特殊補助リレー	A000 ~ A16F	AW00 ~ AW16	*1*2	
ラッチリレー	L000 ~ L07F	LW00 ~ LW07	*1*2	
シフトレジスタ	S000 ~ S07F	SW00 ~ SW07	*1*2	L/H
エッジリレー	E000 ~ E77F	EW00 ~ EW77	*1*2	
タイマ(接点)	T000 ~ T77F	TW00 ~ TW77	*1*2	
カウンタ(接点)	C000 ~ C77F	CW00 ~ CW77	*1*2	
タイマ / カウンタ (現在値)	P0000 ~ P77FF	P000 ~ P77F	*3	
タイマ / カウンタ (設定値)	V0000 ~ V77FF	V000 ~ V77F	*3	
汎用レジスタ 1	D0000 ~ DF7FF	D000 ~ DF7F	*3	
汎用レジスタ2	B0000 ~ BF7FF	B000 ~ BF7F	*3	

*1 ワードアドレスは、GP-PRO/PB では、PLCのマニュアルの表記方法と異なりますので、ご注意ください。

< 例 > 入力リレー

GP-PRO/PB	PLCのマニュアル
XW00 ~ XWF7	X00W ~ XF7W

禁止 ・ ラダープログラムの入力部で設定しているアドレスが入力リレー(X)の場合、GPよりセット/リセットはできません。また、出力部で設定しているアドレス(全デバイス)についても同様です。

- *2 作画ソフトではワードアドレス下 1 桁目が 16 進で $0 \sim F$ まで入力できますが、PLCのアドレスは下 1 桁目が 8 進のため $0 \sim 7$ までしか使用できません。
- *3 作画ソフトではワードアドレス下2桁目が16進で $0 \sim F$ まで入力できますが、PLCのアドレスは下2桁目が8進のため $0 \sim 7$ までしか使用できません。

重要・読み込みエリアサイズは下2桁00から指定して最大108ワードまでしか使用できません。それ以上設定された場合は上位通信エラー(02:CA)が表示されます。

2.11.4 環境設定例

(株)デジタルが推奨する PLC 側の通信設定と、それに対応する GP 側の通信設定を示します。

PROVISOR TC200 シリーズ (通信モジュール使用の場合)

GPの設定		通信モジュールの設定	
伝送速度	9600bps	伝送速度	9600bps
データ長	8bit	データビット	8bit
ストップビット	2bit	ストップビット	2bit
パリティビット	無	パリティビット	無
制御方式	ER制御		
通信方式	RS-232C		
		機能選択スイッチ 3を0N	
号機No.	0	PC番号	0
号機No.	64	PC番号	

PROVISOR TC200シリーズ (RS-232C用コネクタ使用の場合)

GPの設定		RS-232C用コネクタの設定	
伝送速度	9600bps	伝送速度	9600bps
データ長	8bit	データビット	8bit
ストップビット	2bit	ストップビット	2bit
パリティビット	無	パリティビット	無
制御方式	ER制御		
通信方式	RS-232C		
号機No.	64 (固定)		

2.12 光洋電子工業(株)製PLC

2.12.1 システム構成

光洋電子工業(株)製PLCとGPを接続する場合のシステム構成を示します。 <結線図>は2.12.2 結線図をご参照ください。

KOSTAC SG シリーズ (リンク I/F 使用)

CPU	リンクI/F	結線図	GP
	上位リンク モジュール		
SG-8	GO1-DM	RS-232C <結線図1> RS-422 <結線図2>	(D.)
	CPUユニット上の リンクI/F ¹	RS-232C <結線図1> RS-422 <結線図3>	GPシリーズ

^{*1} CPUモジュールの汎用通信ポートに接続します。

KOSTAC SU シリーズ (リンク I/F 使用)

CPU	リンクI/F	結線図	GP
	上位リンク モジュール	*	
SU-5	UO1-DM	RS-232C	
SU-6	UO1-DM	<結線図1>	
	CPUユニット上の リンクI/F ^{*1}		GPシリーズ
SU-6B	CPUユニット上の リンクI/F *1	RS-232C <結線図1>	
		RS-422 <結線図3>	

^{*1} CPUモジュールの汎用通信ポートに接続します。

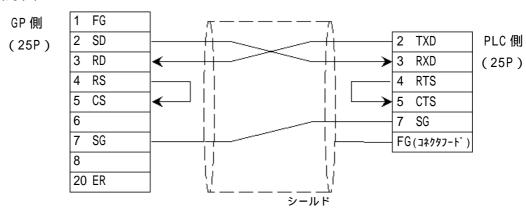
KOSTAC SZ シリーズ (CPU ユニット上のリンク I/F 使用)

CPU	結線図	GP
		•
SZ-4 *1	RS-232C <結線図4>	GPシリーズ

*1 CPUモジュールの汎用通信ポートに接続します。

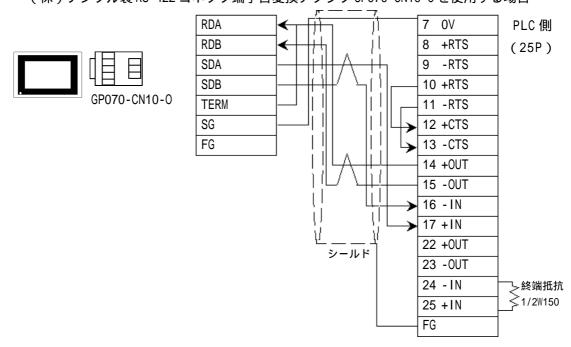
KOSTAC SR シリーズ (リンク I/F 使用)

CPU	リンクI/F	結線図	GP
	上位リンク インターフェース		À
SR-21 SR-22	E-02DM-R1	RS-422 <結線図2>	GPシリーズ

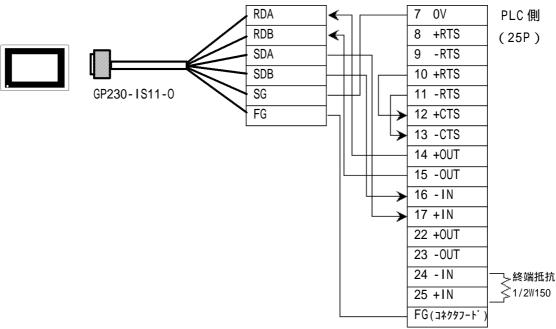

2.12.2 結線図

以下に示す結線図と光洋電子工業(株)の推奨する結線図が異なる場合がありますが、以下に示す結線図でも動作上問題はありません。

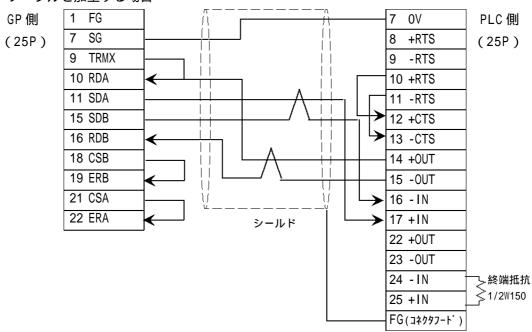
強制 ・ PLC 本体の FG 端子は、D 種接地を行ってください。


- 重要・シールド線へのFGの接続は、設置環境によってPLC側、GP側の どちらかを選択してください。コネクタフードを使ってFGを落 とす場合は導電性のあるものをお使いください。
 - ・ RS-232C接続の場合は、ケーブル長は15m以内にしてください。
 - ・ 通信ケーブルを結線する場合は、必ずSGを接続してください。
 - ・ RS-422接続の場合、ケーブル長は600m以内にしてください。

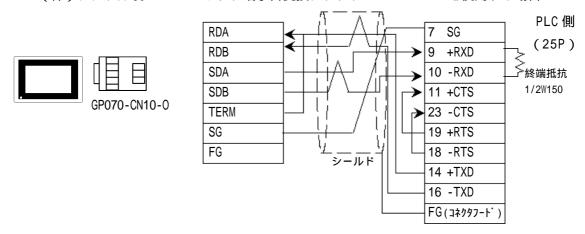
< 結線図1 > RS-232C

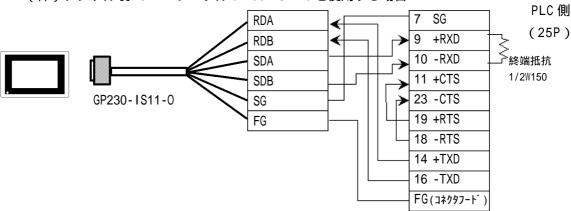


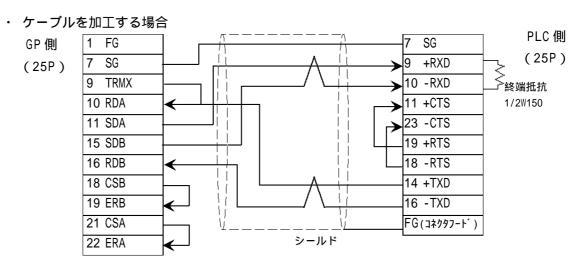
<結線図2 > RS-422


・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

・ ケーブルを加工する場合

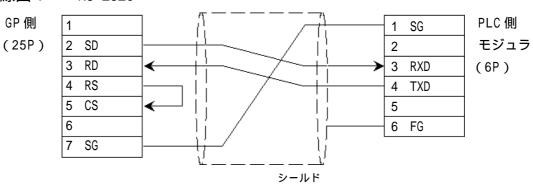



- · 接続ケーブルとして日立電線製 CO-SPEV-SB (A) 3P*0.3SQ を 推奨します。
- ・ GP側シリアル I /F の 9番ピンと 10番ピンを接続することにより、RDA-RDB間に 100 の終端抵抗が挿入されます。
- ・ RS-422接続の場合、ケーブル長は600m以内にしてください。


<結線図3> RS-422

・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

・(株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合



- 接続ケーブルとして日立電線製 CO-SPEV-SB(A) 3P*0.3SQ を 推奨します。
- ・ GP側シリアルI/Fの9番ピンと10番ピンを接続することにより、RDA-RDB間に100 の終端抵抗が挿入されます。
- ・ RS-422接続の場合、ケーブル長は600m以内にしてください。

<結線図4> RS-232C

・ GP との接続は SZ-4 のポート 2 (汎用通信ポート)を使用します。ポート1 はプログラムレス通信ポート用(プロコン S-20Pなど)です。

2.12.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。

KOSTAC SGシリーズ

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考
入力リレー	10000 ~ 11777	R40400 ~ R40477	<u>ост</u> 8]
出力リレー	Q0000 ~ Q1777	R40500 ~ R40577	<u>ост</u> 8]
内部リレー	M0000 ~ M3777	R40600 ~ R40777	<u>ост</u> 8]
ステージ	S0000 ~ S1777	R41000 ~ R41077	ост 8
全局伝送リレー (入力)	G10000 ~ G13777	R40000 ~ R40177	ост 8)
特別局伝送リレー (出力)	GQ0000 ~ GQ3777	R40200 ~ R40377	ост 8)
タイマ(接点)	T000 ~ T377	R41100 ~ R41117	<u>ост</u> 8)
カウンタ(接点)	C000 ~ C377	R41140 ~ R41157	ост 8
タイマ (経過値)		R0000 ~ R0377	<u>ост</u> 8]
カウンタ (経過値)		R1000 ~ R1377	<u>ост</u> 8]
データメモリ1		R400 ~ R777	<u>ост</u> 8) _{Віт} 15)
データメモリ 2		R1400 ~ R7377	<u>ост</u> 8) _{Віт} 15)
データメモリ 3		R10000 ~ R37777	<u>ост</u> 8) _{Віт} 15)

KOSTAC SUシリーズ

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考
入力リレー	1000 ~ 1477	R40400 ~ R40423	ост 8]
出力リレー	Q000 ~ Q477	R40500 ~ R40523	ост 8)
内部リレー	M0000 ~ M1777	R40600 ~ R40677	ост 8)
ステージ	S0000 ~ S1777	R41000 ~ R41077	ост 8)
リンクリレー / リンク入力	G10000 ~ G11777	R40000 ~ R40077	ост 8)
特殊リレー	SP000 ~ SP137 SP320 ~ SP717	R41200 ~ R41205 R41215 ~ R41234	<u>ост</u> 8] *1
タイマ(接点)	T000 ~ T377	R41100 ~ R41117	<u>ост</u> 8] L/H
カウンタ(接点)	C000 ~ C177	R41140 ~ R41147	ост 8)
タイマ (経過値)		R0000 ~ R0377	ост 8)
カウンタ(経過値)		R1000 ~ R1177	ост 8]
データレジスタ		R1400 ~ R7377	<u>ост</u> 8) _{Віт} 15)
特殊レジスタ		R700 ~ R737 R7400 ~ R7777	<u>ост</u> 8] _{Віт} 15]*1
拡張レジスタ		R10000 ~ R17777	ост 8] _{Віт} 15]*2

^{*1} SU-6B でのみ接続確認しています(特殊レジスタの R700 ~ R737 は SU-6B のみ使用可能です)。 データの書き込みはできません。

^{*2} SU-6B のみ使用可能です。

KOSTAC SZシリーズ

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考
入力リレー	10000 ~ 10477	R40400 ~ R40423	ост 8)
出力リレー	Q0000 ~ Q0477	R40500 ~ R40523	ост 8
内部リレー	M0000 ~ M0377	R40600 ~ R40617	ост 8)
ステージ		R41000 ~ R41037	ост 8)
タイマ(接点)	T000 ~ T177	R41100 ~ R41107	<u>ост</u> 8] L/H
カウンタ(接点)	C000 ~ C177	R41140 ~ R41147	ост 8]
タイマ (経過値)		R0000 ~ R0177	ост 8)
カウンタ (経過値)		R1000 ~ R1177	ост 8)
データメモリ 2		R2000 ~ R3777	ост 8] В і т 15]

KOSTAC SRシリーズ

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考
入力・出力	000 ~ 157 700 ~ 767	R000 ~ R014 R070	ост 8)
内部リレー	160 ~ 377 770 ~ 777	R016 ~ R036 R076	ост 8)
シフトレジスタ	400 ~ 577	R040 ~ R056	<u>ост</u> 8]
タイマ・カウンタ (接点)	600 ~ 677	R060 ~ R066	<u>ост</u> 8]
タイマ・カウンタ (経過値)		R600 ~ R677	ост 8)
データレジスタ		R400 ~ R577	©CT 8) B; 15)

禁止 ・ ビットのみの書き込みはできません。ビット書き込みは、バイト単位で実現します。バイト内の指定ビット以外のビットはすべてクリア(0)されます。

2.12.4 環境設定例

(株)デジタルが推奨する PLC 側の通信設定と、それに対応する GP 側の通信設定を示します。

KOSTAC SG シリーズ(上位リンクモジュール使用の場合)

GPの	設定	上位リンクモジュールの設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	8bit		
ストップビット	1bit		
パリティビット	奇数	パリティビット	奇数
制御方式	ER制御		
通信方式 (RS-232C使用時)	RS-232C		
通信方式 (RS-422使用時)	4線式		
	-	マスタ/スレーブの設定 スレーブ	
		伝送モード HEX	
号機No.	1	局番	1

KOSTAC SG シリーズ (汎用通信ポート使用の場合)

GPの設定		汎用通信ポートの設定	
伝送速度	19200bps (固定)	伝送速度	19200bps (固定)
データ長	8bit (固定)	データ長	8bit (固定)
ストップビット	1bit (固定)	ストップビット	1bit (固定)
パリティビット	奇数 (固定)	パリティビット	奇数(固定)
制御方式	ER制御		
通信方式 (RS-2320使用時)	RS-232C	通信方式 (RS-232C使用時)	4連ディップスイッチ (CCM通信ポート用) をON
通信方式 (RS-422使用時)	4線式	通信方式 (RS-422使用時)	4連ディップスイッチ (CCM通信ポート用) をOFF
		伝送モード ^{*1}	HEX
号機No.	1	CCM局番 *1	1

^{*1} ディップスイッチ2(CCM局番用)をOFFにし、プログラマで伝送モードとCCM局番の設定を行ってください(ディップスイッチ2がONになっていると、伝送モードがHEXに設定されないため、通信しません)。

KOSTAC SU シリーズ (上位リンクモジュール使用の場合)

GPの設定		上位リンクモジュールの設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	8bit (固定)		
ストップビット	1bit (固定)		
パリティビット	奇数	パリティビット	奇数
制御方式	ER制御		
通信方式	RS-232C		
号機No.	1	局番	1

KOSTAC SU シリーズ (汎用通信ポート使用の場合)

GPの設定		汎用通信ポートの設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	8bit (固定)		
ストップビット	1bit (固定)		
パリティビット	奇数	パリティビット	奇数
制御方式	ER制御		
通信方式 (RS-232C使用時)	RS-232C		
通信方式 (RS-422使用時)	4線式		
		データ形式 ^{*1}	HEX
号機No.	1	局番	1

^{*1} ディップスイッチ2(CCM局番用)をOFFにし、プログラマで伝送モードとCCM局番の設定を行ってください(ディップスイッチ2がONになっていると、伝送モードがHEXに設定されないため、通信しません)。

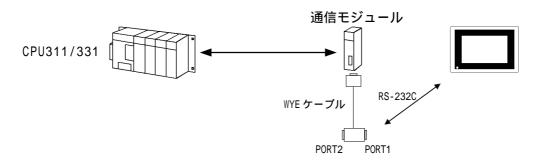
KOSTAC SZシリーズ

GPの設定		汎用通信ポートの設定	
伝送速度	9600bps	伝送速度	9600bps
データ長	8bit	データ長	8bit
ストップビット	1bit	ストップビット	1bit
パリティビット	奇数	パリティビット	奇数
制御方式	ER制御		
通信方式	RS-232C		
		データ形式	HEX
号機No.	1	局番	1

KOSTAC SRシリーズ

GPの設定		上位リンクインターフェースの設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	8bit		
ストップビット	1bit		
パリティビット	無	パリティビット	無
制御方式	ER制御		
通信方式	4線式		
		ターンアラウンドリレー	ディレーなし
		電源投入時モード	RUNモード
		伝送モード	HEX
号機No.	1	子局番号	1

2.13 GE Fanuc Automation 製 PLC


2.13.1 システム構成

GE Fanuc Automation製PLCとGPを接続する場合のシステム構成を示します。 <結線図>は2.13.2 結線図をご参照ください。

シリーズ 90-30 (SNP-X プロトコル、リンク I/F 使用)

CPU	リンクI/F	結線図	GP
	通信 モジュール		
CPU311, CPU331	IC693CMM311 *1 *2	RS-232C <結線図1>	GPシリーズ

*1 通信モジュール (IC693CMM311)を使用する場合、PLC 付属の WYE ケーブルが必要です。

PORT1、またはPORT2に接続します。ただし、PORT2に接続した場合、プログラミングコンソールでRS-232Cに切り替えが必要です。PORT1とPORT2の両方同時にGPを2台接続できます。

*2 プログラミングコンソールでSNP-Xプロトコルを選択してください。

シリーズ 90-30 (SNP-X プロトコル、CPU 直結)

CPU	結線図	GP
	\longleftrightarrow	
CPU311, CPU331	RS-422 <結線図2>	GPシリーズ

禁止・ CPU直結の場合は、通信モジュールを使用した時と比べて高速 データ通信されますが、GPとプログラミングコンソールを同 時に使用することができません。

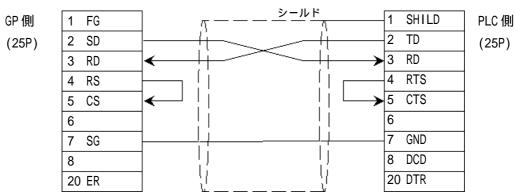
シリーズ 90-70 (SNP-X プロトコル、リンクユニット使用)

CPU	リンクI/F	結線図	GP
	通信モジュール		
CPU731/732, CPU771/772, CPU781/782	IC697CMM711 *1 *2	RS-232C <結線図1> RS-422 <結線図3>	GPシリーズ

- *1 プログラミングコンソールでSNP-Xプロトコルを選択してください。
- *2 通信モジュールの PORT1 または PORT2 に接続し、プログラミングコンソールで RS-232C、RS-422/485 に切り替えてください。

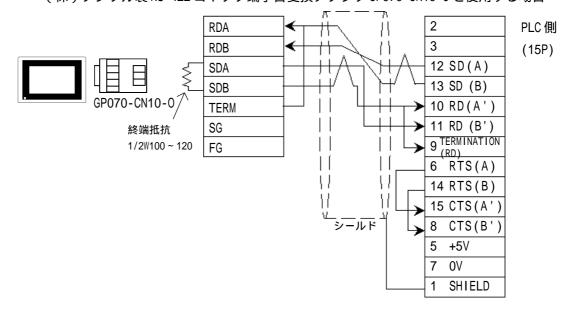
PORT1 と PORT2 の両方同時に GP を接続することはできません。

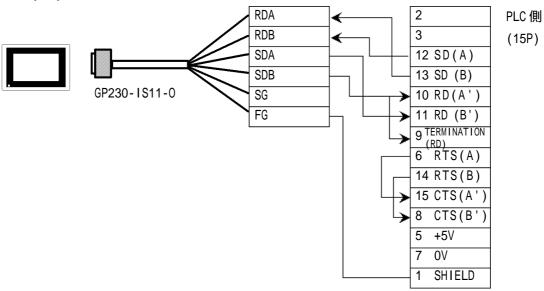
RS-422と表記してあるところは、PLC側がRS-485の場合も使用できます。


2.13.2 結線図

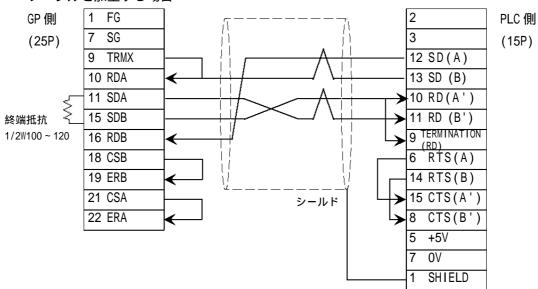
以下に示す結線図とGE Fanuc Automation の推奨する結線図が異なる場合がありますが、以下に示す結線図でも動作上問題はありません。

強制 ・ PLC本体のFG端子は、D種接地を行ってください。


- 重要・シールド線へのFGの接続は、設置環境によってPLC側、GP側の どちらかを選択してください。
 - ・ RS-232C接続の場合は、ケーブル長は15m以内にしてください。
 - ・ RS-422接続の場合は、PLCのマニュアルによってRD(A)、RD(B)、SD(A)、SD(B)の表記方法が異なります。ご使用のPLCのマニュアルをご参照ください。(結線側はPLC側に接続した場合の図です。)
 - ・ 通信ケーブルを結線する場合は、必ずSGを接続してください。

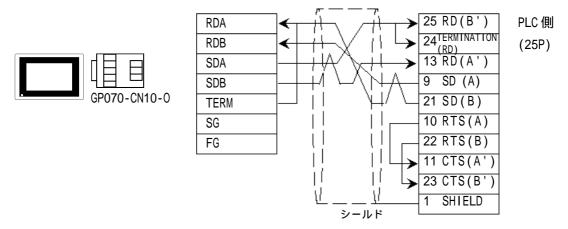


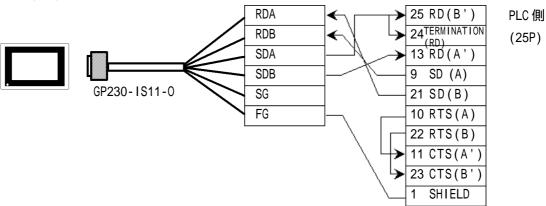
< 結線図 2 > RS-422


・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

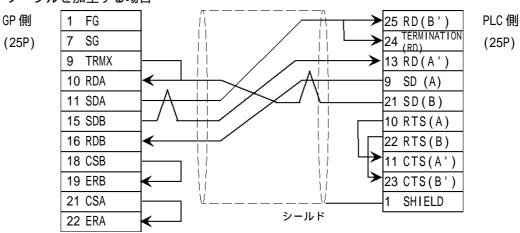
・(株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合

・ ケーブルを加工する場合




- 接続ケーブルとして日立電線製 CO-SPEV-SB (A) 3P*0.5 を推 奨します。
- ・ GP側シリアル I /Fの9番ピンと10番ピンを接続することにより、RDA-RDB間に100 の終端抵抗が挿入されます。
- ・ RS-422 接続の場合、ケーブル長は GE Fanuc Automation の マニュアルを参照してください。

<結線図3> RS-422


・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

・(株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合

・ ケーブルを加工する場合

- ・ GP側シリアルI/Fの9番ピンと10番ピンを接続することにより、RDA-RDB間に100 の終端抵抗が挿入されます。
- ・ RS-422 接続の場合、ケーブル長は GE Fanuc Automation の マニュアルを参照してください。

2.13.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。

シリーズ90-70/90-30

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考
入力リレー(I)	100001 ~ I12288	100001 ~ I12273	<u>÷16+</u> 1]
出カリレー(Q)	Q00001 ~ Q12288	Q00001 ~ Q12273	<u>÷16+</u> 1]
内部リレー(M)	M00001 ~ M12288	M00001 ~ M12273	<u>+16+</u> 1]
グローバルリレー(G)	G0001 ~ G7680	G0001 ~ G7665	<u>÷16+</u> 1]
一時リレー(T)	T001 ~ T256	T001 ~ T241	<u>÷16+</u> 1]
システム状態リレー(SA)	SA001 ~ SA128	SA001 ~ SA113	<u>+16+</u> 1
システム状態リレー(SB)	SB001 ~ SB128	SB001 ~ SB113	<u>÷16+</u> 1]
システム状態リレー(SC)	SC001 ~ SC128	SC001 ~ SC113	<u>÷16+</u> 1]
システム状態リレー(S)	S001 ~ S128	S001 ~ S113	<u>÷16+</u> 1] *1
レジスタ(R)		R00001 ~ R16384	<u>₿ ; t</u> 15)
アナログ入力(AI)		A10001 ~ A18192	B i t 15)
アナログ出力(AQ)		AQ0001 ~ AQ8192	_{Ві t} 15)

^{*1} データの書き込みはできません。書き込みを行うと、上位通信エラー(02:0F:03)が表示されます。

2.13.4 環境設定例

(株)デジタルが推奨するPLC側の通信設定と、それに対応するGP側の通信設定を示します。

シリーズ 90-30 (リンク I/F 使用の場合)

GPの設定		通信モジュールの設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	8bit (固定)	データビット	8bit (固定)
ストップビット	1bit	ストップビット	1bit
パリティビット	奇数	パリティビット	奇数
制御方式	ER制御		
通信方式	RS-232C	通信方式	RS-232C *1
		MODE	SNP ONLY
号機No.	0(固定)	局番	0(固定)

^{*1} PORT2に接続する場合のみです。PORT1には、この設定はありません。

シリーズ 90-30 (CPU 直結の場合)

GPの設定		PLC側の設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	8bit (固定)	データビット	8bit (固定)
ストップビット	1bit	ストップビット	1bit
パリティビット	奇数	パリティビット	奇数
制御方式	ER制御		
通信方式	4線式		
号機No.	0(固定)	局番	0(固定)

シリーズ 90-70

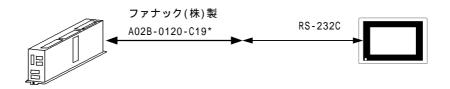
GPの設定		通信モジュールの設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	8bit	データビット	8bit
ストップビット	1bit	ストップビット	1bit
パリティビット	奇数	パリティビット	奇数
制御方式	ER制御		
通信方式 (RS-232C使用時)	RS-232C	通信方式 (RS-232C使用時)	RS-232C
通信方式 (RS-422使用時)	4線式	通信方式 (RS-422使用時)	RS-422/485
		MODE	SNP ONLY
号機No.	0(固定)	局番	0(固定)

2.14 ファナック(株)製モーションコントローラ

2.14.1 システム構成

ファナック(株)製モーションコントローラとGPを接続する場合のシステム構成を示します。<結線図>は2.14.2 結線図をご参照ください。

重要 ・ ファナック (株)に GP シリーズと接続することを明確にオー ダーしてください。


FANUC Power Mateシリーズ

CPU	結線図	GP
Power Mate-MODEL D	RS-422 <結線図1>	GPシリーズ

FANUC シリーズ

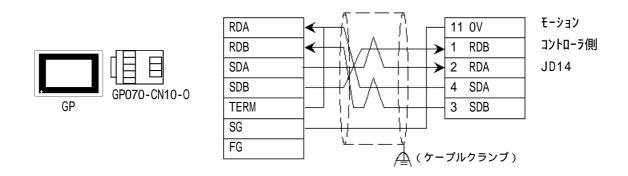
CPU	結線図	使用可能ケーブル	GP
	V		
16-MC *1	RS-232C <結線図2>	(株)デジタル製 GP410-IS00-0(5m)	

116-MC と接続する場合、D サブコネクタ(20P)とD サブコネクタ(25P)の 変換ケーブルファナック(株)製パンチパネル A02B-0120-C19 が必要です。

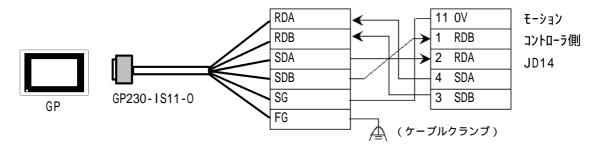
重要 ・ 16-MC は、シリアルポート 2(JD5B) のみ接続可能です。 シリアルポート1(JD5A) との接続はでません。

2.14.2 結線図

以下に示す結線図とGE Fanuc Automationの推奨する結線図が異なる場合がありますが、以下に示す結線図でも動作上問題はありません。


強制 ・ モーションコントローラ側のJD15に終端ユニットを接続してください。終端ユニットは100 の抵抗でRDB、RDAをコネクタ内で接続したものです。

- ・ モーションコントローラ本体のFG端子はD種接地を行ってください。詳細は、モーションコントローラのマニュアルをご参照ください。
- ケーブルクランプにてシールドを接地してください。
- ・ 通信ケーブルを結線する場合は、必ずSGを接続してください。

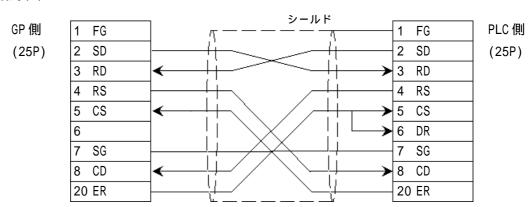

重要 · RS-422接続の場合、ケーブル長はファナック(株)のマニュアルを参照してください。

< 結線図1 > RS-422

・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

・(株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合

・ ケーブルを加工する場合


GP 側 11 0V 1 FG モーション RDB 7 SG (25P) コントローラ側 2 RDA 9 TRMX JD14 4 SDA 10 RDA 3 SDB 11 SDA 15 SDB 16 RDB 18 CSB (ケーブルクランプ) 19 ERB 21 CSA

22 ERA

- ・ 推奨ケーブル:沖電線(株)製 A66L-0001-0284#10P
- ・ 推奨コネクタ:本多通信工業(株)製PCR-E20FS
- 推奨コネクタケース:本多通信工業(株)製PCR-V20LA
- ・ GP側シリアルI/Fの9番ピンと10番ピンを接続することにより、RDA-RDB間に100 の終端抵抗が挿入されます。
- ・ RS-422 接続の場合、ケーブル長はファナック(株)のマニュアルを参照してください。

< 結線図 2 > RS-232C

2.14.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。

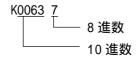
FANUC Power Mateシリーズ

は、システムエリアに指	定可能
-------------	-----

デバイス	ビットアドレス	ワードアドレス	備考
入力リレー(X)	X000000 ~ X001277 X010000 ~ X010637	X00000 ~ X00126 X01000 ~ X01062	<u>÷2</u>)
出カリレー(Y)	Y000000 ~ Y001277 Y010000 ~ Y010637	Y00000 ~ Y00126 Y01000 ~ Y01062	<u>÷ 2</u>)
内部リレー(R)	R000000 ~ R009997	R00000 ~ R00998	<u>÷ 2)</u>
キープリレー(K)	K00000 ~ K00197	K0000 ~ K0018	÷2)
タイマ(T)		T0000 ~ T0078	<u>÷ 2</u>]
カウンタ(C)		C0000 ~ C0078	<u>÷ 2</u>]
データテーブル(D)		D00000 ~ D01858	÷ 2) Bit 7)

重要・ 16-MCは、上記のデバイス範囲のみ使用可能です。

・ アドレスの上下関係は、次のとおりです。


0	L (下位)	 	H (上位)	} 1 バイト
1	H (上位)		L(下位)	

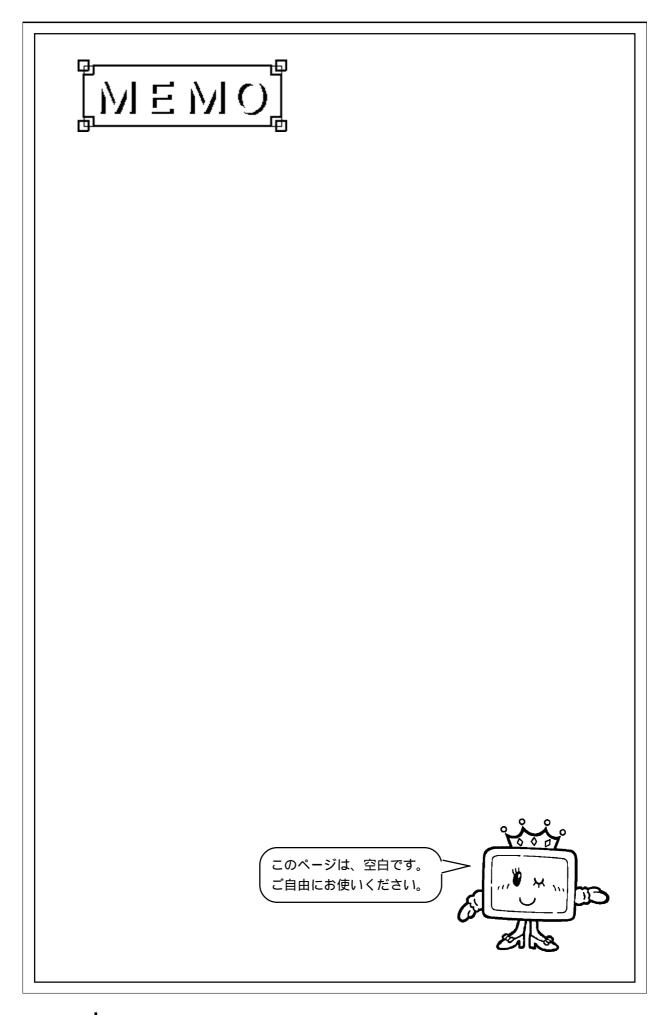
- ・ 入力リレー・出力リレー・内部リレー・データテーブルを指 定する場合は、各アルファベット(X、Y、R,D)の後に "0" を 付けた値を入力してください。(上の表では、すでに "0" を付 けた値を示しています)
 - <例>「X00120」、「Y01000」
- ・ 範囲外のアドレスを指定すると、上位通信エラーが表示されます。

<例> 上位通信エラー(02:0F: **)

* *	内容	対処方法
0.4	指定されたアドレス	モーションコントローラで
04	が正しくない	使用可能なアドレスの範囲
	おウナかた カー	を確認し、タグで使用する
05	指定されたデータ長	アドレスを正しい範囲内に
	が正しくない	設定し直してください。

強制 ・ ビットアドレスの入力は、10進8進で行ってください。 <例>

2.14.4 環境設定例


(株)デジタルが推奨するモーションコントローラ側の通信設定と、それに対応するGP側の通信設定を示します。

FANUC Power Mateシリーズ

GPの設定		モーションコントローラ側JD14の設定
伝送速度	19200bps (固定)	
データ長	8bit (固定)	
ストップビット	1bit (固定)	
パリティビット	偶数(固定)	
制御方式	ER制御(固定)	
通信方式	4線式(固定)	
号機No.	0(固定)	

FANUC シリーズ

GPの設定		JD5Pの設定
伝送速度	19200bps(固定)	
データ長	8bit(固定)	
ストップビット	1bit(固定)	
パリティビット	偶数(固定)	
制御方式	ER制御	
通信方式	RS232C	
号機No.	0(固定)	

2.15 和泉電気(株)製PLC

2.15.1 システム構成

和泉電気(株)製PLCとGPを接続する場合のシステム構成を示します。 <結線図>は2.15.2 結線図をご参照ください。

FA シリーズ(リンク I/F 使用)

CPU	リンクI/F	結線図	使用可能ケーブル	GP
	シリアルインター フェイス モジュール	•		
PF3S-CP12, PF3S-CP13	PF3S-S1F2	RS-232C <結線図1>	和泉電気(株)製 PF3S-KS1 ^{*1}	GPシリーズ
	PF3S-SIF4	RS-422 <結線図2>		いシリース

*1 GP-270、GP-370には、コネクタサイズのサイズ上使用できません。

 PF3S-SIF2(4)は、電源投入後RUN状態になるまで メモリパックの容量が1Kステップ時は約1秒、4Kス テップ時は約4秒かかるため、GPでスタートタイムの 設定が必要です。

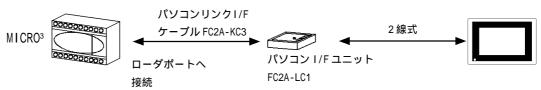
使用するメモリパックにあわせてスタートタイムの設 定を行ってください。

・ RS-422 と表記してあるところは、PLC 側が RS-485 の 場合も使用できます。

FA シリーズ (CPU 直結)

CPU *1	アダプタ ^{*2}	結線図	使用可能ケーブル	GP
		•		
PF2-CPU1, PF2-CPU5M, PF2J-CPU1,	PF2-CLA PFA-1U51	RS-232C <結線図3>	和泉電機(株)製 PFA-1A52形コンピュ ータケーブル ³	GPシリーズ
PF3S-CP11, PF3S-CP12, PF3S-CP13	PFJ-U21	RS-422 <結線図4>		5. 2 3 7

- *1 プログラミングローダポートに接続します。
- *2 プログラミングローダポートとアダプタとを和泉電気(株)製 PFA リンクケーブル PFA-1A51 (30cm)で接続する必要があります。



*3 GP-270、GP-370、GP-377、GP-377R には、コネクタサイズのサイズ上使用できません。

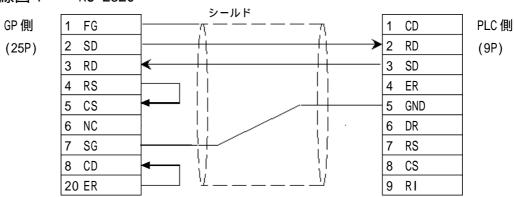
MICRO³ (マイクロキューブ)(CPU 直結)

CPU	アダプタ	結線図	使用可能ケーブル	GP
0000000000			•	
MICRO ³			パソコンリンクI/F ケーブル FC2A-KC1 *4 *5	GPシリーズ
	パソコンI/Fユニット FC2A-LC1 ^{*6}	RS-422 <結線図5>		

- *4 通信ケーブルは和泉電気(株)専用パソコン I/Fケーブルを使用してください。
- *5 パソコン I/F ケーブル FC2A-KC1 使用時には、GP 側は RS-232C 通信になります。
- *6 パソコン I / F ユニット FC2A-LC1 と PLC を和泉電気 (株) 製パソコンリンク I / F ケーブル FC2A-KC3 で接続する必要があります。

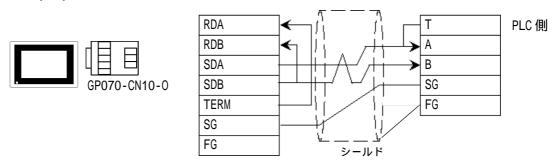
RS-422と表記してあるところは、PLC側がRS-485の場合も使用できます。

2.15.2 結線図

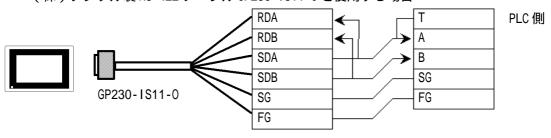

以下に示す結線図と和泉電気(株)の推奨する結線図が異なる場合がありますが、以下に示す 結線図でも動作上問題はありません。

強制 · PLC本体のFG端子は、D種接地を行ってください。

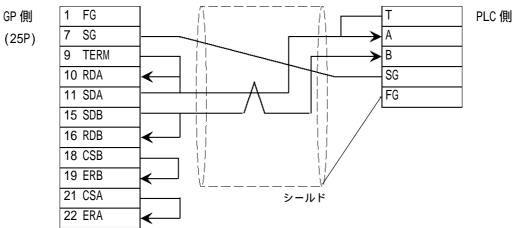
重要・シールド線へのFGの接続は、設置環境によってPLC側、GP側の どちらかを選択してください。(結線例はPLC側に接続した場合 の図です)


- ・ RS-232C接続の場合は、ケーブル長は15m以内にしてください。
- ・ 通信ケーブルを結線する場合は、必ずSGを接続してください。
- ・ RS-422 接続の場合、ケーブル長は和泉電気(株)のマニュアル を参照してください。

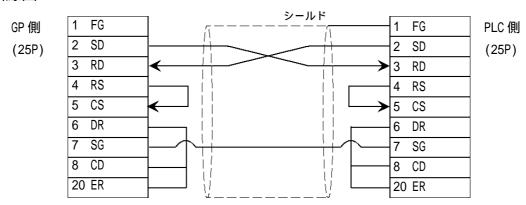
< 結線図 1 > RS-232C

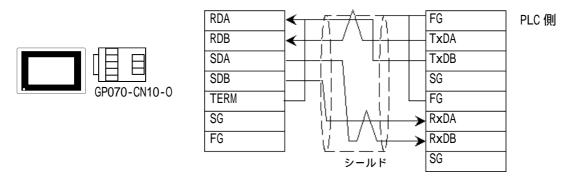


< 結線図 2 > RS-422

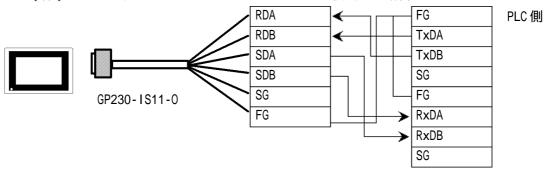

・(株)デジタル製 RS-422 端子台変換アダプタ GP070-CN10-0 を使用する場合

・(株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合

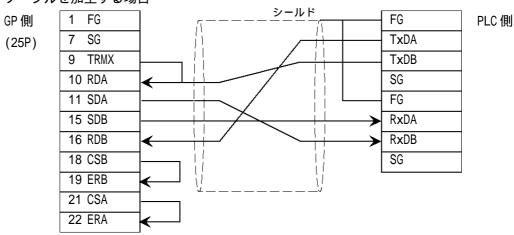

・ ケーブルを加工する場合


- ・ 接続ケーブルとして日立電線製CO-SPEV-SB(A)3P*0.5SQツイストペアケーブルを推奨します。
- ・ GP側シリアル I /Fの9番ピンと10番ピンを接続することにより、RDA-RDB間に100 の終端抵抗が挿入されます。

< 結線図3 > RS-232C

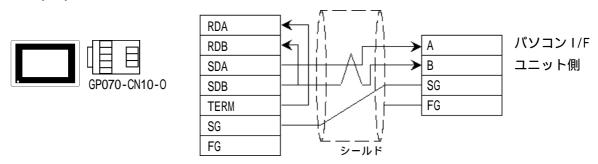


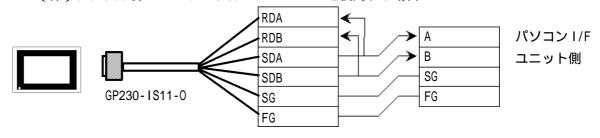
<結線図4 > RS-422


・ (株) デジタル製 RS-422 端子台変換アダプタ GP070-CN10-0 を使用する場合

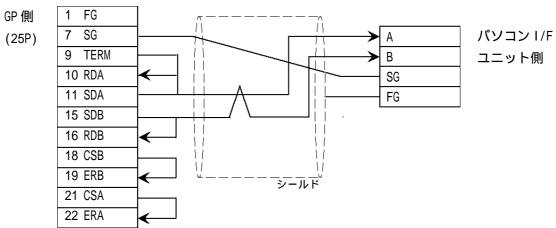
・(株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合

・ ケーブルを加工する場合




- ・ GP側シリアルI/Fの9番ピンと10番ピンを接続することにより、RDA-RDB間に100 の終端抵抗が挿入されます。
- ・ RS-422接続の場合、ケーブル長は和泉電気(株)のマニュアル を参照してください。

< 結線図5 > RS-422


・(株)デジタル製 RS-422 端子台変換アダプタ GP070-CN10-0 を使用する場合

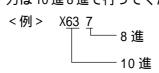
・(株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合

・ ケーブルを加工する場合

- ・ GP側シリアルI/Fの9番ピンと10番ピンを接続することにより、RDA-RDB間に100 の終端抵抗が挿入されます。
- ・ RS-422接続の場合、ケーブル長は和泉電気(株)のマニュアル を参照してください。

2.15.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。


FAシリーズ

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考
入力リレー	X000 ~ X637	WX00 ~ WX63	<u>÷ 2</u>)
出力リレー	Y000 ~ Y637	WY000 ~ WY63	<u>÷ 2)</u>
内部リレー	M000 ~ M2557	WM000 ~ WM255	<u>÷ 2</u>)
シフトレジスタ	R000 ~ R223	WR000 ~ WR223	<u>÷16</u>)
タイマ (接点)	T000 ~ T255		*1
タイマ10msec (接点)	H000 ~ H079		*1
カウンタ(接点)	C000 ~ C255		*1
タイマ (設定値)		TS000 ~ TS255	L/ fi
タイマ (現在値)		T000 ~ T255	*1
タイマ10msec (現在値)		H000 ~ H079	*1
カウンタ(設定値)		CS000 ~ CS255	
カウンタ(現在値)		C000 ~ C255	*1
データレジスタ		D0000 ~ D2989	B : t 15)
コントロールレジスタ		D3000 ~ D3071	B : t 15)

^{*1} データの書き込みはできません。

強制 ・ 入力リレー、出力リレー、内部リレーのビットアドレスの入力は10進8進で行ってください。

その他のデバイスは、10進で設定してください。

MICRO³(マイクロキューブ)

	は、システムエリアに指定可能
--	----------------

デバイス	ビットアドレス	ワードアドレス	備考
入力リレー	x0000 ~ x00037	X0000 ~ X0002	<u>÷ 2</u>]
出力リレー	y0000 ~ y00037	Y0000 ~ Y0002	<u>÷ 2</u>]
内部リレー	m0000 ~ m00277	M0000 ~ M0026	<u>÷ 2</u>)
シフトレジスタ	r0000 ~ r0063	R0000 ~ R0048	<u>÷16</u>
タイマ(接点)	T0000 ~ T0031		*1*2
カウンタ(接点)	C0000 ~ C0031		*1*2 L/H
タイマ (設定値)		T0000 ~ T0031	*2
タイマ (計数値)		t0000 ~ t0031	*2
カウンタ(設定値)		C0000 ~ C0031	*2
カウンタ(計数値)		c0000 ~ c0031	*2
データレジスタ		D0000 ~ D0099	B : t 15)

^{*1} データの書き込みはできません。

^{*2} タイマ、カウンタは合計で32点まで使用できます。

- ・ 入出力リレーの範囲は、基本ユニットの入出力点数に依存します。
- ・ ビットアドレスのあるデバイス(入力リレー、出力リレー、内部リレー、シフトレジスタ)のアドレスの上下関係は、次のとおりです。

0	L (下位)	ファート	H (上位) }	1 バイト
1	H (上位)		L (下位)	

強制 ・ 入力リレー、出力リレー、内部リレーのビットアドレスの入力は10進8進で行ってください。

2.15.4 環境設定例

(株)デジタルが推奨する PLC 側の通信設定と、それに対応する GP 側の通信設定を示します。

FA シリーズ (シリアルインターフェイスモジュール使用の場合)

GP Ø	設定	シリアルインターフェ	イスモジュールの設定
伝送速度	19200bps	伝送速度	19200bps
データ長	8bit	データビット	8bit
ストップビット	1bit	ストップビット	1bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式 (RS-232C使用時)	RS-232C		
通信方式 (RS-422使用時)	2線式		
号機No.	0	デバイス番号	0

FA シリーズ (CPU 直結の場合)

GP Ø	GPの設定		の設定
伝送速度	9600bps	伝送速度	9600bps
データ長	8bit	データビット	8bit
ストップビット	1bit	ストップビット	1bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式 (RS-232C使用時)	RS-232C		
通信方式 (RS-422使用時)	4線式		
号機No.	0	デバイス番号	0

MICRO³(マイクロキューブ)

GPの	設定	ローダポートの設定	
伝送速度	9600bps	伝送速度	9600bps
データ長	7bit	データビット	7bit
ストップビット	1bit	ストップビット	1bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式 (パソコンリンクI/F ケーブルFC2A-KC1 使用時)	RS-232C		
通信方式 (RS-422使用時)	2線式		
号機No.	0	局番	0

・上記のPLC側の設定は、基本設定モードの設定と同じです。GP やローダと接続する場合は、基本設定モード(モード切替入 力番号の端子がOFFの状態)で通信できます。通信設定を変 更するときは、任意設定モード(モード切り替え入力番号の 端子がONの状態)にしてください。

2.16 Siemens 製 PLC

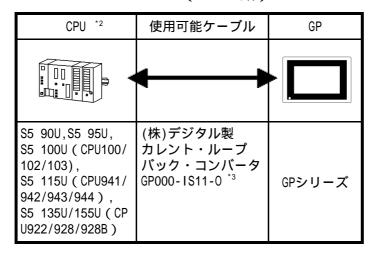
2.16.1 システム構成

Siemens 製 PLC と GP を接続する場合のシステム構成を示します。

<結線図>は2.16.2 結線図をご参照ください。

SIMATIC S5 シリーズ (リンク I/F < 3964/3964R プロトコル > 使用)

CPU	リンクI/F	結線図	GP
			
S5 90U,S5 95U, S5 100U	CP521 SI	RS-232C <結線図1>	
S5 115U	CP524 CP525		
S5 115U (CPU944)	CPUユニット上の リンクI/F 1		GPシリーズ
S5 135U,S5 155U	CP524 CP525		
S5 135U,S5 155U (CPU928B)	CPUユニット上の リンクI/F 1		


*1 SI2ポートに接続します。

3964、3964Rの両プロトコルをサポートしています。 (GPでは自動的に判別します)

エラー検出がより良いため、3964Rをおすすめします。

SIMATIC S5シリーズ (CPU 直結)

^{*2} プログラミングポートに接続します。

^{*3} GP-270/GP-370/GP-377/GP-377R シリーズには、コネクタケースのサイズ上使用できません。

SIMATIC S7-200シリーズ (CPU 直結)

- HタグとSタグの「起動後読み出し」の設定は使用できません。
- トレンドグラフの一括表示の時にワードアドレスにPLCのデバイスアドレスを指定するこ とはできません。
- *1 このPLCタイプをGP-37W/GP-377/GP-377Rシリーズでは使用できません。

SIMATIC S7-300/400シリーズ (CPU 直結 <MPI ポート使用 >)

CPU	アダプタ	結線図	GP
	=		
CPU312IFM, CPU313, CPU314, CPU315,	HMIアダプタ 6ES7-972-0CA10-0XA0	RS-232C <結線図3>	
CPU315-2DP, CPU413-2DP	PCアダプタ 6ES7-972-0CA21-0XA0	RS-232C <結線図3>	*2 GPシリーズ
	PC/MPIケープル 6ES7901-2BF00-0AA0	RS-232C <結線図4>	

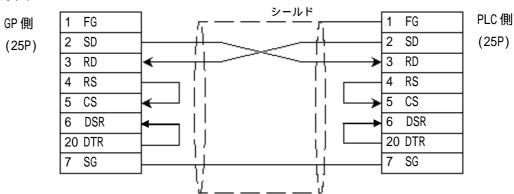
重 要 *2 このPLCタイプをGP-37W/GP-377/GP-377Rシリーズでは使用できません。

SIMATIC S7-300/400シリーズ (リンクI/F<3964/RK512プロトコル>使用)

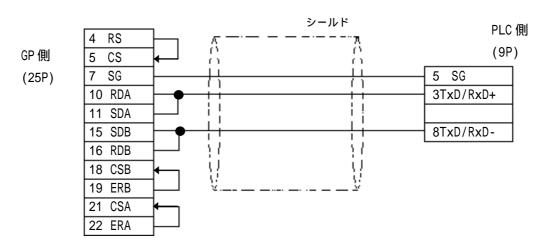
CPU	リンクI/F	結線図	GP
CPU313, CPU314, CPU315,	CP340 *3	RS-232C <結線図5>	
CPU315-2DP	CP341		*4 GPシリーズ
CPU413-2DP	CP441-2	RS-422 <結線図6>	いアンリース

CPU312IFMでは、このドライバを使用することができません。

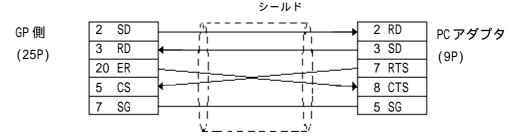
- 重要 *3 CP340リンクI/Fを使用する場合は、PLCに'Interpreter Program'をインス トールする必要があります。このプログラムはGP-PRO/PB for WindowsのCD-ROM の 'CP340'というフォルダの中にあります。このフォルダにある 'README' ファイルをお読みになってからインストールしてください。
 - *4 このPLCタイプをGP-37W/GP-377/GP-377Rシリーズでは使用できません。

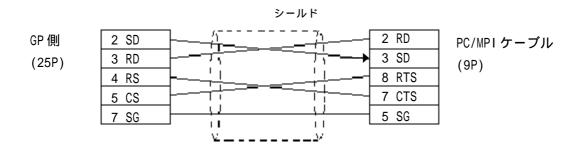

2.16.2 結線図

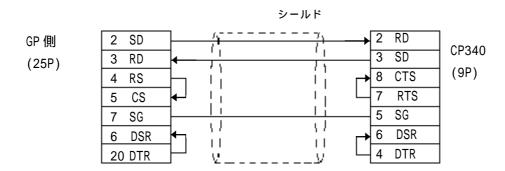
以下に示す結線図とSiemensの推奨する結線図が異なる場合がありますが、以下に示す結線図でも動作上問題はありません。

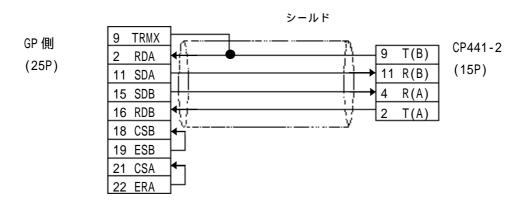

強制 ・ PLC 本体の FG 端子は、D 種接地を行ってください。

- 重要・シールド線へのFGの接続は、設置環境によってPLC側、GP側の どちらかを選択してください。コネクタフードを使ってFGを落 とす場合は導電性のあるものをお使いください。(結線例はPLC 側に接続した場合の図です。)
 - ・ RS-232C接続の場合は、ケーブル長は15m以内にしてください。
 - ・ 通信ケーブルを結線する場合は、必ずSGを接続してください。




< 結線図2 > RS-422


< 結線図3 > RS-232C


< 結線図4 > RS-232C

< 結線図5 > RS-232C

<結線図6 > RS-422

2.16.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。

SIMATIC S5シリーズ(リンク I/F 使用)

| は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考
データレジスタ		D003000 ~ D255255	B i t F) *1*2
拡張データレジスタ		X003000 ~ X255255	Bit F) *1*2

- *1 データレジスタ、拡張データレジスタは使用範囲をPLCで割り付ける必要があります。システムエリアに指定した範囲が割り付けられていないときは、GPと通信が行えません。
- *2 データレジスタ、拡張データレジスタは次のように表記します。

重要 ・ データブロックにまたがって連続になるようなタグを設定しない でください。設定すると上位通信エラー(02:14)が表示されます。

< 例 >

誤正

N タグ1D003255N タグ1D003255N タグ2D004000N タグ2D004001

SIMATIC S5シリーズ (CPU 直結)

したは、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考
入力リレー	10000 ~ 11277	IW000 ~ IW126	<u>÷ 2</u>) *3
出力リレー	Q0000 ~ Q1277	QW000 ~ QW126	÷ 2 *3 H/
内部リレー	F0000 ~ F2557	FW000 ~ FW254	÷ 2 *3
タイマ		T000 ~ T255	L/
カウンタ		C000 ~ C255	
データレジスタ		D002000 ~ D255255	B i t F 1*4 H/
拡張データレジスタ		X002000 ~ X255255	Bit F] *1*4*5

*3 ビットデバイスは、PLC側の表記と異なります。

<例>

GP側表記	PLC側表記
Q0007	Q0.7

*4 データレジスタ、拡張データレジスタは次のように表記します。

<例> D002 000 Data Word (DW)番号 000 ~ 255 Data Block (DB)番号 002 ~ 255

*5 拡張データレジスタは、S5 135U/155U のみ使用可能です。

ビット書き込み処理のGPタイプによる違いに関しては、P2-16-8「環境設定例」のメモを参照してください。

SIMATIC S7-200シリーズ

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考
入力	100 ~ 177	IWO ~ IW6	*1*2
出力	Q00 ~ Q77	QW0 ~ QW6	*1*2
内部メモリ	M000 ~ M317	MW00 ~ MW30	*1*2
特殊メモリ	SM000 ~ SM857	SMW00 ~ SMW84	*1*2
タイマビット	T000 ~ T127		H/L
カウンタビット	C00 ~ C63		
変数ビット		VW0000 ~ VW4094	*1
タイマワード		T000 ~ T127	
カウンタワード		C000 ~ C127	

SIMATIC S7-300/400シリーズ (CPU 直結 <MPI ポート使用 >)

| は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考	
入力	E000000 ~ E001277	EW00000 ~ EW00126	*1*2	
出力	A00000 ~ A001277	AW00000 ~ AW00126	*1*2	
内部ビット	M00000 ~ M002557	MW00000 ~ MW00254	*1*2	
データブロック	DB01W000000 ~ DB60W655357	DB01W00000 ~ DB60W65534	*1*2*3	H/L
タイマワード		T00000 ~ T00127		
カウンタワード		C00000 ~ C00063		

^{*1} ビットアドレスのワード指定は偶数アドレスを設定します。 例) MW0,2,4...

^{*2} 最後に入力された数字の桁がビットの位置を表します。ここでは . 'などの記号は使用できません。例えば、13.7 と入力した場合、GP-PRO/PB では 137 と認識します。

^{*3} アドレスの割り付け方法はGP-PRO/PB とS7-300シリーズとでは入力の方法が異なります。例 えば、DB63W00020と入力すれば、DB63.DBW20と認識します。

SIMATIC S7-300/400シリーズ (3964/RK512使用)

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考	
データメモリ		D01W000 ~ D60W254	*1*2*3	H/L

GPとの通信でPLCのBlock Check Character (BCC)の使用/不使用を設定できま す。これは、GPのオフラインモード、もしくはGP-PRO/PB 作画ソフトのGPシステムの設 定で「モードの設定」のオプションで設定できます。

^{*1} DB2、DB3、DB5、DB10は3964Rのinterpreter program用にリザーブされているデータブロックです。

^{*2} ビットアドレスのワード指定は偶数アドレスを設定します。 例) MW0,2,4...

^{*3} アドレスの割り付け方法はGP-PRO/PB とS7-300シリーズとでは入力の方法が異なります。例 えば、DB63W00020と入力すれば、DB63.DBW20と認識します。

2.16.4 環境設定例

(株)デジタルが推奨するPLC側の通信設定とそれに対応するGP側の通信設定を示します。

SIMATIC S5 シリーズ (リンク I/F 使用の場合)

GPの	設定	リンクロ	/Fの設定
伝送速度	19200bps	Baud rate	19200bps
データ長	8bit	Data length	8bit
ストップビット	1bit	Stop bits	1bit
パリティビット	偶数	Parity bit	EVEN
制御方式	ER制御		
通信方式 (RS-2320使用時)	RS-232C		
通信方式 (RS-422使用時)	4線式		
号機No.	0(固定)		

SIMATIC S5 シリーズ (CPU 直結の場合)

GPの	設定	PLC側の設定
伝送速度	9600bps (固定)	
データ長	8bit (固定)	
ストップビット	1bit (固定)	
パリティビット	偶数(固定)	
制御方式	ER制御(固定)	
通信方式	RS-232C(固定)	
号機No.	0 (固定)	

< GP オフラインモードの初期設定時の「システムエリア先頭アドレス」指定について>
SYSTEM DATA AREA START DB は、データレジスタのDate Block(DB)番号を設定してください。SYSTEM DATA AREA START DW は、データレジスタのData Word(DW)番号を設定してください。設定範囲は、「2-16-3 使用可能デバイス」を参照してください。

リンク I/F 使用の場合、GP オフラインモードの初期設定「動作環境の設定」画面では、DB の前に番号が表記されていますが、これは将来拡張用ですので設定する必要はありません。

- ・ GP-*30 系と GP-*50 系と GP70 シリーズでは、ビット書き込み の方法が異なります。
- ・ GP-*30系・・・ビット書き込み(「反転」以外)を行うと、該当するワードアドレスは指定したビット以外をすべてクリア(0)します。

禁止・ GP-*50系とGP70シリーズ・・・ビット書き込みを行うと、いったんGPがPLCの該当するワードアドレスを読み込み、読み込んだワードアドレスにビットを立ててPLCに戻します。GPがPLCのデータを読み込んで返す間に、そのワードアドレスへ、ラダープログラムで書き込み処理を行うと、正しいデータが書き込めない場合があるのでご注意ください。

GP-*30系のラダープログラムをGP70シリーズで流用するときは、これらの点にご注意ください。

SIMATIC S7-200シリーズ

GPの設定		リンクI/Fの設定
伝送速度	9600bps	
データビット	8bit	
パリティビット	偶数	
ストップビット	1bit	
制御方式	ER制御	
通信方式	RS422 2線式	
GP番号	1	
PLC番号	2	2

SIMATIC S7-300/400 シリーズ(CPU 直結 <MPI ポート使用 >)

GPの設	定	リンクI/Fの設定
伝送速度	19200bps	
データビット	8bit	
パリティビット	奇数	
ストップビット	1bit	
制御方式	ER制御	
通信方式	RS232C	

MPIの設定	(この設定は作画ソフトの「モードの設定」の 「オプション」メニューから設定できます。)
ローカルノードアドレス (GPアドレス)	0 ~ 126
ターゲットノードアドレス (PLCアドレス)	0 ~ 126
最大ノード	15/31/63 or 126

- ・GPのノードアドレスはPLCのMPIノードアドレスと重複しないようにしてください。
- ・最大ノードパラメータは使用するPLCのノードアドレスに相当します。例えばPLCの ノードアドレスが16の場合は最大ノードパラメータは31になります。GPノードアドレ スは最大ノードと同等かそれ以下になります。

SIMATIC S7-300シリーズ(3964/RK512プロトコル使用)

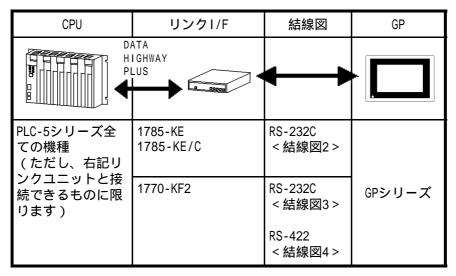
GPの設定		リンクI/Fの設定	
伝送速度	19200bps		
データビット	8bit		
パリティビット	偶数		
ストップビット	1bit		
制御方式	ER制御		
通信方式	RS232C		

MEMO・ GPとの通信でPLCのBlock Check Character (BCC)の使用/不使用を設定できま す。これは、GPのオフラインモード、もしくはGP-PRO/PB 作画ソフトのGPシステムの設 定で「モードの設定」のオプションで設定できます。

SIMATIC S7-400シリーズ(3964/RK512プロトコル使用)

GPの設定		リンクI/Fの設定
伝送速度	19200bps	
データビット	8bit	
パリティビット	偶数	
ストップビット	1bit	
制御方式	ER制御	
通信方式	RS422	

2.17 Rockwell (Allen-Bradley) PLC


2.17.1 システム構成

Rockwell (Allen-Bradley) PLC と GP を接続する場合のシステム構成を示します。 < 結線図 > は2.17.2 結線図をご参照ください。

AB SLC500 シリーズ (CPU ユニット上のリンク I/F 使用)

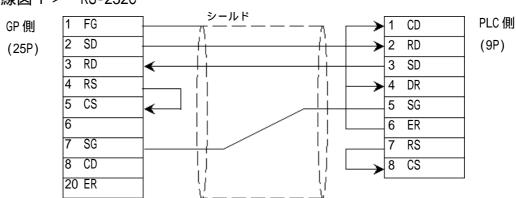
CPU	結線図	GP
(B) (B)	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
SLC-5/03 SLC-5/04	RS-232C <結線図1>	GPシリーズ

AB PLC-5シリーズ (リンク I/F 使用)

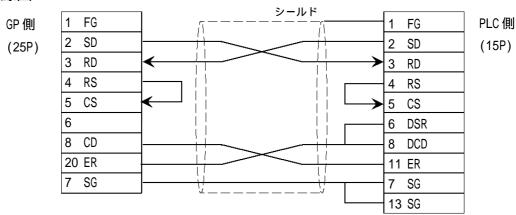
AB PLC-5シリーズ (CPU 直結)

CPU *1	結線図	GP	
	\longleftrightarrow	-	
PCL-5/11	RS-232C		
PLC-5/20	<結線図3>		
PLC-5/30			
PLC-5/40		GPシリーズ	
PLC-5/40L	RS-422		
PLC-5/60	<結線図5>		
PLC-5/60L			

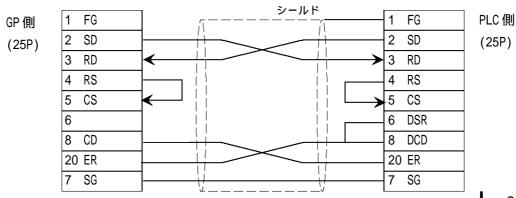
^{*1} Channel 0(CHO)に接続します。


2.17.2 結線図

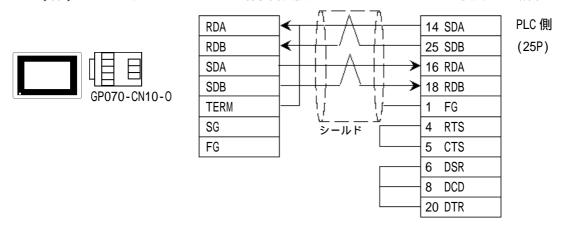
以下に示す結線図とRockwell (Allen-Bradley) の推奨する結線図が異なる場合があります が、以下に示す結線図でも動作上問題はありません。


強制 ・ PLC 本体の FG 端子は、D 種接地を行ってください。

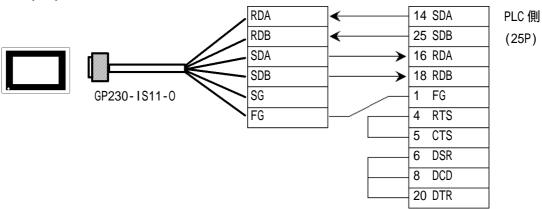
- 重要・ シールド線へのFGの接続は、設置環境によってPLC側、GP側の どちらかを選択してください。
 - ・ RS-232C接続の場合は、ケーブル長は15m以内にしてください。
 - ・ 通信ケーブルを結線する場合は、必ずSGを接続してください。
 - ・ RS-422接続の場合、ケーブル長はRock Wellのマニュアルを参 照してください。


< 結線図1 > RS-232C

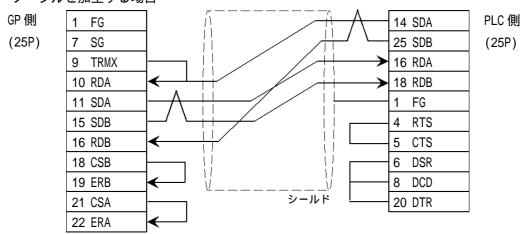
<結線図2> RS-232C



< 結線図3 > RS-232C

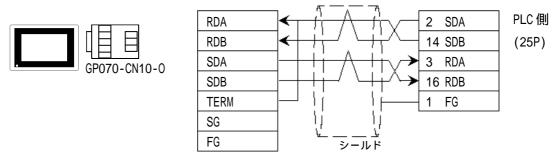


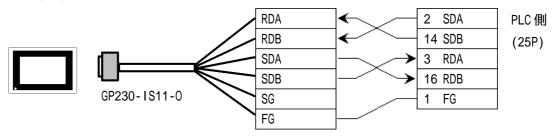
<結線図4 > RS-422


・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

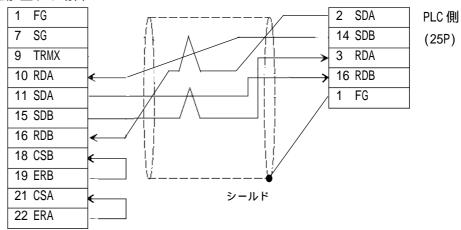
・(株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合

・ ケーブルを加工する場合




- GP側シリアル I/Fの9番ピンと10番ピンを接続することにより、RDA-RDB間に100 の終端抵抗が挿入されます。
- ・ RS-422接続の場合、ケーブル長はRockwell (Allen-Bradley) のマニュアルを参照してください。

<結線図5 > RS-422


・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

・(株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合

・ ケーブルを加工する場合

- ・ GP側シリアルI/Fの9番ピンと10番ピンを接続することにより、RDA-RDB間に100 の終端抵抗が挿入されます。
- ・ RS-422接続の場合、ケーブル長はRockwell (Allen-Bradley) のマニュアルを参照してください。

2.17.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。

AB SLC500シリーズ

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考
ビット	B0030000 ~ B003255F B0100000 ~ B255255F	B003000 ~ B003255 B010000 ~ B255255	H/L
タイマ(TT:タイミン グビット)	TT0040000 ~ TT0042550 TT0100000 ~ TT2552550		*1
タイマ (DN:完了ビット)	TN0040000 ~ TN0042550 TN0100000 ~ TN2552550		*1
タイマ (PRE:設定値)		TP004000 ~ TP004255 TP010000 ~ TP255255	*2
タイマ (ACC:現在値)		TA004000 ~ TA004255 TA010000 ~ TA255255	*2
カウンタ (CU:アップ カウント)	CU0050000 ~ CU0052550 CU0100000 ~ CU2552550		*1 L/H
カウンタ (CD:ダウン カウント)	CD0050000 ~ CD0052550 CD0100000 ~ CD2552550		*1
カウンタ (CN:完了ビット)	CN0050000 ~ CN0052550 CN0100000 ~ CN2552550		*1
カウンタ (PRE:設定値)		CP005000 ~ CP005255 CP010000 ~ CP255255	*2
カウンタ (ACC:現在値)		CA005000 ~ CA005255 CA010000 ~ CA255255	*2
整数		N007000 ~ N007255 N010000 ~ N255255	<u>ві т</u> F) н/L

- *1 次頁の例 のように、末尾には必ず"0"を入力してください。
- *2 2ワード以上の連続したアドレスの読み出し、書き込みを行うと、他のデバイスに比べて読み出しに時間がかかり、全体的に表示更新速度が遅くなります。

- ファイル番号0~7は、ユーザー用のデフォルトファイルです。詳細はご利用のPLCのマニュアルをご参照ください。
- ・ PLCのデータテーブルマップに割り付けられていないデバイス を指定すると、上位通信エラー(02:10)が表示されます。
- ・ 入力リレー、出力リレーは、SLC500の仕様上直接読み出し、書き込みはできません。

PLC側で以下の処理を行ってください。

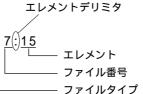
読み出し時 入力リレー、出力リレーのデータをラダー

プログラムでビットまたは整数に移動し、 ビットまたは整数を読み出してください。

書き込み時 データをビットまたは整数に書き込んでか

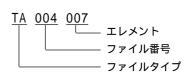
らラダープログラムで入力リレー、出力リ

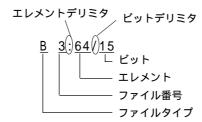
レーに移動してください。

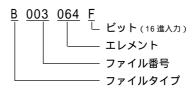

Rockwell (Allen-Bradley) 製 PLC では、各デバイスデータ はエレメントから構成されますが、「GP-PRO/PB」ではエレメ ントと呼ばれる概念はありません。デバイスを入力するときは、 次に示す例のように入力してください。

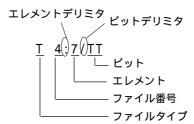


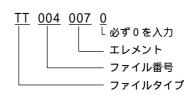
GP-PRO/PB での入力


エレメント指定の場合




ワード指定の場合





ビット指定の場合

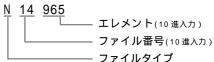
AB PLC-5シリーズ

は、システムエリアに指定可能

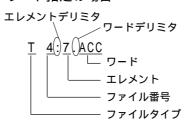
デバイス	ビットアドレス	ワードアドレス	備考
入力リレー	100000 ~ 127717	1000 ~ 1277	<u>÷8</u>]
出力リレー	000000 ~ 027717	0000 ~ 0277	÷ 8)
内部リレー	B300000 ~ B6799915	B3000 ~ B67999	
タイマ(TT:タイミン グビット)	TT3000 ~ TT67999		
タイマ (TD:完了ビット)	TD3000 ~ TD67999		
カウンタ (CC:カウント)	CC3000 ~ CC67999		
カウンタ (CD:完了ビット)	CD3000 ~ CD67999		L/H
タイマ (ACC:現在値)		TA3000 ~ TA67999	L/II
タイマ (PRE:設定値)		TP3000 ~ TP67999	
カウンタ (ACC:現在値)		CA3000 ~ CA67999	
カウンタ (PRE:設定値)		CP3000 ~ CP67999	
データレジスタ Integer		N3000 ~ N67999	B : t15]
データレジスタBCD		D3000 ~ D67999	<u>ві 1</u> 5
データレジスタASCII		A3000 ~ A67999	_{в і 1} 5

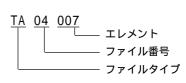
Rockwell (Allen-Bradley) PLCでは、各デバイスデータは エレメントから構成されますが、「GP-PRO/PB」ではエレメン トと呼ばれる概念はありません。デバイスを入力するときは、 次に示す例のように入力してください。

<例>

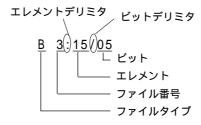

PLC での表記

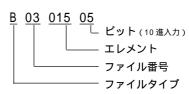
GP-PRO/PB での入力

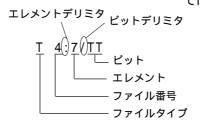

エレメント指定の場合

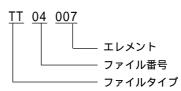


エレメントデリミタ




ワード指定の場合




ビット指定の場合

B301505 はB3/245 (ファイル番号の3の 245 ビット)と同じですが、GP-PRO/PB ではB3/245と入力できません。

・ 入力リレー、出力リレーはファイル番号はありません。 また、エレメントとビット番号は8進数です。 < 例 >

2.17.4 環境設定例

(株)デジタルが推奨する PLC 側の通信設定と、それに対応する GP 側の通信設定を示します。

AB SLC500シリーズ

GPの設定		PLC側の設定	
伝送速度	19200bps	Baud Rate	19200bps
データ長	8bits		
ストップビット	1bit		
パリティビット	偶数	Parity	EVEN
制御方式	ER制御		
通信方式	RS-232C		
		Communication Driver	DF1 HALF-DUPLEX SLAVE *1
		Duplicate Packet Detection	DISABLE *1
		Error Detection	BCC *1
		Control Line	NO HANDSHAKING *1
号機No.(DH GP)*2	0	Station Address *2	0

^{*1} これ以外の設定では動作しません。

^{*2} Station Address と GPの DH GPアドレスを同じ値 (アドレスは 10 進数です) に設定してください。DH PLCアドレスは設定する必要はありません。 参照 DHアドレスの設定方法

AB PLC-5シリーズ

GPの設定		CPU (CHO)、1785-KE、1770-KF2		
伝送速度	19200bps	Baud Rate	19200bps	
データ長	8bit (固定)	Data length	8bit (固定)	
ストップビット	1bit (固定)	Stop bit	1bit (固定)	
パリティビット	偶数	Parity bit	EVEN	
制御方式	ER制御			
通信方式 (RS-232C使用時)	RS-232C	RS-232C/422A Selec- tion(RS-232C使用時)	RS-232C	
通信方式 (RS-422使用時)	4線式	RS-232C/422A Selec- tion(RS-422使用時)	RS-422A	
		Comm. protocol	Half duplex (CHOの 場合はDF1 Slave) *1	
		Duplicate Detect	OFF *1	
		Error check	BCC *1	
		Control Line	NO HANDSHAKING *1	
		Other CHO parammeters	50	
		DF1 retries	3	
		Diag file	0(未使用ファイル)	
		RTS send delay	0	
		RTS off delay	0	
		Network link *2	Data highway plus	
号機No.(DH GP) ^{*3}	0	Station Address *4 *5 (1785-KE, 1770-KF2側)	0	
号機No. (DH PLC) *3	1	Station Address *4 (CPU側)	1	

- *1 これ以外の設定では動作しません。
- *2 KF2の設定です。
- *3 DH GPは1785-KE、1770-KF2のStation Addressと合わせてください。DH PLCはCPUのStation Addressと合わせてください。1785-KE、1770-KF2使用の場合、DH GPとDH PLCのアドレスは異なるNo.を設定してください。CPU直結の場合、DH GPとDH PLCアドレスは同じNo.を設定してください。DHアドレス(DH GP、DH PLC)はGPオフラインモードの初期設定「動作環境の設定」で設定します。10進数で設定してください。

参照 DH アドレスの設定方法

- *4 プログラミング機器を使用する場合は、Terminal Address(プログラミング機器のアドレス)とStation Addressが重ならないようにしてください。
- *5 CPU 直結の場合、この設定はありません。

・ CHO を使用するときは、CPUを「Slave」の設定にしてください。(「Point to Point」の設定にしないでください)

DHアドレスの設定方法

GPのオフラインモードで初期設定時に「動作環境の設定」を行ってください。

「初期設定」を選択します。

「動作環境の設定」を選択します。

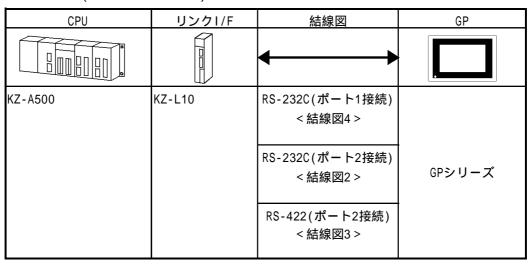
「動作環境の設定」を選択します。

各 M アドレスの設定を行ってください。

2.18 (株)キーエンス製 PLC

システム構成 2.18.1

(株)キーエンス製PLCとGPを接続する場合のシステム構成を示します。 <結線図>は2.18.2 結線図をご参照ください。

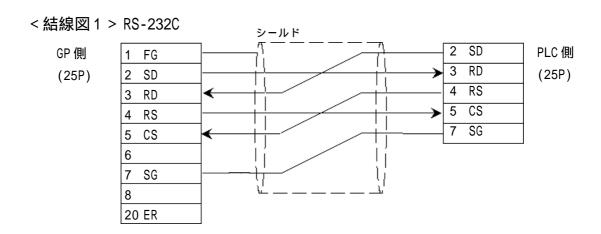

KZ-300 シリーズ (リンク I/F 使用)

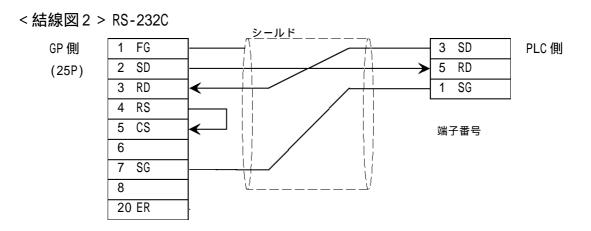
CPU	リンクI/F	結線図	GP
	パソコンリンク ユニット	ightharpoonup	<u> </u>
KZ-300 KZ-350	KZ-L2	RS-232C (ポート1接続) <結線図1 > RS-232C (ポート2接続) <結線図2 > RS-422 (ポート2接続) <結線図3 >	GPシリーズ

 $\underline{\mathsf{MEMO}}$ ・ ポート 1、ポート 2 に GP を同時接続できます。 同時接続の場合、ポート1とポート2の通信設定は同じになり ます。

KZ-A500(リンク I/F 使用)

重要 ・ ポート1(RS-232C)とポート2(RS-232C もしくはRS-422)及びCPU ユニッ ト上のモジュラーコネクタを同時に使用して通信することもできます。

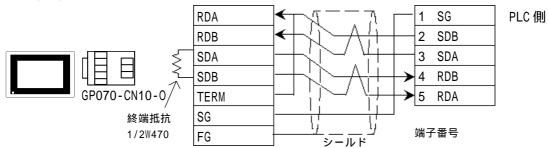

KZ-A500(CPU 直結)


CPU	ケーブル	コネクタ	GP
	ソケットロンケットロ		
KZ-A500	使用可能ケーブル (株)キーエンス製 OP-26487	(株)キーエンス製 OP-26485	GPシリーズ

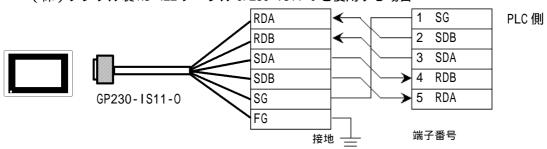
2.18.2 結線図

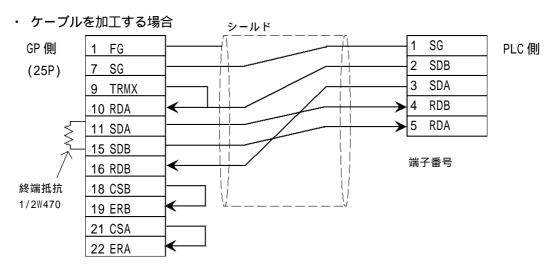
以下に示す結線図と(株)キーエンスの推奨する結線図が異なる場合がありますが、以下に示す結線図でも動作上問題はありません。

- 強制 ・ シールド線へのFGの接続は、GP側を接続してください。
 - ・ RS-232C 接続の場合は、ケーブル長は 15m 以内にしてください。
 - ・ 通信ケーブルを結線する場合は、必ずSGを接続してください。
 - ・ RS-422接続の場合、ケーブル長は(株)キーエンスのマニュアルを参照してください。



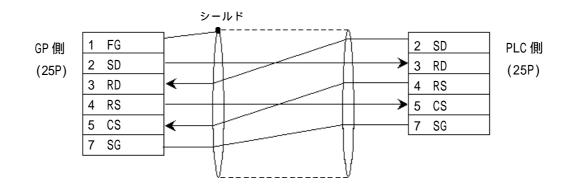
<結線図3 > RS-422


- 強制 ・ PLC側の終端抵抗スイッチをONにしてください。
 - ・ PLC 側の TERMINATOR を ON にしてください。(KZ-A500 の場合)



- ・ GPとPLCとでは、A極とB極の呼称が逆になっていますのでご 注意ください。
- ・(株)デジタル製RS-422コネクタ端子台変換アダプタGP070-CN10-0を使用する場合

・(株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合



- 接続ケーブルとして平河電線製H-9293A(CO-HC-ESV-3P*7/ 0.2)を推奨します。
- ・ GP側シリアル I/Fの9番ピンと10番ピンを接続することにより、RDA-RDB間に100 の終端抵抗が挿入されます。
- ・ RS-422接続の場合、ケーブル長は(株)キーエンスのマニュアルを参照してください。

<結線図4 > RS-232C (ポート1)

- ・ RS-232C接続の場合は、ケーブル長は15m以下にしてください。
- ・ RS-422接続の場合は、ケーブル長は500m以下にしてください。

2.18.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。

KZ-300/KZ-350 シリーズ

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考	
\ +	00000 ~ 0009	00 ~ 00		
入力リレー	7000 ~ 17415	70 ~ 174	*1	
出力リレー	0500 ~ 0503	05 ~ 05		
шл о Б —	7500 ~ 17915	75 ~ 179	*2	
補助リレー	0504 ~ 0915			
内部補助リレー	1000 ~ 6915	10 ~ 69		
特殊補助リレー	2000 ~ 2915	20 ~ 29		L/H
タイマ (接点)	T000 ~ T249			
カウンタ(接点)	C000 ~ C249			
タイマ (現在値)		T000 ~ T249		
カウンタ (現在値)		C000 ~ C249		
データメモリ		DM0000 ~ DM9999	B i t 15)	
テンポラリ データメモリ		TM00 ~ TM31	B i t 15)	

*1 表に示した範囲で、ビットアドレスは *000 ~ *400番台、ワードアドレスは *0 ~ *4が使用可能です。

ビットアドレス
7000番台
7100番台~7400番台
8000番台
8100番台~8400番台
17000番台~17400番台

ワードアドレス	
70	
71 ~ 74	
80	
81 ~ 84	
170 ~ 174	

*2 表に示した範囲で、ビットアドレスは*500 ~ *900番台、ワードアドレスは*5 ~ *9が使用可能です。

ビットアドレス
7500番台
7600番台~7900番台
8500番台
8600番台~8900番台
17500番台~17900番台

ワート	「アドレス
	75
7	6 ~ 79
	85
8	6 ~ 89
17	5 ~ 179

KZ-A500(CPU 直結)

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考
入力リレー	X0000 ~ X07FF	X0000 ~ X07F0	<u>***</u> 0)
出力リレー	Y0000 ~ Y07FF	Y0000 ~ Y07F0	<u>***</u> 0
内部リレー	M0000~M8191	M0000 ~ M8176	<u>÷16</u>)
保持リレー	L0000 ~ L8191		
特殊リレー	M9000 ~ M9255	M9000 ~ M9240	<u>÷16</u>)
アナンシェータ	F0000 ~ F2047	F0000 ~ F2032	<u>÷16</u>)
リンクリレー	B0000 ~ B0FFF		
タイマ(接点)	TS0000 ~ TS2047		
タイマ (コイル)	TC0000 ~ TC2047		L/H
カウンタ(接点)	CS0000 ~ CS1023		
カウンタ (コイル)	CC0000 ~ CC1023		
タイマ (現在値)		TN0000 ~ TN2047	
カウンタ(現在値)		CN0000 ~ CN1023	
データレジスタ		D0000 ~ D6143	B : t 15)
特殊レジスタ		D9000 ~ D9255	B : t 15)
リンクレジスタ		W0000 ~ W0FFF	Bit F)
ファイルレジスタ		R0000 ~ R8191	B : t 15]

KZ-A500(リンク I/F 使用)

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考	
入力リレー	X0000 ~ X07FF	X0000 ~ X07F0	*** 0	
出力リレー	Y0000 ~ Y07FF	Y0000 ~ Y07F0	*** 0	
内部リレー	M0000 ~ M8191	M0000 ~ M8176	<u>÷16</u>	
ラッチリレー	L0000 ~ L8191	L0000 ~ L8176	<u>÷16</u>)	
リンクリレー	B0000 ~ B0FFF			
アナンシェータリレー	F0000 ~ F2047	F0000 ~ F2032	<u>÷ 16</u>)	
特殊リレー	M9000 ~ M9255	M9000 ~ M9240	<u>÷16</u> j	
タイマ (接点)	TS0000 ~ TS2047			
タイマ (コイル)	TC0000 ~ TC2047			L/H
カウンタ(接点)	CS0000 ~ CS1023			
カウンタ (コイル)	CC0000 ~ CC1023			
タイマ (現在値)		TN0000 ~ TN2047		
カウンタ(現在値)		CN0000 ~ CN1023		
データレジスタ		D0000 ~ D6143	B i t 15)	
リンクレジスタ		W0000 ~ W0FFF	B i t F	
ファイルレジスタ		R0000 ~ R8191	B i t 15]	
特殊レジスタ		D9000 ~ D9255	B i t 15]	

2.18.4 環境設定例

(株)デジタルが推奨するPLC側の通信設定と、それに対応するGP側の通信設定を示します。

KZ-300/350 シリーズ

GPの設定		パソコンリンクユニットの設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	7bit	データ長	7bit
ストップビット	2bit	ストップビット	2bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式 (RS-232C使用時)	RS-232C	ポート2切り替えスイッチ (RS-232C使用時)゚¹	RS-232C
通信方式 (RS-422使用時)	4線式	ポート2切り替えスイッチ (RS-422使用時) ^{*1}	RS-422A
		運転モード	リンクモード
号機No.	0	局番号	0

^{*1} ポート1使用時は、設定の必要はありません。

KZ-A500(CPU 直結)

GPの設定		PLC側の設定
伝送速度	9600bps	
データ長	8bit (固定)	
ストップビット	1bit (固定)	
パリティビット	奇数 (固定)	
制御方式	ER制御	
通信方式 (RS-232C使用時)	RS-232C	
号機No.	0 (固定)	

Ä

注 意 ・ PLCプログラムのサイクルタイムに与える影響

CPU 直結の場合、GP との通信が始まると、PLC プログラムのサイクルタイムが約8%程遅くなります。ご確認の上ご使用ください。

KZ-A500(リンク I/F 使用)

GPの	設定	PLC側の設定		
通信速度	19200bps *1	ボーレート	19200bps	
データ長	7bit	データ長	7bit	
ストップビット	1bit	ストップ	1bit	
パリティビット	無	パリティビット	無	
制御方式	ER制御			
通信方式	RS232C	RS-232C通信ポート	ポート1またはポート2	
(RS-232C使用時)			*2	
通信方式	4線式	RS-422通信ポート	ポート2	
(RS-422使用時)			*3	
	—	通信の種類	ノーマル通信	
	_		許可	
		チェックサム	有	
		動作モード	プロトコルモード4	
号機No.	0	STATION No.	0	

- *1 通信速度は、最高 38400bpsまで使用することができます。
- *2 ポート2でRS-232C通信をおこなう場合は、INTERFACEのスイッチを「232C」の設定(右側)に しにして下さい。また、TERMINATORは必要ありませんのでスイッチをOFFに設定しておいてくだ さい。
- *3 RS-422通信をおこなう場合は、INTERFACEのスイッチを「422」の設定(左側)にしてください。 また、TERMINATORのスイッチをONに設定してください。

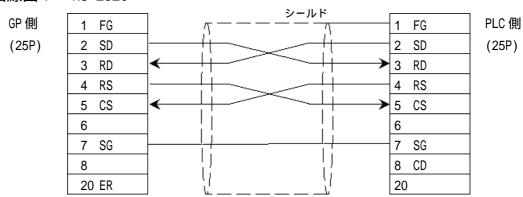
2.19 神鋼電機(株)製PLC

2.19.1 システム構成

神鋼電機 (株)製 PLC と GP を接続する場合のシステム構成を示します。 <結線図 > は2.19.2 結線図をご参照ください。

SELMART シリーズ (リンク I/F 使用)

CPU	リンクユニット	結線図	GP
	リンクモジュール	+	
SELMART	UC1-6	RS-232C <結線図1>	GPシリーズ


2.19.2 結線図

以下に示す結線図と神鋼電機(株)の推奨する結線図が異なる場合がありますが、以下に示す 結線図でも動作上問題はありません。

強制 ・ PLC本体のFG端子はD種接地を行ってください。 詳細はPLCのマニュアルをご参照ください。

- 重要 · シールド線へのFGは、設置環境によってPLC側、GP側のどちら かを選択してください。コネクタフードを使ってFGを落とす場 合は導電性のあるものをお使いください。(結線例はPLC側に接 続した図です。)
 - ・ RS-232C接続の場合は、ケーブル長は15m以内にしてください。
 - ・ 通信ケーブルを結線する場合は、必ずSGを接続してください。

< 結線図1 > RS-232C

2.19.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。

SELMART シリーズ

は、システムエリアに指定可能

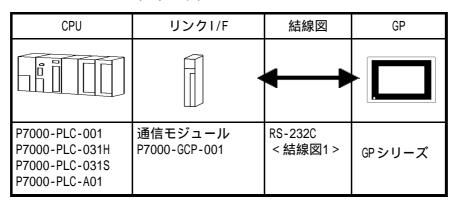
デバイス	ビットアドレス	ワードアドレス 備考	
データレジスタ		D00000 ~ D09999	_{Ві т} 15] *1 L/Н

*1 データレジスタは、SELMARTのV変換上に割り付けられます。 (SELMART CPU カードにて設定します)。

2.19.4 環境設定例

(株)デジタルが推奨する PLC 側の通信設定と、それに対応する GP 側の通信設定を示します。

SELMART シリーズ

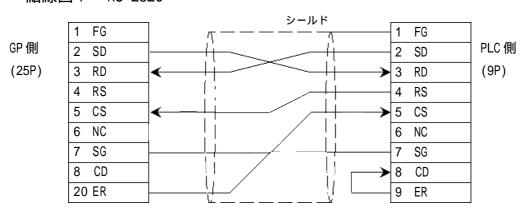

GPの設定		リンクモジュールの設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	7bit	データ長	7bit
ストップビット	1bit	ストップビット	1bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式	RS-232C		
号機No.	0	ユニットNo. 0	

2.20 松下電器産業(株)製PLC

2.20.1 システム構成

松下電器産業(株)製PLCとGPを接続する場合のシステム構成を示します。 <結線図>は2.20.2 結線図を参照ください。

Panadac P7000 シリーズ



2.20.2 結線図

以下に示す結線図と松下電器産業(株)の推奨する結線図が異なる場合がありますが、以下に示す結線図でも動作上問題はありません。

- 強制 ・ PLC本体のFG端子はD種接地を行ってください。 詳細はPLCのマニュアルをご参照ください。
- 重要・シールド線へのFGの接続は、設置環境によってPLC側、GP側のどちらかを選択してください。
 - ・ RS-232C接続の場合は、ケーブル長は15m以内にしてください。
 - ・ 通信ケーブルを結線する場合は、必ずSGを接続してください。

< 結線図1 > RS-232C

2.20.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。

Panadac P7000シリーズ

は、システムエリアに指定可能

	デバイス	ビットアドレス	ワードアドレス	備考
	入出力リレー	IN0000 ~ IN07FF	IN0000 ~ IN007F	
		0T0000 ~ 0T07FF	0T0000 ~ 0T007F	
	内部リレー	RL0000 ~ RL07FF	RL0000 ~ RL007F	
	保持リレー	KR0000 ~ KR03FF	KR0000 ~ KR003F	
ビッ	リンクリレー	LK0000 ~ LK07FF	LK0000 ~ LK007F	
トデ	ステータスリレー	ST0000 ~ ST01FF	ST0000 ~ ST001F	
バ	MCステータスリレー	MS0000~MS03FF	MS0000 ~ MS003F	
イス	タイマステートリレー	TS0000 ~ TS01FF	TS0000 ~ TS001F	
	タイマアップリレー	TU0000 ~ TU01FF	TU0000 ~ TU001F	
	カウントアップリレー	CU0000 ~ CU007F	CU0000 ~ CU0007	
	CPU入力リレー	C10000 ~ C101FF	C10000 ~ C1001F	*1
	CPU出力リレー	C00000 ~ C001FF	C00000 ~ C0001F	'
_	データメモリ	M00000 ~ M07FFF	M0000 ~ M07FF	
ワー	リンクレジスタ	LM00000 ~ LM07FFF	LM0000 ~ LM07FF	
ドデ	タイマ(設定値)		TM0000 ~ TM07FF	
バ	タイマ(現在値)		TC0000 ~ TC007F	
イス	カウンタ値		CT0000 ~ CT01FF	*2
	位置データ		PM0000 ~ PM07FF	*3

^{*1} CPUモジュール未接続時、内部リレーと同じ扱いになります。

^{*3 32} ビット長のデバイス NC モジュール未接続時、内部リレーと同じ扱いになります。

・ 2ワード(32ビットデータ)を使用する場合のアドレスの上下 関係は、次の通りです。

^{*2 32} ビット長のデバイス

2.20.4 環境設定例

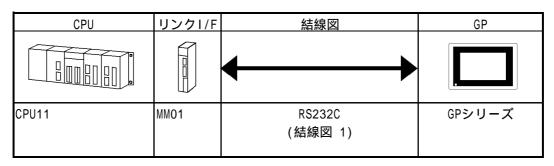
(株)デジタルが推奨する PLC 側の通信設定と、それに対応する GP 側の通信設定を示します。

Panadac P7000シリーズ

GPの設定		COMMモジュールの設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	8bit	コード長	8bit
ストップビット	1bit	ストップビット	1bit
パリティビット	無し	パリティビット ON/OFF EVEN/ODD 無し	
制御方式	ER制御		
通信方式	RS-232C		
号機No.	1	スレーブアドレスNo.	1
		モード	コマンドモード
		デリミタ	CR

禁止・ 号機 No. の設定は固定ですので、PLC 側では、設定できません。

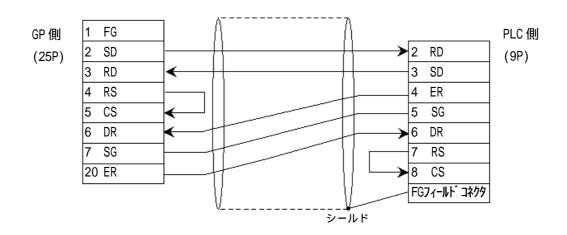
重要・ PLCとGP設定が違うと通信エラーが発生します。


強制 ・ GP側は必ずER制御に設定してください。

2.21 オリムベクスタ (株)製 PLC

2.21.1 システム構成

オリムベクスタ (株)製 PLC と GP を接続する場合のシステム構成を示します。 <結線図 > は2.21.2 結線図をご参照ください。


E1 シリーズ (リンク I/F 使用)

2.21.2 結線図

以下に示す結線図とオリムベクスタ(株)の推奨する結線図が異なる場合がありますが、以下 に示す結線図でも動作上問題はありません。

<結線図1 > RS-232C

MEMO

- ・ ケーブルは市販品はありませんので、加工してください。
- ・ RS-232C接続の場合は、ケーブル長は15m以内にしてください。

2.21.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。

E1 シリーズ

は、システムエリアに指定可能

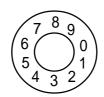
デバイス	ビットアドレス	ワードアドレス	備考	
入力レジスタ(1)	1000100 ~ 1000815	10001 ~ 10008		
ONイベント入力レジスタ(IU)	IU00100 ~ IU00815	IU001 ~ IU008	*2	
OFFイベント入力レジスタ(ID)	ID00100 ~ ID000815	ID001 ~ ID008	*2	L/H
出力レジスタ(0)	0000100 ~ 0000815	00001 ~ 00008		L/ II
アナログ入力レジスタ(AD)		AD001 ~ AD008	B i t 15 *2	
アナログ出力レジスタ(DA)		DA001 ~ DA008	B i t 15	
位置レジスタ(M)	M000100 ~ M010031	M0001 ~ M100	*3	
速度レジスタ低速(SL)		SL001 ~ SL100	B i t 31 *3	
速度レジスタ高速(SH)		SH001 ~ SH100	B i t 31 *3	H/L
速度レジスタ加速(SR)		SR001 ~ SR100	B i t 31 *3	
速度レジスタ減速(SD)		SD001 ~ SD100	B i t 31 *3	
汎用レジスタ (R)	R000100 ~ R100015	R0001 ~ R1000		
汎用倍長レジスタ(RD)	RD00100 ~ RD50031	RD001 ~ RD500	*3	L/H
ベースレジスタ(B)	B000000 ~ B000915	B0000 ~ B0009		
現在モータ位置(MP)		MP001 ~ MP008	B i t 31 *3 *2	H/L
現在モータステータス(MS)	MS00100 ~ MS00815	MS001 ~ MS008	*2	L/H
SYレジスタ(SY)	SY00100 ~ SY10015	SY001 ~ SY100	*1 *2	L/ II

^{*1} SY レジスタの詳細に関しては、オリムベクスタ (株)製モーションコントローラ E1シリーズの取扱説明書を参照してください。

^{*2} データの書き込みはできません。

^{*3 32} ビット長のデバイスです。

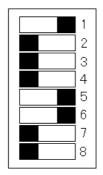
2.21.4 環境設定例


(株)デジタルが推奨するPLC側の通信設定と、それに対応するGP側の通信設定を示します。

E1 シリーズ

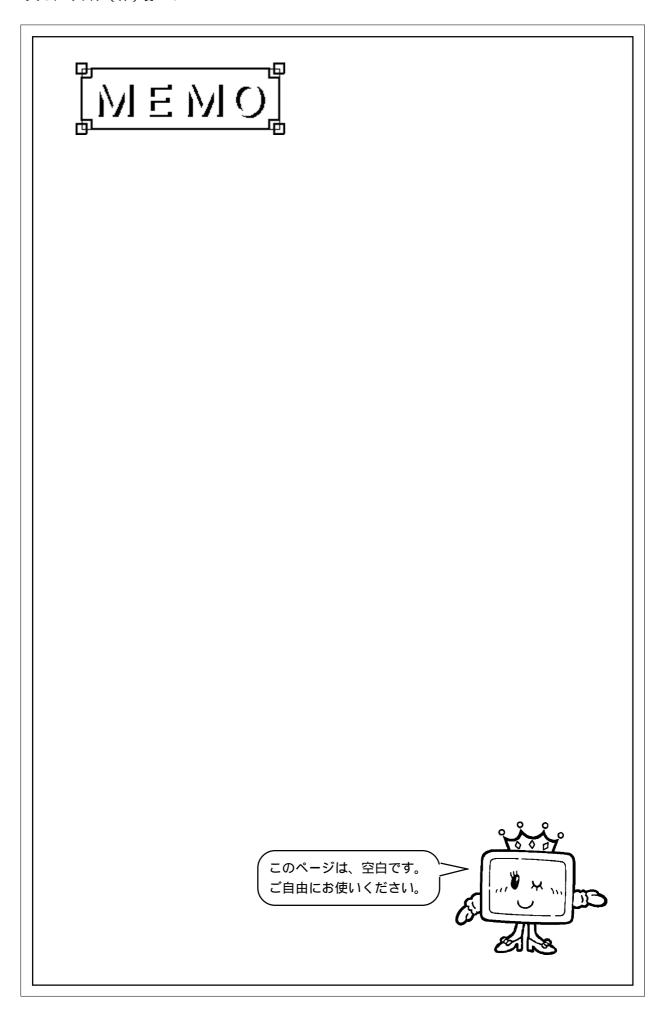
	GPの設定	PLC設定*1
伝送速度(bps)	9600 *2	9600
データ長	8	8
ストップビット	1	1
パリティビット	なし	なし
制御方式	ER制御	ER制御
通信方式:RS-232C	RS-232C	RS-232C(固定)
号機No	1(固定)	
チェックサム		あり
終端文字指定		あり
プロテクト機能		なし

*1 < PLC側の詳細設定 >


リンクユニットMM01の側面のロータリスイッチと ディップスイッチ(8連)により通信設定を行います。

ロータリスイッチ

設定	伝送速度(bps)	備考
0	300	
1	600	
2	1200	
3	2400	
4	4800	
5	9600	デフォルト値
6	19200	
7 ~ 9	設定不可	


OFF ON ディップスイッチ

番号	機能	OFF	ON	デフォルト	
1	データ長	7Ľ "yト	8Ľ "y ŀ	8Ľ "ŋト	ON
2	ハ゜リティ	なし	あり	なし	OFF
3		奇数	偶数		OFF
4	ストップ゜ヒ゛ット	1 L * y ŀ	2Ľ "yŀ	1Ľ "yト	OFF
5	チェックサム	なし	あり	あり	ON
6	終端文字指定	なし	あり	あり	ON
7	プロテクト機能	なし	あり	なし	OFF
8	(常時OFF)				0FF

重要 ・ チェックサム、終端文字指定は必ずON(あり)にしてください。

^{*2} 通信速度は、最高 19200bpsまで使用することができます。

2.22 (株)山武製 PLC

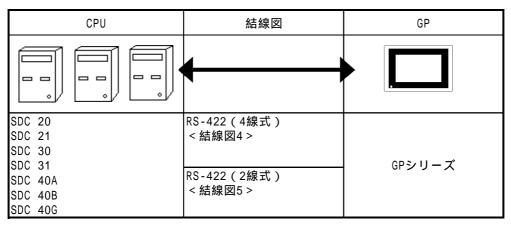
2.22.1 システム構成

(株)山武 調節計とGPを接続する場合のシステム構成を示します。

<結線図>は2.22.2 結線図をご参照ください。

重要

GP のシステムデータエリア(LSO ~ 19) について


GPのシステムエリア(20ワード)は調節計側の使用できるデータ領域に割り付けることはできません。GP-PRO/PB for Windows やGPのオフラインでシステムエリアの設定を行っても、調節計側の使用できるデータ領域に割り付けることはできませんのでご注意ください。

山武 SDC シリーズ

1:1接続の場合

CPU	結線図	GP
SDC 20 SDC 21 SDC 40A SDC 40B SDC 40G	RS-232C <結線図1>	
SDC 20 SDC 21 SDC 30	RS-422(4線式) <結線図 2 >	GPシリーズ
SDC 31 SDC 40A SDC 40B SDC 40G	RS-422(2線式) <結線図3>	

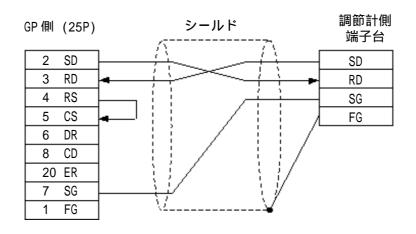
1:n(マルチドロップ)接続の場合

2.22.2 結線図

以下に示す結線図(株)山武の推奨する結線図が異なる場合がありますが、本書の結線図にて ご使用ください。

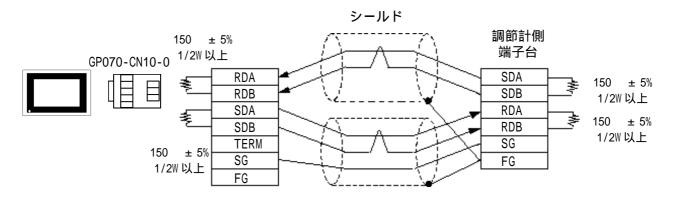
重要 コネクタフードを使ってFGを落とす場合は導電性のあるものを使用してください。調 節計本体のFG端子はD種接地を行ってください。詳細は調節計のマニュアルをご参照 下さい。シールド線へのFGの接続は、接地環境によって調節計側、GP側のどちらか を選択してください。(結線例は調節計側に接続した場合です。)

- 重要・RS-232Cでの最大ケーブル長は15mです。通信ケーブルを結線する場合は、必ず SGを接続してください。
 - ・RS-422 での最大ケーブル長は500mです。
 - ·RS-422 接続の場合、推奨するケーブルは以下の通りです。

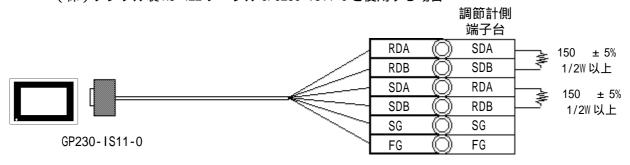

推奨ケーブル

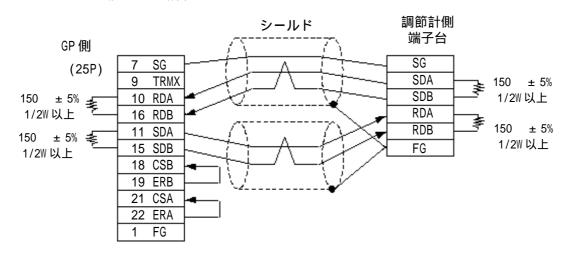
会社名		型式	
藤倉電線(株)	2心	$IPEV-S-0.9mm^2 \times 1P$	
	3心	$ITEV-S-0.9mm^2 \times 1T$	
日立電線(株)	2心	KPEV-S-0.9mm ² x 1P	
	3心	$KTEV-S-0.9mm^2 \times 1T$	

重要

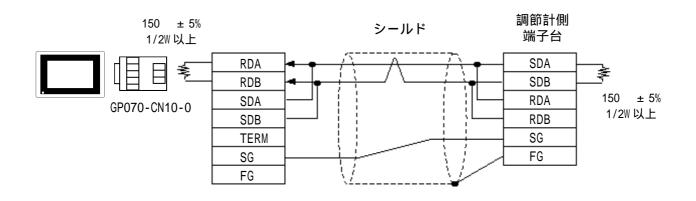

・調節計側の端子番号は付加機能の種類によって異なるため、調節計のマニュアル にて確認してください。

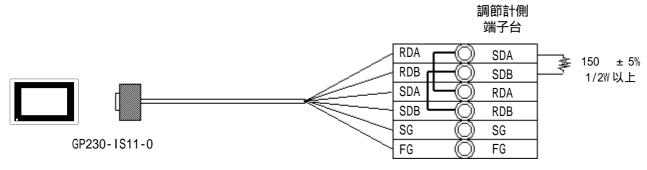
<結線図1>1:1 RS-232C

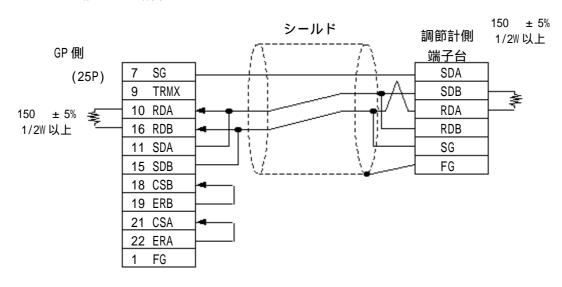



<結線図2>1:1 RS-422 4線式(5線式)

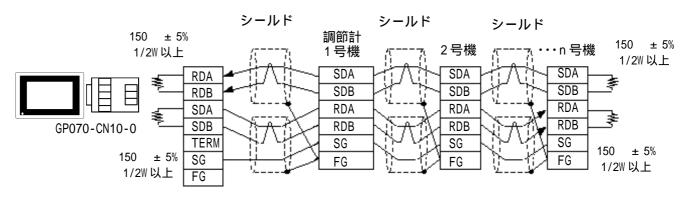
・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

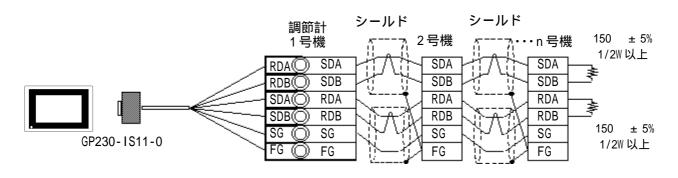

・(株)デジタル製RS-422ケーブルGP0230-IS11-0を使用する場合

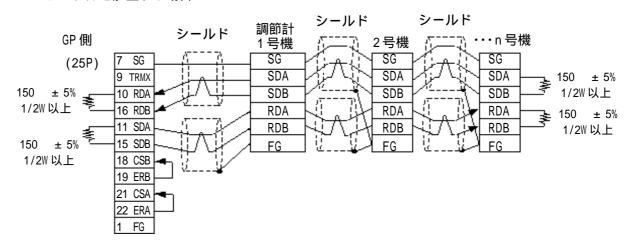



<結線図3>1:1 RS-422 2線式(3線式)

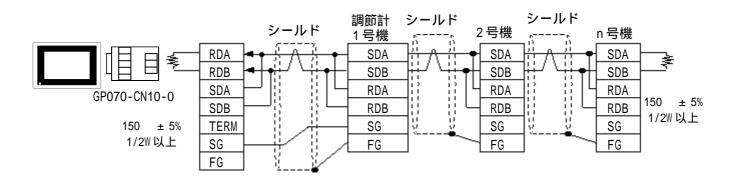
・デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合


・デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合

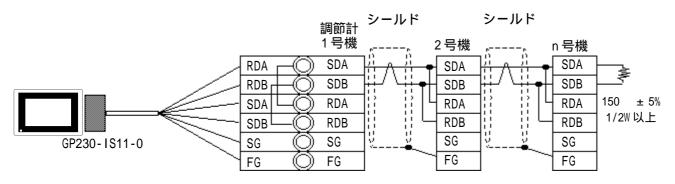


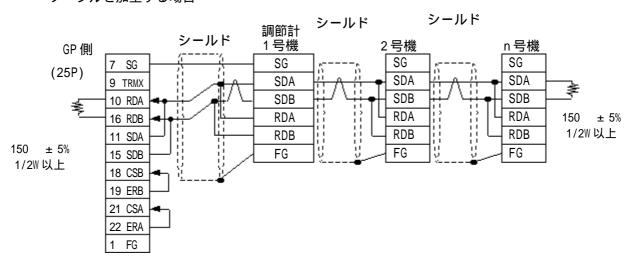

<結線図4>1:n RS-422 4線式(5線式)

・デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合



・デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合





- <結線図5>1:n RS-422 2線式(3線式)
 - ・デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

・デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合

2.22.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。

山武 SDC シリーズ

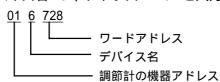
デバイス	ビットアドレス	ワードアドレス	備考	
データ	00000 ~ 8999F	0000 ~ 8999		H/L

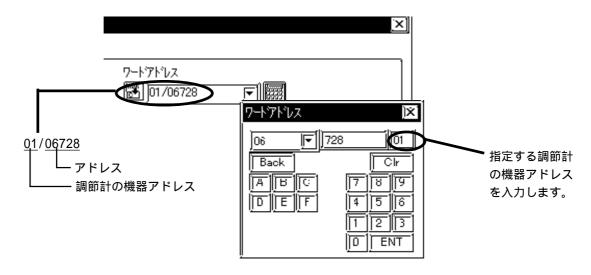
重要 GPのシステムデータエリア(LSO~19)について

GPのシステムエリア(20ワード)は使用することができません。 GP-PRO/PB for WindowsやGPのオフラインではシステムエリアの設定をすることはできますが、調節 計側の使用できるデータ領域に割り付けることはできませんのでご注意ください。

重要

調節計各機種により、使用できるデバイスアドレス範囲が異なるため、ご使用の調節 計機種のマニュアルでデバイスアドレスの範囲を確認してください。他機種からの画 面変換後は、正しいデバイスが使われていることを確認してください。また、トレン ドや一部のタグでは連続アドレスで複数ワード使用するため、使用可能なデバイスア ドレスをご確認の上、画面の作成を行ってください。




GP-PRO/PB for Windowsからのデバイスアドレス入力時には、調節計データアドレ スの1000番台をデバイス名としアドレスの入力値を0~999とします。

GP-PRO/PB で部品やタグの設定を行う場合、アドレス入力時に調節計の機器アド レスの指定ができます。機器アドレスを指定しなかった場合は、ひとつ前に入力さ れた番号を継続します。(起動時のデフォルト値は「1」です)

<例> デバイスアドレス6728の場合 デバイス名"6"、アドレス"728"と入力します。

2.22.4 環境設定例

(株)デジタルが推奨する調節計側の通信設定と、それに対応するGP側の通信設定を示します。

山武 SDC シリーズ

GPの設定		調節計の設定		
伝送速度	9600bps	伝送速度	9600bps	
データ長	8bit	データ長	8bit	
ストップビット	1bit	ストップビット	1bit	
パリティビット	偶数	パリティビット	偶数	
制御方式	ER制御			
通信方式 RS-232C使用時 *1	RS-232C			
通信方式 RS-422使用時	4線式			
通信方式 RS-422使用時	2線式			
号機番号	1~32号機までの任意 の号機No .	機器アドレス	すべての調節計の機 器アドレスを異なる ように設定してくだ さい。	

^{*1} RS-232C 通信が可能な機種は、SDC20、SDC21、SDC40A、SDC40B、SDC40Gです。

重要 調節計側の機器アドレスの入力範囲は0~127ですが、GPでは1~32までの設定で 使 用して下さい。調節計側の機器アドレスはGPに合わせてください。

1:n時の調節計の最大接続台数は31台です。

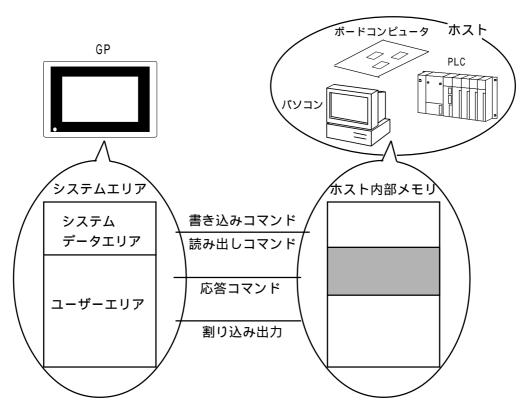
機器アドレスが0(初期設定)の場合、通信機能は動作しません。

第3章 メモリリンク方式

メモリリンク方式でGPをご使用になる場合にお読みください。

本章では、パソコンやワンボードマイコンなど独自のプロトコルを持たない機器との1:1通信の しくみを説明します。

「拡張モード」については 参照 GP-70 シリーズメモリリンク通信プロトコルマニュアル < GP イーサネット I/F ユニット用 > (別売)


メモリリンク方式のしくみ 3.1

GPとホストとのデータのやり取りは、ホスト側のプログラムに従って行われます。

参照 3.4 サンプルシステム

GPはホストの書き込みコマンドによって送られる表示用データにもとづいて、画面表示を行い ます。また、GPはホストの読み出しコマンドに従って、格納しているデータをホストに渡しま す。このように、GPとホストとの通信では、常にホスト側が主導権を持っています。

GPとホストとのデータのやり取りは、GP内部に設けられた記憶領域(システムエリア)を介し て行われます。

3.1.1 システムエリアとは

システムエリアはGPとホストがデータのやり取りを行うための媒体となるエリアです。システムエリアはGPの内部に設けてあり、GPはシステムエリアのデータにもとづいて画面表示を行っています。

0 : 19	システムデータ エリア
20	» _
:	ユーザーエリア
:	
2032	
:	特殊リレー
2047 .	
2048	予約
:	3 /// 3
2095	
2096	
:	ユーザーエリア
4095	

システムデータエリア

GPの画面制御データやエラー情報など稼働に必要なデータを書き込む領域です。各アドレスで書き込む内容が決まっています。 参照 3.1.2 システムデータエリアの内容と領域

ユーザエリア

GPとホストがデータのやり取りを行うエリアです。

ホスト側では、GPのどのアドレスにデータを書き込むかを決め、書き込むためのプログラムを作成します。GP側ではアドレスに書き込まれたデータを表示するため、別途設定(部品やタグの設定)を行います。また、Kタグ(テンキー入力)やTタグ(タッチパネル入力)によって書き込まれたデータをホストに読み込むためには、ホスト側で、GPのデータを読み出すためのプログラムを作成する必要があります。

重要

デバイスモニタを使用する場合はユーザエリアLS2096 ~ LS4095は予約となり使用できません。

特殊リレー

GPの各種ステータス情報が設定される領域です。

- Tタグなどによってシステムデータエリアのアドレス13に書き込むと、割り込みが出力されます。ホスト側で、この1バイトの割り込み出力を取り込むようにしておき(BASIC 言語のINPUT\$命令などによる) 取り込んだ割り込み出力を各サブルーチンへジャンプする判別などに使用すると、プログラムを簡素化することができます。
- ・ アドレスをビット指定する場合は、ワードデバイスの後にビット位置をつけます。(00~15で指定)

<例>ユーザーエリアのアドレス 20 の 02 ビット

を指定する場合

予約

GP内部で使用します。このエリアを使用しないでください。使用すると正常に動作しなくなります。

3.1.2 システムデータエリアの内容と領域

システムデータエリアの各アドレスに書き込むデータの内容を示します。

重要・通常、画面表示のOFFを行う場合には、「コントロール」のバックライトOFFのビットを使用せず、「画面表示のON/OFF」をご使用ください。ダイレクトアクセス方式の場合とシステムデータエリアの内容が異なりますのでご注意ください。

アドレス	内容	機能	ビット	備考
1	ステータス *8		0、1	予約
			2	プリント中 *1
			3	設定値書き込み ^{*2}
			4~7	予約
			8	Kタグ入力エラー ^{*3}
			9~15	予約
2	エラーステータス	GPのエラー発生時に、	0、1	未使用
	対応するビットが	ONされます。	2	システムROM/RAM
			3	画面記憶メモリチェックサム
	一度ONになったビ	ットは、電源をOFFして	4	SI0フレミング
	から再度ONするか	、オフラインモードから	5	SI0パリティ
	再度運転モードに	切り替えるまで保持され	6	SIOオーバーラン
3	· -	ータスの内容詳細と処理	7、8	未使用
	•	-4 システムデーターエ	9	内部記憶メモリの初期化が必要
	リアの内容と領域	」の末尾をご参照ください	10	タイマークロック異常
	o		11 ~ 15	未使用
4	時計データ		0 ~ 7	BCD2桁で西暦の下2桁のデータを格納
	「年」	「年、月、日、時、分」		未使用
5	時計データ	のデータがそれぞれBCD2桁		BCD2桁で01~12の月データを格納
	「月」	で格納されています。		未使用
6	時計データ			BCD2桁で01~31の日付データを格納
	「日」	<例>	8 ~ 15	
7	時計データ	1992年2月1日		BCD2桁で00~23の時間データを格納
	「時」	17時15分		未使用
8	時計データ			BCD2桁で00~59の分データを格納
	「分」		8~15	
10	割り込み出力	Tタグでワード書き込みを行うと		
	(タッチOFF時)	込みコードとして出力されます。	_	· · · · · · · · · · · · · · · · · · ·
11	コントロール *9		0	バックライト *4
			1	ブザーON
			2	プリント開始
			3	予約
			4	ブザー音 ^{*5} 0:出力 1:非出力
			5	AUX出力 0:出力 1:非出力
			6	タッチパネルを押す事により表示OFFから
				ONへ変更した時の割り込み出力 *13
				(割り込みコード:FFh) 0:割り込み出力
			7	しない 1:割り込み出力する 予約
			7	*0
			8	VGA 表示
			9、10	
			11	<u>ハードコピー出力^{*12} 0:表示、1:非出</u> 34
			12 ~ 15	了約

アドレス	内容	機能	ビット	備考					
12	画面表示の *10 ON/OFF	FFFFhならば画面表示が消えます。 Ohの場合は画面表示します。FFFFh	n、0h以外(の値は予約					
13	割り込み出力 ^{*11}	GPのタッチタグなどのデータを使っ 下位8ビットの内容が割り込みコー (FFhは出力しません。)							
15	表示画面番号	画面番号を書き込むと表示 画面が切り替わります。	0 ~ 14 15	切り替え画面番号1~8999 (ただしBCD入力の場合は1~1999) 強制画面切り替え					
16	ウインドウ ^{*7} コントロール		0 1 2~15	表示 0:0FF、1:0N ウインドウの重なり順序の入れ替え0:可、 1:不可					
17	ウインドウ ^{*7} 登録番号	間接指定で指定したグローバルウィ (BINまたは、BCD)	ſンドウσ)登録番号です。					
18	ウインドウ ^{・7} 表示位置 (X座標データ) ウインドウ ^{・7} ま三位署	間接指定で指定したグローバルウィ (BINまたは、BCD)	接指定で指定したグローバルウインドウの表示位置です。						
	表示位置 (Y座標データ)								

*1 <ステータス-プリント中>

プリント中にビットがONします。このビットのON中にオフラインモードへ切り替えると、プリント出力が乱れる場合があります。

*2 < ステータス - 設定値書き込み >

Kタグおよび設定値表示器による書き込みが発生するごとにビットが反転します。

*3 <ステータス-Kタグ入力エラー>

現在入力中のKタグに警報が設定されている場合、警報レンジ外の値を入力すると、ビットがONします。警報レンジ内の値を入力する、または画面が切り替わるとOFFになります。

*4 < コントロール-バックライト>

GP-477R/GP-470シリーズ以外の場合、ONでバックライトが消灯(LCD表示はそのまま)し、OFFで点灯します。

システムデータエリア「コントロール」のバックライトOFFのビットをONにすると、バックライトのみがOFFになっている状態で、LCD(液晶)は表示ONのままになっています。また、画面に設定されているタッチスイッチなども動作する状態となっています。 通常、画面表示のOFFを行う場合は、「画面表示のON/OFF」をご使用ください。

*5 <コントロール-ブザー音>

コントロールのビット1(ブザーON)時の出力先は、以下のようになります。 ブザー音・・・コントロールのビット1がONの間、GP内部のブザーが鳴ります。 AUX 出力・・・コントロールのビット1がONの間、AUX のブザー出力がONします。

*6 < コントロール - VGA 表示 >

GP-570VM、GP-870VMの場合、ONで画面全体がVGA表示となります。VGA表示中に画面の任意の位置をタッチするとOFF しVGA非表示になります。

*7 < ウィンドウコントロール/ウィンドウ登録番号/ウィンドウ表示位置 > ウインドウ 参照 ウインドウ表示 < U タグ >

*8 <ステータス>

- ・必要ビットのみをビット単位でモニタしてください。
- ・予約ビットはGPのシステムでメンテナンスなどに使用している場合がありますので、ON/OFFは不定です。

*9 <コントロール>

予約ビットはGPのシステムでメンテナンスなどに使用している場合がありますので、必ずOFFにしてください。

*10 < 画面表示の ON/OFF >

システムデータエリア「画面表示のON/OFF」で画面表示OFFを行うと、画面表示OFF後の1回目のタッチ入力は画面表示ONとしての動作となります。

*11 < 割り込み出力 >

アドレス13 に、00 ~ 1Fのコントロールコードを書き込まないでください。通信ができなくなる場合があります。

*12 < ハードコピー出力 >

コントロールのビット11(ハードコピー出力)をONにすることにより、現在印字中の画面ハードコピーを中止します。

- ・ハードコピーの中止後、コントロールのビット11のOFFされませんので、ステータスのプリント中ステータスを監視するなどして、コントロールのビット11をOFFしてください。
- ・コントロールのビット11がONの間は、ハードコピーは行われません。すべて中止されることになります。印字途中で中止を行った場合、画面1ライン分のデータを出力し、終わってから中止されます。また、すでにプリンタ側のバッファに取り込まれているデータはクリアされません。

*13 < タッチパネルを押す事により表示OFFからONへ変更した時の割り込み出力 >

- ・タッチパネルからの表示ONの場合のみ割り込みが出力されます。
- ・GP-H70の場合は、後面オペレーションスイッチからの表示ONでは割り込みは出力されません。

禁止・アドレス0,2,9,10,14は予約領域です。データの書き込みは行わないでください。

- ・ アドレス 3,12,13,15 はシステム制御で利用しているため、 タグによる表示は行わないでください。
- ・ アドレス 12,13,15 はワード単位で制御しているため、ビット書き込みはできません。
- ・ アドレス 12 に「FFFFh」を書き込むと、表示中の画面が瞬時 に消えます。GP オフラインモードの初期設定で指定したス タンバイモード時間で画面表示を消したい場合は、アドレス 12 には「0000h」を書き込んでください。
- アドレス 13 に、00~1Fのコントロールコードを書き込まないでください。通信ができなくなる場合があります。

3.1.3 特殊リレー

特殊リレーの構成は次のとおりです。

2032	共通リレー情報
2033	予約
2034	ገ '₩기
2035	1秒バイナリカウンタ
2036	タグのスキャンタイム
2037	予約
2038	タグのスキャンカウンタ
2039	
:	予約
:	היא .נ
2047	

共通リレー情報(2032)

15	12 11	10	9	8	7	6	5	0

	7 14
0-5	予約
6	バックアップSRAMのデータが消えたときにONします。(バックアップ SRAM搭載のGPのみ)
7	Dスクリプト使用時、BCDエラーが発生するとONになります。 Dスクリプト <u>参照</u> タグリファレンスマニュアル 3.1 Dスクリプト
8	Dスクリプト使用時、ゼロ割算エラーが発生するとONになります。
9	ファイリングデータでバックアップSRAMに転送できなかった場合に ONします。
10	ファイリングデータのコントロールワードアドレスによる転送で、PLC SRAMの転送ができなかった場合にONします。 また、ファイル項目表示器によるPLC間の転送で、転送完了ビットアドレスがありの場合のみ、PLC エリア、PLC SRAMの転送ができなかった場合にONします。
11	ファイリングデータでファイル項目表示器によるSRAM LSエリア間の転送中の間ONになります。
12	Dスクリプト使用時、memcpy()、アドレスオフセット指定の読み出しで通信エラーが発生するとONになります。正常にデータ読み出しが終了するとOFFになります。
13-15	予約

予約

予約アドレスの値は不定です。使用しないでください。

1秒バイナリカウンタ(2035)

電源投入直後より1秒ごとにカウントアップします。データはバイナリです。

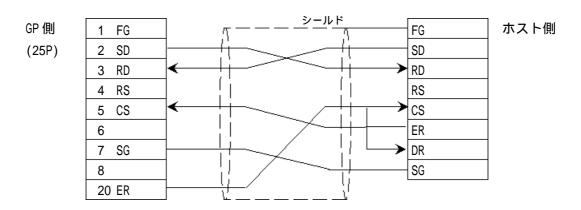
タグのスキャンタイム (2036)

表示画面に設定されているタグの一つ目の処理開始から最後のタグの処理終了までの時間です。 データはバイナリで単位はmsで格納されます。データは対象タグの全処理が完了した時点で更 新されます。データの初期値は0です。± 10msの誤差があります。

タグのスキャンカウンタ(2038)

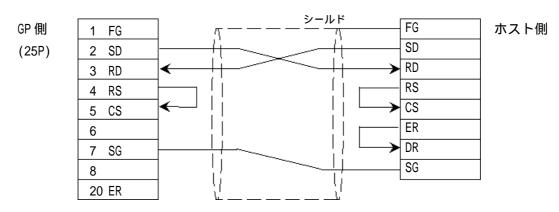
表示画面に設定されているタグの処理がひととおり完了するごとにカウントアップされます。 データはバイナリです。

禁止: ・特殊リレーはライトプロテクトされていません。タグなどでON/OFF しないでください。


3.2 結線図

GPとホストとの接続について説明します。

3.2.1 RS-232C 通信の場合


RS-232C ケーブルを使用した場合、制御方式としては、DTR (ER)制御と XON/XOFF 制御の 2 種類があります。GP とホストの接続を示します。

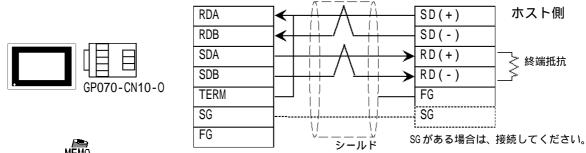
DTR (ER)制御の場合

禁止: ・ GP の ER が OFF のとき、ホスト側は送信しないようにしてください。

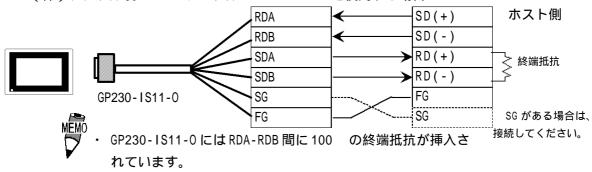
XON/XOFF 制御の場合

- 重要 ・ ホストによって、RS-232C コネクタの形状やピン番号と信号名 の対応が異なります。ホストのインターフェイス仕様に従って、正しく接続してください。
 - ・ ケーブルの最大長は15mです。

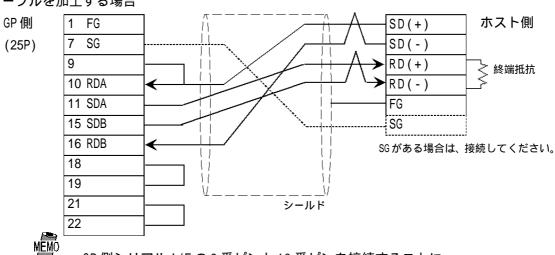
3.2.2 RS-422 通信の場合


RS-422 ケーブルを使用した場合の制御方式は、XON/XOFF 制御のみです。GP とホストの接続を示します。

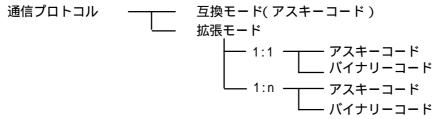
強制 ・ RDA-RDB間に終端抵抗を挿入してください。


・ 24AWG 線材を使用した、静電容量 50pF/m 程度、特性インピーダンス100 程度のツイストペアケーブルを使用してください。

重要・ 通常 RS-422 通信はケーブルの最大長は 600m ですが、各 PLC によって制限があります。接続の際には、必ず各 PLC のマニュアルをご参照ください。


- ・ 接続するホストによって、接続のしかたや終端抵抗などが異なり ます。
- ・(株)デジタル製RS-422コネクタ端子台変換アダプタGP070-CN10-0を使用する場合

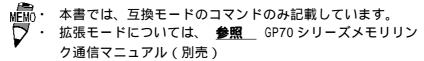
- GP070-CN10-0のRDAとTERMを接続することにより、GP側RDA-RDB間に100の終端抵抗が挿入されます。
- ・(株)デジタル製 RS-422 ケーブル GP230-IS11-0 を使用する場合


・ ケーブルを加工する場合

・ GP 側シリアル I / F の 9 番ピンと 10 番ピンを接続することにより、RDA-RDB 間に 100 の終端抵抗が挿入されます。

3.3 メモリリンクコマンド

通信プロトコルとは、ホストGPがやりとりする転送データのフォーマットと手順を示すものです。GPの通信プロトコルは、用途やホストのデータ処理能力などに合わせて次のように分かれます。ホストのプログラム開発環境およびシステム構成などによってプロトコルの選択条件は多種多様になると考えられます。したがって、システム担当者の方は十分検討したうえで最適なプロトコルを選択してください。



互換モード

システムエリアへの書き込み(Esc W)とシステムエリアからの読み出し(Esc R)のみのコマンドで通信するプロトコルです。互換モードは、アスキーコードで基本的に無手順方式です。そのため、ホストの通信制御に関する処理の負担は軽くなります。その反面、通信するデータの信頼性は高くありません。

拡張モード

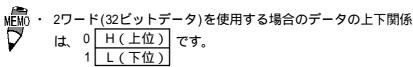
システムエリアへの書き込み、読み出し以外にも描画コマンドなどをサポートしたプロトコルです。ホストとGPのマルチドロップ接続に対応した通信プロトコルです。また、通信データの信頼性を向上するためサムチェックコードの有無、受信応答 (ACK/NCK) の有無が設定可能です。アスキーモードとバイナリーモードは、ソフト環境開発に依存し、適応したものを選択してください。

GP とホストとのデータのやり取りは、以下に示すコマンドによって行われます。

読み出しコマンド

システムエリア内の任意のアドレスから、データを読み出すためのコマンドです。

応答コマンド


読み出しコマンドの応答として GP からホストヘデータを渡すためのコマンドです。

書き込みコマンド

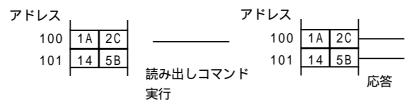
システムエリア内の任意のアドレスに、データを書き込むためのコマンドです。

割り込み出力

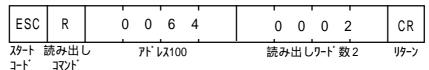
タッチタグなどを使ってシステムデータエリアのアドレス 13 にデータを書くと、 下位 8 ビットの内容が割り込みコードとしてホスト側へ出力します。

強制 ・ ホストからの読み出しコマンドは、必ず GP から応答コマンドを受信した後に、送信してください。

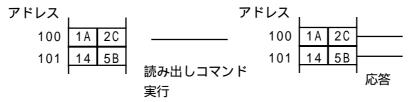
<例> ホストコンピュータとGPとのデータ通信


読み出しコマンド は、応答コマンド を受信した後に、送信してください。 応答コマンドを待たずに、読み出しコマンドを送信し続けると、数時間後にシステムエラー が発生する場合があります。

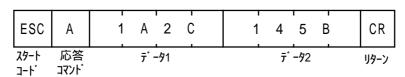
3.3.1 読み出しコマンド


読み出しコマンドの内容は次のとおりです。

<例>システムエリアのアドレス 100 から 16 進データ 2 ワードを読み出します。


全てASCII コードで入力してください。

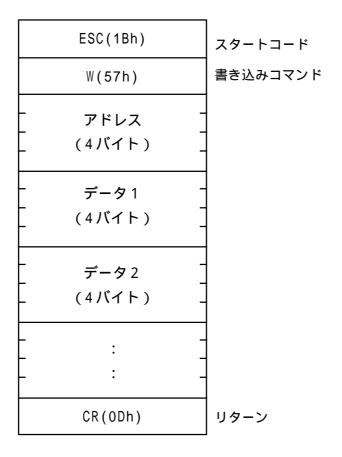
3.3.2 応答コマンド


応答コマンドの内容は次のとおりです。

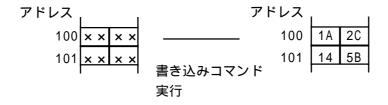
ESC(1Bh) A(41h) = データ1 - (4バイト) = データ2 - (4バイト)	スタートコード 読み出しコマンド
CR(ODh)	リターン

<例>GPが、読み出しコマンドの応答として、システムエリアのアドレス 100 から 16 進デー タ2ワードを出力します。

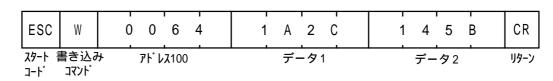
応答コマンド



応答コマンドは、読み出しコマンドに対して、GPから自動的に出力されます。 全てASCIIコードで出力されます。 MÉMO ·


データは読み出し指定アドレスから順に読み出されます。

3.3.3 書き込みコマンド


書き込みコマンドの内容は次のとおりです。

< 例 > システムエリアのアドレス 100 から 16 進データ 1A2C と 145B を書き込みます。

書き込みコマンド

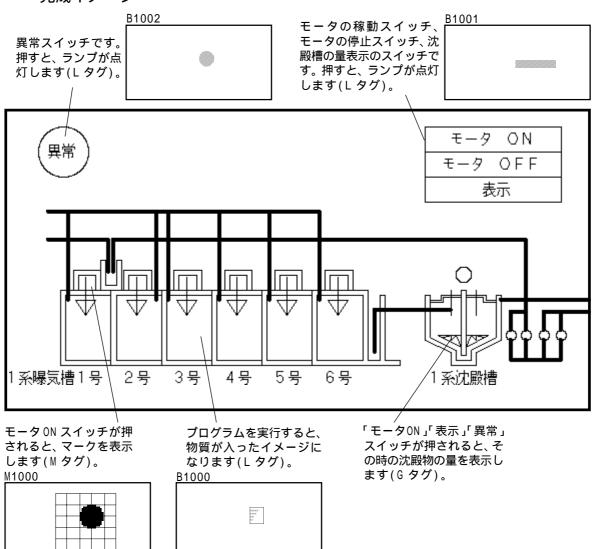
- ・ 全てASCIIコードで入力してください。
- ・ データは書き込み指定アドレスから順に書き込まれます。
- ・ 互換モード場合、GPからの応答コマンドがありません。
- ・ 間隔をあけず書き込みコマンドを連続で送り続けると、GPの表示更新ができなくなる場合がありますのでご注意ください。

3.4 サンプルシステム

GPとホストがデータをやり取りするために必要なホスト側のプログラム例と、GP側で行うタグ設定例を示します。また、以下のタグ設定でサンプルプログラムを実行した場合の、GPの画面の変化を示します。

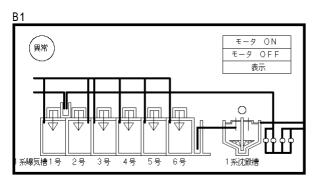
以下の画面を例に作成の手順を示します。

「モータON」「モータOFF」「表示」「異常」スイッチを押すと、それぞれの割り込み コードがホストに出力され、以下の動作を行います(Tタグ)。

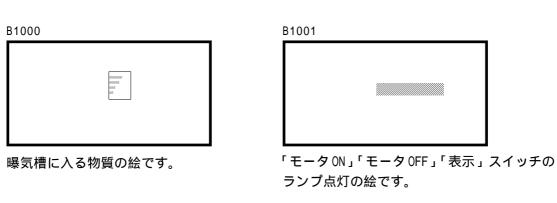

各スイッチの動作

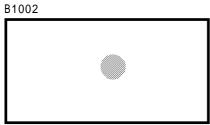
「モータ ON」・・・・モータを稼動し、沈殿槽に沈殿物が 50% 入ります。

「モータ OFF」 ・・・・モータを停止します。

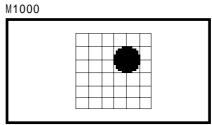

「表示」 ・・・・沈殿槽に沈殿物が50% 入ります。 「異常」 ・・・・沈殿槽に沈殿物が20% 入ります。

完成イメージ




作成手順

(1) GP-PRO/PB で画面を作成します。



GP 運転時に表示される画面です。

(2) GP-PRO/PB でタグを設定します。

タグ設定例

<Tタグ>

画面 番号	タグ名	動作モード	ワート・アト・レス	ワード書き込み	定数	反転表示	始点座標	終点座標	備考
B1	T1				0031				E−9 ON
B1	T2	п	40	ワート゛ セット	0032	_	作成画面は	こ合わせて	₹- 9 0FF
B1	T3	ワート゛	13	16ビット	0033	有	くだる	さい。	表示
B1	T4				0034				異常

<Lタグ>

画面 番号	タグ名	表示ŧ-ド	ピットアト・レス	画面指定	直接指定 画面番号	消去動作	表示座標	備考
B1	L1		002000					曝気槽1号
B1	L2		002001					曝気槽2号
B1	L3		002002		P4000			曝気槽3号
B1	L4		002003		B1000			曝気槽4号
B1	L5	0 1	002004				作成画面 に合わせ	曝気槽5号
B1	L6		002005	直接指定		有	てください。	曝気槽6号
B1	L11		002100				V 10	「E-90N」点灯
B1	L12		002101		B1001		·	「E-90FF」点灯
B1	L13		002102				'	「表示」点灯
B1	L14		002103		B1002			「異常」点灯

L1 ~ 6(L90) を一度に表示したい場合は、アドレス 20 の 全ビットを 0N します。

< M タグ >

画面番号	タグ名	ビット アドレス	表示 t- ド	カラー〇	カラー1	表示サイズ	画面指定	直接指定 画面番号	表示座標	備考
B1	M1	002200								E-91号
B1	M2	002201								₹-92号
B1	M3	002202	ON/OFFで	表示色黒	表示色白	44	古拉北宁	M4.000	作成画面に合わせ	₹-93号
B1	M4	002203	表示	背景色 黒ブリンク 無	背景色 黒ブリンク 無	1 × 1	直接指定	M1000	てくださ い。	E-94号
B1	M5	002204								E-95号
B1	M6	002205								E-96号

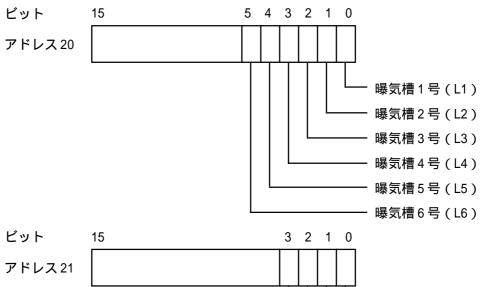
M1 ~ 6 (Mタグ)を一度に表示したい場合は、アドレス 22 の 全ビットを ON します。

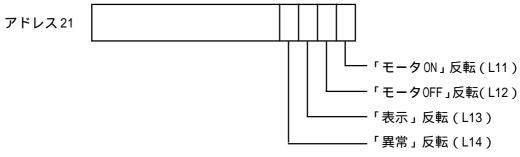
<Gタグ>

画面番号	95 [°] 名	ワート゛ アト゛レス	データ 形式	表示 モ-ド	Ľ ット 長	入力 符号	カラー	グラフ 種類	表示 方向	パ。ターン	警報	始点 座標	終点 座標	備考
B1	G1	0023	相対値 BCD	+	16	無	表示色 白 背景色 黒 プリンク 無	棒 グラフ	上	2	無	作成画面せてくた	iに合わ iさい。	沈殿槽

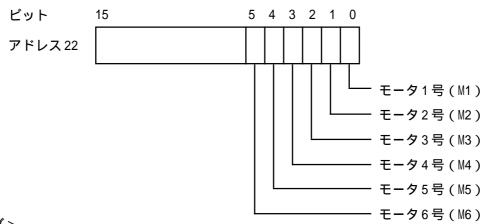
アドレス使用マップ

タグ設定例で示したタグは、それぞれのアドレスに次のように割り付けられます。


< T タグ >


アドレス 13 (割り込み出力)にデータが書き込まれると、RS-232C ポートから下位 1 バイトのコードが出力されます。このため、T タグはワード書き込みを使用しています。

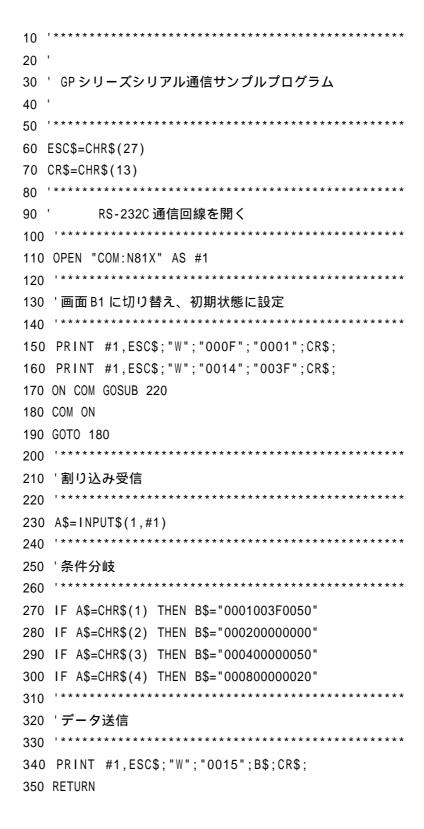
モータ ON (T1) ・・・アドレス 13 に 0031 をワード書き込み モータ OFF (T2) ・・・アドレス 13 に 0032 をワード書き込み 表示 (T3) ・・・アドレス 13 に 0033 をワード書き込み


異常 (T4) ・・・アドレス 13 に 0034 をワード書き込み

<Lタグ>

<Mタグ>

<Gタグ>


 ビット
 15
 0

 アドレス 23
 沈殿層(G1)

(3) GP とホストがデータをやり取りするためのプログラムを、ホスト側で作成します。

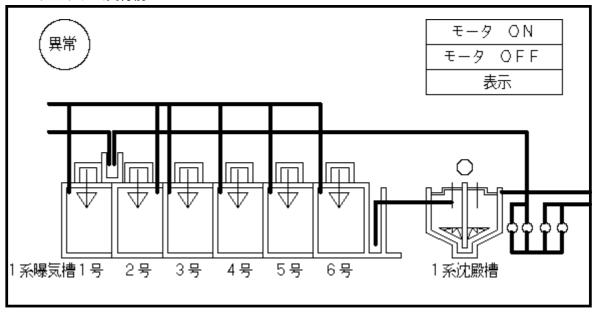
サンプルプログラム

< 例 > N E C 製 N88-BASIC を使用した場合


```
<例>DOS/V機、C言語を使用した場合
                     メモリリンク 通信サンプルプログラム
#include<stdio.h>
#include<dos.h>
#include<string.h>
#include<stdlib.h>
#include<conio.h>
                                                 /*str2のデータサイズ20bite*/
/*wr_dataのデータサイズ24bite*/
#define data_size_str2
#define data_size_wr_data
                                      20
24
                                      24
                                                 /*DOS/V シリアルポート BIOS*/
/* 使用シリアルポート番号 */
/* シリアルポートの初期化 */
/* 9600bps,8bit,stopbit;1,parity;none*/
#define serial_port_BIOS 0x14
#define serial_port_number 0x00
#define serial_port_INT 0x00
#define serial_port_parameter 0xE7
                                      0x03 /* シリアルポート状態の取得 * /
0x01 /* シリアルポートの書き込み * /
0x02 /* シリアルポートの読み出し * /
#define get_status
#define serial_port_write
#define serial_port_read
#define status_bit_6000
#define status_bit_0020
                                         0x6000 /* ポートステータス bit13,14*/
0x0020 /* ポートステータス bit5*/
void open_SIO(void);
/**************
       int err_status(void); /* ポートステータスの取得 * /
void write_ready(void); /* 送信バッファレジスタ、送信レジスタの状態の取得 * /
int read_ready(void); /* データセット状態の確認 * /
                         void write_data(char wr_data); /* レジスタへの書き込み*/
void write(char *wr_data); /*GPへのデータの書き込み*/
read_data(void); /*GP からのデータ読み出し */
change_screen(int interrupt_data); /*GP からの割り込み受信データの判別 */
read(void); /*GP からの割り込み受信データの読み込み */
int
void
int
                            キー入力の確認
        kbhit(void);
int
int
        interrupt data, port status;
       *str2;
char
void main(void)
Int no_data;
char *wr_data = (char*)malloc(sizeof(char)*data_size_wr_data);
/*wr_dataのメモリを確保*/
str2 = (char*)malloc(sizeof(char)*data_size_str2); /*str2のメモリを確保*/
open_SIO(); /*RS232Cの通信設定*/
wr_data = "¥x1bW000F0001¥x0d¥0";/*アドレス15に0x1を書き込み:画面番号1設定*/
   write(wr_data);
wr_data = "\x1b\\0014003F\x0d\x0";
                                   write(wr data);
```

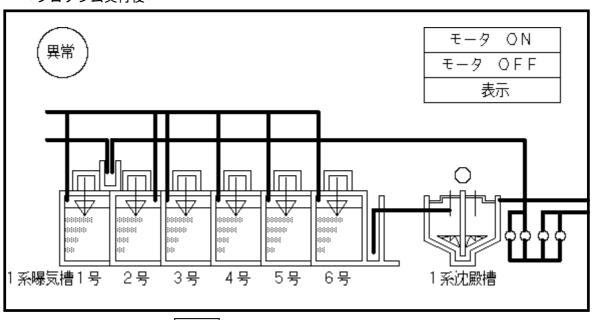
```
.
/*
               while(1)
                        no_data = read();
if(no_data == 1)
                                                 /* キー入力があれば no_data=1*/
                    {
                                    break;
                     }
                        else
                    {
                                    wr_data = str2;
                                    write(wr_data);
                     }
                                                 /* キーのコードをキーバッファから取り除く */
/*wr_dataのメモリ領域開放 */
/*str2のメモリ領域開放 */
            getch();
free(wr_data);
free(str2);
}
/* 送信バッファレジスタ、送信レジスタの状態の取得 */
void write_ready(void)
            int err6000;
            err6000 = 0;
            while(status_bit_6000 != err6000)
                       err6000 = err_status() & status_bit_6000;
           return;
}
/* データセットの状態の確認 */
int read_ready(void)
            int no_data,err0020;
            err0020 = 0:
            while(status_bit_0020 != err0020)
                        err0020 = err_status() & status_bit_0020;
f(kbhit()) /* キー入力の有無の判定 */
                       if(kbhit())
                                    no_data = 1;/* キー入力があればno_data= 1 */
break; /* プログラム終了 */
                      }
           return(no_data);
/*GPへのデータ書き込み*/
void write(char *wr_data)
                                                        /* データが NULL になるまで書き込み */
                 while(*wr_data != '\u04040')
                            write_ready();
write_data(*wr_data);
write_data(*wr_data);
 /* ポインタが示すアドレスをインクリメント */
                 return;
                   GP からの割り込み受信データの判別
アドレス 20,21,22,23 にデータ書き込み
      / *
      void change_screen(int interrupt_data)
                 switch(interrupt_data)
      /*interrupt_dataが1なら、アドレス21に0x1,22に0x3F,23に0x50を書き込み*/case 1: str2 = "\x1b\w00150001003F0050\x00d\x0";
                                           break:
      /*interrupt_dataが2なら、アドレス21に0x2,22に0x0,23に0x0を書き込み*/case 2: str2 = "\xx1b\w0015000200000000\xx0d\xx0d\xx1";
                                           break;
```

```
/*interrupt_dataが3なら、アドレス21に0x4,22に0x0,23に0x50を書き込み*/case 3: str2 = "\x1b\w0015000400000050\x0d\v0";
                                            break:
/*interrupt_dataが4なら、アドレス21に0x8,22に0x0,23に0x20を書き込み*/case 4: str2 = "\x1b\W0015000800000020\x0d\x0d\x0";
                                            break:
/*interrupt_dataが1~4以外ならNULLを書き込み*/
default:str2= "\\"";
                                             break:
             return;
}
           ****************
             int read(void)
             int no_data;
             do
                         no_data = read_ready(); /*データセットの状態の確認*/
if(no_data == 1) /* キー入力があればno_data=1*/
                                 break;
                          else
                                    ead_data(); /*GP からの受信データ読み出し */
change_screen(interrupt_data); /*GP からの受信データの判別
                                  read_data();
   * /
             }while(*str2 == '\u0');
return(no_data);
}
/*RS232C の通信設定 */
void open_$10(void)
             union REGS regs;
                            regs.x.dx = serial_port_number;
regs.h.ah = serial_port_INT;
regs.h.al = serial_port_parameter;
int86(serial_port_BIOS,&regs,&regs);
             return;
/* ポートステータスの取得 */
int err_status (void)
             union REGS regs;
                            regs,
regs.x.dx = serial_port_number;
regs.h.ah = get_status;
int86(serial_port_BIOS,&regs,&regs);
port_status = regs.x.ax;
             return(port_status);
/* レジスタへの書き込み */
void write data(char wr data)
             union REGS regs;
                            regs.x.dx = serial_port_number;
regs.h.ah = serial_port_write;
regs.h.al = wr_data;
                            int86(serial_port_BIOS,&regs,&regs);
             return;
/*GP からのデータ読み出し*/
int read data(void)
             union REGS regs;
                            regs.x.dx = serial_port_number;
regs.h.ah = serial_port_read;
int86(serial_port_BIOS,&regs,&regs);
interrupt_data = regs.h.al;
             return(interrupt_data);
```



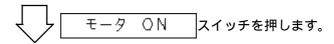
open_SIO(void)、err_status(void)、write_data(char wr_data)、read_data(void)は、機種依存する関数です。
DOS/V 機以外でプログラムする場合はつくりかえが必要です。

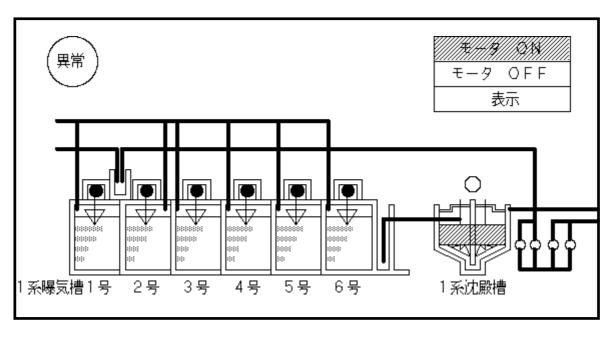
(4) GPに画面データを転送し、運転します。


GP 運転画面

<プログラム実行前>

プログラムを実行します。

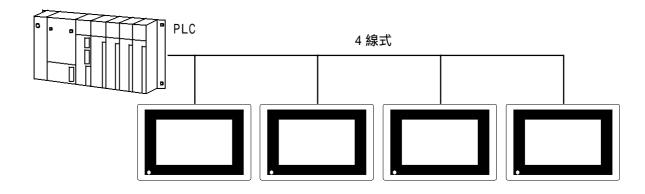

<プログラム実行後>



B1 の画面にライブラリ

000000 00000 000

が6つ入った表示になります。


ホストにアスキーコード "0031(HEX)"(=データ "1")が GP から出力され、ホストのプログラムによって画面が上のように変わります。

第 4 章

n:1(マルチリンク)

n:1(マルチリンク)の概要と運転までの手順を説明します。

4.1 n:1(マルチリンク)について

複数台の GP を PLC 一台に接続し、ダイレクトアクセス方式の n:1(マルチリンク)通信を実現することができます。

このn:1(マルチリンク)通信は、GP間でトークン(PLCへのコマンド発行権)の受け渡しをしながら、順番にPLCと通信を行うという手法のもとで成り立っています。

ケーブルの総延長は最大 600m です。ただし、PLC 側ユニットにおける最大延長距離がこれより短い場合には、PLC 側の値に準じます。

複数の GP シリーズを 1 台の PLC に接続できます

各社 PLC 専用のリンク I/F1 つに対して、GP を複数台接続することができます (最大 16 台まで接続できますが、実用的には 4 台まででご使用ください)。

ダイレクトアクセス方式で通信できます

n:1(マルチリンク)のための特別なプログラムが必要なく、そのまま接続できます。

専用ハードウエアなしで接続できます

専用のハードウエア機器が不要です。

大型から中型のGPシリーズを接続できます

GP-77Rシリーズ、GP70シリーズ、GP-*50系*1、GP-*30系*2それぞれの大型表示器、中型表示器が混在した

n:1(マルチリンク)通信が可能です。

1対1接続時に作成した画面データを使用できます

GPの画面データは、GPとPLCが1対1接続時に作成したものをお使いいただくこともできます。

接続された GP ごとにメンテナンスできます

n:1(マルチリンク)接続の運転中に、任意のGPの通信を止めることができます。このため画面の追加・編集やGP本体電源のON/OFFなど、デバッグやメンテナンスが簡単に行えます。

- *1 GP-450、GP-550、GP-250、GP-B50を指します。
- *2 GP-43J、GP-53J、GP-230、GP-430、GP-530 を指します。

- 初期設定項目の「局情報の設定/通信情報の格納アドレス」 は、接続するすべての GP に対し、同じアドレスを設定して ください。
- ・ GP の接続台数が増えるにしたがって、GP の表示および操作 の速度は遅くなります。システム設計される際には、そのこ とを十分考慮してください。
- 実用的な性能を発揮するため、部品やタグの設定アドレスを 連続したアドレス設定にしてください。部品やタグの設定ア ドレスが不連続の場合、処理速度が遅くなります。
- ・ 本システムの反応速度は、PLCのスキャンタイム(サイクル タイム)の影響を受けます。
- 通信時に PLC の電源を OFF した場合、GP で通信エラーが表示 される場合があります。
- ・ GPとPLCを接続する際に、コネクタフードを使ってFGを落 とす場合は、導電性のあるものをご使用ください。

強制 ・ 複数の GP から同時にタッチ入力すると、応答が遅くなる場 合があります。これは、1台目の表示更新が完了するまで2 台目以降の応答が待たれるためです。このため、同時操作を するような用途には使用しないでください。

- は、GP-*30系は次の機能が使用できませんのでご注意くだ さい。
 - ・システムデータエリアの LS14 を使用する PLC 専有
 - ・PLC を専有中であることを他の GP に知らせる機能
 - ・専有解除時間

< GP 各機種が PLC 専有を使用した場合の認識 >

GP-*30系	GP-*50系	GP70シリーズ [*] /GP77Rシリーズ [*]
タッチパネル専有	認識しない	認識しない
認識しない	タッチパネル専有または LS14を使用する専有	認識する
認識しない	認識する	タッチパネル専有または LS14を使用する専有

認識しないGPは、専有が解除されるまで表示更新はされませんが、エラー表示は行いません。

参照 GPシリース・PLC 接続マニュアルマルチリンクフ。ロトコル GP-*30 系の PLC 専有 GP70 シリーズの PLC 専有 参照 4.5 PLC 専有 また、GP70シリーズでは接続可能PLCが一部異なりますので、ご注意ください。

オプション機器

n:1(マルチリンク)で接続する場合は、㈱デジタル製のマルチリンク用ケーブルまたはRS-422 コネクタ端子台変換アダプタのご使用をおすすめします。

マルチリンク用ケーブル (GP230-IS12-0)

RS-422 コネクタ端子台変換アダプタ

(GP070-CN10-0)

各種 PLC と GP との間で通信を 行う I/F ケーブル (5m) です。

中継端子台からの支線ケーブ ルとしてお使いいただくこと ができます。

GP シリーズの SIO コネクタ内 の RS-422 出力を端子台に変換 するアダプタです。

アダプタに接続するケーブル は、各PLCで推奨されているも のをお使いください。

4.2 接続可能な PLC 一覧

GP とマルチリンク接続可能な PLC の一覧を示します。

	シリーズ名	CPU	リンクI/F	特記事項	PRO/PB での
	HEL 050 A	101	1.171001.00		「PLCタイプ」
_	MELSEC-A	A2A	AJ71C24-S6		三菱電機
三		A3A	AJ71C24-S8		MELSEC-AnA
**		A4U	AJ71UC24		(LINK)
菱		A2U	AJ71UC24		
		A2US	A1SJ71C24-R4		
電		A2USH-S1	A1SJ71UC24-R4		三菱電機
1414		A1N	AJ71C24		
機		A2N	AJ71C24-S3		MELSEC-AnN
∠ 		A3N	AJ71C24-S6		(LINK)
(株)			AJ71C24-S8		
		10.10	AJ71UC24		
		AOJ2	A0J2-C214-S1		
		A0J2H A1SJ	A48 17411004 D4		-
		A1S,A1SH	A1SJ71UC24-R4		-
		A2SH	A1SJ71C24-R4		
	MELSEC-A2C		CPUユニット上の		三菱電機
	WILLSLO-AZO	A200F0024	リンクI/F		一変电域 MELSEC-AnN
					(LINK)
	MELSEC-FX	FX _{2N}	FX2N-485-BD		三菱電機
	WLLGLO-1 X	1 X2N	1 X2N-403-00		ーダ电域 MELSEC-FX
					(LINK)
	MELSEC-QnA	02A	AJ71QC24		三菱電機
	meloco ann	Q2A-S1	AJ71QC24N-R4		MELSEC-QnA
		Q4A	7.07 1402 111 111		(LINK)
			AJ71UC24	使用できるデバイス	
				に制限があります。	MELSEC-AnA
					(LINK)
		Q2AS	A1JS71QC24		三菱電機
					MELSEC-QnA
					(LINK)
			A1JS71UC24	使用できるデバイス	
				に制限があります。	MELSEC-AnA
					(LINK)
		Q2AS-S1	A1SJ71QC24N		三菱電機
					MELSEC-QnA
				/ 	(LINK)
			A1SJ71UC24-R4	使用できるデバイス	
				に制限があります。	MELSEC-AnA
					(LINK)

	シリーズ名	CPU	リンクI/F	特記事項	PRO/PB での
					「PLCタイプ」
オムロン	SYSMAC C	C500 C500F C1000H C1000HF C2000 C2000H	C500-LK201-V1 C500-LK203	C1000HFでは C500-LK203のみ使 用できます。	オムロン SYSMAC-C シリーズ
(株)		C200H C200HS	C200H-LK202		
		C120 C120F C200H C500 C500F C1000H C2000 C2000H	C120-LK202-V1		
		SRM1-C02 CPM1-20CDR-A CPM2A	CPM1-CIF11		
	SYSMAC-	C200HX-CPU64 C200HG-CPU43 C200HE-CPU42	C200HW-C0M06	CPU64で接続確認し ています。 4線式のみ使用でき ます。	オムロン SYSMAC-C シリーズ
	SYSMAC CV	C200HX-CPU64-Z CV500	C200H-LK202-V1 CPUユニット上のリ		オムロン
	STSWAC CV	CV1000 CVM1	ンクI/F CV500-LK201		SYSMAC-CV シリーズ
	SYSMAC CS1	CS1H-CPU67 CS1H-CPU66 CS1H-CPU65 CS1H-CPU64 CS1H-CPU63 CS1G-CPU45 CS1G-CPU44 CS1G-CPU44	CS1W-SCB41	RS-422(ポート2)	オムロン SYSMAC-CS1 シリーズ
(株) 日	HIDIC H	H-2000 H-2002	COMM-H COMM-2H	従来のHIZAC H シリーズです。 伝送制御手順1	日立製作所 HIDIC-H シリーズ
立 製 作 所		H-2002	COMM-2H	伝送制御手順2	日立製作所 HIDIC-H2 シリーズ
松 下電 工 (株)	MEWNET	FP10S *1 FP10SH	CPUユニット上の リンクI/F		松下電工 MEWNET-FP シリーズ

^{*1} Ver.1.8以降のものを対象とします。

	シリーズ名	CPU	リンクI/F	特記事項	PRO/PB での「PLCタイプ」
	FACTORY ACE	FA-M3	F3LC11-2N	CPUはF3SP20-ON, F3SP35-5Nで接続確 認しています。	横河電機*2 FACTORY ACE 1:1通信
横河電機株)		FA-M3 (n:m接続)	F3LC11-2N	FA-M3のほか、デジタル指示調節計 (UT/37/38/2000)、 記録計(μRシリーズ) とのマルチリンク接 続がプログラムレス で実現できます。CPU は、F3SP20-ON, F3SP35-5Nで接続確 認しています。	横河電機*3 FACTORY ACE 1:n通信
(株) 東 芝	PROSEC T	Т3	CPUユニット上の リンクI/F		東芝 PROSEC-T シリーズ
Rock well (Allen- Bradley)	SLC500	SLC-5/03 SLC-5/04	CPUユニット上の リンクI/F		Allen Bradley SLC500 シリーズ
(株) キ I	KZ-300	KZ-300	KZ-L2		KEYENCE KZ-300 シリーズ
エ ン ス	KZ-350	KZ-350			
(株) 株安川電機	MEMOCON-SC	GL120 GL130	JAMSC-120MON27100		安川電機 Memocon-sc シリーズ
シャ ー プ (株)	ニューサテライト JW	JW-33CUH3	CPUユニット上の リンクI/F JW-21CM *1		シャープ ニュー サテライトJW シリーズ

^{*1}JW-21CMのROMバージョンは、 30Hn のマークのシールがユニットの正面に貼ってあるものを使用 してください。マークが 30H の場合は、一部のファイルレジスタが使用できません。マークがな いものではJW30Hは使用できません。詳細は、<u>参照</u>シャープ製[JW-30CM]ユーザーズマニュアル

・ PLCメーカーによってPLCのバージョンアップや仕様変更が行 われた場合、GPと接続できなくなる可能性があります。ご了承 ください。

重要・使用するCPUやリンクI/Fの種類により、通信スピードが異なり ます。また、n:1(マルチリンク)接続では、1:1接続に比べて通 信スピードが遅くなる場合があります。通信スピードを確認した 上でシステム設計を行ってください。

^{*2} 従来の作画支援ソフト(GP-PRO 、GP-PRO)の「FA-500」に相当します。

^{*3} 従来の作画支援ソフト(GP-PRO 、GP-PRO)の「FA-500M」に相当します。

4.3 運転までの手順

ここでは、n:1(マルチリンク)接続で通信させるための手順です。特にn:1(マルチリンク)で必要な項目は、 で囲んでいます。

スタート

作画

GP-PRO/PB で作画します。作成した絵に対して動画の設定をします。このときのアドレスは、GP1台内でデバイスごとにできるだけ連続になるように設定してください。

GP-PRO/PB の「GPシステムの設定」で、n:1(マルチリンク)通信に関する初期設定を行います。GPで初期設定を行うこともできます。

画面データを転送

GP-PRO/PB から GP へ画面を転送します。

初期設定

GP-PRO/PB の「GPシス テムの設定」で、n:1(マ ルチリンク)通信に関す る初期設定をしている場 合は、GPでの初期設定は 不要です。

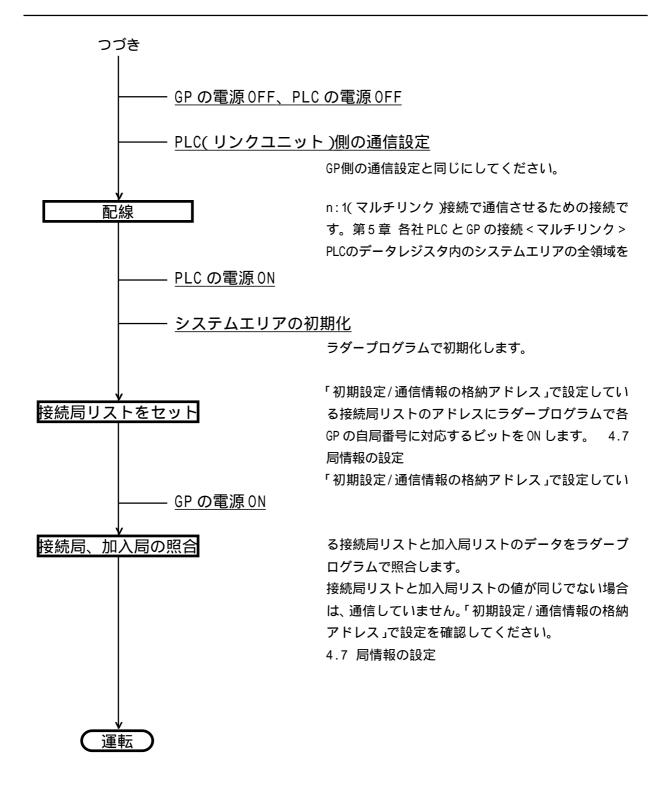
通信の設定 (SIOの設定)

伝送速度、データ長など通信に関する設定を行います。PLC 側の通信設定と同じにしてください。

システムデータエリアの設定

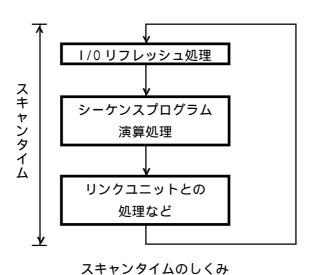
システムデータエリアのアドレスを指定します。各 GPのシステムデータエリアが重ならないように設定 してください。

4.6 システムデータエリアの設定


自局番号

GPの自局番号を設定します。n:1(マルチリンク)接続の場合は、他のGPの自局番号と重複しないようにしてください。4.7 局情報の設定

通信情報の格納アドレス


GPの接続構成を決めるためのアドレスを設定します。 接続されているすべてのGPの「接続局リスト」は、 同じアドレスに設定してください。

4.7 局情報の設定

4.4 PLC のスキャンタイム

n:1(マルチリンク)でGPを使用する場合、PLCのスキャンタイムがGP側の表示/操作速度に大きな影響を与えます。一般的にPLCの処理は、下図のように繰り返し行われており、一連の処理を行う時間をスキャンタイムといいます。PLCのスキャンタイムが長くなれば、表示/操作速度は比例して遅くなります。

上図の"リンクユニットとの処理"で、PLC は GP からのコマンドに対する処理を行っています。GP からのコマンドは、処理が完了するまでに 1~数スキャンタイムかかります。

コマンドを出してレスポンスが返るまでの待ち時間は、 PLC の種類によって異なります。

< 待ち時間参考例 >

・MELSEC Aシリーズ

読み出し 1スキャンタイム 書き込み 2スキャンタイム

詳細はご利用のPLCのマニュアルをご参照ください。

応答時間を向上させるには、シーケンスプログラムの分散処理などを使用し、できるだけスキャンタイムの短いシステムを組んでください。

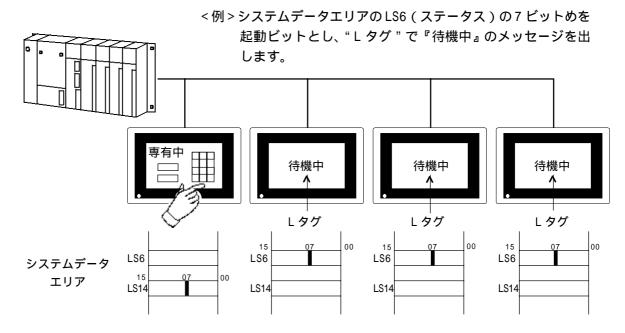
4.5 PLC 専有

PLC専有とは、複数台接続されているGPのうち1台がPLCを専有的に使用することです。例えば、画面上にあるキーボードでデータを設定したいときなど、GP単体でデータの入出力を表示させる場合に使用します。

PLC 専有の方法

PLC専有の方法は、2とおりあります。

- (1) PLC \Rightarrow to \Rightarrow CN \Rightarrow CN
- (2)「タッチパネル専有」を「あり」に設定する4.8 カスタマイズ機能


PLC 専有解除の方法

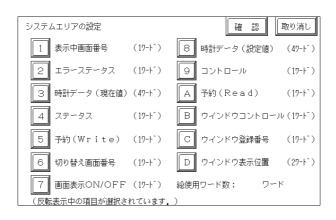
現在専有中のGPのLS14(コントロール)の7ビットめをOFFします。 上記(1)の方法で専有する場合、専有時間を設定することができます。設定時間 を経過すると自動的に専有を解除します。4.8 カスタマイズ機能

1台のGPが専有している間は、その他のGPのシステムデータエリアLS6(ステータス)の7ビットめがONになります。LS6(ステータス)の7ビットめがONになっているGPは、待機していることになります。

待機しているGPに対して操作を行うと、通信が再開した後に処理が実行されます。このため蓄積された操作によって誤動作が起こる可能性があります。

また、待機中のGPのシステムデータエリアのビットは、PLCから確認できません。GPが専有中 や待機中であることを、Lタグ・Wタグ・Uタグなどを使って画面に表示することをおすすめし ます。

- ・ 複数の GP で LS14 (コントロール) のビットが ON された場合、 その中で 1 番早くビットが ON になった GP が PLC を専有しま す。
- ・ 1 台の GP が専有している間は、その GP が PLC を専有するため、他の GP の表示が止まります。


4.6 システムデータエリアの設定

システムデータエリア*1を設定します。

n:1(マルチリンク)接続の通信では、接続する GP の台数分のシステムデータエリアを割り付けるため、システム全体のデータ量が多くなります。そのために各 GP の処理速度が遅くなってしまう場合があります。

システムデータエリアは、必要な項目だけを選択することをおすすめします。

GPのオフラインモードで設定する場合、「1 初期設定」の「2 システム環境の設定」の「2 システムエリアの設定」で設定します。

(GP-470の画面)

- *1 システムデータエリアとは、PLCがGPを管理するために必要なエリアです。ここで選択した項目は、PLC内部にシステムデータエリアとして割り付けられます。
 - 1.1 ダイレクトアクセス方式のしくみ

- システムデータエリアは、接続するGPごとに設定します。その際に、PLCのアドレスで重ならないように割り付けてください。
- ・ システムデータエリアの項目を選択していない場合、読み込みエリアの先頭アドレスが、システムエリア先頭アドレスになります。
- ・ 設定画面に表示される「システムエリア」とは、「システム データエリア」のことです。
- ・ GP の処理速度を速くするには、システムデータエリアの項目を選択しない方法もあります。ただし、PLC が GP を管理するような、PLC からの画面切り替えや PLC の専有などを行うことはできません。
- ・システムデータエリアの項目を選択していないときに画面を 切り替えたい場合には、間接的にWタグの加算モードを使っ て、PLCのデータレジスタ内容をGP内部のLS8に書き込みま す。

4.7 局情報の設定

局情報は、接続する GP のシステム構成と、正常に通信を行っているかを確認するための設定です。n:1(マルチリンク)接続に必要な設定です。

GPのオフラインモードで設定する場合、「1 初期設定」の「2 動作環境の設定」の「2 局情報の設定」で設定します。

(GP-470の画面)

通信情報の格納アドレス

n:1(マルチリンク)接続では、2ワードの「通信情報」をもとに通信を行います。この「通信情報」は、「接続局リスト」と「加入局リスト」の2ワードの領域で構成されます。それぞれ役割を持っており、PLCのデータレジスタ(D)、データメモリ(DM)などに割り付けをします。 PLCのデータレジスタ

- +0 接続局リスト PLC GP +1 加入局リスト GP PLC
- 重要・ 通信情報の格納アドレスは、同一リンクユニットに接続する すべての GP に同じアドレスを設定してください。 なお、リンクユニットに接続するポートが 2 つある場合は、同じアドレスにしないでください。

・接続局リスト

MEMÓ

PLC と接続する GP の台数をあらかじめ PLC 側で登録する設定です。 PLC と接続される場合、 GP の自局番号に対応した番号のビットを ON します。

・ PLC と接続している際に、任意の GP だけの通信を止めてオフラインに入るときには、 GP の自局番号に対応したビットを OFF します。

L, h12

ſ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	号	号	号	号	号	号	号	号	号	号	号	号	号	号	号	号
Ŀ	機	機	機	機	機	機	機	機	機	機	機	機	機	機	機	機

< 例 > 0 号機、2 号機、3 号機、5 号機の4台を接続する場合は、002D(h)を書き込みます。 接続局リスト $\boxed{0}$ 0 $\boxed{0}$ 0 $\boxed{0}$ 0 $\boxed{0}$ 0 $\boxed{0}$ 1 $\boxed{0}$ 1 $\boxed{1}$ 1 0 02D(h)

強制 ・ 運転前に必ず設定しておいてください。

・ GP と接続しないビットは、OFF しておいてください。

禁止・GPを接続しているにもかかわらず長時間接続局リストのビットをOFFするような使い方はしないでください。

・加入局リスト

接続された各 GP の通信状態を表しています。ここで接続局リストと同じ番号のビットが ON されていれば通信が成立していることになります。通信している GP の自局番号に対応した番号のビットが ON しています。

機 機

GPとPLCが正常に通信していれば、接続局リストと同じ値が書き込まれています。

< 例 > 接続局リストで0号機、2号機、3号機、5号機の4台を設定したときの値と同じ 002D(h)が加入局リストにも書き込まれます。

接続局リスト 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 002D(h)

機

加入局リスト 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 002D(h)

・接続局リストと加入局リストが同じでない場合は、通信エラーとなります。もう一度設定を確認してください。

強制 ・ 接続を変更するときには、1 度すべてのビットを OFF してく ださい。

自局番号

GPの自局番号を設定します。設定範囲は0~15までで、自由につけることができますが、他のGPの自局番号と重複しないように設定してください。重複した場合、通信エラーとなります。

・ 自局番号は、GP 自体に割り付ける番号です。リンクユニット の号機 No. とは関係ありません。

局情報の設定例

GPを2台マルチリンク接続する場合、局情報の設定例を以下に示します。

	GP1	GP2
号機No. *1	1	1
自局No. *2	0	1
格納ADD *3	D100	D100

- *1 接続するリンクユニットの号機No.を設定。
- *2 0~15までの任意のGPの自局番号を重複しない ように設定。
- *3 システムデータエリアの設定と重ならないようにすべてのGPに同じ格納アドレスを設定。

上記のように設定した後、[D100]に「3」を書き込むと通信することができます。

4.8 カスタマイズ機能

カスタマイズ機能は、n:1(マルチリンク)接続の通信をより効果的にするための機能です。 効率的に通信を行うには、GPを使う用途によって「操作」または「表示」を優先させるかを 決めます。これにより、通信応答の速度アップが望めます。(ただし、画面情報によります)

GPのオフラインモードで設定する場合、「1 初期設定」の「2 動作環境の設定」の「3 カスタマイズ機能」で設定します。

(GP-470の画面)

動作優先モード

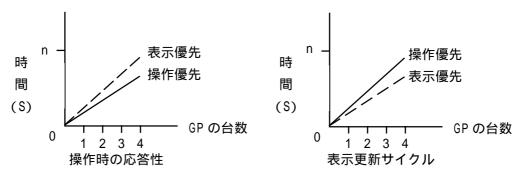
GP の用途に合わせて、操作優先か、表示優先かを選択します。

・表示

GP の用途を主にモニタ画面としてお使いになる場合には、この設定にしてください。GP 全体の表示速度の向上が望めます。ただし、タッチパネルの"操作時の応答性"は遅くなります。

・操作

GPの用途を主に操作パネルとしてお使いの場合には、この設定にしてください。タッチパネルによる数値設定入力やスイッチなどの応答性の向上が望めます。


このモードにしておくと、タッチパネル操作時の応答性が GP の台数に影響をあまり受けないようになります。ただし、"表示更新サイクル"は遅くなります。

- ・ 本設定は、接続するすべての GP に同じ設定を行ってください。
- ・ 表示速度を向上するため、アドレス設定はできる限り連続アドレスにしてください。ビットアドレスの場合は、ワード単位でみたときに連続になるようにしてください。

・表示優先と操作優先の速度的な違い

三菱電機(株)製 PLC A3A を使用し、スキャンタイム 20ms で連続アドレス (システムデータエリアを含まない 80 ワード)を読み出すときの速度の違いは、次のようになります。

タッチパネル専有

タッチパネル専有の「あり」、「なし」が設定できます。モーメンタリ動作に設定したタッチパネルで、PLCを専有(4.5 PLC専有)したい場合は、タッチパネル専有を「あり」に設定します。「あり」に設定すると、モーメンタリ動作で設定したタッチパネルをタッチしている間はPLCを専有します。これでモーメンタリスイッチでのインチング操作が行えるようになります。タッチし終わると、専有は解除されます。

専有解除時間

システムデータエリア LS14 の 7 ビットめを ON する専有方法の場合は、専有時間を設定することができます。この設定をしておくと、LS14 の 7 ビットめを OFF しなくても、時間が経過すると自動的に解除します。専有を解除したあとは、n:1(マルチリンク)通信に戻ります。

- ・ 専有中にタッチ操作を行うと、その時点で専有解除時間が設定し直されます。
- ・ 専有解除時間が0(ゼロ)の場合は、自動解除を行いません。

システムデータエリア内 LS6 (ステータス) LS14 (コントロール) 1.1.4 システムデータ エリアの内容と領域

各社 PLC と GP の接続 < マルチリンク >

各社PLCとGPとのシステム構成・結線図・使用可能デバイス・環境設定例を説明します。

5.1 三菱電機(株)製PLC

5.1.1 システム構成

三菱電機 (株)製 PLC と GP を接続する場合のシステム構成を示します。 <結線図 > は 5-1-2 結線図をご参照ください。

MELSEC-A シリーズ (リンク I/F 使用)

CPU	リンクI/F	結線図	GP
	計算機リンクコニット		
A2A	AJ71C24-S6	<結線図1>	
A3A	AJ71C24-S8		
A4U	AJ71UC24		GPシリーズ
A2US	A1SJ71C24-R4		
A2USH-S1	A1SJ71UC24-R4		

MELSEC-N シリーズ (リンク I/F 使用)

CPU	リンクI/F	結線図	GP
	計算機リンク		
	ユニット		
A1N	AJ71C24	<結線図1>	
A2N	AJ71C24-S3		
A3N	AJ71C24-S6		
	AJ71C24-S8		GPシリーズ
	AJ71UC24		
A0J2,A0J2H	A0J2-C214-S1		
A1S	A1SJ71C24-R4		
A1SJ,A2SH,A1SH	A1SJ71UC24-R4		

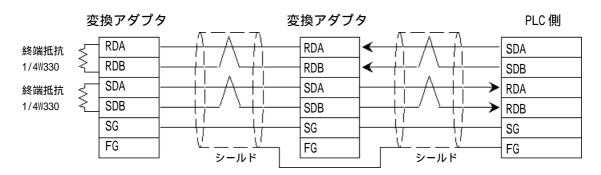
MELSEC-FX シリーズ (機能拡張ボードを LINK プロトコルで使用する場合)*1

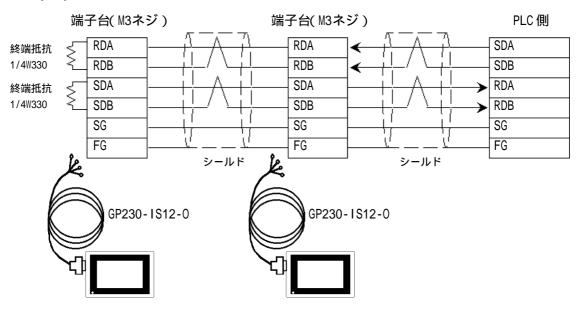
CPU	アダプタ	結線図	GP
	機能拡張ボード	+ -	
FX2N *2	FX2N-485-BD	RS-422 <結線図2>	GPシリーズ

- *1 作画ソフトPRO/PB で「PLCタイプ」を<三菱MELSEC-FX2(LINK)>に設定してください。
- *2 PLCのシステムのバージョンがVer.1.06以上が必要です。バージョンの確認は、データレジスタ(D8001)を読み出すことで確認できます。詳細は、三菱電機(株)製「FX2Nシリーズマイクロシーケンサ」のマニュアルをご参照ください。

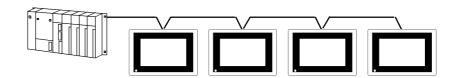
MELSEC-QnA (リンク I/F 使用)

CPU	リンクI/F	結線図	GP
	シリアルコミュニケー ションユニット/ 計算機リンク ユニット	\	
Q2A,Q2A-S1,Q4A	AJ71QC24(シリアルコミュニケーションユニット)*1 AJ71UC24(計算機リンクユニット)	RS-422 <結線図1> RS-422 <結線図1> CN-1用	GPシリーズ
Q2AS	A1SJ71QC24(シリア ルコミュニケーショ ンユニット) ^{*2} A1SJ71UC24(計算機 リンクユニット)	RS-422 <結線図1>	
Q2AS-S1	A1SJ71QC24N A1SJ71UC24-R4	RS-422 <結線図1>	

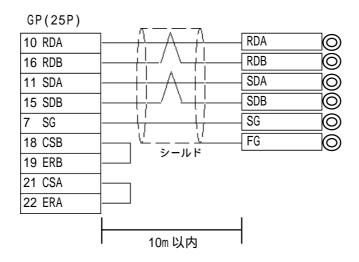

- *1 コミニュケーション側のバージョンは、ROM:7179B-以上が必要です。
- *2 コミニュケーション側のバージョンは、ROM:7179M-以上が必要です。

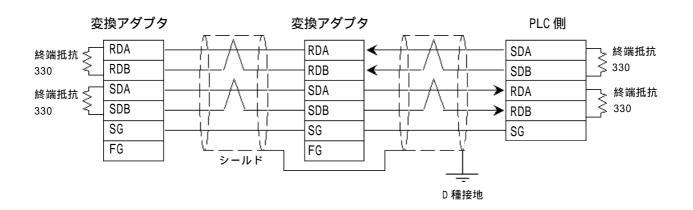

5.1.2 結線図

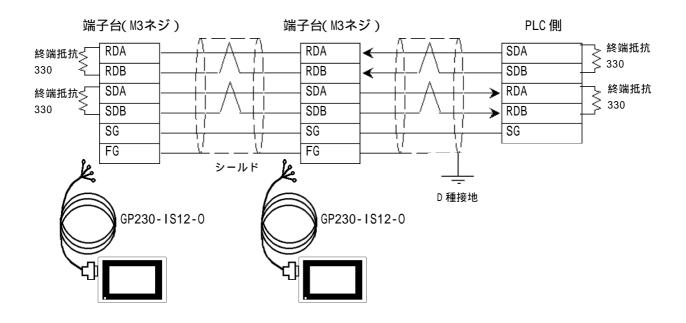
以下に示す結線図と三菱電機(株)の推奨する結線図が異なる場合がありますが、本書の結 線図にてご使用ください。


< 結線図1 >

・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0を使用する場合

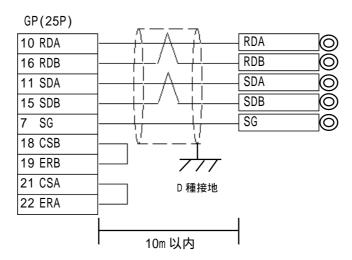

- 重要 ・ 伝送ケーブルのシールド線は、一括してPLC側のFGに接続し てください。
 - ・ GP230-IS12-0のケーブルのFG端子は、GPのFGと接続されて いません。
 - ・ ケーブルの両端に位置する GP と PLC には、終端抵抗を付けて ください。終端抵抗は、PLC側にある終端抵抗スイッチをONす ると、自動的に設定されます。
 - ・ RS-422接続の場合、ケーブル長は500m以内にしてください。
 - ・ PLCは原則として、回線の両端どちらかに接続してください。


接続ケーブルを加工される場合、三菱電線工業(株)製 SPEV (SB)-MPC-0.2*3P を推奨します。


そのケーブルの結線を以下に示します。GP から端子台につ なぐケーブルは、10m以内としてください。

<結線図2>

・ (株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0を使用する場合


- 重要・ 伝送ケーブルのシールド線は、一括してPLC側のFGに接続し てください。
 - ・ GP230-IS12-0のケーブルのFG 端子は、GPのFG と接続されて いません。
 - ・ ケーブルの両端に位置するGPとPLCには、終端抵抗を付けて ください。
 - FX2N-485-BDを使用される場合、ケーブルの総延長距離は50m以 内にしてください。
 - ・ PLCは原則として、回線の両端どちらかに接続してください。

接続ケーブルを加工される場合、三菱電線工業(株)製SPEV (SB)-0.2-2Pを推奨します。

そのケーブルの結線を以下に示します。GPから端子台につなぐ ケーブルは、10m以内としてください。

5.1.3 使用可能デバイス

GP でサポートしているデバイスの範囲を示します。

MELSEC-A シリーズ (AnA/AnU/A2US/A2USH-S1) は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考
入力リレー	X0000 ~ X1FFF	X0000 ~ X1FF0	*** 0]
出力リレー	Y0000 ~ Y1FFF	Y0000 ~ Y1FF0	<u>***</u> 0]
内部リレー	M0000~M8191	M0000 ~ M8176	<u>÷16</u>)
保持リレー	L0000~M8191		
特殊リレー	M9000 ~ M9255	M9000 ~ M9240	<u>÷16</u>)
アナンシェータ	F0000 ~ F2047	F0000 ~ F2032	<u>÷16</u>
リンクリレー	B0000 ~ B1FFF		
タイマ(接点)	TS0000 ~ TS2047		
タイマ(コイル)	TC0000 ~ TC2047		L/H
カウンタ(接点)	CS0000 ~ CS1023		
カウンタ(コイル)	CC0000 ~ CC1023		
タイマ(現在値)		TN0000 ~ TN2047	
カウンタ(現在値)		CN0000 ~ CN1023	
データレジスタ		D0000 ~ D8191	B i t 15]
特殊レジスタ		D9000 ~ D9255	[_{B i t} 15]
リンクレジスタ		W0000 ~ W1FFF	B i t
ファイルレジスタ		R0000 ~ R8191	B i t 15]

^{*1} AnA、AnU でファイルレジスタを使用する場合は、メモリカセット内のユーザメモリエリアをご使用ください。

メモリカセット使用なしの場合にファイルレジスタを設定すると、通信時にエラーが発生します。

MELSEC-Nシリーズ (AnN/A2C/A1S	A1SJ/A2SH)	は、システムエリアに指定可能
---------------------------	------------	----------------

デバイス	ビットアドレス	ワードアドレス	備考
入力リレー	X0000 ~ X07FF	X0000 ~ X07F0	*** 0
出力リレー	Y0000 ~ Y07FF	Y0000 ~ Y07F0	*** 0
内部リレー	M0000 ~ M2047	M0000 ~ M2032	<u>÷16</u>)
保持リレー	L0000 ~ L2047		
特殊リレー	M9000 ~ M9255	M9000 ~ M9240	<u>÷16</u> j
アナンシェータ	F000 ~ F255	F000 ~ F240	<u>÷16</u>)
リンクリレー	B0000 ~ B03FF		
タイマ(接点)	TS000 ~ TS255		
タイマ(コイル)	TC000 ~ TC255		L/H
カウンタ(接点)	CS000 ~ CS255		
カウンタ(コイル)	CC000 ~ CC255		
タイマ(現在値)		TN000 ~ TN255	
カウンタ(現在値)		CN000 ~ CN255	
データレジスタ		D0000 ~ D1023	B : t 15)
リンクレジスタ		W0000 ~ W03FF	Bit F)
ファイルレジスタ		R0000 ~ R8191	B i t 15)

^{*1} A2C 使用の場合、出力リレー Y01F0 ~ Y01FF (ワードは Y01F0) は、PLC 側で使用のため設定できません。

メモリカセット使用なしの場合にファイルレジスタを設定すると、通信時にエラーが発生します。

^{*2} AnN と AJ71C24-S3 (または AJ71C24) の組み合わせでは使用できません。

^{*3} AnN でファイルレジスタを使用する場合は、メモリカセット内のユーザメモリエリアをご使用ください。

MELSEC-FX シリーズ(機能拡張ボードを LINK プロトコルで使用する場合)

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考
入力リレー	X0000 ~ X0267	X0000 ~ X0240	<u>ост</u> 8] <u>***</u> 0] L/H
出力リレー	Y0000 ~ Y0267	Y0000 ~ Y0240	OCT 8] [*** 0]
補助リレー	M0000 ~ M3071	M0000 ~ M3056	<u>÷16</u> j
ステート	S0000 ~ S0991	S0000 ~ S0976	<u>÷16</u> 1
特殊補助リレー	M8000 ~ M8255	M8000 ~ M8240	<u>÷16</u>) *1
タイマ(接点)	TS000 ~ TS255		
カウンタ(接点)	CS000 ~ CS255		
タイマ (現在値)		TN000 ~ TN255	
カウンタ (現在値)		CN000 ~ CN255	*2
データレジスタ		D0000 ~ D7999	B : t15]
特殊データレジスタ		D8000 ~ D8255	_{Ві т} 15ј *1

^{*1}特殊リレー及び特殊データレジスタは、読み出し専用、書き込み専用、システム用に分かれています。

詳細は、PLC本体のマニュアルを参照してください。

^{*2} CN200~CN255は、32ビット長カウンタです。

MELSEC-QnA

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考	
入力リレー	X0000 ~ X1FFF	X0000 ~ X1FF0	*** 0]	
出力リレー	Y 0000 ~ Y1FFF	Y0000 ~ Y1FF0	*** 0]	
内部リレー	M00000 ~ M32767	M00000 ~ M32752	<u>÷16</u>	
特殊リレー	SM0000~SM2047	SM0000 ~ SM2032	<u>÷16</u>]	
ラっチリレー	L00000 ~ L32767	L00000 ~ L32752	<u>÷16</u> 1	
アナンシェータ	F00000 ~ F32767	F00000 ~ F32752	<u>÷16</u>)	
エッジリレー	V00000 ~ V32767	V00000 ~ V32752	<u>÷16</u>)	
ステップリレー	S0000 ~ S8191	S0000 ~ S8176	<u>÷16</u> 1	
リンクリレー	B0000 ~ B7FFF	B0000 ~ B7FF0	*** 0]	
特殊リレー	SB000 ~ SB7FF	SB000 ~ SB7F0	<u>***</u> 0]	
タイマ(接点)	TS00000 ~ TS22527			
タイマ(コイル)	TC00000 ~ TC22527			
精算タイマ(接点)	SS00000 ~ SS22527			L/H
精算タイマ(コイル)	CS00000 ~ CS22527			
カウンタ(接点)	CC00000 ~ CC22527			
カウンタ(コイル)				
タイマ(現在値)		TN00000 ~ TN22527		
精算タイマ(現在値)		SN00000 ~ SN22527		
カウンタ(現在値)		CN00000 ~ CN22527	B i t 15]	
データレジスタ		D00000 ~ D25599	_{В і t} 15]	
特殊レジスタ		SD0000 ~ SD2047	Bit F	
リンクレジスタ		W0000 ~ W63FF	Bit F	
特殊リンクレジスタ		SW000 ~ SW7FF	_{В і t} 15]	
ファイルレジスタ (通常)		R00000 ~ R32767	<u>ві т</u> 15) *1	
ファイルレジスタ (連番)		0R0000 ~ 0R7FFF • 1R0000 ~ 1R7FFF	B i t F *1	

^{*1} ファイルレジスタを使用する場合は、メモリカードが必要です。 メモリカードの容量により、ファイルレジスタの使用可能容量が異なります。

5.1.4 環境設定例

(株)デジタルが推奨するPLC側の通信設定と、それに対応するGP側の通信設定を示します。

MELSEC-A シリーズ

GPの設定		計算機リンクユニットの設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	7bit	データビット	7bit
ストップビット	2bit	ストップビット	2bit
パリティビット	偶数	パリティの有無 偶数/奇数パリティ	有 偶数
制御方式	ER制御		
通信方式	4線式	チャンネル設定 モード設定	RS-422 8(形式4のプロトコ ルモード)
		RUN中書き込み可否	可能
		サムチェックの有無	有
		送信側終端抵抗有無	有
		受信側終端抵抗有無	有
号機No.	0	局番	0

FX シリーズ(FX_{2N})

GPの設定		PLC側(データレジスタ)の設定	
伝送速度	19200	ボーレート	19200
データ長	7	データ長	7
ストップビット	2	ストップ	2
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式	RS232C	計算機リンク	RS232C I/F
(RS-232C使用時)			
通信方式	4線式	計算機リンク	RS485(RS422) I/F
(RS-422使用時)			
号機No.	0		0
		サムチェック	付加する
		プロトコル	使用する
		制御手順	形式4
		ヘッダ	なし
		ターミネータ	なし

PLC側の設定は、号機番号はデータレジスタD8121に書きこみます。 それ以外の設定は、データレジスタD8120に書き込みます。 詳細は、三菱電機製「FX通信ユーザーズマニュアル」を参照してください。

MELSEC-QnA

GPの設定		シリアルコミュニケーションユニットの設定	
伝送速度	19200bps *1	伝送速度	19200bps
データ長	7bit	データビット	7bit
ストップビット	2bit	ストップビット	2bit
パリティビット	偶数	パリティの有無 偶数/奇数パリティ	有 偶数
制御方式	ER制御		
通信方式	4線式	モード設定	4(形式4のプロトコ ルモード)
		サムチェックの有無	有
		送信側終端抵抗有無	有
		受信側終端抵抗有無	有
号機No.	0	局番	0

*1 AJ71QC24N-R4/A1SJ71QC24N は伝送速度 115Kbps も可能です。

- ・ MELSEC QnA と計算機リンクユニット AJ71UC24 の組み合わせで使用する場合の環境設定は、「MELSEC Aシリーズ」の表をご参照ください。
- ・ シリアルコミュニケーションユニットのCH1、CH2は、以下の 条件の1つでも条件を満たした場合は、同時通信を行うことが できます。

条件1: コミュニケーションユニット上面のシールのバージョンがAB以降

条件2: コミュニケーションユニット側面の DATE が 9609 以降

条件3:コミュニケーションユニットROM バージョンが7179M 以降

5.2 オムロン(株)製PLC

5.2.1 システム構成

オムロン (株) 製 PLC と GP を接続する場合のシステム構成を示します。 <結線図>は5.2.2 結線図をご参照ください。

重要・PLCを運転モードで使用した場合、一瞬「上位通信エラー(02:01)」が表示されることがあります。GPはこの後強制的にPLCをモニタモード(RUN中書き込み可能なモード)に切り替えます。通信に問題はありません。

SYSMAC Cシリーズ (リンク I/F 使用)

CPU	リンクI/F	結線図	GP
	上位 リンクユニット 間口	←	
C200H	C200H-LK202 *1	RS-422	
	C120-LK202-V1 *2	<結線図1>	
C200HS	C200H-LK202 *1		
C500, C500F, C1000H, C2000,	C120-LK202-V1 *2 C500-LK201-V1 *1		
C2000H	C500-LK203 *1	RS-422	GPシリーズ
C1000HF	C500-LK203 *1	<結線図2>	0, 7, 7,
C120, C120F	C120-LK202-V1 *2	RS-422 <結線図1>	
SRM1-CO2 CPM1-2OCDR-A CPM2A	CPM1-CIF11	RS-422 <結線図5>	

^{*1} ベース取り付けタイプです。

^{*2} CPU 取り付けタイプです。

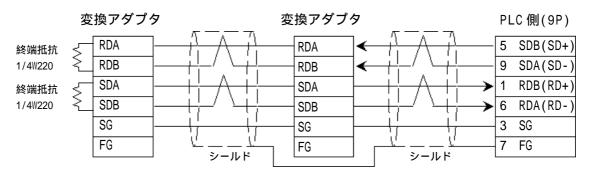
SYSMAC - シリーズ (リンク I/F 使用)

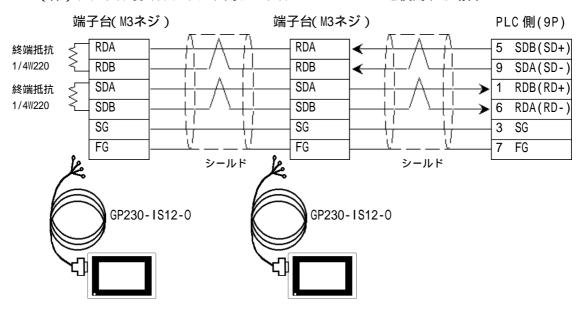
CPU	リンクI/F	結線図	GP
	コミュニケーション ボード	*	
C200HX-CPU64 C200HG-CPU43 C200HE-CPU42	C200HW-COM06	RS-422 <結線図3>	GPシリーズ
C200HX-CPU64-Z	C200H-LK202-V1	RS-422 <結線図1>	

SYSMAC CV シリーズ (リンク I/F 使用)

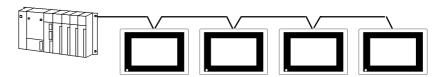
CPU	リンクI/F	結線図	GP
	上位 リンク ユニット 闘ロ		
CV500, CV1000,	CV500-LK201	RS-422	
CVM1	CPUユニット上の リンクI/F	<結線図4>	GPシリーズ

SYSMAC CS1 シリーズ (リンク I/F 使用)

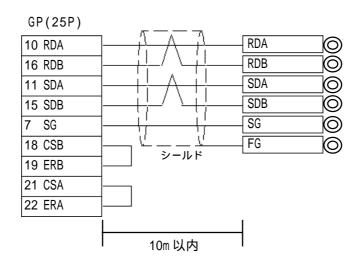

CPU	リンクI/F	結線図	GP
		←	
CS1H-CPU67 CS1H-CPU66 CS1H-CPU65 CS1H-CPU64 CS1H-CPU63 CS1G-CPU45 CS1G-CPU44 CS1G-CPU43	CS1W-SCB41	RS-422(ポート2) <結線図6>	GPシリーズ

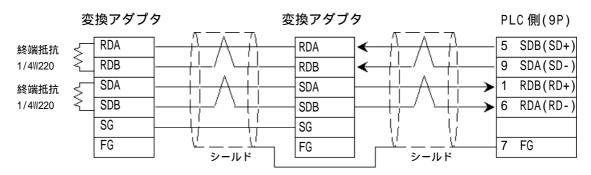

5.2.2 結線図

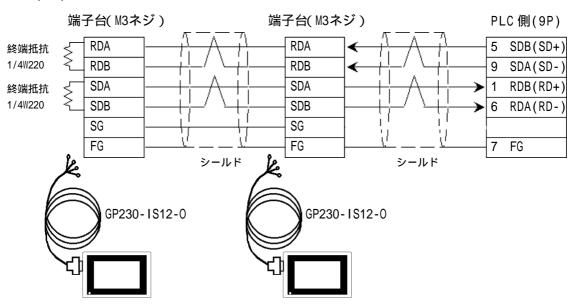
以下に示す結線図とオムロン(株)の推奨する結線図が異なる場合がありますが、本書の結 線図にてご使用ください。

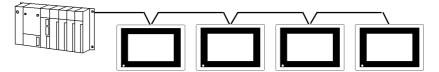

< 結線図1 >

・(株)デジタル製RS-422 コネクタ端子台変換アダプタGP070-CN10-0を使用する場合

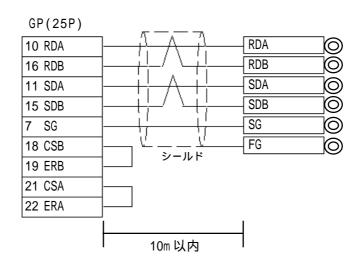

- 重要・ 伝送ケーブルのシールド線は、一括してPLC側のFGに接続して ください。
 - GP230-IS12-0のケーブルのFG端子は、GPのFGと接続されてい ません。
 - ・ GPとPLCとでは、A極とB極の呼称が逆になっていますのでご注 意ください。
 - ・ ケーブルの両端に位置するGPとPLCには、終端抵抗を付けてく ださい。終端抵抗は、PLC側にある終端抵抗スイッチをONする と、自動的に設定されます。
 - ・ RS-422接続の場合、ケーブル長は500m以内にしてください。
 - ・ PLCは原則として、回線の両端どちらかに接続してください。

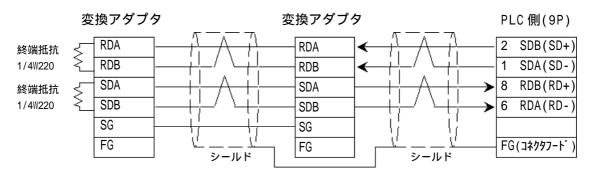

接続ケーブルを加工される場合、平河電線製H-9293A(CO-HC-ESV-3P*7/0.2)を推奨します。

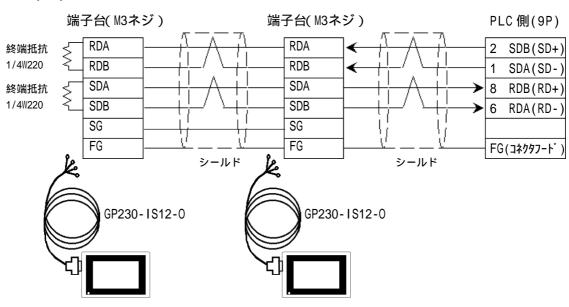

そのケーブルの結線を以下に示します。GPから端子台につなぐ ケーブルは、10m以内としてください。

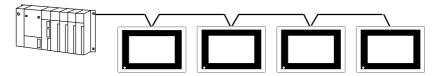

<結線図2>

・(株)デジタル製RS-422 コネクタ端子台変換アダプタGP070-CN10-0を使用する場合

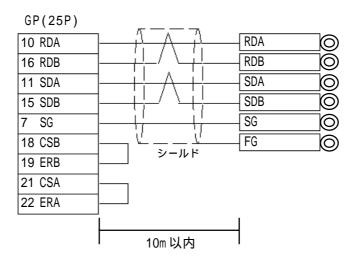

- 重 要 ・ 伝送ケーブルのシールド線は、一括してPLC側のFGに接続して ください。
 - GP230-IS12-0のケーブルのFG端子は、GPのFGと接続されてい ません。
 - ・ GPとPLCとでは、A極とB極の呼称が逆になっていますのでご注 意ください。
 - ・ ケーブルの両端に位置するGPとPLCには、終端抵抗を付けてく ださい。終端抵抗は、PLC側にある終端抵抗スイッチをONする と、自動的に設定されます。
 - ・ PLCは原則として、回線の両端どちらかに接続してください。

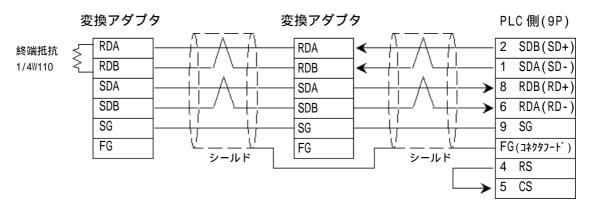

接続ケーブルを加工される場合、平河電線製H-9293A(CO-HC-ESV-3P*7/0.2)を推奨します。

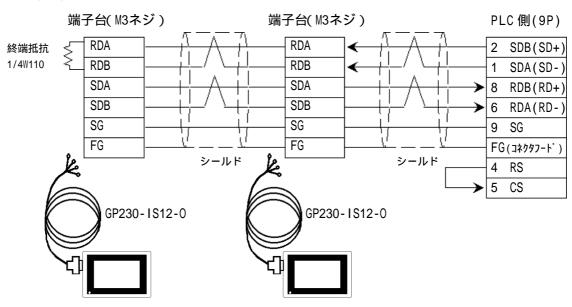

そのケーブルの結線を以下に示します。GPから端子台につなぐ ケーブルは、10m以内としてください。

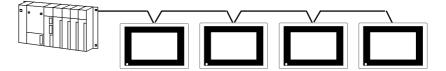

< 結線図3 >

・(株)デジタル製RS-422 コネクタ端子台変換アダプタGP070-CN10-0を使用する場合

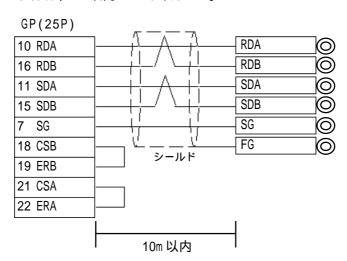

- 重 要 ・ 伝送ケーブルのシールド線は、一括してPLC側のFGに接続して ください。
 - ・ GP230-IS12-0のケーブルのFG 端子は、GPのFGと接続されてい ません。
 - ・ GPとPLCとでは、A極とB極の呼称が逆になっていますのでご注 意ください。
 - ・ ケーブルの両端に位置するGPとPLCには、終端抵抗を付けてく ださい。終端抵抗は、PLC側にある終端抵抗スイッチをONする と、自動的に設定されます。
 - ・ PLCは原則として、回線の両端どちらかに接続してください。

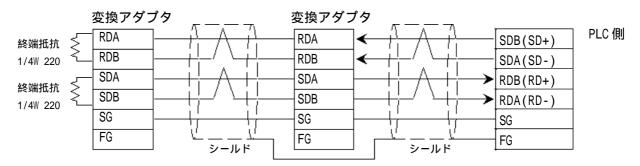

接続ケーブルを加工される場合、平河電線製H-9293A(CO-HC-ESV-3P*7/0.2)を推奨します。

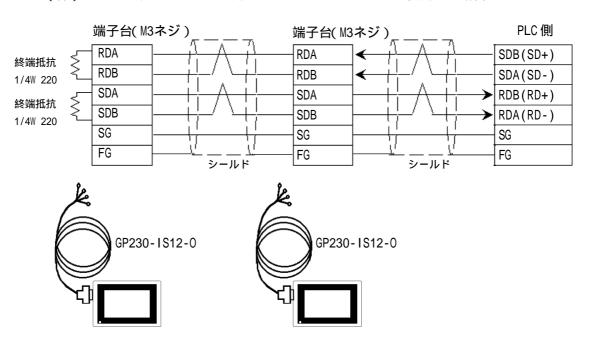

そのケーブルの結線を以下に示します。GPから端子台につなぐ ケーブルは、10m以内としてください。

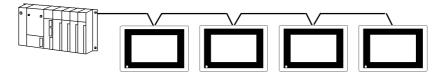

<結線図4>

・(株)デジタル製RS-422 コネクタ端子台変換アダプタGP070-CN10-0を使用する場合

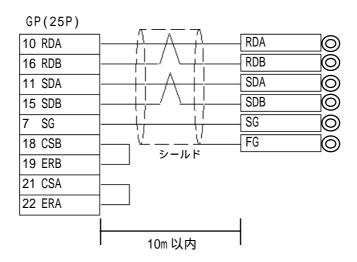

- 重要 ・ 伝送ケーブルのシールド線は、一括してPLC側のFGに接続して ください。
 - ・ PLC 側の RS-232C/422 の切り替えスイッチは、RS-422 側に設定 してください。
 - ・ CV500/CV1000のCPUユニットには、コネクタ(XM2A-0901)と コネクタフード(XM2S-0911)が各1個付属しています(オムロ ン製しこれら付属品以外のコネクタは使用できませんのでご注 意ください。
 - GP230-IS12-0のケーブルのFG端子は、GPのFGと接続されてい
 - ・ GPとPLCとでは、A極とB極の呼称が逆になっていますのでご注 意ください。
 - ・ ケーブルの両端に位置するGPとPLCには、終端抵抗を付けてく ださい。終端抵抗は、PLC側にある終端抵抗スイッチをONする と、自動的に設定されます。
 - ・ PLCは原則として、回線の両端どちらかに接続してください。

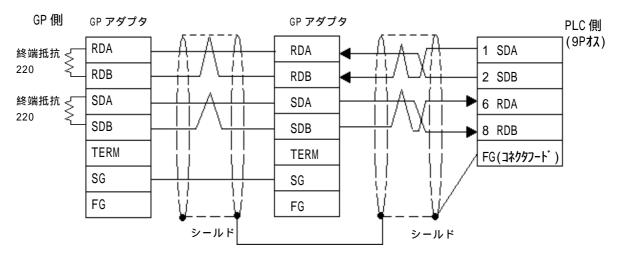

接続ケーブルを加工される場合、平河電線製H-9293A(CO-HC-ESV-3P*7/0.2)を推奨します。


そのケーブルの結線を以下に示します。GPから端子台につなぐ ケーブルは、10m以内としてください。

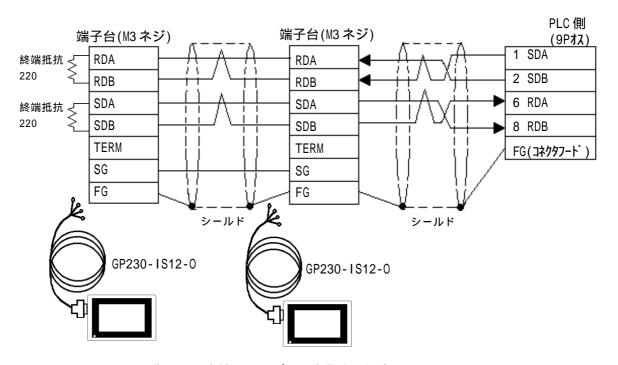

<結線図5 > RS-422

・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

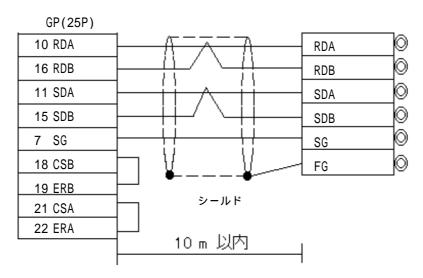

- 重要 ・ 伝送ケーブルのシールド線は、一括してPLC側のFGに接続して ください。
 - ・ GPとPLCとでは、A極とB極の呼称が逆になっていますのでご注 意ください。
 - ・ ケーブルの両端に位置するGPとPLCには、終端抵抗を付けてく ださい。終端抵抗は、PLC側にある終端抵抗スイッチをONする と、自動的に設定されます。
 - ・ PLCは原則として、回線の両端どちらかに接続してください。


接続ケーブルを加工される場合、平河電線製H-9293A(CO-HC-ESV-3P*7/0.2)を推奨します。

そのケーブルの結線を以下に示します。GPから端子台につなぐ ケーブルは、10m以内としてください。



< 結線図6 >


・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

・(株)デジタル製マルチリンク用ケーブル GP230-IS12-0を使用する場合

・ GP230-IS12-0の代わりに支線のケーブルを自作する場合

- MEMO・ 伝送ケーブルのシールド線は、一括してPLC側のFGに接続し てください。
 - ・ GP230-IS12-0のケーブルのFG端子は、GPのFGと接続させて いません。
 - ・ GPとPLCでは、A極とB極の呼称が逆になっていますので、 ご注意ください。
 - ・ ケーブルの両端に位置するGPとPLCには、終端抵抗を付けて ください。
 - ・PLC側の終端抵抗は、ボードの終端抵抗スイッチをONすると 自動的に設定されます。
 - ・ PLCは原則として、回線の両端のどちらかに接続してくださ
 - ・ RS-422 接続の場合、総ケーブル長は、500m 以内にしてくだ さい。
 - ・ 接続ケーブルとして平河ヒューテック製 CO-HC-ESV-3PX7/ 0.2を推奨します。

5.2.3 使用可能デバイス

GP でサポートしているデバイスの範囲を示します。

SYSMAC Cシリーズ

	┃ は、システムエリアに指定可能
--	------------------

デバイス	ビットアドレス	ワードアドレス	備考
入出力リレー	00000 ~ 51115	000 ~ 511	
内部補助リレー			
アナログ設定値格納 エリア	22000 ~ 22315	220 ~ 223	
データリンクリレー	LR0000 ~ LR6315	LR00 ~ LR63	
特殊補助リレー	24400 ~ 25515	244 ~ 255	*1
補助記憶リレー	AR0000 ~ AR2715	AR00 ~ AR27	L/H
保持リレー	HR0000 ~ HR9915	HR00 ~ HR99	
タイマ(接点)	TIM000 ~ TIM511		
カウンタ(接点)	CNT000 ~ CNT511		
タイマ(現在値)		TIM000 ~ TIM511	
カウンタ(現在値)		CNT000 ~ CNT511	
データメモリ		DM0000 ~ DM9999	B i t 15

^{*1} 入出力リレー / 内部補助リレーで設定を行ってください。

- ・ GP-*30 系とGP-*50 系とGP70 シリーズでは、T タグ、W タグの ビット書き込みの方法が以下のように異なります。
- ・ GP-*30 系・・・T タグ、W タグのビット書き込み (「反転」以外) を行うと、該当するワードアドレスは指定したビット以外をす べてクリア(0)します。

禁止 ・ GP-*50系とGP70シリーズ・・・Tタグ、Wタグのビット書き込みを行うと、いったんGPがPLCの該当するワードアドレスを読み込み、読み込んだワードアドレスにビットを立ててPLCに戻します。GPがPLCのデータを読み込んで返す間に、そのワードアドレスへは、ラダープログラムで書き込み処理を行わないでください。

GP-*30系のラダープログラムをGP70シリーズで流用するときは、上記の点にご注意ください。

SYSMAC - シリーズ

	は、システムエリアに指定可能
--	----------------

デバイス	ビットアドレス	ワードアドレス	備考	
入出力リレー	00000 ~ 02915	000 ~ 029		
入出力リレー	30000 ~ 30915	300 ~ 309		
内部補助リレー	03000 ~ 23515	030 ~ 235		
内部補助リレー	31000 ~ 51115	310 ~ 511		
特殊補助リレー	23600 ~ 25507	236 ~ 255		
特殊補助リレー	23600 ~ 29915	256 ~ 299		
保持リレー	25600 ~ 29915	HR00 ~ HR99		
補助記憶リレー	HR0000 ~ HR9915	AR00 ~ AR27		L/H
リンクリレー	AR0000 ~ AR2715	LR00 ~ LR63		
タイマ(接点)	L0R0000 ~ LR6315			
カウンタ(接点)	TIM000 ~ TIM511			
タイマ(現在値)		TIM000 ~ TIM511		
カウンタ(現在値)		CNT000 ~ TIM511		
データメモリ		DM0000 ~ DM6655	B i t 15	

- GP-*30系とGP-*50系とGP70シリーズでは、Tタグ、Wタグの ビット書き込みの方法が以下のように異なります。
- ・ GP-*30 系・・・T タグ、W タグのビット書き込み (「反転」以外) を行うと、該当するワードアドレスは指定したビット以外をす べてクリア(0)します。

禁止 ・ GP-*50系とGP70シリーズ・・・Tタグ、₩タグのビット書き込み を行うと、いったんGPがPLCの該当するワードアドレスを読 み込み、読み込んだワードアドレスにビットを立ててPLCに戻 します。GPがPLCのデータを読み込んで返す間に、そのワード アドレスへは、ラダープログラムで書き込み処理を行わないで ください。

> GP-*30系のラダープログラムをGP70シリーズで流用するとき は、上記の点にご注意ください。

SYSMAC CV シリーズ

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考	
入出力リレー	00000 ~ 19915	000 ~ 511		
内部補助リレー				
SYSMAC BUS/2 リモートI/Oリレー	02000 ~ 019915	0200 ~ 0999		
データリンクリレー	100000 ~ 119915	1000 ~ 1199		
特殊補助リレー	A00000 ~ A51115	A000 ~ A511		
保持リレー	120000 ~ 149915	1200 ~ 1499		
内部補助リレー	190000 ~ 229915	1900 ~ 2299		L/H
SYSMAC BUS/2 リモートI/Oリレー	230000 ~ 255515	2300 ~ 2555		
タイマ(接点)	T000 ~ T1023			
カウンタ(接点)	C000 ~ C1023			
タイマ(現在値)		T0000 ~ T1023		
カウンタ(現在値)		C0000 ~ C1023		
データメモリ		D0000 ~ D9999	B i t 15	

禁止・ ビットデバイスのタイマ・カウンタには書き込みができません。

- ・ GP-*30 系とGP-*50 系とGP70 シリーズでは、T タグ、W タグの ビット書き込みの方法が以下のように異なります。
- ・ GP-*30 系・・・T タグ、W タグのビット書き込み (「反転」以外) を行うと、該当するワードアドレスは指定したビット以外をす べてクリア(0)します。
- 禁止 ・ GP-*50系とGP70シリーズ・・・Tタグ、Wタグのビット書き込みを行うと、いったんGPがPLCの該当するワードアドレスを読み込み、読み込んだワードアドレスにビットを立ててPLCに戻します。GPがPLCのデータを読み込んで返す間に、そのワードアドレスへは、ラダープログラムで書き込み処理を行わないでください。

GP-*30系のラダープログラムをGP70シリーズで流用するときは、上記の点にご注意ください。

SYSMAC CS1シリーズ

デバイス	ビットアドレス	ワードアドレス	備考
チャンネル1/0	000000 ~ 614315	0000 ~ 6143	
内部補助リレー	W00000 ~ W51115	W000 ~ W511	
保持リレー	H00000 ~ H51115	H000 ~ H511	
特殊補助リレー	A00000 ~ A95915	A000 ~ A959	*1
タイマ(接点)	T0000 ~ T4095		*3
カウンタ(接点)	C0000 ~ C4095		*3
タイマ(現在値)		T0000 ~ T4095	
カウンタ(現在値)		C0000 ~ C4095	L/H
データメモリ	D0000000 ~ D3276715	D00000 ~ D32767	*2
拡張データメモリ (EO~EC)	E00000000 ~ EC3276715	E000000 ~ EC32767	*4
拡張データメモリ (カレントバンク)		EM00000 ~ EM32767	B : t15]
タスクフラグ		TK0 ~ TK30	÷ 2] _{B i t} 15] *3
インデックスレジスタ		IRO ~ IR15	B i t 31
データレジスタ		DRO ~ DR15	B: 15] *3

^{*1} A000 ~ A477 は書込み不可です。

^{*2} コミュニケーションユニット(CS1W-SCU21)を使用する場合は、D30000~D31599のアドレスは、PLC側でシステム設定用の領域として使用される場合がありますので、GPからの書込みは行わないでください。コミュニケーションボード(CS1W-SCB21/41) を使用する場合は、D32000~D32767のアドレスは、PLC側でシステム設定用の領域として使用されますので、GPからの書込みは行わないでください。参考 オムロン製[SYSMAC CS1シリーズ コミュニケーションボード CS1W-SCB21/41 コミュニケーションボード CS1W-SCU21]ユーザーズマニュアル

^{*3} 書込み不可です。

^{*4} 拡張データメモリは、CPUの機種によって範囲が異なります。

5.2.4 環境設定例

(株)デジタルが推奨するPLC側の通信設定と、それに対応するGP側の通信設定を示します。

SYSMAC Cシリーズ

GPの設定		上位リンクユニットの設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	7bit	データビット	7bit
ストップビット	2bit	ストップビット	2bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式	4線式	通信方式	RS-422
		コマンドレベル	レベル1,2,3が有効
		手順	1:N
		5V供給	なし
		CTS設定	常時ON
号機No.	0	局番	0

SYSMAC - シリーズ

GPの設定		コミュニケーションボードの設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	7bit	データビット	7bit
ストップビット	2bit	ストップビット	2bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式	4線式	RS-422/485ケーブル (2線式 / 4線式)の 切り替え(ディップSW1)	4
号機No.	0	号機No.	0

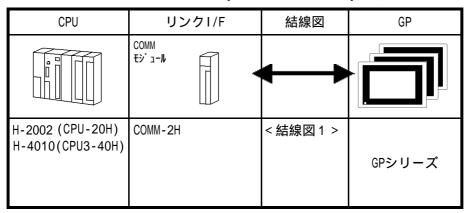
SYSMAC CV シリーズ

GPの設定		上位リンクユニットの設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	7bit	データビット	7bit
ストップビット	2bit	ストップビット	2bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式	4線式	通信方式	RS-422
号機No.	0	局番	0

SYSMAC CS1シリーズ

GPの設定		PLC側の設定	
伝送速度	19200	伝送速度	19200
データ長	7	データ長	7
ストップビット	2	ストップビット	2
パリティビット	偶数	パリティ	偶数
制御方式	E R		
通信方式(RS422使用時)	4 線式	WIRE(2線/4線式スイッチ)	4線式
		TERM(終端抵抗設定スイッチ)	終端抵抗ON
号機番号	0	上位リンク用号機No.	0
		シリアル通信モード	上位リンク
		送信ディレー時間	0
		CTS制御	なし

5.3 (株)日立製作所製 PLC

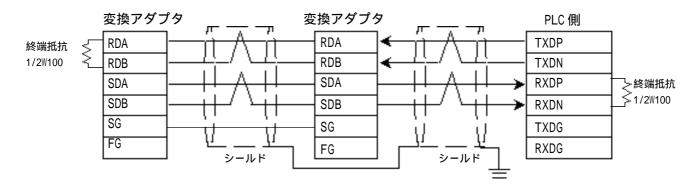

5.3.1 システム構成

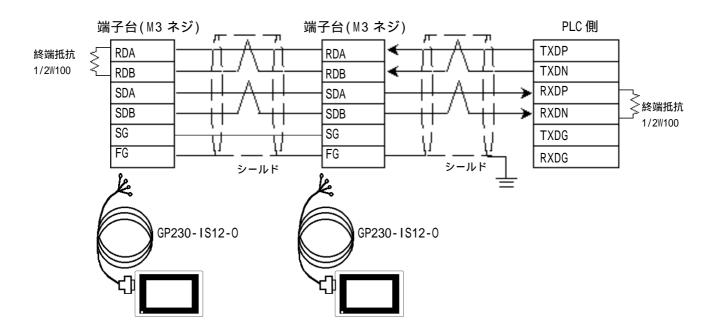
(株)日立製作所製 PLC と GP を接続する場合のシステム構成を示します。 <結線図>は5.3.2 結線図をご参照ください。

HIDIC Hシリーズ(リンク I/F 使用) 伝送制御手順1

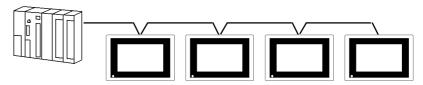
CPU	リンクI/F	結線図	GP
	COMM モジュール	$\qquad \qquad $	
H-2000(CPU-20Ha) H-2002(CPU-20H)	COMM-H COMM-2H	<結線図1>	GPシリーズ
H-4010(CPU3-40H)	COMM-2H		

HIDIC Hシリーズ / COMM-2H (リンク I / F 使用) 伝送制御手順2

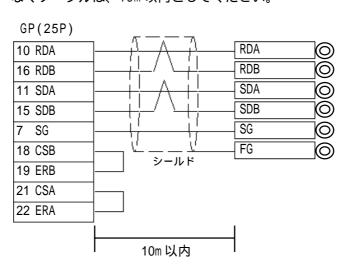



5.3.2 結線図

以下に示す結線図と(株)日立製作所の推奨する結線図が異なる場合がありますが、本書の結線図にてご使用ください。


< 結線図1 >

・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合


- 重要・ 伝送ケーブルのシールド線は、一括してPLC側のFGに接続して ください。
 - ・ GP230-IS12-0のケーブルのFG端子は、GPのFGと接続されてい ません。
 - ・ ケーブルの両端に位置するGPとPLCには、終端抵抗を付けてく
 - ・ COMMモジュールを使用する場合は、COMMモジュールのモードNo. を"2"に指定してください。
 - ・ 通信においてエラーが発生した場合、リトライ処理が行われるた め、エラー表示されるまでに時間がかかることがあります。
 - ・ GPとPLCのプログラムコンソール(GPCL)を同時に操作した場合、 GP が「上位通信エラー(02:37)」を、GPCL が「CPU 占有エラー」 を発生することがあります。この場合、GPは自動復帰を行いま す。GPCLでは再操作を行ってください。
 - ・ RS-422 接続の場合、ケーブル長は250m以内にしてください。
 - ・ PLCは原則として、回線の両端どちらかに接続してください。

接続ケーブルを加工される場合、日立電線(株)製 KPEV-SB-3P0.5mm²を推奨します。

そのケーブルの結線を以下に示します。GP から端子台につ なぐケーブルは、10m以内としてください。

5.3.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。

HIDIC H(HIZAC H)シリーズ

デバイス	ビットアドレス	ワードアドレス	備考	
外部入力	X00000 ~ X05A95	WX0000 ~ WX05A7	*1	
外部出力	Y00000 ~ Y05A95	WY0000 ~ WY05A7	*1	
リモート入力リレー	X10000 ~ X49A95	WX1000 ~ WX49A7	*1	
リモート出力リレー	Y10000 ~ Y49A95	WY1000 ~ WY49A7	*1	
内部出力	R000 ~ R7BF			
第1CPUリンク	L0000 ~ L3FFF	WL000 ~ WL3FF		
第2CPUリンク	L10000 ~ L13FFF	WL1000 ~ WL13FF		
データエリア	M0000 ~ M3FFF	WMOOO ~ WM3FF		
オンディレータイマ	TD000 ~ TD1024			
シングルショットタイマ	SS000 ~ SS1024		l	L/H
ウォッチドッグタイマ	WDT000 ~ WDT1024			
モノステーブルタイマ	MS000 ~ MS1024			
精算タイマ	TMR000 ~ TMR1024			
アップカウンタ	CU000 ~ CU2047			
リングカウンタ	RCU000 ~ RCU2047			
アップダウンカウンタ	CT000 ~ CT2047			
タイマ・カウンタ(経過値)		TC000 ~ TC2047		
ワード内部出力		WR0000 ~ WRC3FF	B i t F	
ネットワークリンクエリア		WN0000 ~ WN7FFF		

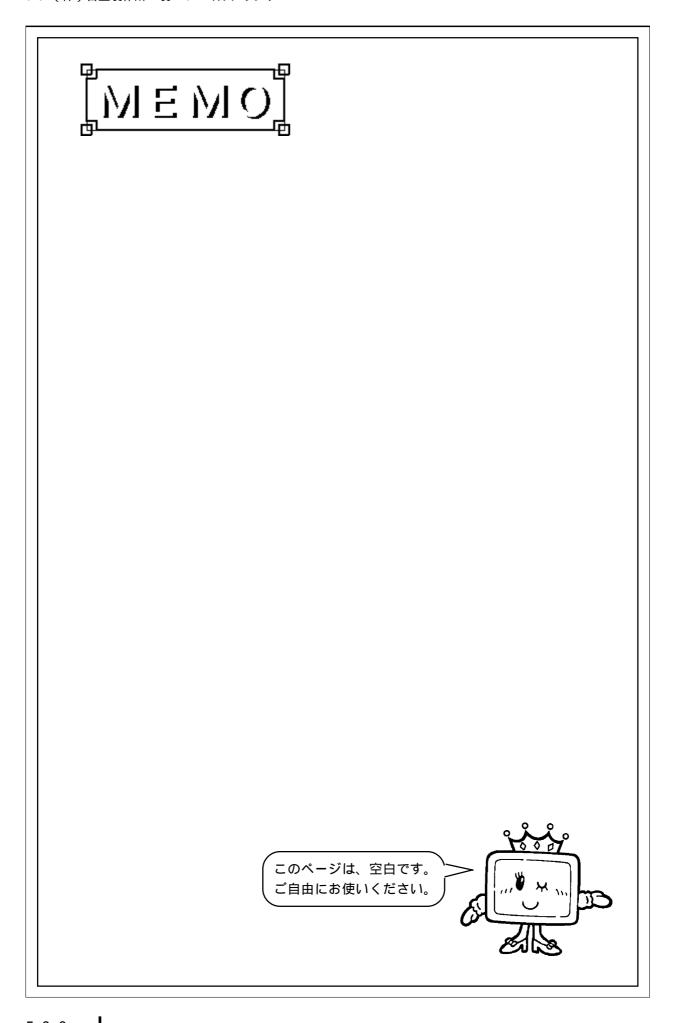
重要 ・ 第 1CPU リンク(L0000 ~ L3FFF)と第 2CPU リンク(L10000 ~ L13FFF)をGP-PRO/PB for Windows95 V1.* **以前**の作画 ソフトで使用される場合は、第1CPU リンクは、L00000~ L03FFF と入力し、第2CPU リンクでは、L100000~ L103FFF と1が 0 " を多く入力してください。GP-PRO/PB for Windows95 V2.0 **以降**の作画ソフトを使用 される場合は、上表どおり入力してください。 GP-PRO/PB for Windows95 V1.* **以前**から GP-PRO/PB for Windows95 V2.0 **以降**にバージョンアップされても内部データに支障はありません。入力方法が異なるだけです。

*1 次のように指定します。

< 例 > 外部入力ユニット No.1、スロット No.2、モジュール内ビット No.34 の場合

< 例 > 外部入力ユニットNo.1、スロットNo.2、モジュール内ワードNo.3 の場合

5.3.4 環境設定例

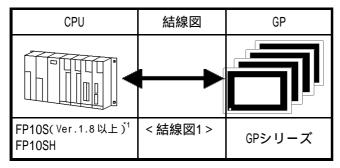

(株)デジタルが推奨するPLC側の通信設定と、それに対応するGP側の通信設定を示します。

HIDIC Hシリーズ 伝送制御手順1

GPの設定		COMMモジュールの設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	7bit	データビット	7bit
ストップビット	1bit	ストップビット	1bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式	4線式	通信方式 MODEスイッチ	RS-422 2
		サムチェック	有
号機No.	1	ステーションNo.	1

HIDIC Hシリーズ / COMM-2H 伝送制御手順2

GPの設定		COMMモジュールの設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	7bit	データビット	7bit
ストップビット	1bit	ストップビット	1bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式	4線式	通信方式	RS-422
		MODEスイッチ	9
		サムチェック	有
号機No.	1	ステーションNo.	1



5.4 松下電工(株)製PLC

5.4.1 システム構成

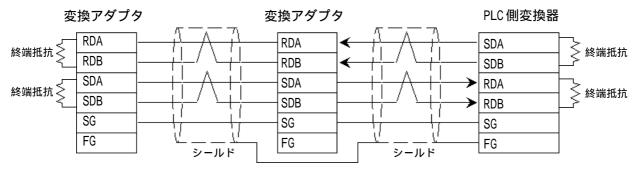
松下電工(株)製PLCとGPを接続する場合のシステム構成を示します。 <結線図>は5.4.2 結線図をご参照ください。

MEWNET シリーズ (CPU ユニット上のリンク I/F 使用)

*1 COMポートに接続します。

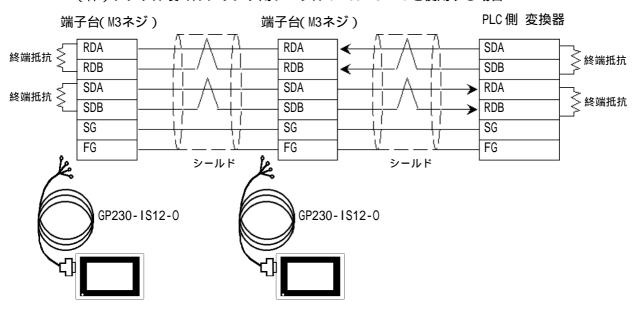
接続にはRS-232C/422変換器が必要です(下図参照)。

RS-232C/422 変換器は、422 側が端子台になっており、電源は通信ライン以外の外部から得る 形状のものをご使用ください。



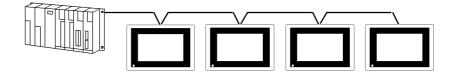
5.4.2 結線図

以下に示す結線図と松下電工(株)の推奨する結線図が異なる場合がありますが、本書の結線図に従ってご使用ください。

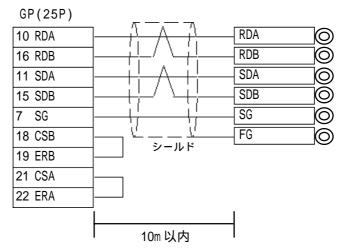

< 結線図1 >

・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

終端抵抗は、変換器の仕様をご確認のうえ、取り付けてください。


・(株)デジタル製マルチリンク用ケーブル GP230-IS12-0 を使用する場合

終端抵抗は、変換器の仕様をご確認のうえ、取り付けてください。


強制 ・ PLC本体のFG端子はD種接地を行ってください。 詳細はPLCのマニュアルをご参照ください。

- 重要・ 伝送ケーブルのシールド線は、一括してPLC側のFGに接続して ください。
 - GP230-IS12-0のケーブルのFG端子は、GPのFGと接続されてい ません。
 - ・ ケーブルの両端に位置するGPとPLCには、終端抵抗を付けてく ださい。
 - ・ RS-422 接続の場合、ケーブル長は松下電工(株)のマニュアル を参照してください。
 - ・ PLCは原則として、回線の両端どちらかに接続してください。

接続ケーブルを加工される場合、日立電線製 CO-SPEV-SB(A) 3P*0.5を推奨します。

5.4.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。

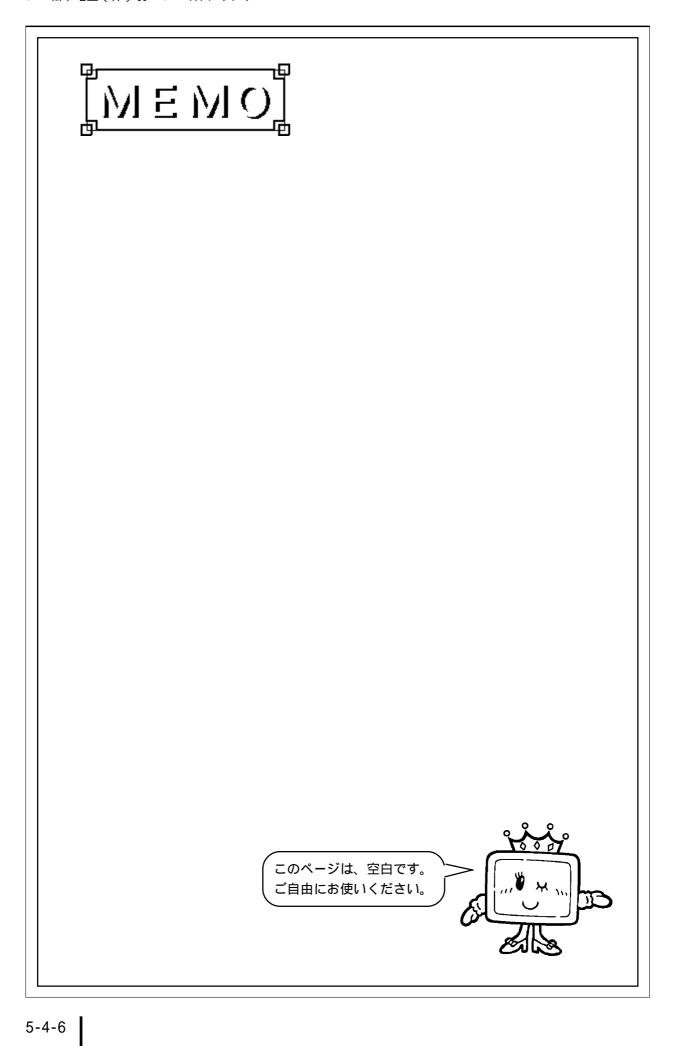
MEWNET シリーズ

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考	
入力リレー	X0000 ~ X255F	WX000 ~ WX255		
出力リレー	Y0000 ~ Y255F	WY000 ~ WY255		
内部リレー	R0000 ~ R875F	WR000 ~ WR875		
リンクリレー	L000 ~ L639F	WL000 ~ WL639		
特殊リレー	R9000 ~ R910F	WR900 ~ WR910	*1	
タイマ(接点)	T0000 ~ T2047		*1	L/H
カウンタ(接点)	C0000 ~ C2047		*1	
タイマ・カウンタ(経過値)		EV0000 ~ EV2047	*1	
タイマ・カウンタ(設定値)		SV0000 ~ SV2047	*1	
データレジスタ		DT0000 ~ DT9999	_{Ві t} 15)	
リンクレジスタ		Ld0000 ~ Ld8447	B i t 15]	
ファイルレジスタ		FL00000 ~ FL32764	B i t 15	

*1 データの書き込みはできません。

重要・FP10SHシリーズは、デバイスが拡張されていますが上記デバイス範囲のみ使用可能です。

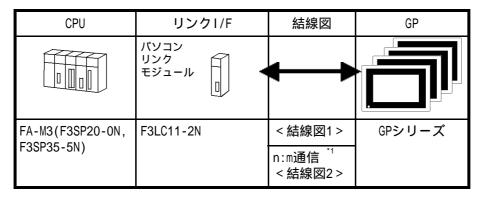

・ システムエリアはDT0000~DT8999範囲のみ指定可能です。

5.4.4 環境設定例

(株)デジタルが推奨するPLC側の通信設定と、それに対応するGP側の通信設定を示します。

FP10S/FP10SH

GPの設定		COMポートの設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	8bit	データ長	8bit
ストップビット	1bit	ストップビット	1bit
パリティビット	奇数	パリティビット	奇数
制御方式	ER制御		
通信方式	4線式		
		周辺タスク許可時間設定	K5000
号機No.	1	ユニットNo.	1



5.5 横河電機 (株) 製 PLC

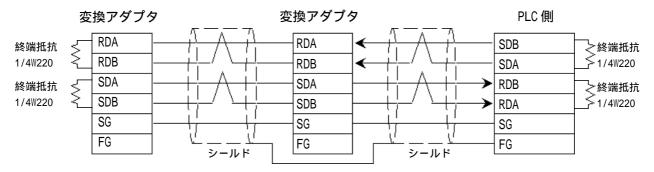
5.5.1 システム構成

横河電機(株)製 PLC と GP を接続する場合のシステム構成を示します。 <結線図 > は5.5.2 結線図をご参照ください。

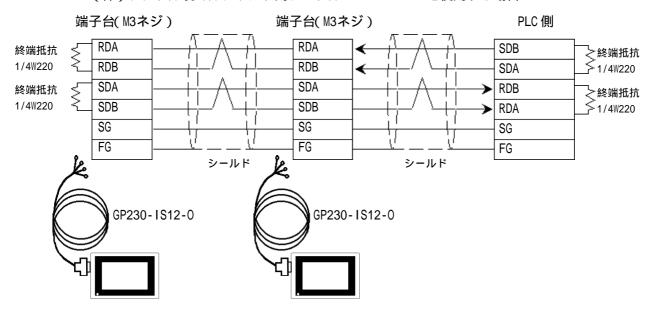
FACTORY ACE シリーズ /FA-M3 (リンク I/F 使用)

*1 横河電機(株)製PLC「FA-M3」または同プロトコルをサポートする機器(m台)と、GP(n台)を、上位リンクプロトコルを利用してn:mの通信を実現する場合のシステム構成を示します。
4線式 < 結線図3 >

FA-M3と同プロトコルをサポートする機器(デジタル指示調節計 < UT37/38/2000 > や記録計 < µ R シリーズ > など)を、以下 PA 機器と称します。

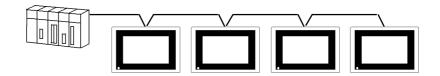

・PA機器は仕様上1~16号機までの設定となり、17号機以上の設定では使用できません。

5.5.2 結線図

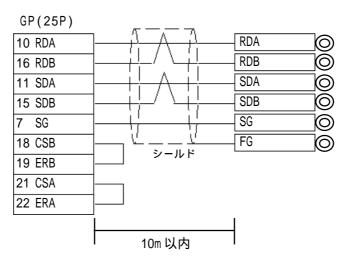

以下に示す結線図と横河電機(株)の推奨する結線図が異なる場合がありますが、本書の結 線図にてご使用ください。

< 結線図1 >

・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

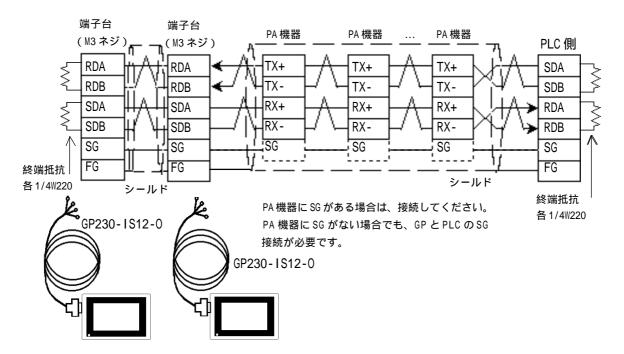


・(株)デジタル製マルチリンク用ケーブル GP230-IS12-0 を使用する場合


強制 ・ PLC 本体の FG 端子は D 種接地を行ってください。 詳細はPLCのマニュアルをご参照ください。

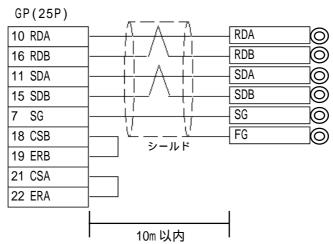
- 重要 · 伝送ケーブルのシールド線は、一括してPLC側のFGに接続して ください。
 - GP230-IS12-0のケーブルのFG端子は、GPのFGと接続されてい ません。
 - ・ ケーブルの両端に位置するGPとPLCには、終端抵抗を付けてく ださい。
 - ・ PLCは原則として、回線の両端どちらかに接続してください。


接続ケーブルを加工される場合、日立電線製 CO-SPEV-SB(A) 3P*0.5SQを推奨します。


<結線図2>

下図はGPとPLCが配線の両端にある場合の例です。図のように終端抵抗は両端の機器に取り付けてください。

・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合


・(株)デジタル製マルチリンク用ケーブルGP230-IS12-0を使用する場合

- 重要 ・ GPとPLC側では、A極とB極の呼び方が逆になっていますのでご 注意ください。
 - ・ パソコンリンクモジュールのステーション No. は1~32にして ください。
 - ・ GPに接続するPA機器の号機No.はすべて異なるように設定して ください。同じ号機No.のPA機器が2台以上あると、エラーが 発生します。
 - ・ GP(n台)とPA機器(m台)の通信設定はすべて同じにしてくだ さい。
 - ・ PLC 本体の FG 端子は D 種接地を行ってください
 - ・ 伝送ケーブルのシールド線は、一括してPLC側のFGに接続して ください。
 - ・ GP230-IS12-0のケーブルのFG端子は、GPのFGと接続されてい ません。
 - ・ ケーブルの両端に位置するGPとPLCには、終端抵抗を付けてく ださい。
 - ・ RS-422 接続の場合、ケーブル長は横河電機(株)のマニュアル を参照してください。
 - ・ PLCは原則として、回線の両端どちらかに接続してください。

接続ケーブルを加工される場合、日立電線製 CO-SPEV-SB(A) 3P*0.5SQを推奨します。

5.5.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。

FA-M3 (n:1 通信する場合)

L t	システムエリアに指定可能
-----	--------------

デバイス	ビットアドレス	ワードアドレス	備考	
入力リレー	X00201 ~ X71364	X00201 ~ X71349	÷16+ 1 *1*2*3	
出力リレー	Y00201 ~ Y71364	Y00201 ~ Y71349	÷16+ 1 *1*2	
内部リレー	100001 ~ I16384	100001 ~ 116369	÷16+ 1] *2*4	
共有リレー	E0001 ~ E4096	E0001 ~ E4081	÷16+ 1 *2*4	
特殊リレー	M0001 ~ M9984	M0001 ~ M9969	÷16+ 1] *2	
リンクリレー	L00001 ~ L71024	L00001 ~ L71009	÷16+ 1] *2*5	
タイマ(接点)	T0001 ~ T3072		*2*3*6	
カウンタ(接点)	C0001 ~ C3072		*2*3*6	
タイマ (現在値)		TP0001 ~ TP3072	*2*6	L/H
タイマ (設定値)		TS0001 ~ TS3072	*2*6	
カウンタ(現在値)		CP0001 ~ CP3072	*2*6	
カウンタ (設定値)		CS0001 ~ CS3072	*2*6	
データレジスタ		D0001 ~ D8192	B i t 15 *2*7	
ファイルレジスタ		B00001 ~ B32768	B i t 15 *2	
共有レジスタ		R0001 ~ R4096	B i t 15 *2*7	
特殊レジスタ		Z001 ~ Z512	B i t 15 *2	
リンクレジスタ		W00001 ~ W71024	B i t 15 *2*8	

*1 入力リレーと出力リレーは下2桁の端子番号(ビット)01~49が16の倍数+1の値のみです。

*2 デバイス名の前にCPU 番号(1~4)をつけます。

<例>CPU番号3の内部リレー10001の場合

3 <u>10001</u> デバイス名 CPU 番号

- *3 データの書き込みはできません。
- *4 共有リレー・内部リレーは合計で16384点まで使用できます。
- *5 リンクリレーは8192点まで使用できます。
- *6 タイマ・カウンタは合計で3072点まで使用できます。
- *7 データレジスタ・共有レジスタは合計で8192点まで使用できます。
- *8 リンクレジスタは8192点まで使用できます。

FA-M3 (n:m 通信する場合)

	は、システムエリアに指定可能
--	----------------

デバイス	ビットアドレス	ワードアドレス	備考	
入力リレー	X00201 ~ X71364	X00201 ~ X71349	÷16+ 1]*1*2*3	
出力リレー	Y00201 ~ Y71364	Y00201 ~ Y71349	<u>+16+</u> 1 *1*2	
内部リレー	100001 ~ I16384	100001 ~ I16369	<u>+16+</u> 1 *2	
共有リレー	E0001 ~ E4096	E0001 ~ E4081	*2	
特殊リレー	M0001 ~ M9984	M0001 ~ M9969	<u>+16+</u> 1 *2	
リンクリレー	L00001 ~ L71024	L00001 ~ L71009	<u>+16+</u> 1 *2*4	
タイマ(接点)	T0001 ~ T2047		*2*3*5	
カウンタ(接点)	C0001 ~ C2047		*2*3*5	
タイマ(現在値)		TP0001 ~ TP2047	*2*5 L/I	Н
タイマ(設定値)		TP0001 ~ TP2047	*2*5	
カウンタ(現在値)		TP0001 ~ TP2047	*2*5	
カウンタ(設定値)		TP0001 ~ TP2047	*2*5	
データレジスタ		D0001 ~ D2047	B i t 15 *2	
ファイルレジスタ		B0001 ~ B2047	B i t 15 *2	
共有レジスタ		R0001 ~ R2047	B i t 15 *2	
特殊レジスタ		Z001 ~ Z512	B i t 15 *2	
リンクレジスタ		W0001 ~ W11023	B i t 15 *2*6	

*1 入力リレーと出力リレーは下2桁の端子番号(ビット)01~49が16の倍数+1の値のみです。

<例> X00201 の場合

X <u>002</u> <u>01</u> 端子番号 スロット No.

3 10001

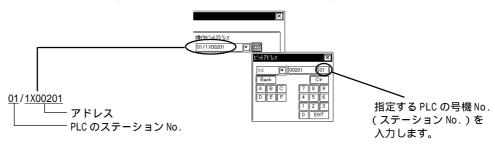
デバイス名

-CPU 番号

*2 デバイス名の前にCPU 番号(1~4)をつけます。

< 例 > CPU 番号3の内部リレー 10001の場合

*3 データの書き込みはできません。


*4 リンクリレーは8192点まで使用できます。

*5 タイマ・カウンタは合計で3072点まで使用できます。

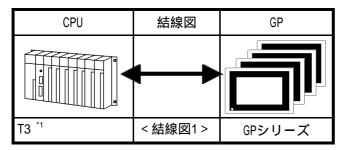
*6 リンクレジスタは2047点まで使用できます。

GP-PRO/PB で部品やタグの設定を行う場合、アドレス入力時に PLC のステーション No. の指定ができます。 ステーション No. を指定しなかった場合は、ひとつ前に入力された番号を継続します。(起動時のデフォルト値は「1」です)

5.5.4 環境設定例

(株)デジタルが推奨する PLC 側の通信設定と、それに対応する GP 側の通信設定を示します。

FACTORY ACE シリーズ

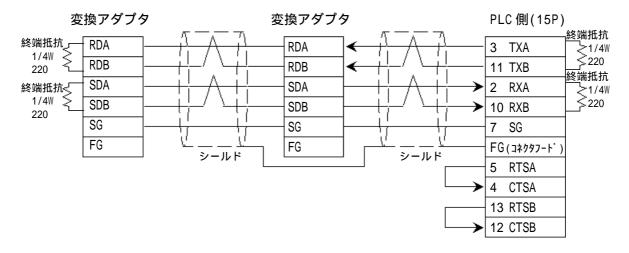

GPの設定		リンクユニットの設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	8bit	データ長	8bit
ストップビット	1bit	ストップビット	1bit
パリティビット	無	パリティビット	無
制御方式	ER制御		
通信方式	4線式		
		チェックサム	無
		終端文字指定	有
		プロテクト機能	無
		データ形式設定スイッチ	8を0FF
号機No.	1	ステーションNo.	1
号機No. (n:m通信時)	全GPをパソコンリンクモ ジュールのステーション No.とあわせてください	ステーションNo. (n:m通信時)	全てのPA機器、パソコン リンクモジュールのNo.を 異なるように設定してく ださい

5.6 (株)東芝製 PLC

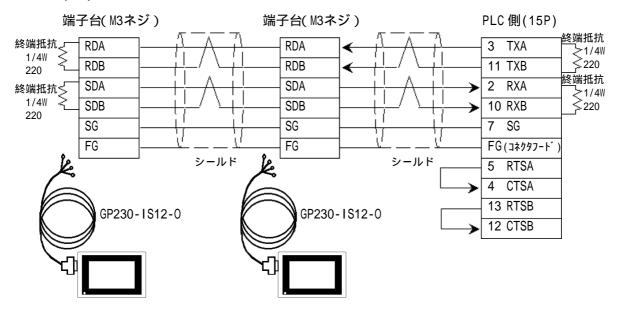
5.6.1 システム構成

(株)東芝製PLCとGPを接続する場合のシステム構成を示します。 <結線図>は5.6.2 結線図をご参照ください。

PROSEC Tシリーズ (CPU ユニット上のリンク I/F 使用)

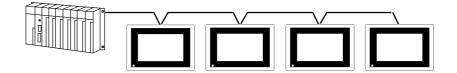

*1 CPUモジュールのコンピュータリンク用ポートに接続します。

5.6.2 結線図

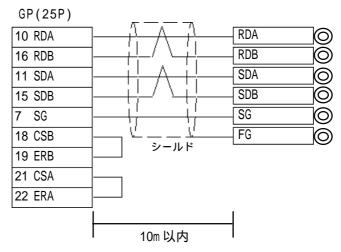

以下に示す結線図と(株)東芝の推奨する結線図が異なる場合がありますが、本書の結線図に てご使用ください。

< 結線図1 >

・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合



・(株)デジタル製マルチリンク用ケーブル GP230-IS12-0 を使用する場合


強制 ・ PLC本体のFG端子はD種接地を行ってください。 詳細はPLCのマニュアルをご参照ください。

- 重要・ 伝送ケーブルのシールド線は、一括してPLC側のFGに接続して ください。
 - ・ GP230-IS12-0のケーブルのFG端子は、GPのFGと接続されてい ません。
 - ・ ケーブルの両端に位置するGPとPLCには、終端抵抗を付けてく ださい。
 - ・ RS-422 接続の場合、ケーブル長は(株)東芝のマニュアルを参 照してください。
 - ・ PLCは原則として、回線の両端どちらかに接続してください。

接続ケーブルを加工される場合、日立電線製 CO-SPEV-SB(A) 3P*0.5を推奨します。

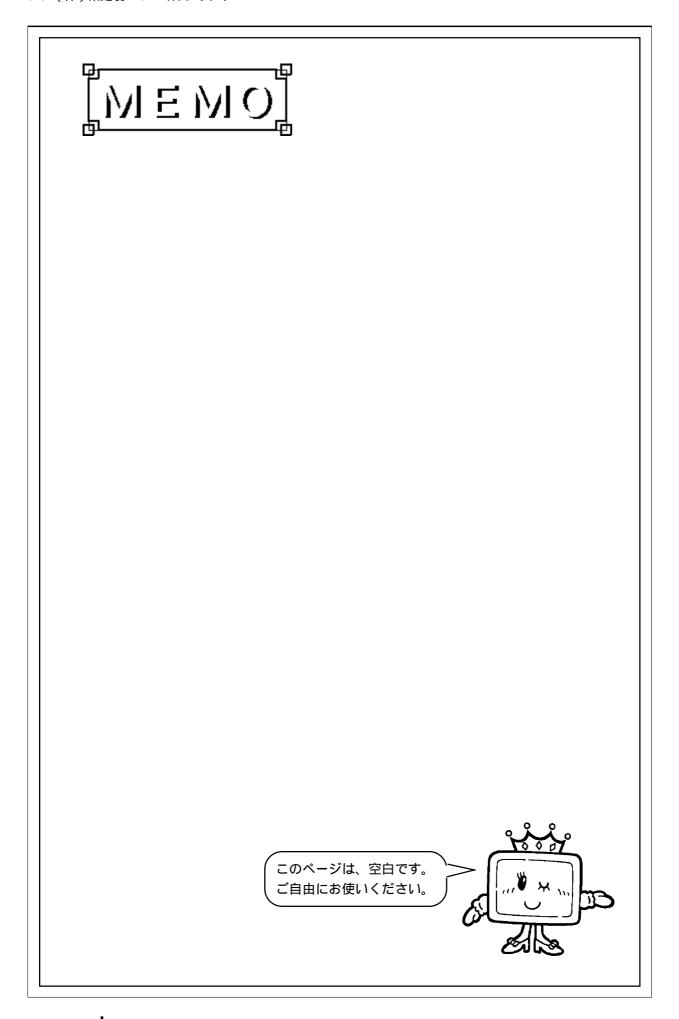
5.6.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。

PROSEC Tシリーズ

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考	
外部入力	X0000 ~ X255F	WX000 ~ WX255		
外部出力	Y0000 ~ Y255F	WY000 ~ WY255		
内部リレー	R0000 ~ R511F	WR000 ~ WR511		
特殊リレー	\$0000 ~ \$255F	SW000 ~ SW255		
リンクレジスタリレー	Z0000 ~ Z511F			
リンクリレー	L000 ~ L255F			
タイマ(接点)	T000 ~ T255		L/	/H
カウンタ(接点)	C000 ~ C255			
タイマ(現在値)		T000 ~ T511		
カウンタ(現在値)		C000 ~ C511		
データレジスタ		D0000 ~ D8191	B i t 15)	
リンクレジスタ		W0000 ~ W1023	B i 15)	
ファイルレジスタ		F0000 ~ F8191	_{в і т} 15)	

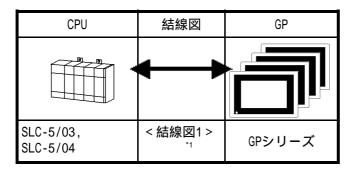

5.6.4 環境設定例

(株)デジタルが推奨するPLC側の通信設定と、それに対応するGP側の通信設定を示します。

PROSEC Tシリーズ

GPの設定		CPUモジュールの設定	
伝送速度	19200bps *1	伝送速度	19200bps *1
データ長	8bit	データビット	8bit
ストップビット	2bit	ストップビット	2bit
パリティビット	奇数	パリティビット	奇数
制御方式	ER制御		
通信方式	4線式		
号機No.	1	ステーションNo.	1

^{*1} PLC の仕様上、PROSEC T3 が Ver.1.4 未満の場合、9600bps 以下で通信可能です。



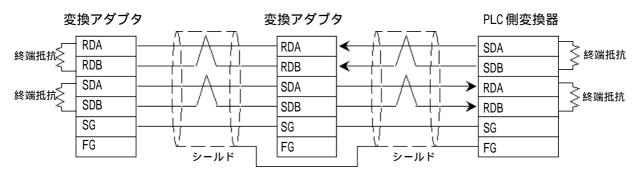
5.7 Rockwell (Allen-Bradley) 製 PLC

5.7.1 システム構成

Rockwell (Allen-Bradley) 製 PLC と GP を接続する場合のシステム構成を示します。 < 結線図 > は5.7.2 結線図をご参照ください。

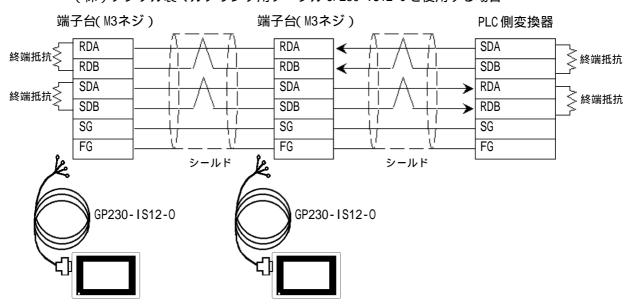
AB SLC500 シリーズ (CPU ユニット上のリンク I/F 使用)

*1 接続にはRS-232C/422 変換器が必要です(下図参照)。 RS-232C/422 変換器は、422側が端子台になっており、電源は通信ライン以外の外部から得る 形状のものをご使用ください。



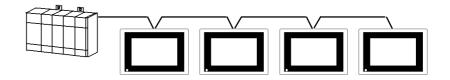
5.7.2 結線図

以下に示す結線図とRockwell (Allen-Bradley) の推奨する結線図が異なる場合がありますが、本書の結線図にてご使用ください。

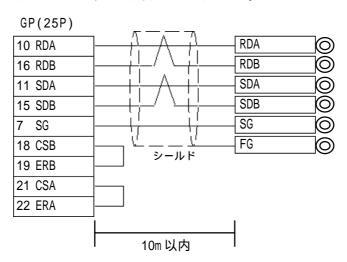

< 結線図1 >

・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

終端抵抗は、変換器の仕様をご確認のうえ、取り付けてください。


・(株)デジタル製マルチリンク用ケーブル GP230-IS12-0 を使用する場合

終端抵抗は、変換器の仕様をご確認のうえ、取り付けてください。


強制 ・ PLC本体のFG端子はD種接地を行ってください。 詳細はPLCのマニュアルをご参照ください。

- 重要・ 伝送ケーブルのシールド線は、一括してPLC側のFGに接続して ください。
 - ・ GP230-IS12-0のケーブルのFG端子は、GPのFGと接続されてい ません。
 - ・ ケーブルの両端に位置するGPとPLCには、終端抵抗を付けてく ださい。
 - ・ RS-422接続の場合、ケーブル長はRock Wellのマニュアルを参 照してください。
 - ・ PLCは原則として、回線の両端どちらかに接続してください。

接続ケーブルを加工される場合、日立電線製 CO-SPEV-SB(A) 3P*0.5を推奨します。

5.7.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。

AB SLC500シリーズ

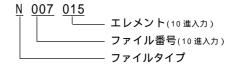
		<u> </u>		
デバイス	ビットデバイス	ワードアドレス	備考	
ビット	B0030000 ~ B003255F B0100000 ~ B255255F	B003000 ~ B003255 B010000 ~ B255255		H/L
タイマ (Π:タイミングビット)	TT0040000 ~ TT0042550 TT0100000 ~ TT2552550		*1	
タイマ (DN:完了ビット)	TN0040000 ~ TN0042550 TN0100000 ~ TN2552550		*1	
タイマ(PRE:設定)		TP004000 ~ TP004255 TP010000 ~ TP255255	*2	
タイマ(ACC:現在値)		TA004000 ~ TA004255 TA010000 ~ TA255255	*2	
カウンタ (CU:アップカウント)	TN0040000 ~ TN0042550 TN0100000 ~ TN2552550		*1	L/H
タイマ (CD:ダウンカウンタ)	TN0040000 ~ TN0042550 TN0100000 ~ TN2552550		*1	
カウンタ (CN:完了ビット)	TN0040000 ~ TN0042550 TN0100000 ~ TN2552550		*1	
カウンタ (PRE:設定値)		CP005000 ~ CP005255 CP010000 ~ CP255255	*2	
カウンタ (ACC:現在値)		CA005000 ~ CA005255 CA010000 ~ CA255255	*2	
整数		N007000 ~ N007255	Bit F	H/L

□ は、システムエリアに指定可能

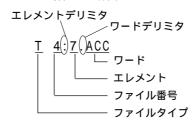
- *1 次頁の例 のように、末尾には必ず"0"を入力してください。
- *2 2ワード以上の連続したアドレスの読み出し、書き込みを行うと、他のデバイスに比べて読み 出しに時間がかかり、全体的に表示更新速度が遅くなります。

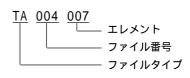
- ファイル番号0~7は、ユーザー用のデフォルトファイルです。 詳細はご利用のPLCのマニュアルをご参照ください。
- ・ PLCのデータテーブルマップに割り付けられていないデバイス を指定すると、上位通信エラー(02:10)/(02:D7)/(02: E1)のいずれかが表示されます。

Rockwell (Allen-Bradley) 製PLCでは、各デバイスデータはエレメントから構成されますが、画面作成ソフトではエレメントと呼ばれる概念はありません。デバイスを入力するときは、次に示す例のように入力してください。

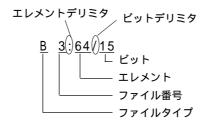

<例>

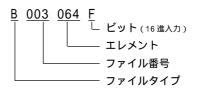
PLC での表記

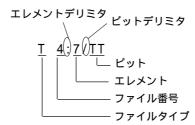

画面作成ソフトでの入力

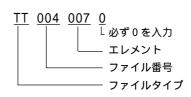

エレメント指定の場合

N 7:15 エレメント ファイル番号 ファイルタイプ




ワード指定の場合





ビット指定の場合

5.7.4 環境設定例

(株)デジタルが推奨する PLC 側の通信設定と、それに対応する GP 側の通信設定を示します。

AB SLC500シリーズ

GPの設定		PLC側の設定	
伝送速度	19200bps	Baud Rate 19200bps	
データ長	8bits		
ストップビット	1bit		
パリティビット	偶数	Parity	EVEN
制御方式	ER制御		
通信方式	4線式		
		Communication Driver	DF1 HALF-DUPLEX SLAVE *1
		Duplicate Packet Detection	DISABLE *1
		Error Detection	BCC *1
		Control Line	NO HANDSHAKING *1
号機No.(DH GP)*2	0	Station Address *2	0

^{*1} これ以外の設定では動作しません。

^{*2} Station Address と各 GP の DH GP アドレスと PLC の DH アドレスを同じ値 (アドレスは 10 進です)に設定してください。

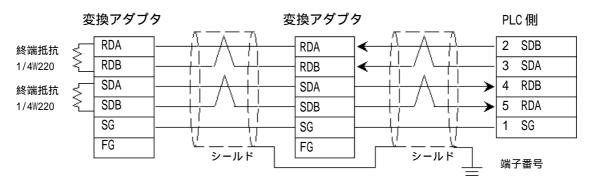
5.8 (株)キーエンス製 PLC

5.8.1 システム構成

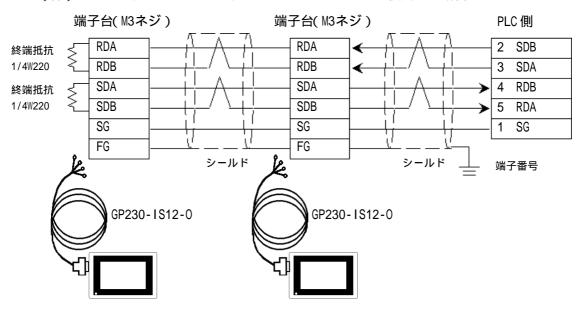
(株)キーエンス製 PLC と GP を接続する場合のシステム構成を示します。 <結線図>は5.8.2 結線図をご参照ください。

KZ-300 シリーズ (リンク I/F 使用)

CPU	リンクI/F	結線図	GP
	パソコンリンク ユニット	$\qquad \qquad $	
KZ-300 KZ-350	KZ-L2 *1	<結線図1 >	GPシリーズ

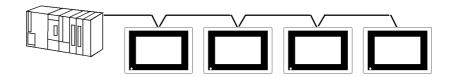

^{*1} ポート2に接続します。

5.8.2 結線図

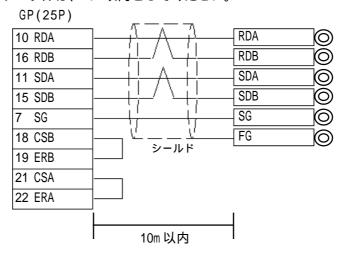

以下に示す結線図と(株)キーエンスの推奨する結線図が異なる場合がありますが、本書の結 線図にてご使用ください。

< 結線図1 >

・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合



・(株)デジタル製マルチリンク用ケーブル GP230-IS12-0 を使用する場合


強制 ・ PLC本体のFG端子はD種接地を行ってください。 詳細はPLCのマニュアルをご参照ください。

- 重要 ・ GP230-IS12-0のケーブルのFG端子は、GPのFGと接続されてい ません。
 - ・ GPとPLCとでは、A極とB極の呼称が逆になっていますのでご注 意ください。
 - ・ ケーブルの両端に位置するGPとPLCには、終端抵抗を付けてく ださい。終端抵抗は、PLC側にある終端抵抗スイッチをONする と、自動的に設定されます。
 - ・ RS-422 接続の場合、ケーブル長は(株)キーエンスのマニュア ルを参照してください。
 - ・ PLCは原則として、回線の両端どちらかに接続してください。

接続ケーブルを加工される場合、平河電線製H-9293A(CO-HC-ESV-3P*7/0.2)を推奨します。

5.8.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。

KZ-300/KZ-350 シリーズ

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考	
入力リレー	00000 ~ 0009	00 ~ 00		
	7000 ~ 17415	70 ~ 174	*1	
出力リレー	0500 ~ 0503	05 ~ 05		
	7500 ~ 17915	75 ~ 179	*2	
補助リレー	0504 ~ 0915			
内部補助リレー	1000 ~ 6915	10 ~ 69		
特殊補助リレー	2000 ~ 2915	20 ~ 29		L/H
タイマ(接点)	T000 ~ T249			
カウンタ(接点)	C000 ~ C249			
タイマ(現在値)		T000 ~ T249		
カウンタ(現在値)		C000 ~ C249		
データメモリ		DM0000 ~ DM9999	B i t15]	
テンポラリデータメモリ		TM00 ~ TM31	<u> </u>	

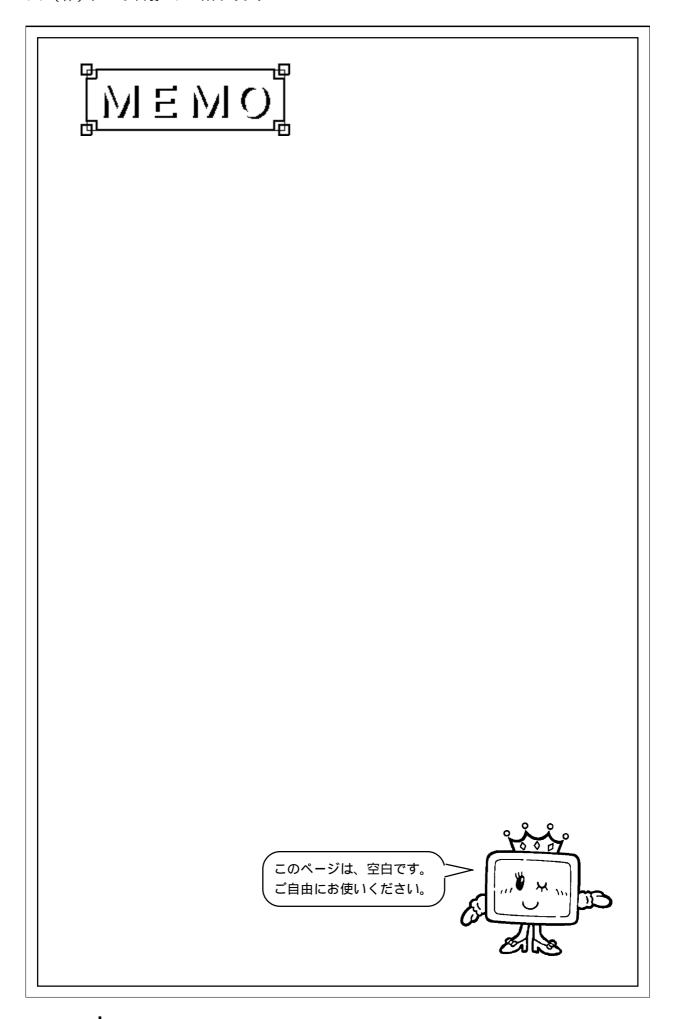
*1 表に示した範囲で、ビットアドレスは*000~*400番台、ワードアドレスは*0~*4が使用可能です。

ビットアドレス
7000番台
7100番台~7400番台
8000番台
8100番台~8400番台
17000番台~17400番台

ワードアドレス				
70				
71 ~ 74				
80				
81 ~ 84				
170 ~ 174				

*2 表に示した範囲で、ビットアドレスは*500~*900番台、ワードアドレスは*5~*9が使用可能です。

ビットアドレス
7500番台
7600番台~7900番台
8500番台
8600番台~8900番台
17500番台~17900番台

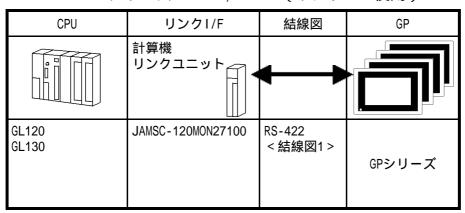

ワードアドレス				
75				
76 ~ 79				
85				
86 ~ 89				
175 ~ 179				

5.8.4 環境設定例

(株)デジタルが推奨するPLC側の通信設定と、それに対応するGP側の通信設定を示します。

KZ-300/KZ-350 シリーズ

GPの設定		パソコンリンクユニットの設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	7bit	データ長	7bit
ストップビット	2bit	ストップビット	2bit
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式	4線式	ポート2切り替えスイッチ	RS-422A
		運転モード	リンクモード
号機No.	0	局番号	0

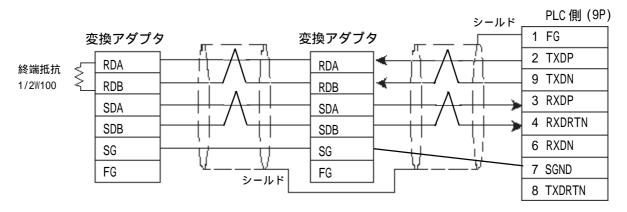


5.9 (株)安川電機製 PLC

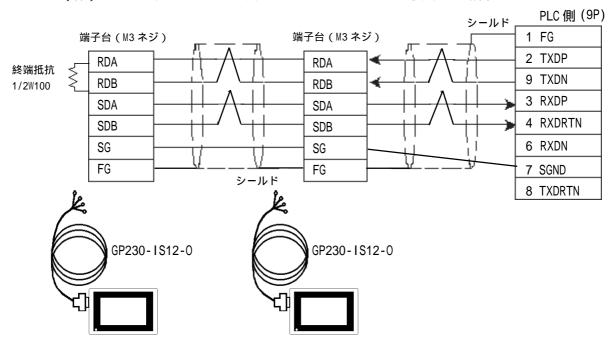
5.9.1 システム構成

(株)安川電機製 PLC と GP を接続する場合のシステム構成を示します。 <結線図>は5.9.2 結線図をご参照ください。

Memocon-SC シリーズ /GL120, GL130 (リンク I/F 使用)

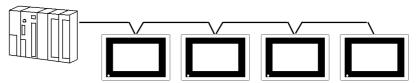


5.9.2 結線図

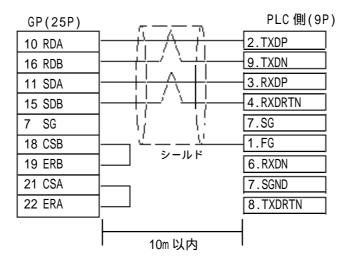

以下に示す結線図と(株)安川電機の推奨する結線図が異なる場合がありますが、本書の結線 図にてご使用ください。

< 結線図1 >

・ (株) デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合



・(株)デジタル製マルチリンク用ケーブル GP230-IS12-0 を使用する場合


強制 ・ PLC本体のFG端子はD種接地を行ってください。 詳細はPLCのマニュアルをご参照ください。

- 重要・ 伝送ケーブルのシールド線は、一括してPLC側のFGに接続してくだ
 - ・ GP230-IS12-0のケーブルの FG 端子は、GPの FG と接続されていま せん。
 - ・ ケーブルの両端に位置するGPとPLCには、終端抵抗を付けてくださ
 - ・ RS-422接続の場合、ケーブル長は(株)安川電機のマニュアルを参 照してください。
 - ・ PLCは原則として、回線の両端どちらかに接続してください。

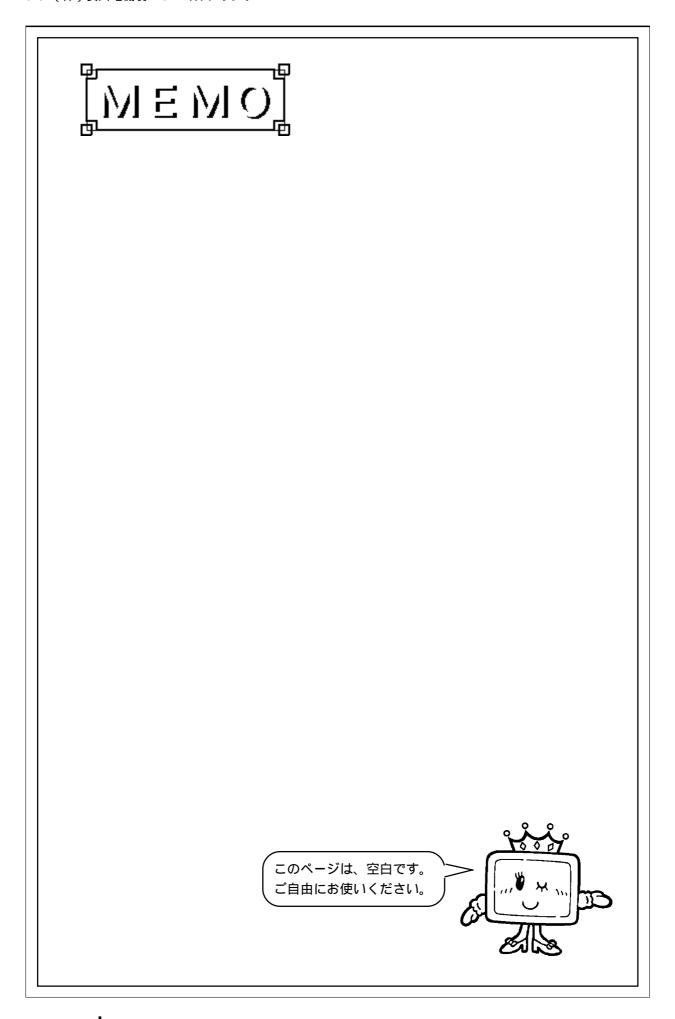
接続ケーブルを加工される場合、日立電線製 CO-SPEV-SB(A) 3P*0.5mm²を推奨します。

5.9.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。

Memocon-SC シリーズ (GL120, GL130) は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考	
コイル(出力/内部)	000001 ~ 008192		*1	
入力リレー	100001 ~ 101024		*1*2	
リンクコイル1	D10001 ~ D11024		*1	
リンクコイル2	D20001 ~ D21024		*1	
MCリレー1	X10001 ~ X10256		*1*2	
MCリレ-2	X20001 ~ X20256		*1*2	
MCコイル1	Y10001 ~ Y10256		*1	
MCコイル2	Y20001 ~ Y20256		*1	
MCコードリレー1	M10001 ~ M1096		*1*2	
MCコードリレー2	M20001 ~ M20096		*1*2	H/L
MC制御リレー1	P10001 ~ P10256		*1*2	
MC制御リレー2	P20001 ~ P20256		*1*2	
MC制御コイル1	Q10001 ~ Q10256		*1	
MC制御コイル2	Q20001 ~ Q20256		*1	
入力レジスタ		300001 ~ 300512	B i t 15 *2	
出力レジスタ		300001 ~ 300512	B i t 15]	
保持レジスタ		400001 ~ 409999	<u>в і t</u> 15]	
リンクレジスタ1		R10001 ~ R11024	<u>в і т</u> 15)	
リンクレジスタ2		R20001 ~ R21024	B i t 15]	
定数レジスタ		700001 ~ 704096	_{в і т} 15]	

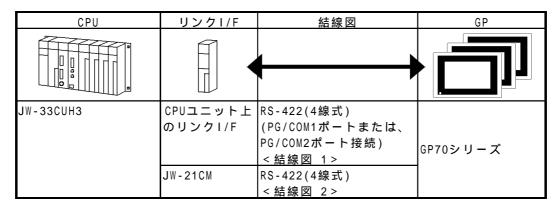

^{*1} ワード(16ビットデータ)指定することもできます。

^{*2} データの書き込みはできません。

5.9.4 環境設定例

(株)デジタルが推奨する PLC 側の通信設定と、それに対応する GP 側の通信設定を示します。 Memocon-SC シリーズ (GL120, GL130)

GPの設定		COMMモジュールの設定	
伝送速度	19200bps	伝送速度	19200bps
データ長	8bit		
ストップビット	1bit	ストップビット	1bit
パリティビット	偶数	パリティビット ON/OFF EVEN/ODD	ON EVEN
制御方式	ER制御		
通信方式	4線式	通信方式	RS-422
号機No.	1	スレーブアドレスNo.	1
			RTUモード (固定)



5.10 シャープ (株)製 PLC

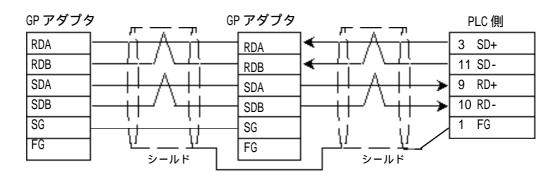
5.10.1 システム構成

シャープ(株) PLC と GP を接続する場合のシステム構成を示します。 <結線図 > は5.10.2 結線図をご参照ください。

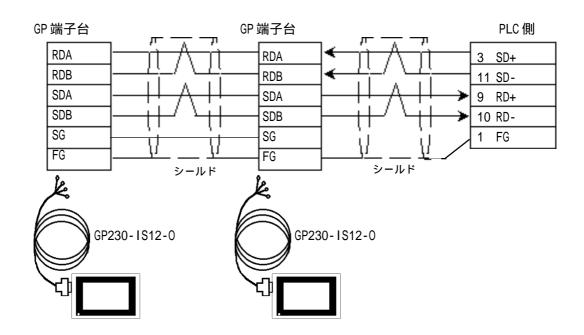
ニューサテライトJW

重 要

リンクユニットJW-21CMのバージョンによっては使用できなかったり、使用範囲が制限されているものがありますので、ご注意ください。


ユニット正面の バージョンシール	使用制限事項		
30Hn	使用制限なしで使用可能		
30H	ファイルレジスタ10~2Cの読み書き不可 ファイルレジスタのアドレス100000~176777の読み書き不可		
シールなし	JW30Hシリーズでは使用不可		

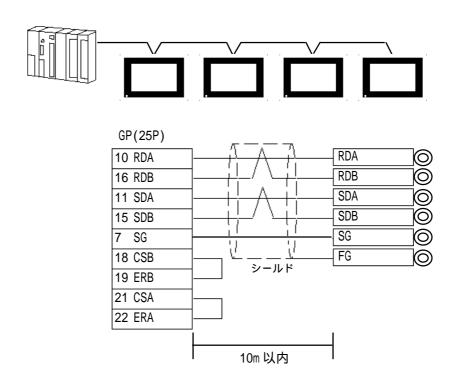
5.10.2 結線図


以下に示す結線図とシャープ(株)の推奨する結線図が異なる場合がありますが、本書の結線図にてご使用ください。

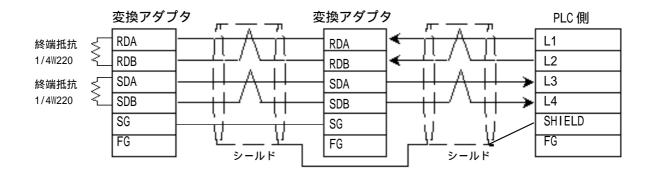
< 結線図1 > RS-422

・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合

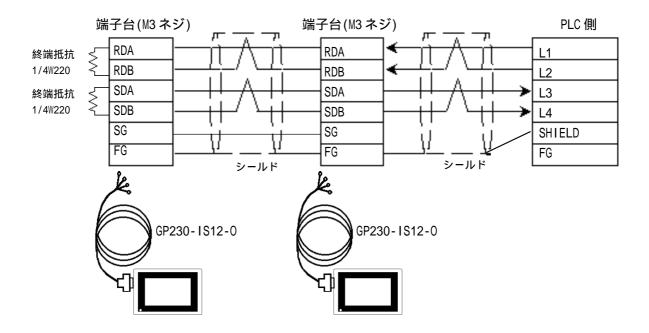
・(株)デジタル製マルチリンク用ケーブル GP230-IS12-0を使用する場合



接続ケーブルを加工される場合、日立電線(株)製CO-SPEV-SB(A) 3P0.5mm²を推奨します。

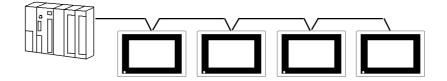

そのケーブルの結線を以下に示します。GPから端子台につな ぐケーブルは、10m以内としてください。

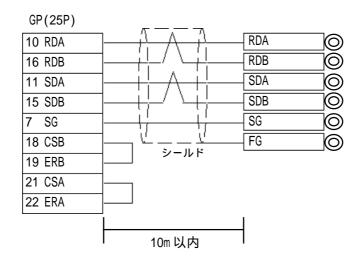
・ 総ケーブル長は、600m以内にしてください。



<結線図2 > RS-422

・(株)デジタル製 RS-422 コネクタ端子台変換アダプタ GP070-CN10-0 を使用する場合




・(株)デジタル製マルチリンク用ケーブル GP230-IS12-0 を使用する場合

- 接続ケーブルを加工される場合、日立電線(株)製CO-SPEV-SB(A) 3P0.5mm²を推奨します。
 - そのケーブルの結線を以下に示します。GPから端子台につなぐケーブルは、10m以内としてください。
- ・ 総ケーブル長は、600m以内にしてください。

5.10.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。

ニューサテライトJW

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考	
リレー	00000 ~ 15777	A0000 ~ A1576 (¬0000 ~ ¬1576)	<u>÷ 2</u>)	
	20000 ~ 75777	A2000 ~ A7576 (
タイマ (接点)	T0000 ~ T1777			
カウンタ(接点)	C0000 ~ C1777			
タイマ・カウンタ (現在値)		B0000 ~ B3776 (b0000 ~ b3776)	÷ 2) Bit15)	
レジスタ		09000 ~ 09776	÷ 2] B ; t15]	
		19000 ~ 19776	<u> </u>	
		29000 ~ 29776		
		39000 ~ 39776		
		49000 ~ 49776		
		59000 ~ 59776		L/H
		69000 ~ 69776		
		79000 ~ 79776		
		89000 ~ 89776		
		99000 ~ 99776		
		E0000 ~ E0776		
		E1000 ~ E1776		
		E2000 ~ E2776		
		E3000 ~ E3776		
		E4000 ~ E4776		
		E5000 ~ E5776		
		E6000 ~ E6776		
		E7000 ~ E7776		
ファイルレジスタ1		1000000 ~ 1037776	÷ 2) _{B i 1} 15)	
ファイルレジスタ2		2000000 ~ 2177776		
ファイルレジスタ3		3000000 ~ 3037776	*1	
ファイルレジスタ10-1F		F10000000 ~ F1F177776		
ファイルレジスタ20-2C		F20000000 ~ F2C177776		

*1 ファイルレジスタはファイル番号とアドレスで構成されます。

 $[\cdot \cdot \cdot 2]$ ワードアドレスは、偶数の値のみ指定します。

B: 15 ビット指定できます。ワードアドレスの後にビット位置をつけます。 ビット位置は0~15で指定します。

強制 ・ ワードアドレスのリレーおよびタイマ・カウンタ現在値(B)は、PLCのマニュアルでは()内の表記になっていますが、GP-PRO/PB では必ず、「A****」、「B****」と入力してください。

5.10.4 環境設定例

(株)デジタルが推奨する PLC 側の通信設定と、それに対応する GP 側の通信設定を示します。

ニューサテライト JW(JW-21CM 使用時)

GPの設定		リンクユニットの設定 *3	
伝送速度	19200bps	伝送速度	19200bps
データ長	7bit (固定)	データビット	7bit (固定)
ストップビット	2bit (固定)	ストップビット	2bit (固定)
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式 (4線式選択時)	4線式	通信モード(通信線数) (4線式選択時)	4線式
		機能設定スイッチ (SO)	コンピュータリンク
号機No. *1	1 (1~31)	ステーションアドレス *2	1 (1~37)

- *1 10進数で設定してください。
- *2 8進数で設定してください。
- *3 PLCの設定は、リンクユニットのスイッチで行ってください。 詳細は、<u>参照</u>シャープ製JW-21CMのユーザーズマニュアル

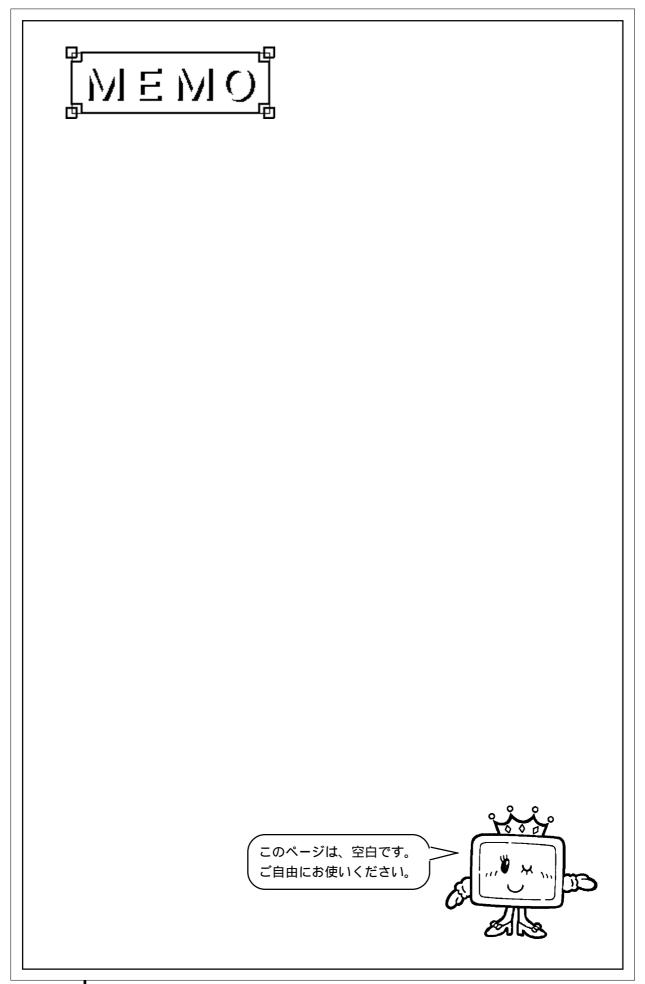
ニューサテライト JW(CPU 上の COM ポートを使用時)

GPの設定		COMポート の設定 *3	
伝送速度	19200bps	伝送速度	19200bps
データ長	7bit (固定)	データビット	7bit (固定)
ストップビット	2bit (固定)	ストップビット	2bit (固定)
パリティビット	偶数	パリティビット	偶数
制御方式	ER制御		
通信方式 (4線式選択時)	4線式	通信モード(通信線数) (4線式選択時)	4線式
号機No. *1	1 (1~31)	ステーションアドレス*2	1 (1~37)

^{*1 10}進数で設定してください。

^{*2 8}進数で設定してください。

*3 PLC 側の設定

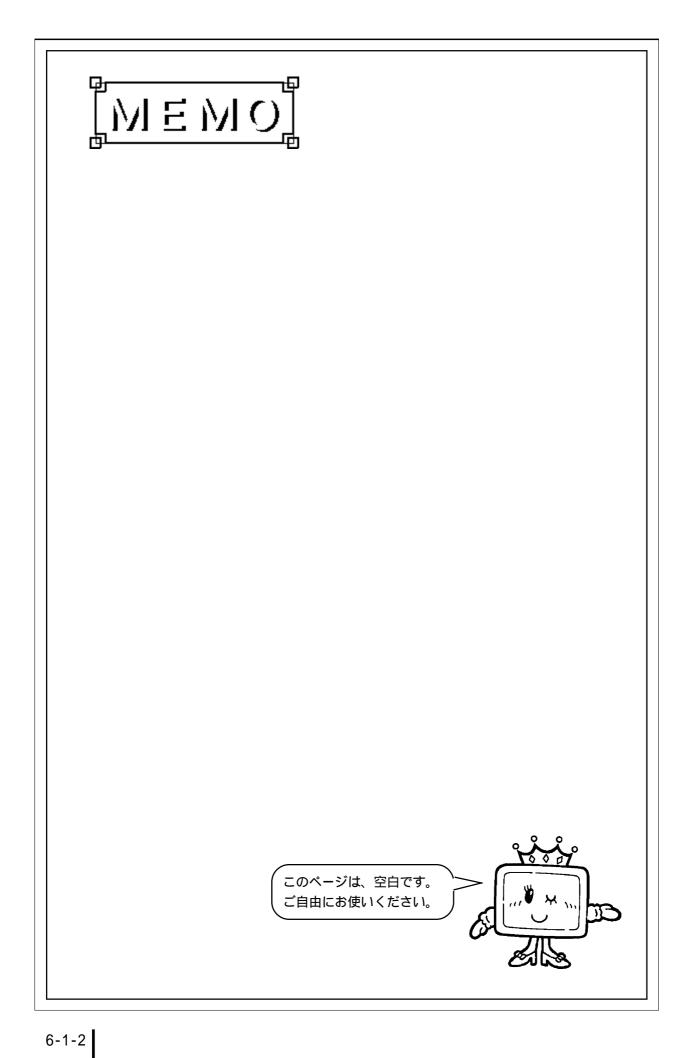

以下の設定を PLC のシステムメモリ(#***)に設定する必要があります。プロコンもしくは、 ラダーソフトのみ設定ができます。

< GP からは、システムメモリをアクセスすることはできません。 >

システムメモリ番号	内容	
#234	伝送速度、パリティ、ストップビット	コミュニケーション1
#235	局番001~037oct	(PG/COM1ポート)の設定
#236	伝送速度、パリティ、ストップビット	コミュニケーション2
#237	局番001~037oct	(PG/COM2ポート)の設定

詳細は、<u>参照</u>シャープ製[ニューサテライトJW30H]ユーザーズマニュアル

接続可能な PLC 一覧 6.1


各社 PLC に対応した専用プロトコルと GP[JPCN-1]または、各社 PLC と GP[JPCN-1]標準とのシ ステム構成・結線図・使用可能デバイス・環境設定例を説明します。GPと接続可能なPLCの一 覧を示します。

	シリーズ名	CPU	リンクI/Fまたは CPU直結	特記事項	PRO/PB での 「PLCタイプ」
㈱日立製作所	HIDIC-S10	2 シリーズ 2 (LWP000) 2 E(LWP040) 2 H(LWP070) 2 Hf(LWP075)	JPCN-1I/FIIyh LWE580	GPにはJPCN-1 対応のユニット (型式: GP070-JC11) 必要 メッセージ通信使用 可能	日立製作所 HIDIC-S10 (JPCN1)
三菱電機㈱	MELSEC-A	A2A A3A A2U-S1 A2N	AJ71J92-S3	GPにはJPCN-1 対応のユニット (型式: GP070-JC11) 必要 メッセージ通信使用 可能	三菱電機 MELSEC-A (JPCN1)
ファナック (株)	16MODEL-C	16MODEL-C	I/O LINK-	GP には JPCN-1 対応のユニット (型式: GP070-JC11) 必要 Rev.A 以降 *1 入出力転送のみ	JPCN-1標準
富士電機(株)	FLEX-PC	NJ	NJ-JPCN-1		

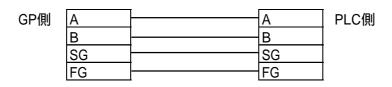
*1 *印のついている位置のアルファベットがユニットのRev(リビジョン)を示します。

Rev(リビジョン)シールは、ユニット本体に貼付されています < 右図 >。

Rev. *BCDEFGHIJ KLMNOPQRST UVWXYZ 123

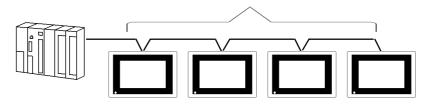
6.2 JPCN-1 標準

PRO/PB での「PLC タイプ」は < JPCN-1 標準 > を選択してください。


6.2.1 システム構成

CPU	リンク	結線図	使用ケーブル	ユニット	GP
		+			
JPCN-1対応PLC	JPCN-1対応 リンクユニット	結線図1	RS-422	JPCN-1 I/F ユニット (GP070-JC11)	GPシリーズ*1
				Rev.A以降のみ 使用可能*2	

- *1 JPCN-11/Fユニットの対応 GPシリーズは GP-470E、 GP-570T、 GP-570S、 GP-57JS、 GP-570VM、 GP-571T、 GP-675T、 GP-675S、 GP-870VM、 GP-477RE、 GP-577RT、 GP-577RS
- *2 *印のついている位置のアルファベットがユニットのRev(リビジョン)を示します。
 Rev(リビジョン)シールは、ユニット本体に貼付されています<右図>。 Rev. *BCDEFGHIJ KLMNOPQRST UVWXYZ 123


6.2.2 結線図

< 結線図1 >

- 重要 · PLC本体のFG端子はD種接地を行ってください。 詳細はPLC のマニュアルをご参照ください。
 - ・ 伝送ケーブルのシールド線は、一括してPLC側のFGに接続してください。

スレーブ最大31台/1ネットワーク接続可能

6.2.3 環境設定例

GP側の通信設定を示します。

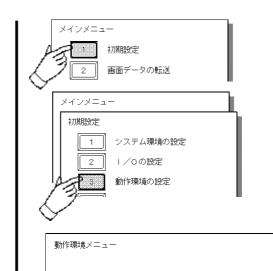
JPCN-1(標準)

JPCN-1(標準)プロトコルでは入出力転送のみをサポートしています。メッセージ通信は使用できません。

JPCN-1でI/O通信を行うためには以下の設定が必要です。

<伝送速度及び I / 0 通信の設定 >

GPのオフラインモードで初期設定時に伝送速度及びI/O通信の設定を行ってください。


GP 側

「初期設定」を選択します。

「動作環境の設定」を選択します。

「通信設定・I/O情報の設定」を選択します。

伝送速度で、速度の選択をします。 伝送速度 = デフォルト 0(0=1Mbps)

動作環境の設定

通信設定・1/0情報の設定

前画面

MEMO ・通信設定においては伝送速度のみです。

・「初期設定」の「I/Oの設定」の通信設定は無効です。

1/0 通信を使用するために以下の設定をおこないます。

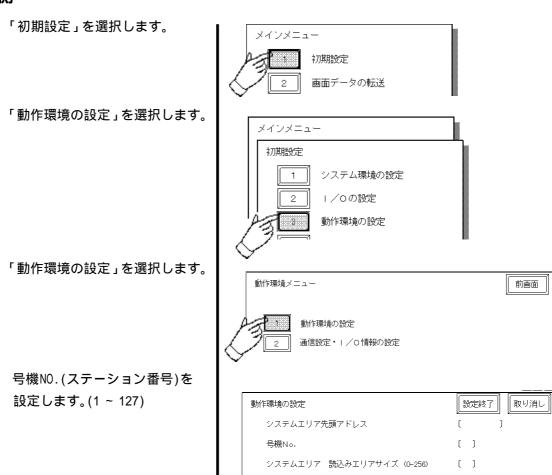
I/O 通信先頭 LS アドレスを設定します。(LS20 ~ LS1999)

I/O通信書き込みエリアサイズを設定します。(0~64ワード)

I/O通信読み込みエリアサイズを設定します。(0~64ワード)

重要 · システムデータエリア(LSO~LS19)への割り付けはできません。

ビットスワップの設定をします。(OFFまたは、ON)

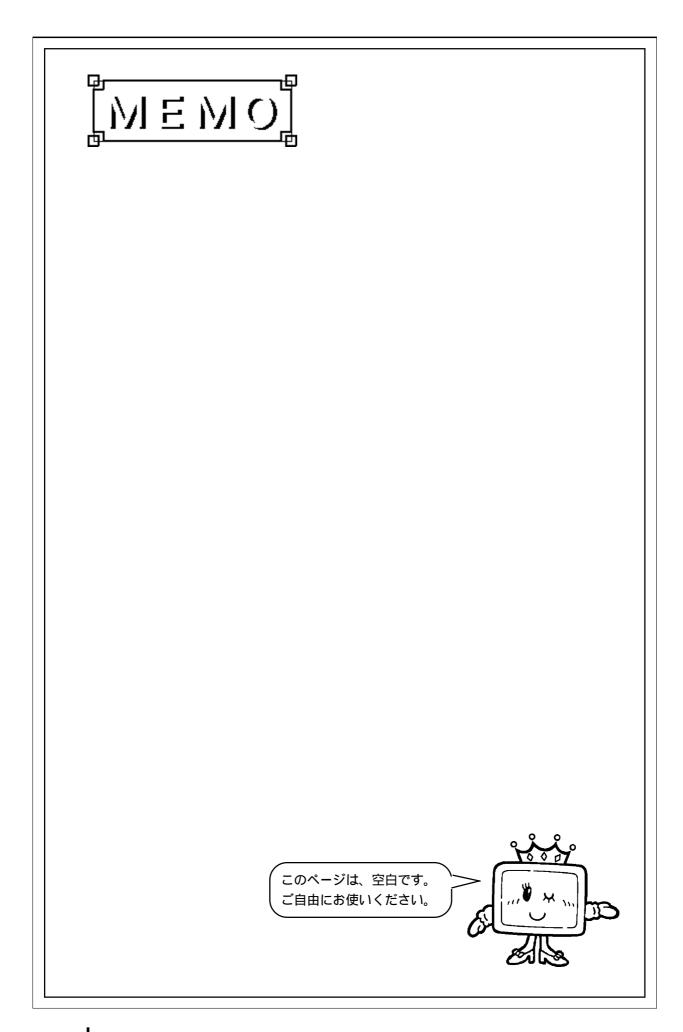

ONに設定するとMSB < 最上位ビット > とLSB < 最下位ビット > を反転させます。 ご使用のPLCの仕様とあわせてください。

PLC 側

各PLCメーカーのJPCN-1通信ユニットのマニュアルをご参照ください。

<ステーション情報の設定>

GP 側



・号機NO. 以外の設定は無効です。

PLC側

各PLCメーカーのJPCN-1通信ユニットのマニュアルをご参照ください。

重要・PLC側の設定は、各PLCメーカーのJPCN-1通信ユニットのマニュアルをご参照してください。

6.3 (株)日立製作所製

6.3.1 システム構成

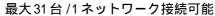
(株)日立製作所製PLCとGPを接続する場合のシステム構成を示します。

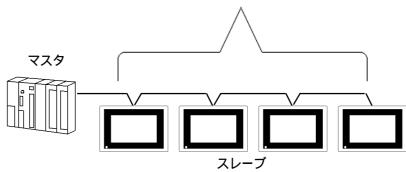
HIDIC-S10 シリーズ JPCN-1 (リンク I/F 使用)

	CPU	リンク	結線図	ユニット	GP
		†			
2 2 2 2	(LWP000) E(LWP040) H(LWP070) Hf(LWP075)	LWE580	RS-422 <結線図1>	JPCN-1 対応ユニット (GP070-JC11)	GP シリーズ*1

^{*1} ユニットの対応 GP シリーズは GP-470E、GP-570T、GP-570S、GP-57JS、GP-570VM、GP-571T、GP-675T、GP-675S、GP-870VM、GP-477RE、GP-577RT、GP-577RS

6.3.2 結線図


以下に示す結線図と(株)日立製作所の推奨する結線図が異なる場合がありますが、本書の結線図にてご使用ください。


< 結線図1 >

強制 ・ PLC本体のFG端子はD種接地を行ってください。 詳細はPLCのマニュアルをご参照ください。

重要 ・ 伝送ケーブルのシールド線は、一括してPLC側のFGに接続してください。

接続ケーブルを加工される場合、日立電線製 KPEV-S 2P 0.9mm²を推奨します。

6.3.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。

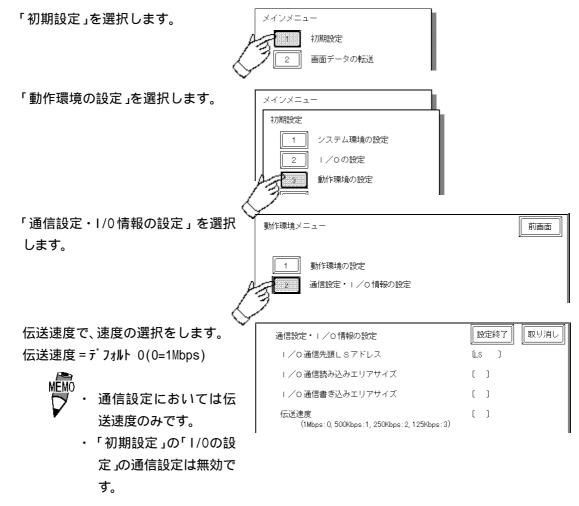
HIDIC-S10 シリーズ(JPCN-1)

| は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考
入力リレー	X000 ~ X7FF	XW000 ~ XW7F0	***0]
出力リレー	Y000 ~ Y7FF	YW000 ~ YW7F0	<u>***</u> 0]
内部リレー	R000 ~ R7FF	RW000 ~ RW7F0	*** 0]
グローバルリンク	G000 ~ GFFF	GW000 ~ GWFF0	<u>***</u> 0]
Eワード	EW400 ~ EWFFF	EW400 ~ EWFF0	***0
イベントレジスタ	E000 ~ E0FF	EW000 ~ EW0F0	<u>***</u> 0]
キープリレー	K000 ~ K1FF	KW000 ~ KW1F0	<u>***</u> 0]
オンディレータイマ	T000 ~ T1FF	TW000 ~ TW1F0	<u>***</u> 0] *1
ワンショットタイマ	U000 ~ U07F	UW000 ~ UW070	*** 0] *1
アップダウンカウンタ	C000 ~ C03F	CW000 ~ CW030	*** 0 *1 L/H
オンディレータイマ (計数値)		TC000 ~ TC1FF	
オンディレータイマ (設定値)		TS000 ~ TS1FF	
ワンショットタイマ (計数値)		UC000 ~ UC07F	
ワンショットタイマ (設定値)		US000 ~ US07F	
アップダウンカウンタ (計数値)		CC000 ~ CC03F	
アップダウンカウンタ (設定値)		CS000 ~ CS03F	
データレジスタ		DW000 ~ DWFFF	Bit F
ワードレジスタ		FW000 ~ FWBFF	Bit F
拡張レジスタ		MS000 ~ MSFFF	B i t F] *2

^{*1} 接点です。

^{*2} 拡張メモリ(1アドレス8ビット長)の4Kワードがアクセス可能です。アクセスする拡張メモリのトップアドレスは、初期設定の「動作環境の設定」で設定します(次頁参照)。PLC側で設定した拡張メモリ用アドレス領域の範囲内で、GPがアクセスするアドレスを設定します。PLC側の拡張メモリ用アドレス領域の設定方法は、PLCのマニュアルをご参照ください。


6.3.4 環境設定例

(株)デジタルが推奨するPLC側の通信設定と、それに対応するGP側の通信設定を示します。

HIDIC-S10 シリーズ (JPCN-1) JPCN-1で通信を行うためには以下の設定が必要です。

<伝送速度及び1/0通信の設定>

GPのオフラインモードで初期設定時に伝送速度及びI/O通信の設定を行ってください。 GP 側

1/0通信を使用される場合は以下の設定が必要です。

I/O 通信先頭 LS アドレスを設定します。(LS20 ~ LS1999)

1/0通信書き込みエリアサイズを設定します。(0~64ワード)

I/0通信読み込みエリアサイズを設定します。(0~64ワード)

- 強制 ・ PLC側のステーションタイプの設定は必ず "Auto "にしてください。(PLC側の設定を参照)
 - ・ 書き込みエリアサイズおよび読み込みエリアサイズが共に0 ワードとなる設定はできません。

1/0通信を使用されない場合は以下の設定が必要です。

書き込みエリアサイズ及び読み込みエリアサイズは共に "0 "に設定してください。 PLC側のステーションタイプの設定は "DR/DW "にしてください。

PLC 側

J.NET モジュール(LWE580)上のロタリースイッチ「BIT RATE」で伝送速度を設定します。

J.NET SUPPORTシステムにおいてステーションの通信情報を設定します。 ステーション番号はGPの号機番号と合わせます。

I/O通信を使用する場合は、ステーションタイプは "AUTO "に設定します。

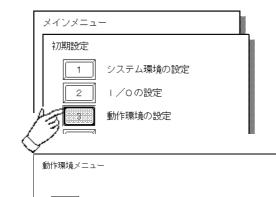
I/O通信を使用しない場合は、"DR/DW"に設定します。

1/0通信を設定される場合のみ以下の設定が必要です。

入力(IN WORDS)ワード数を設定します。(GP側のI/O通信書き込みエリアサイズと合わせます。)

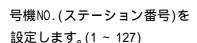
出力(OUT WORDS)ワード数を設定します。(GP側のI/O通信読み込みエリアサイズと合わせます。)

転送アドレスは、任意のデバイスに割り付けます。(設定可能なデバイス範囲は、日立製作所の「HIDIC S10 シリーズ2 J.NET LWE580 ハードウェアマニュアル」の「オペレーション」を参照ください。)


<ステーション情報の設定>

GP 側

「初期設定」を選択します。

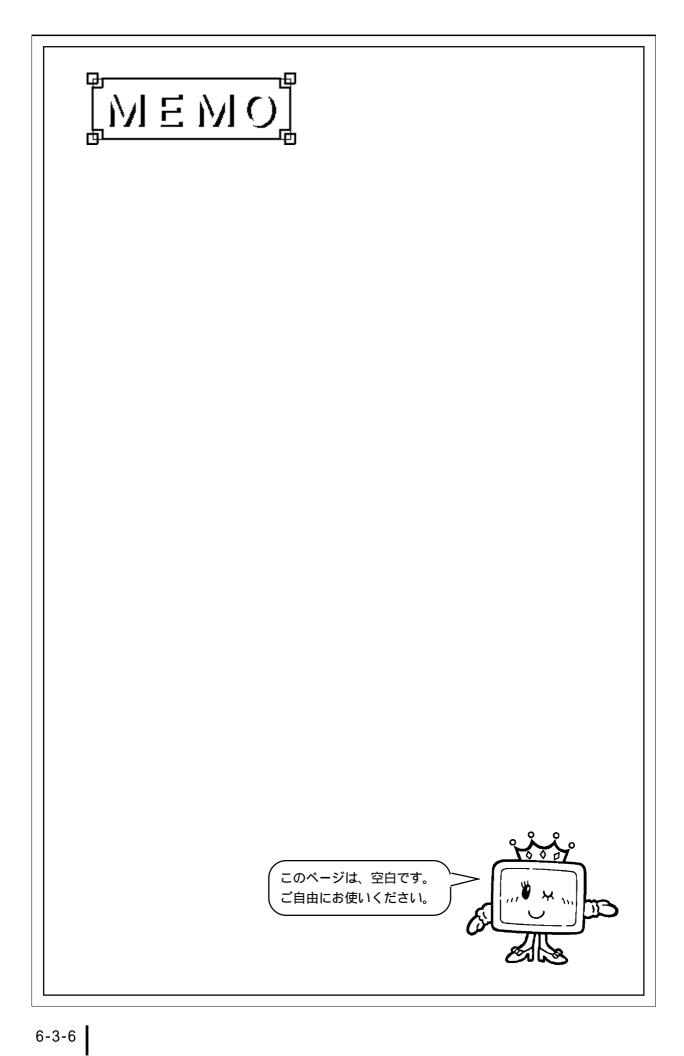

「動作環境の設定」を選択します。

通信設定・1/0情報の設定

動作環境の設定

「動作環境の設定」を選択します。

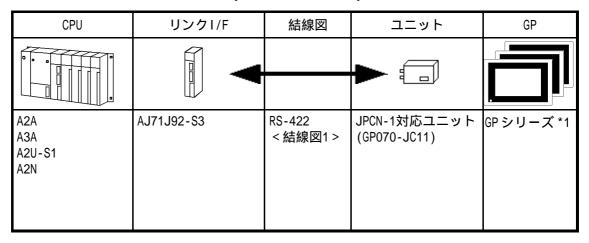
	· · · · · ·
動作環境の設定	設定終了 取り消し
システムエリア先頭アドレス	[]
号機No.	()
システムエリア 読込みエリアサイズ (0-256)	()
拡張メモリアドレス(HIDIC)	[]


PLC 側

J.NET SUPPORT システムにおいてステーション番号を設定します。 ステーション番号はGP側で設定した号機NO.と合わせます。

- ・ PLC 側の設定方法については(株)日立製作所の「HIDIC S10 シリーズ 2 J.NET LWE580 ハードウェアマニュアル」を参照ください。
- PLC側の設定は、(株)日立製作所の「J.NET SUPPORT システム」で設定ください。

前画面



6.4 三菱電機(株)製

6.4.1 システム構成

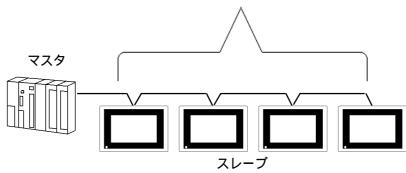
三菱電機(株)製PLCとGPを接続する場合のシステム構成を示します。

MELSEC-A シリーズ JPCN-1 (リンク I/F 使用)

^{*1} ユニットの対応 GP シリーズは GP-470E、GP-570T、GP-570S、GP-57JS、GP-570VM、GP-571T、GP-675T、GP-675S、GP-870VM、GP-477RE、GP-577RT、GP-577RS

6.4.2 結線図

以下に示す結線図と三菱電機(株)の推奨する結線図が異なる場合がありますが、本書の結線図にてご使用ください。


< 結線図1 >

強制・PLC本体のFG端子はD種接地を行ってください。 詳細はPLCのマニュアルをご参照ください。

重要・ 伝送ケーブルのシールド線は、一括してPLC側のFGに接続してください。

最大31台/1ネットワーク接続可能

・接続ケーブルを加工される場合、三菱電線工業(株)製 SPEV (SB)-0.2-2Pを推奨します。

6.4.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。

MELSEC-A シリーズ(JPCN-1)

は、	システムエリアに指定可能
----	--------------

デバイス	ビットアドレス	ワードアドレス	備考	
入力リレー	X0000 ~ X1FFF	X0000 ~ X1FF0	<u>***</u> 0	
出力リレー	Y0000 ~ Y1FFF	Y0000 ~ Y1FF0	***0	
内部リレー	M0000~M8191	M0000 ~ M8176	<u>÷16</u>)	
特殊リレー	M9000 ~ M9255	M9000 ~ M9240	<u>÷ 16</u>)	
アナンシェレータ	F0000 ~ F2047	F0000 ~ F2032	<u>÷</u> 16)	
保持リレー	L0000 ~ L8191			
リンクリレー	B0000 ~ B1FFF			
タイマ(接点)	TS000 ~ TS2047			
タイマ(コイル)	TC000 ~ TC2047			L/H
カウンタ(接点)	CS000 ~ CS1023			
カウンタ(コイル)	CC000 ~ CC1023			
タイマ(現在値)		TN0000 ~ TN2047		
カウンタ(現在値)		CN0000 ~ CN1023		
データレジスタ		D0000 ~ D8191	<u>ві t</u> 15]	
リンクレジスタ		W0000 ~ W1FFF	Bit F	
ファイルレジスタ		R0000 ~ R8191	B i t 15	

重要・CPUの機種によってデバイス範囲が異なる場合がありますので、 三菱電機(株)の各PLCのマニュアルにてご確認ください。

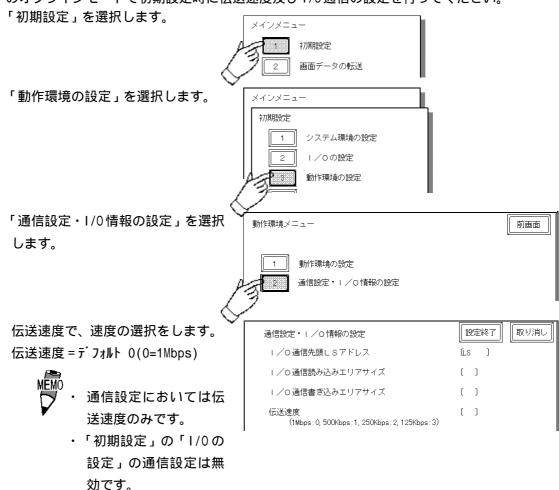
6.4.4 環境設定例

(株)デジタルが推奨するPLC側の通信設定と、それに対応するGP側の通信設定を示します。

MELSEC-A シリーズ (JPCN-1)

GPの	設定	コミュニケーションポートの設定		
伝送速度				
データ長				
ストップビット				
パリティビット				
制御方式				
通信方式 (RS-232C使用時)				
通信方式 (RS-422使用時)				
号機No.	1	ラダーにてスレーブ局 番号の設定	1	
通信設定	初期設定 動作環境 通信設定・ I/O情報の設定 伝送速度 0:1Mbps	ディップスイッチにて 設定	RATE1:ON RATE2:ON (1Mbpsの設定)	

- 重 要 (1)三菱電機(製)の JPCN-1 ユニットの裏に SW1/SW2 がありま す。そのSW(スイッチ)は、SW1/SW2共にOFFに設定してく ださい。
 - (2) 号機番号は、1~127まで設定可能です。ただし、重複した番 号は設定しないでください。


MELSEC-A シリーズ (JPCN-1)

JPCN-1で通信を行うためには以下の設定が必要です。

<伝送速度及び1/0通信の設定>

GP 側

GPのオフラインモードで初期設定時に伝送速度及びI/O通信の設定を行ってください。

1/0通信を使用される場合は以下の設定が必要です。

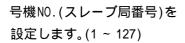
- I/O 通信先頭 LS アドレスを設定します。(LS20 ~ LS1999)
- 1/0 通信書き込みエリアサイズを設定します。(0 ~ 64 ワード)
- 1/0 通信読み込みエリアサイズを設定します。(0~64 ワード)
- 1/0通信を使用されない場合は以下の設定が必要です。

書き込みエリアサイズ及び読み込みエリアサイズは共に "0"に設定してください。

<スレーブ局情報の設定>

GP 側

「初期設定」を選択します。

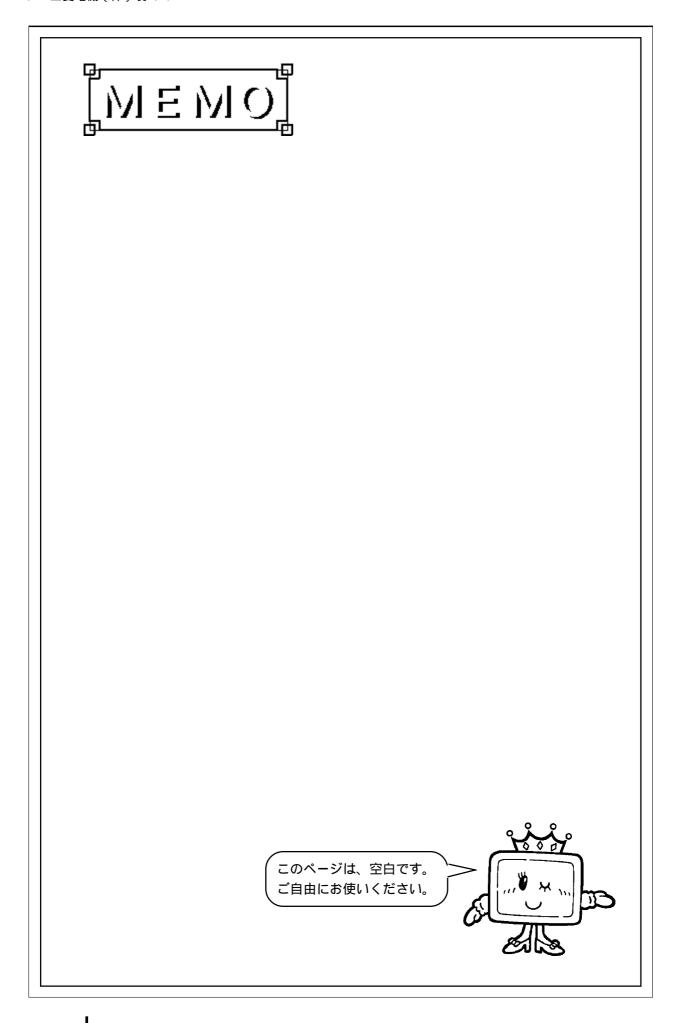


「動作環境の設定」を選択します。

通信設定・1/0情報の設定

「動作環境の設定」を選択します。

PLC 側

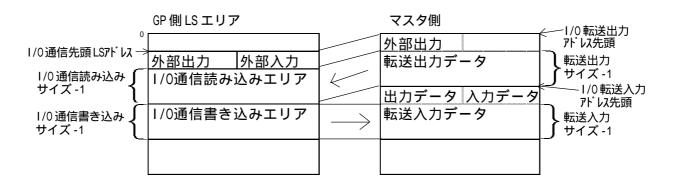

ラダープログラムにて各設定を行ってください。 スレーブ局番号はGP側で設定した号機NO.と合わせます。

PLC側の設定方法については三菱電機(株) 「AJ71J92-S3型JPCN-1マスタユニットユーザーズマニュアル」を参照ください。

サンプルラダー(JPCN-1ラダープログラム)

LD	M9038				RUN 後 1 スキャンのみ ON
ANI	X001F				ウォッチドグタイマエラー
MOV	H0001	D1000			総スレーブ局数
MOV	H0003	D1001			リトライ回数
MOV	H0101	D1002			交信継続指定
MOV	H0001	D1006			再立ち上げ先局番
LD	M9038				RUN 後 1 スキャンのみ ON
ANI	X001F				ウォッチドグタイマエラー
MOV	H0003	D1046			局間ディレ -
MOV	H0001	D1048			スレーブ局番号
MOV	H013F	D1049			GET/PUT サービス指定と stypeM
MOV	H0020	D1050			入力用先頭アドレスと入力用バイト数
MOV	H2020	D1051			出力用先頭アドレスと出力用バイト数
SET	M100				
TO	H0000	H0000	D1000	K52	
SET	Y0017				通信起動
LD	M100				
AND	X0019				設定データ異常
FROM	H0000	H000E	D21 K	1	イニシャルデータ情報
RST	M100				
LD	M100				
AND	X001A				リンク交信異常検出
FROM	H0000	H000C	D22 K	1	異常局情報の読み出し
FROM	H0000	H00EA	D23 K	3	return_code の読み出し
FROM	H0000	H0109	D26 K	3	result の読み出し
LD	X0017				リンク交信中
SET	Y0018				サイクリック交信起動
LD	X001A				リンク交信異常検出
SET	Y0006				再立ち上げ信号
LD	X0000				リセット完了
RST	Y0006				再立ち上げ信号
LD	Y0018				サイクリック交信中
ANI	X001F				ウォッチドグタイマエラー
FROM	H0000	H0300	D1500	K16	入力データ格納エリアから入力情報をD1500~に読み出す
LD	X0018				サイクリック交信中
ANI	X001F				ウォッチドグタイマエラー
TO	H0000	H0200	D2000	K16	D2000~を出力データ格納エリアに書き込む
END					ı
					I

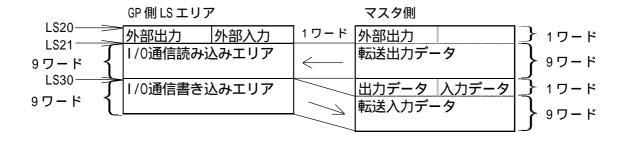
6.5


1/0 通信について

設定範囲

I/0 通信先頭 LS アドレス(LS20 ~ LS1999)I/0通信書き込みエリアサイズ(0 ~ 64 ワード)I/0通信読み込みエリアサイズ(0 ~ 64 ワード)

通信方法


I/0通信先頭LSアドレス + 1からLSデータの内容をI/0通信にて転送されます。
I/0通信先頭アドレスの先頭の1ワードは外部入出力I/0(DIO)として、JPCN-1ユニット上の外部入出力をアクセスできます。

設定例を以下に示します。

(例)

- ・I/O通信先頭LSアドレス・・・LS20
- ・1/0通信書き込みエリアサイズ・・・10ワード
- ・1/0通信読み込みエリアサイズ・・・10ワード

外部入出力(DIO)について

< DIO 入出力点数 >

入力 8点

4点(下位4ビットのみ有効) 出力

< DIO へ出力 >

DIOへ出力するデータは、外部出力 (I/O通信先頭アドレスの上位8ビット)と 外部出力 (マスタ側の I/O 転送出力アドレス先頭の上位8ビット)をOR した値を 外部出力としてDIOへ出力します。

重要 ・ PLC側でON したビットはGP側でOFFにはできません。同様にGP 側でON したビットはPLC側でOFFにはできません。また、PLC側 でON/OFFしてもLSエリアに反映されませんので、画面上で参照 することはできません。

< DIO からの入力 >

DIOからの外部入出力の入力データは、LSの外部入力エリア(I/O通信先頭アドレス の下位8ビット)にセットされます。

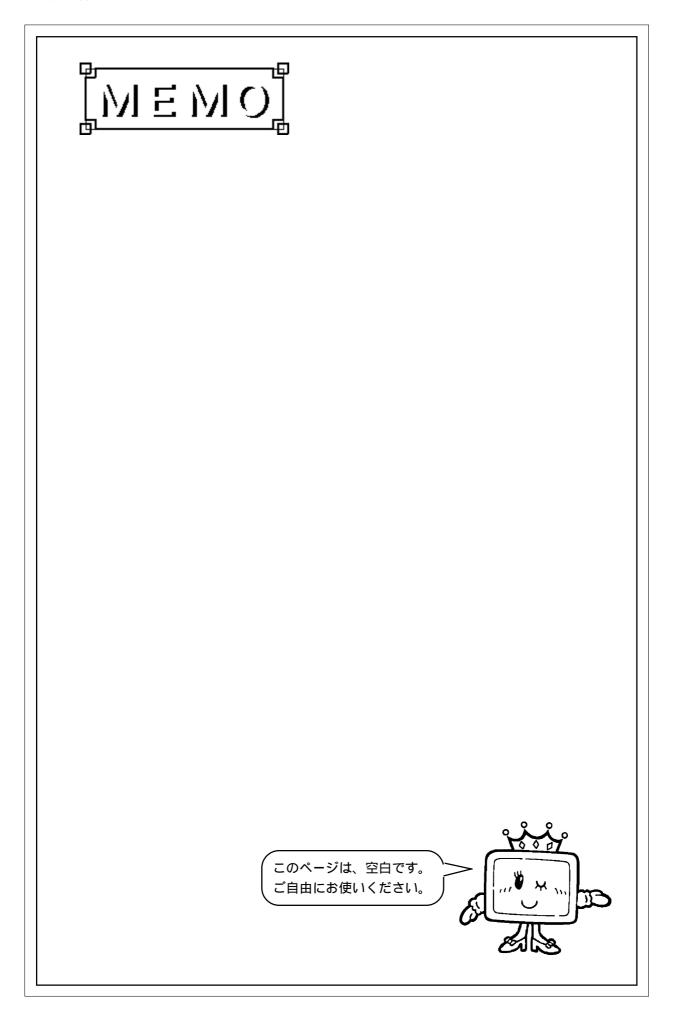
< DIO の入出力データについて >

DIOへ出力したデータとDIOから入力されたデータは、マスタ側のI/O転送入力アド レスの先頭にもセットされます。

重要・ I/O通信のエラーは、GP画面には表示されません。JPCN-1I/Fユ ニット上のLEDで確認してください。

第7章

Ethernet (イーサネット)

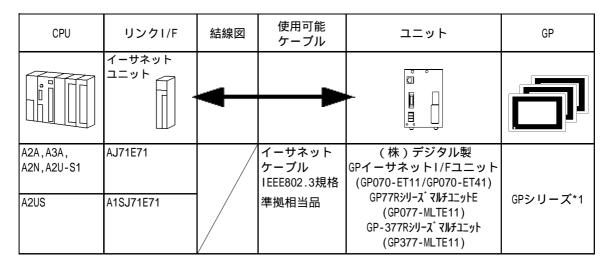

各社PLCとGP[Ethernet]とのシステム構成・使用可能デバイス・環境設定例を説明します。

重要・メモリリンク方式でのイーサネット通信をご使用の場合は、 <u>参照</u> GP シリーズメモリリンク通信プロトコルマニュアル < GP イーサネット I /F ユニット用 > (別売)

7.1 接続可能な PLC 一覧

GP と接続可能な PLC の一覧を示します。

	シリーズ名	CPU	イーサーネット ユニット	特記事項	PRO/PB での 「PLCタイプ」
	MELSEC-A	A2A	AJ71E71	イーサーネット対応の ユニットが必要です。	三菱電機
Ξ		АЗА			MELSEC-A(ETHER)
三 菱 電		A2U-S1			
機		A2N			
(株)		A2US	A1SJ71E71		
(株)	PROSEC-T	ТЗН	EN311	イーサネット対応のユ ニットが必要です。	東芝
東芝		T2N	PU-235N		PROSEC-T(ETHER)
_			PU-245N		
横河電機休	FACTORY ACE FA-M3	F3SP20-0N F3SP21-0N F3SP25-2N F3SP30-0N F3SP35-5N	F3LE01-5T	イーサネット対応のユ ニットが必要です。	横河電機 FA-M3(ETHER)



7.2 三菱電機(株)製

7.2.1 システム構成ィーサネット接続

三菱電機㈱製 PLC と GP をイーサネット接続する場合のシステム構成を示します。

MELSEC-A シリーズ /AJ71E71、A1SJ71E71 (イーサネットユニット使用)

*1 イーサユニットの対応 GPシリーズは GP-470E、 GP-570T、 GP-570S、 GP-57JS、 GP-570VM、 GP-571T、 GP-675T、 GP-675S、 GP-870VM、 GP-477RE、 GP-577RT、 GP-577RS、 GP-377RT、 GP-377RS

参照 ケーブル接続につきましては「GP70シリーズGPイーサネットI/Fユニットユーザーズマニュアル」(別売)の[3-2ケーブルの接続]をご参照ください。

7.2.2 使用可能デバイス

GP でサポートしているデバイスの範囲を示します。

MELSEC-A シリーズ

は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考
入力リレー	X0000 ~ X07FF	X0000 ~ X07F0	<u>****</u> 0]
出力リレー	Y0000 ~ Y07FF	Y0000 ~ Y07F0	*** 0
内部リレー	M0000 ~ M8191	M0000 ~ M8176	<u>÷16</u> ì
保持リレー	L0000 ~ L8191	-	
特殊リレー	M9000 ~ M9255	M9000 ~ M9240	<u>÷16</u> 1
アナンシェータ	F0000 ~ F2047	F0000 ~ F2032	<u>÷16</u> 1
リンクリレー	B0000 ~ B0FFF	-	
タイマ (接点)	TS0000 ~ TS2047	-	
タイマ (コイル)	TC0000 ~ TC2047	-	L/H
カウンタ(接点)	CS0000 ~ CS1023	-	
カウンタ (コイル)	CC0000 ~ CC1023	-	
タイマ (現在値)	-	TN0000 ~ TN2047	
カウンタ(現在値)	-	CN0000 ~ CN1023	
データレジスタ	-	D0000 ~ D6143	<u>B ; 1</u> 5)
特殊レジスタ	-	D9000 ~ D9255	<u>□ : 1</u> 5)
リンクレジスタ	-	WOOOO ~ WOFFF	B: +15)
ファイルレジスタ	-	R0000 ~ R8191	B: 151

デバイスの範囲はご使用のCPUで異なる場合があります。各CPUのデバイスの範囲は、三菱電機(株)製「AJ71E71型インターフェイスユニット」ユーザーズマニュアルでご確認ください。

7.2.3 環境設定例

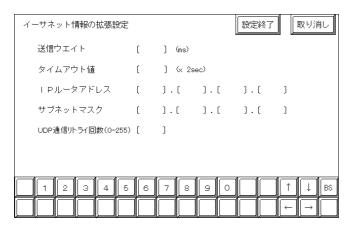
GP 側設定

イーサネットで通信するためのGP側の通信設定を示します。

動作環境メニュー

動作環境メ	==-	前画面
1 2	動作環境の設定 イーサネット情報の設定	
3	イーサネット情報の拡張設定	

イーサネット情報の設定


「イーサネット情報の設定」を選択し各項目を設定します。

イーサネット情報の設定				設定終		り消し
自局IPアドレス	[].[].[].[J	
自局ボート番号	()				
相手局IPアドレス	ĺ].[].[].[]	
相手局ボート番号	()				
通信方式の選択	U) P	TCP			
	-1	-1 <i>-</i> -1 <i>-</i> -	-1 <i></i> -1 <i>-</i> -	-1 <i></i> -1 <i>-</i> -	-1 <i></i> -1 <i>-</i>	1 <i>-</i>
1 2 3 4	5 6	7 8	9 0		1	↓ BS
						→][

- ・自局IPアドレス 自局GP側のIPアドレスを設定します。IPアドレスは全32ビットを8ビットごとの4つの組に分け、それぞれをドットで区切った10進数で入力してください。
- ・自局ポート番号 自局ポート番号を1024~65535で設定します。
- 相手局IPアドレス 相手局(MELSEC側)のIPアドレスを設定します。
- ・相手局ポート番号 相手局ポート番号を1024~65535で設定します。
- ・通信方式の選択 UDPとTCP通信の選択ができます。 非同期に電源を入切する場合は、UDPをお勧めします。

禁止・ IPアドレスに関してはネットワーク管理者に確認してください。い。 重複する IPアドレスは設定しないでください。

イーサネット情報の拡張設定

・送信ウエイトタイム(0~255)

GPからのコマンド送信時にウエイト時間を入れることができます。 通信回線上のトラフィックが多い場合、ご使用ください。 設定が必要ない場合は、0に設定してください。

・タイムアウト値(0~65535)

タイムアウト値です。設定した時間内に、相手局より応答がない場合タイムアウトになりま す。0に設定すると、デフォルト値としてTCP通信の場合は15秒、UDP通信の場合は5秒に 設定されます。

・ルータ IP アドレス

ルータのIPアドレスを設定します。(ルータの設定は一つのみです。) ルータを使用されない場合は、全て0に設定してください。

・サブネットマスク

サブネットマスクを設定します。

使用されない場合は、全て0に設定してください。

UDP 通信リトライ回数(0-255)

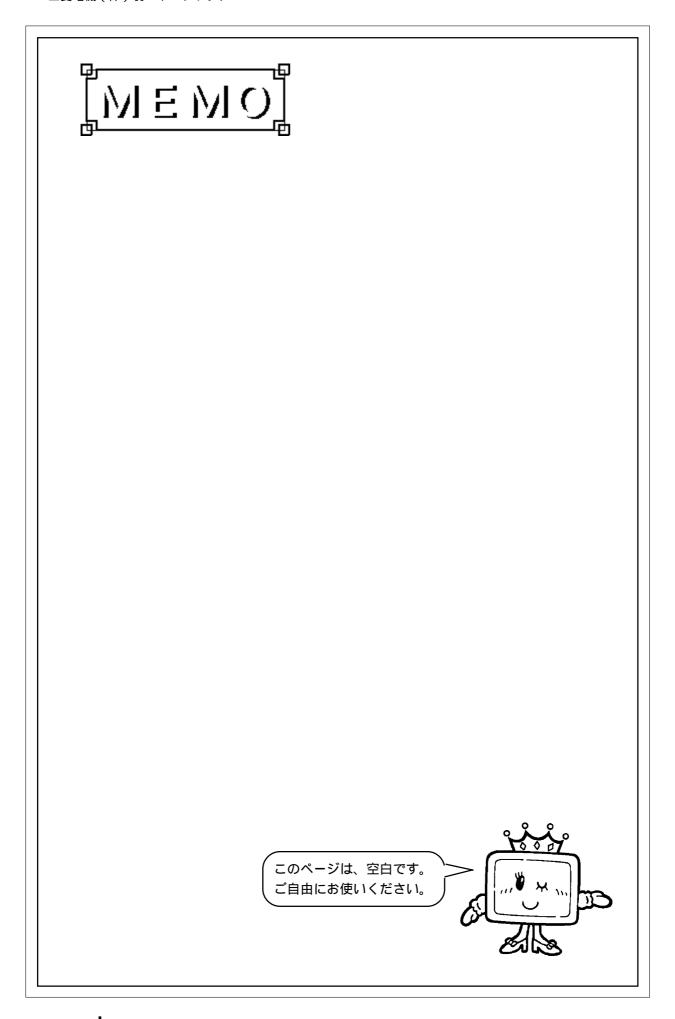
UDP通信時に相手局より応答がない場合などでタイムアウトになった場合、GPがコマンドを再 送信する回数の設定です。

設定した回数を送信しても応答がない場合、GP上にエラーメッセージが表示されます。

重要・ オフラインよりメモリの初期化をした場合、各設定値に不定 値が設定が設定されることがあります。必ず設定値をご確認 ください。

サンプルラダー

(株)デジタルが推奨する通信設定(PLC側:ラダープログラム)をサンプルラダーで示します。


 $\texttt{MELSEC-A}\, \, \ni \, \texttt{U} - \, \texttt{X}\, \, (\,\, \textbf{A} - \, \texttt{U} + \, \textbf{A} \, \texttt{J} \, \textbf{71E71}\, \,)$

LD M9038	
DMOVP Hxxxxxxxxx D100 (PLCのIPアドレス)*1	
MOVP KO D102	
MOV H0100 D116 (UDP通信の設定)	
MOV K1024 D124 (PLCのポート番号 < 例として "1024 "を入力した	場合>)
MOV K1024 D127 (GPのポート番号 < 例として "1024"を入力した±	易合 >)
DMOV Hxxxxxxxxx D125 (GPのIPアドレス)*1	
DMOV HFFFFFFF D128	
MOV HFFFF D130	
LD M9036	
TOP H0000 H0000 D100 K50	
LD X0019	
MOV K5 D113	
TOP H0000 K13 D113 K1	
LD M9036	
OUT Y0019	
LD M9036	
OUT Y0008 END	

参照 詳細な設定内容に関しては三菱電機(株)製「AJ71E71型 Ethernet インターフェイスユニット」ユーザーズマニュアルをご参照ください。

重要・PLC側の通信設定でご使用されますアドレス(D~)とGP側のシステム先頭アドレスは重ならないように設定してください。

^{*1}IPアドレスはネットワーク管理者に確認してください。 xxxxxxxxx は IPアドレスです。(16進数表示) 重複したアドレスは設定しないでください。

7.3 (株) 東芝製 PLC

7.3.1 システム構成

(株)東芝製 PLC と GP をイーサネット接続する場合のシステム構成を示します。

PROSEC Tシリーズ (イーサネットユニット使用)

CPU	リンクI/F	結線図	使用可能 ケーブル	ユニット	GP
	イーサネット ユニット	+	-		
ТЗН	EN311		イーサネット ケーブル IEEE802.3規格 準拠相当品	(株)デジタル製 GPイーサネットI/Fユニット (GP070-ET11/GP070-ET11) GP77Rシリース・マルチユニットE	GPシリーズ*1
T2N	PU-235N PU-245N			(GP077-MLTE11) GP-377Rシリーズ [*] マルチュニット (GP377-MLTE11)	

*1 イーサユニットの対応 GPシリーズは GP-470E、 GP-570T、 GP-570S、 GP-57JS、 GP-570VM、 GP-571T、 GP-675T、 GP-675S、 GP-870VM、 GP-477RE、 GP-577RT、 GP-577RS、 GP-377RT、 GP-377RS

参照 ケーブル接続につきましては「GP70 シリーズ GP イーサネット I/F ユニットユーザーズマニュアル」(別売)の[3-2ケーブルの接続]をご参照ください。

7.3.2 使用可能デバイス

GP でサポートしているデバイスの範囲を示します。

PROSEC Tシリーズ/(T3H)

] は、システムエリアに指定可能

デバイス	ビットアドレス	ワードアドレス	備考	
外部入力デバイス	X0000 ~ X511F	XW000 ~ XW511		
外部出力デバイス	Y0000 ~ Y511F	YW000 ~ YW511		
補助リレー	R0000 ~ R999F	RW000 ~ RW999		
特殊リレー	S0000 ~ S255F	SW000 ~ SW255		
リンクレジスタリレー	Z0000 ~ Z999F	-		
リンクリレー	L0000 ~ L255F	L W000 ~ LW255		
タイマ (接点)	T000 ~ T999	-	読み出し専用	L/H
カウンタ (接点)	C000 ~ C511	-	読み出し専用	
タイマ (現在値)	-	T000 ~ T999		
カウンタ (現在値)	-	C000 ~ C511		
データレジスタ	-	D0000 ~ D8191	<u>ві 1</u> 5)	
リンクレジスタ	-	W0000 ~ W2047	<u>B i t</u> 15)	
ファイルレジスタ	-	F00000 ~ F32767	<u>ві 1</u> 5)	

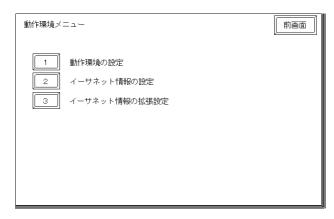
デバイスの範囲はご使用の CPU で異なる場合があります。 各 CPU のデバイスの範囲は、(株) 東芝製の PLC マニュアルで ご確認ください。

重要・読み出し専用のタイマ(接点)、カウンタ(接点)に書き込もうと した場合は、"上位通信エラー(02:10)"を表示します。

PROSEC Tシリーズ/(T2N)

は、システムエリアに指定可能	
----------------	--

デバイス	ビットアドレス	ワードアドレス	備考	
外部入力レジスタ	X0000 ~ X127F	XW000 ~ XW127		
外部出力レジスタ	Y0000 ~ Y127F	YW000 ~ YW127		
補助リレー	R0000 ~ R255F	RW000 ~ RW255		
特殊リレー	S0000 ~ S255F	SW000 ~ SW255		
リンクレジスタリレー	Z0000 ~ Z999F	-		
リンクリレー	L0000 ~ L255F	LW000 ~ LW255		
タイマ(接点)	T000 ~ T511	-	読み出し専用	L/H
カウンタ(接点)	C000 ~ C511	-	読み出し専用	
タイマ(現在値)	-	T000 ~ T511		
カウンタ(現在値)	-	C000 ~ C511		
データレジスタ	-	D0000 ~ D8191	<u>B i 1</u> 5)	
リンクレジスタ	-	W0000 ~ W2047	<u>в і 1</u> 15)	
ファイルレジスタ	-	F0000 ~ F1023	<u>в і т</u> 15)	


重要・ 読み出し専用のタイマ(接点)、カウンタ(接点)に書き込もうとした場合は、"上位通信エラー(02:10)"を表示します。

7.3.3 環境設定例

GP 側設定

イーサネットで通信するためのGP側の通信設定を示します。

動作環境メニュー

重 要 ・ "[1]動作環境の設定 " において 号機 No. は「0」にしてください。

イーサネット情報の設定

「イーサネット情報の設定」を選択し各項目を設定します。

イーサネット情報の設定				設定終	7 取	小消し
自局IPアドレス	ί).[].[].[)	
自局ボート番号	()				
相手局IPアドレス	ĺ].[].[].[)	
相手局ボート番号	[)				
	1	1—1—	1—1—	a	1010	<u> </u>
1 2 3 4	5 6	7 8	9 0		1	l BS
					- →	→

・自局IPアドレス

自局GP側のIPアドレスを設定します。IPアドレスは全32ビットを8ビットごとの4つの組 に分け、それぞれをドットで区切った10進数で入力してください。

・自局ポート番号

自局ポート番号を1024~65535で設定します。

相手局IPアドレス

相手局(PROSEC側)のIPアドレスを設定します。

・相手局ポート番号

相手局ポート番号を1024~65535で設定します。

・通信方式はUDP通信で行われます。

禁止 ・IPアドレス、ポート番号に関してはネットワーク管理者に確認 してください。重複するIPアドレスは設定しないでください。

イーサネット情報の拡張設定

イーサネット情報の拡張設定			設定終了	取り消し
送信ウエイト	[] (ms)		
タイムアウト値	[] (x 2sec)		
I Pルータアドレス	[).[).	().()
サブネットマスク	[).().	().(]
UDP通信リトライ回数(0-255)	[)		
	44		1-4-4	
1 2 3 4 5	6	7 8 9		↑↓ BS
				\leftarrow

・送信ウエイトタイム(0~255)

GPからのコマンド送信時にウエイト時間を入れることができます。 通信回線上のトラフィックが多い場合、ご使用ください。 設定が必要ない場合は、0に設定してください。

・タイムアウト値(0~65535)

タイムアウト値です。設定した時間内に、相手局より応答がない場合タイムアウトにな ります。0に設定すると、デフォルト値として15秒に設定されます。

・ルータ IP アドレス

ルータの IP アドレスを設定します。(ルータの設定は一つのみです。) ルータを使用されない場合は、全て0に設定してください。

・サブネットマスク

サブネットマスクを設定します。 使用されない場合は、全て0に設定してください。

UDP 通信リトライ回数(0-255)

UDP通信時に相手局より応答がない場合などでタイムアウトになった場合、GPがコマンドを再 送信する回数の設定です。

設定した回数を送信しても応答がない場合、GP上にエラーメッセージが表示されます。

- **重要・オフラインよりメモリの初期化をした場合、各設定値に不定値が** 設定されることがあります。必ず設定値をご確認ください。
 - ・ PLC 側の設定は PLC のマニュアルをご参照ください。
 - ・ IPアドレス、ポート番号の設定をした後にイーサネットモ ジュールを RUN モードに設定してください。

サンプルラダー

以下は(株)東芝製 Ethernet モジュール取扱説明書に記載されているサンプルプログラムです。

IPアドレス・ポート番号の設定

重要・IPアドレス、ポート番号に関してはネットワーク管理者に確認してください。

動作モード制御

重要・ IPアドレス設定後、ラインモードに切り替える必要があります。

7.4 横河電機(株)製 PLC

7.4.1 システム構成

横河電機(株)製 PLC と GP をイーサネット接続する場合のシステム構成を示します。

FACTORY ACE シリーズ /FA-M3 1:1 通信 (イーサネットユニット使用)

CPU	リンクI/F	結線図	使用可能 ケーブル	ユニット	GP
	イーサネットユニット	•	-		
F3SP20-0N F3SP21-0N F3SP25-2N F3SP30-0N F3SP35-5N	F3LE01-5T		イーサネット ケーブル IEEE802.3規格 準拠相当品	(株)デジタル製 GPイーサネットI/Fユニット (GP070-ET11/GP070-ET41) GP77RシリーズマルチュニットE (GP077-MLTE11) GP-377Rシリーズマルチュニット (GP377-MLTE11)	GPシリーズ*1

*1 イーサユニットの対応 GPシリーズは GP-470E、 GP-570T、 GP-570S、 GP-57JS、 GP-570VM、 GP-571T、 GP-675T、 GP-675S、 GP-870VM、 GP-477RE、 GP-577RT、 GP-577RS、 GP-377RT、 GP-377RS

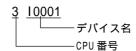
参照 ケーブル接続につきましては「GP70 シリーズ GP イーサネット I/Fユニットユーザーズマニュアル」、「GP77RシリーズマルチユニットEユーザーズマニュアル」、「GP-377Rシリーズマルチユニットユーザーズマニュアル」(別売)をご参照ください。

7.4.2 使用可能デバイス

GP でサポートしているデバイスの範囲を示します。

FA-M3シリーズ

は、システムエリアに指定可能


デバイス	ビットアドレス	ワードアドレス	備考
入力リレー	X00201 ~ X71364	X00201 ~ X71349	<u>÷16+</u> 1)*1*2*3 L/H
出力リレー	Y00201 ~ Y71364	Y00201 ~ Y71349	<u>÷16+</u> 1) *1*2
内部リレー	100001 ~ I16384	100001 ~ I16369	<u>÷16+</u> 1) *2*4
共有リレー	E0001 ~ E4096	E0001 ~ E4081	<u>÷16+</u> 1 *2*4
特殊リレー	M0001 ~ M9984	M0001 ~ M9969	<u>÷16+</u> 1 *2
リンクリレー	L00001 ~ L71024	L00001 ~ L71009	<u>÷16+</u> 1) *2*5
タイマ (接点)	T0001 ~ T3072		*2*6
カウンタ(接点)	C0001 ~ C3072		*2*6
タイマ (現在値)		TP0001 ~ TP3072	*2*6
タイマ (設定値)		TS0001 ~ TS3072	*2*3*6
カウンタ(現在値)		CP0001 ~ CP3072	*2*6
カウンタ (設定値)		CS0001 ~ CS3072	*2*3*6
データレジスタ		D0001 ~ D8192	B i t 15) *2*7
ファイルレジスタ		B00001 ~ B32768	B i t 15) *2*8
共有レジスタ		R0001 ~ R4096	B i t 15) *2*7
特殊レジスタ		Z001 ~ Z512	B i t 15] *2
リンクレジスタ		W00001 ~ W71024	B i t 15 *2*9

*1 入力リレーと出力リレーは下2桁の端子番号(ビット)01~49が16の倍数+1の値のみです。

< 例 > X00201 の場合 X 002 01 端子番号 コット No.

*2 デバイス名の前にCPU 番号(1~4)をつけます。

< 例 > CPU 番号3の内部リレー 10001の場合

- *3 データの書き込みはできません。
- *4 共有リレー・内部リレーは合計で16384点まで使用できます。
- *5 リンクリレーは8192点まで使用できます。
- *6 タイマ・カウンタは合計で3072点まで使用できます。
- *7 データレジスタ・共有レジスタは合計で8192点まで使用できます。
- *8 ファイルレジスタは、F3SP25-2N、F3SP35-5N CPU モジュールのみ使用できます。
- *9リンクレジスタは8192点まで使用できます。

デバイスの範囲はご使用の CPU で異なる場合があります。各 CPU のデバイスの範囲は、横河電機(株)製の PLC マニュアルでご確認ください。

7.4.3 環境設定例

GP 側設定

イーサネットで通信するためのGP側の通信設定を示します。

動作環境メニュー

動作環境メ	==-	前画面
2 3	動作環境の設定 イーサネット情報の設定 イーサネット情報の拡張設定	

イーサネット情報の設定

「イーサネット情報の設定」を選択し各項目を設定します。

イーサネット情報の設定				設定終	7 取	り消し
自局IPアドレス	[].[].[].[]	
自局ポート番号	[]				
相手局IPアドレス	[].[].[].[)	
相手局ボート番号	[)				
通信方式の選択	UE	P	TCP			
	-1/-	a —a—	a —1—1—	a —a—	-1 <i>-</i> -1 <i>-</i>	-1
1 2 3 4	5 6	7 8	9 0		<u></u>	↓ BS
						→][[

- ・自局IPアドレス 自局GP側のIPアドレスを設定します。IPアドレスは全32ビットを8ビットごとの4つの組に分け、 それぞれをドットで区切った10進数で入力してください。
- ・自局ポート番号 自局ポート番号を1024~65535で設定します。
- ・相手局IPアドレス 相手局(PLC側)のIPアドレスを設定します。
- ・相手局ポート番号 相手局ポート番号は12289に設定してください。
- ・通信方式の選択 UDPとTCP通信の選択ができます。 非同期に電源を入切する場合は、UDPをお勧めします。

禁止・ IPアドレスに関してはネットワーク管理者に確認してください。 重複するIPアドレスは設定しないでください。

イーサネット情報の拡張設定

・送信ウエイトタイム(0~255)

GPからのコマンド送信時にウエイト時間を入れることができます。

通信回線上のトラフィックが多い場合、ご使用ください。

設定が必要ない場合は、0に設定してください。

・タイムアウト値(0~65535)

タイムアウト値です。設定した時間内に、相手局より応答がない場合タイムアウトになります。 0に設定すると、デフォルト値としてTCP通信の場合は15秒、UDP通信の場合は5秒に設定され ます。

・ルータ IP アドレス

ルータのIPアドレスを設定します。(ルータの設定は一つのみです。) ルータを使用されない場合は、全て0に設定してください。

・サブネットマスク

サブネットマスクを設定します。

使用されない場合は、全て0に設定してください。

UDP 通信リトライ回数(0-255)

UDP通信時に相手局より応答がない場合などでタイムアウトになった場合、GPがコマンドを再送信する回数の設定です。

設定した回数を送信しても応答がない場合、GP上にエラーメッセージが表示されます。

重要 オフラインよりメモリの初期化をした場合、初期値が設定されます。 必ず設定値をご確認ください。

PLC 側の設定

イーサネットで通信するためのPLC側の通信設定を示します。設定はイーサネットモジュールの側面にあるスイッチで行ってください。

参照 設定内容の詳細については横河電機(株)製「Ethernet インターフェースモジュール取扱説明書」をご参照ください。

PLC側の設定			
データコードスイッチ	ON (バイナリ)		
書き込みプロテクト	OFF(プロテクトしない)		
TCPタイムアウト時回線処理	OFF(クローズする)		
運転モード	OFF(通常運転)		
IPアドレス	ロータリスイッチにより設定		

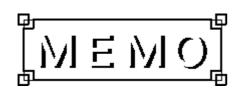
7.5 プロトコルスタックのエラーコード

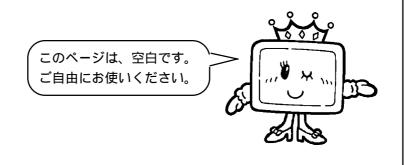
プロトコルスタックのエラーコードはGP画面上に表示されます。

エラーコード	内容
00	初期化で自局IPアドレスの設定エラー。
05	初期化に失敗しました。
06	通信中止処理に失敗しました。
07	初期化が正常に終了していない状態で、開設しようとしました。
08	自局ポート番号エラー
09	相手局ポート番号エラー
0 A	相手局IPアドレスエラー
OB	UDPにて既に同じポート番号で開設しています。
00	TCPで既に同じ相手と同じポート番号でコネクションを開設しています。
0 D	プロトコルスタックが開設を拒否しました。
0E	プロトコルスタックが開設失敗を返してきました。
0F	コネクションが切断されました。
10	全てのコネクションが使用中で、空きコネクションはありません。
13	相手局からアボートされた。
30	プロトコルスタックからの返事がない。
32	相手局より返事がない。

プロトコルスタックのエラーコードはGP画面上で以下のように表示されます。

上位通信エラー(02:FE:**)

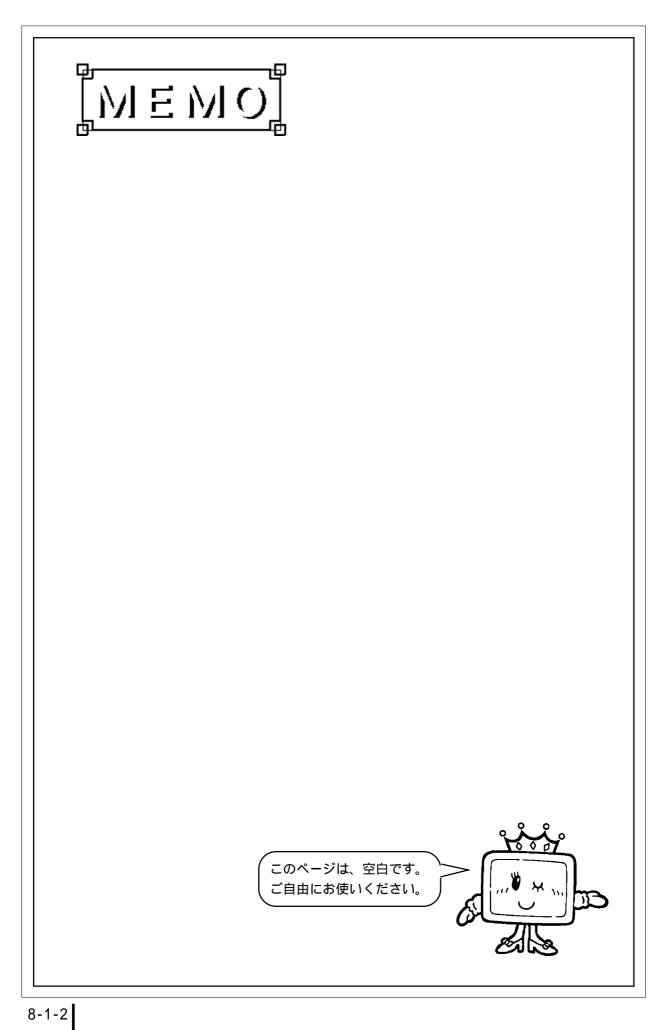

**が上表のエラーコード00~32になります。



・ PLCからのエラーコードは従来どおり表示されます。

上位通信エラー(02:***)

PLCからのエラーコード


各社 PLC と GP[CC-Link]とのシステム構成・使用可能デバイス・環境設定例を説明します。

8.1 接続可能な PLC 一覧

GP と接続可能な PLC の一覧を示します。

	シリーズ名	CPU	リンクI/Fまたは、	特記事項	画面作画ソフト
			CPU直結		での「PLC」設定
Ξ		A2A	CC-Linkユニット	CC-Link対応	
		A3A	Aシリーズ	のユニットが	CC-Linkタイプ
菱	Aシリーズ	A3N	AJ61BT11	必要	
		A2U-S1			
電		A2US	Aシリーズ		
		A2USH-S1	A1SJ61BT11		
機		Q3A	QnAシリーズ		
	QnAシリーズ	Q4A	AJ61QBT11		
(株)					

(上記の CPU は(株)デジタルにて動作確認済みの機種です)

8.2 三菱電機(株)製

8.2.1 システム構成

三菱電機(株)製 PLC と GP を接続する場合のシステム構成を示します。

A シリーズ /Q シリーズ (リンク I/F 使用)

CPU	リンク	結線図	使用可能ケーブル	ユニット	GP
		•	-	© (max on 1977)	*1
A2A			 倉茂電工(株)製	CC-Linkユニット	GPシリーズ *2
A3A	AJ61BT11		型式:		
A3N			FANC-SB0.5mm ² \times 3	型式:GP070-CL11	
A2U-S1		RS485			
A2US	A1SJ61BT11	(次頁参照)	ツイストペア		
A2USH-S1					
Q3A	AJ61QBT11		シールドケーブル		
Q4A					

*1 マスタ局に対しての接続台数は下記の条件があります。

 $(1){(1 \times a) + (2 \times b) + (3 \times c) + (4 \times d)}$ 64

- a:1局占有ユニットの台数
- b:2局占有ユニットの台数
- c:3局占有ユニットの台数
- d:4局占有ユニットの台数
- $(2){(16 \times A) + (54 \times B) + (88 \times C)}$ 2034
 - A: リモート I/0 局の台数 64 台
 - B: リモートデバイス局の台数 42 台
 - C: ローカル局の台数 26台

<u>< GP の最大接続数 ></u>

GP はリモートデバイス局になります。また、最小占有局数は2 局となります。 従って、マスタ局1台に GP だけを接続した場合は最大32台の接続が可能です。

マスタ局のシステム構成の詳細に関しては、三菱電機(株)製「AJ61BT11/A1SJ61BT11 形 CC-Link システムマスタ・ローカルユニットユーザーズマニュアル(詳細編)」もしくは、「AJ61QBT11/A1SJ61QBT11 形 CC-Link システムマスタ・ローカルユニットユーザーズマニュアル(詳細編)」の「システム構成」の章をご参照ください。

*2 対応GPシリーズはGP-470E、GP-570T、GP-570S、GP-57JS、GP-570VM、GP-571T、GP-675T、GP-675S、GP-870VM、GP-477RE、GP-577RT、GP-577RS

8.2.2 結線図

GP 側

接地

マスタユニット(PLC側)とリモートユニット(GP側)のツイストペアケーブルでの接続方法を下記に示します。

PLC 側

接地

<結線図1 > RS-485

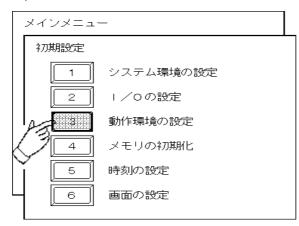
リモートユニット マスタユニット リモートユニット DA DA DA ≤終端抵抗 終端抵抗 🗟 DB DB DB 110 1/2W 1/2₩ 110 DG DG DG SLD SLD SLD FG FG シールド付 FG シールド付 ツイストペアケーブル ツイストペアケーブル

重要 ・ 両端のユニットには必ず "終端抵抗 "を接続してください。 DA-DB間に接続してください。終端抵抗はPLCのCC-Linkユニット に添付されています。

接地

- · GPはリモート局になります。
- ・ 接続順は局番には関係ありません。
- ・T字分岐接続、スター接続はできません。

8.2.3 環境設定例


(株)デジタルが推奨する PLC 側の通信設定と、それに対応する GP 側の通信設定を示します。

Aシリーズ/Qシリーズ

-			
GPの設定		PLC俱	川(CC-Linkユニット側)の設定
伝送速度	10M、5M、2.5M、625K、156K	伝送速度設定	ロータリスイッチにて設定
占有局数	2 ~ 4	占有局数	ラダーにて局情報の占有局数の設定*1
局番	1 ~ 63	局番	ラダーにて局情報の局番設定*1,*2
局タイプ	リモートデバイス局(固定)	局タイプ	ラダーにて局情報の局タイプ設定*1
モニタ方法	通常モニタ、専用モニタ	モニタ方法	ラダーにて設定可能*3
環境設定	GP画面で設定を行います。		
	(*4より説明)		

- *1 ラダーの設定の詳細に関しては、三菱電機(株)製「AJ61BT11/A1SJ61BT11 形 CC-Link システムマスタ・ローカルユニットユーザーズマニュアル(詳細編)」もしくは、「AJ61QBT11 形 CC-Link システムマスタ・ローカルユニットユーザーズマニュアル(詳細編)」の「パラメータ設定」の章をご参照ください。
- *2 マスタ局自身の局番は必ず "0" に設定してださい。(マスタ局ユニットの局番設定スイッチは ロータリスイッチにて設定)
- *3 GP側の設定のみで切り替え可能です。ただし、ラダーにて設定(イニシャル設定コマンドを使用)した場合は、ラダーでの設定が優先されます。

*4

「動作環境」を選択します。

動作環境メニュー 動作環境の設定 2 通信設定

「動作環境の設定」を選択します。

「通信設定」を選択します。

「動作環境の設定」を選択した場合

「占有局数」/「局番」/「モニタ方法」を設定します。

動作環境の設定	設定終了 取り消し
占有局数(2~4)	[]
局番 (1~63)	[]
モニタ方法(1:専用コマンドモニタモード 2:通常モニタモード)	[]
1 2 3 4 5 6 7 8 9	

占有局数・・・・占有局数は2,3,4局を設定することができます。

局番・・・・1~63の局番を設定することができます。ただし、3局占有した場合は最大62局、4局 占有した場合は最大61局になります。

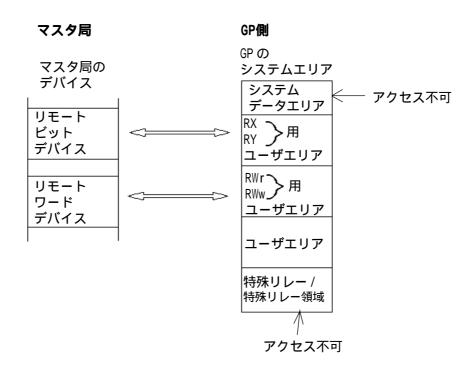
モニタ方法・・・通常モニタと専用コマンドモニタの2つの方法があります。

「通信設定」を選択した場合

「LSエリア先頭アドレス」/「伝送速度」を設定します。

LSエリア先頭アドレス・・リモート入出力及びリモートデバイスエリアをGPのシステムエリアに割り付けるための先頭アドレス(20~1980)です。また、割り付けられたエリアをこれ以降は"リンクエリア"と呼びます。

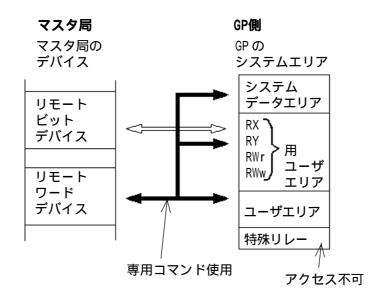
8.3 モニタ仕様


8.3.1 モニタ概要

CC-Linkを使用すると、GPをリモートデバイス局としてCC-Link対応PLCをダイレクトに接続する事ができます。

モニタ方法には通常モニタと専用コマンドモニタの2種類があります。

通常モニタ


接続したGPのシステムエリアそれぞれに対して、マスタ局のデバイスが割り当て(リンクエリア)られます。

重要・ 通常モニタ方法では、システムデータエリア及び特殊リレー領域はアクセスできません。

専用コマンドモニタ

- ・ リモートビットデバイスは、通常モニタと同様にユーザエリアのビットデバイスと直接アクセス する事ができます。
- ・ リモートワードデバイスは、そのデバイスにコマンドをセットする事により間接的にGPのユーザエリア及びシステムエリアにアクセスする事ができます。

間接的にアクセスとは

リモートワードデバイスのデータをCC-Linkの専用コマンド(書込み用コマンド/読出し用コマンド)を使ってGPのシステムエリアに展開(格納)する事です。

参照 8. 専用コマンドモニタ

重要・システムデータエリアの内容はメモリリンクタイプになります。

- ・ 専用コマンドモニタ使用時は、RX,RY、RWw、RWr 用ユーザエリ アは書込み不可になります。
- ・ GPの特殊リレー領域はアクセス不可です。

8.3.2 GP 入出力定義

GP マスタ局

リンク入力 信号名称 R X m0 ユーザ領域 R X m1 RXm2 下記占有局数に依存される RXm3 2局:48点 RXm4 3局:80点 4局:112点 RXm5 RXm6 $R\ X\ m7$ RXm8 RXm9 $R\ X\ mA$ RXmBRXmCR X mD RXmER X mF RX(m+n)0 表示器完了フラグ RX(m+n)1 システム領域リザーブ RX(m+n)2RX(m+n)3R X (m + n) 4 リザーブ RX(m+n)5 タッチON完了フラグ RX(m+n)6 リザーブ RX(m+n)7 タグコード読出要求フラグ R X (m+n)8 リザーブ RX(m+n)9 イニシャルデータ設定 完了フラグ R X (m + n) A エラー状態フラグ RX(m+n)B UE-FREADY R X (m + n) C リザーブ R X (m+n)D リザーブ R X (m + n) E リザーブ RX(m+n)F|UU-J

マスタ局 GP

リンク出力	信号名称
R Y m0	ユーザ領域
R Y m1	
R Y m2	下記占有局数に依存される
R Y m3	2局:48点
R Y m4	3局:80点
R Y m5	4局:112点
R Y m6	
RYm7	
R Y m8	
R Y m9	
RYmA	
RYmB	
RYmC	
RYmD	
RYmE	
RYmF	
~	
R Y (m+n)0	
R Y (m+n)1	表示器モニタ要求フラ グ
RY(m+n)2	表示器常時書き込み要 求フラグ
R Y (m+n)3	
R Y (m + n) 4	
R Y (m+n)5	
R Y (m+n)6	
R Y (m+n)7	
R Y (m+n)8	リザーブ
R Y (m+n)9	イニシャルデータ設定 要求フラグ
R Y (m + n) A	エラーリセット要求フ
	ラグ
R Y (m+n)B	
R Y (m+n)C	リザーブ
R Y (m+n)D	リザーブ
R Y (m+n)E	リザーブ
R Y (m+n)F	リザーブ

m、nについて

m:(局番号-1)×2h

n: 右表の通り

占有局数	2局	3局	4局
n	3	5	7

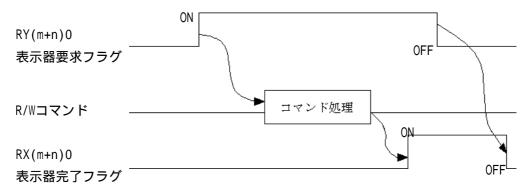
8.3.3 GP 入出力定義の詳細

GP マスタ局

リンク入力	信号名称	内容
R X (m+n)0	表示器完了フラグ *1	表示器要求フラグ(RY(m+
		n) 0) がONになった場合に、G
		Pの処理完了にてONする。またG
		┃Pにて表示器要求フラグがOFFする┃
		と表示器完了フラグもOFFする。
R X (m+n)5	タッチON完了フラグ	GPのシステムデータエリア13に
		値が書きこまれると、Rx(m+n)5が
		ONする。PLCが連続リードコマンドを
		用いてシステムデータエリア13
		の内容をリードするとOFFする。
	タグコード読み出し要求フラグ	R X (m+n)5と同じ。
R X (m+n) 9	イニシャルデータ設定完了フラグ *1	
		(m+n)9)がONになった場
		合、イニシャルデータ設定完了後
		ONする。またイニシャルデータ設
		定完了時、イニシャルデータ設定
		要求フラグがOFFするとイニシャル
		データ設定完了フラグもOFFする。
RX(m+n)A	エラー状態フラグ	GPのシステムエリアを使用時の
		コマンドエラー発生時にONする。
R X (m+n) B	リモートREADY	GPがオンラインへ移行し、デー
		タリンクが正常に完了時にONす
		る。またGPが0FFライン中及び、
		イニシャルデータ設定中はOFFす
		る。

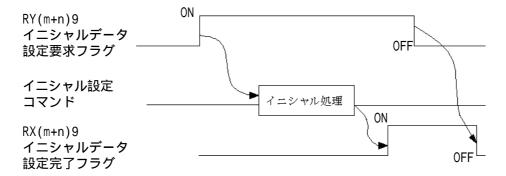
マスタ局 GP

リンク出力	信号名称	内容
R Y (m+n)0	表示器要求フラグ *1	G P のシステムエリアに R / Wを
		実行するときにONする。
RY(m+n)1	表示器モニタ要求フラグ *1	RWrnの領域にモニタ登録した
		GPのシステムエリアを読み出し
		時ONする。
R Y (m+n) 2	表示器常時書き込み要求フラグ *1	RWwmの領域に書き込んだデー
		タを常時書き込み登録したGPの
		システムエリアへ書き込み時ONす
		వ 。
RY(m+n)9	イニシャルデータ設定要求フラグ *1	このフラグをONすることにより、
		イニシャル処理が行われる。
RY(m+n)A	エラーリセット要求フラグ	エラーリセット要求フラグをONす
		ると、エラー状態フラグRX(m
		+ n) AをOFFする。

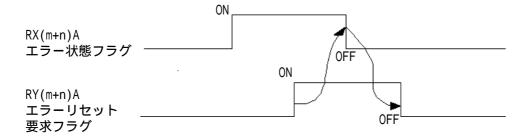

^{*1} 専用コマンドモニタ時のみ必要。通常モニタ時は、必要なし。

GP 入出力信号のタイムチャート

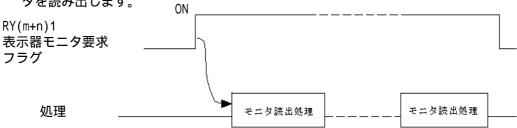
各入出力信号の機能について下記に示します。


表示器完了フラグ、表示器要求フラグ

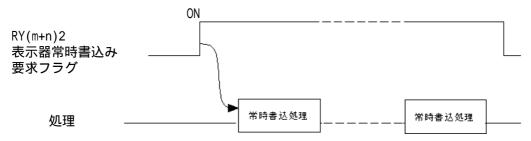
表示器要求フラグがONになった場合に、コマンド処理完了にて表示器完了フラグがONする。 表示器要求フラグがOFFすると表示器完了フラグもOFFする。(表示器要求フラグは、表示器完了フラグがONした後、ラダーでOFFにしてください。)


イニシャルデータ設定完了フラグ、イニシャルデータ設定要求フラグ

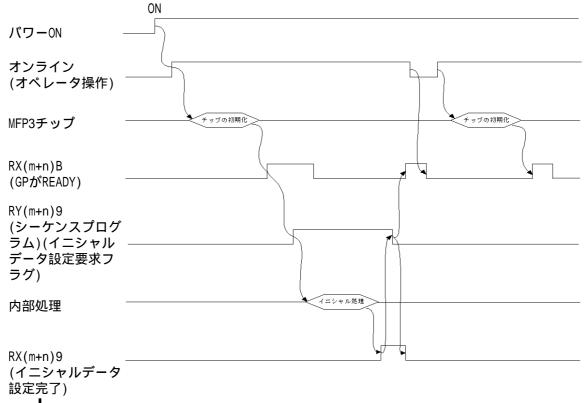
イニシャルデータ設定要求フラグがONになった場合に、イニシャル処理完了にてイニシャルデータ設定完了をONする。イニシャルデータ設定要求フラグがOFFするとイニシャルデータ設定完了フラグもOFFする。(イニシャルデータ設定要求フラグは、イニシャルデータ設定完了フラグがONした後、ラダーでOFFにしてください。)


エラー状態フラグ、エラーリセット要求フラグ

専用コマンドモニタのコマンド実行時にエラーが発生した場合は、エラー状態フラグがONし、エラーリセット要求フラグをONすることによりエラー状態フラグがOFFします。


表示器モニタ要求フラグ

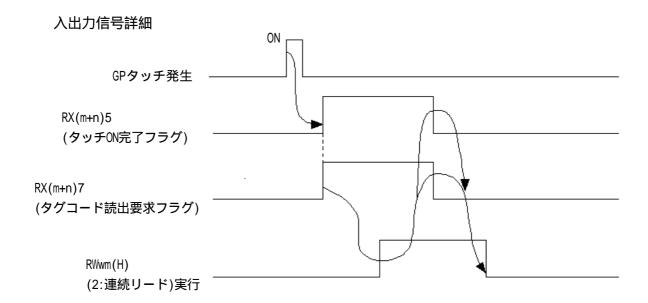
表示器モニタ要求フラグがONになっている間に、モニタ登録したGPのシステムエリアのデータを読み出します。

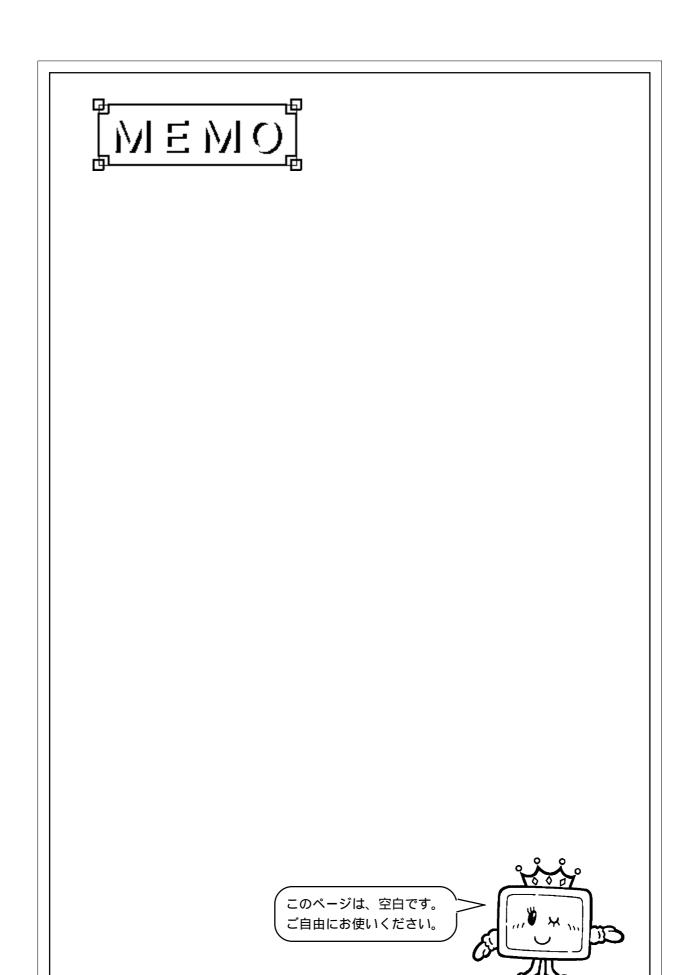

表示器常時書込み要求フラグ

表示器常時書き込みフラグがONになっている間に、常時書き込み登録したGPのシステムエリアにデータを書き込みます。

リモート-READY

GPのOSが立ち上がりオンライン動作中、リモート-READY: RX(m+n)BはONします。


タグコードのマスタ局への送信について


G P の タッチによりシステムエリアに格納されたタグコードを、マスタ局に転送する機能です。 G P の タッチタグ等を使って絶対書き込みで G P のシステムデータエリアの 1 3 (1 0 進)に データを書き込むと、R X (m+n) 5 (タッチ O N 完了フラグ) が O N します。

RX(m+n)5がONすると、同時にRX(m+n)7(タグコード読出要求フラグ)もONします。

マスタ局がシステムデータエリアの 1 3 に対して連続リード要求を行うと、GPはリードが終わる前に RX(m+n)5 を OFF します。この時、RX(m+n)5 が OFF になる場合には同時に RX(m+n)7 を OFF します。

これにより、タッチで指定された値(下位8ビットの割り込みコード)がマスタ局に送信されます。

8.4 通常モニタ

8.4.1 通常 モニタ使用時の GP レジスタ定義

マスタ局 GP

アドレス	内容
RWwm	
R W w m+1	
R W w m+2	
R W w m+3	
R W w m+4	2 局占有の場合 8 点
R W w m+5	
R W w m+6	
R W w m+7	
R W w m+8	
R W w m+9	
RWwm+A	3局占有の場合12点
RWwm+B	
RWwm+C	
RWwm+D	
RWwm+E	4 局占有の場合16点
RWwm+F	

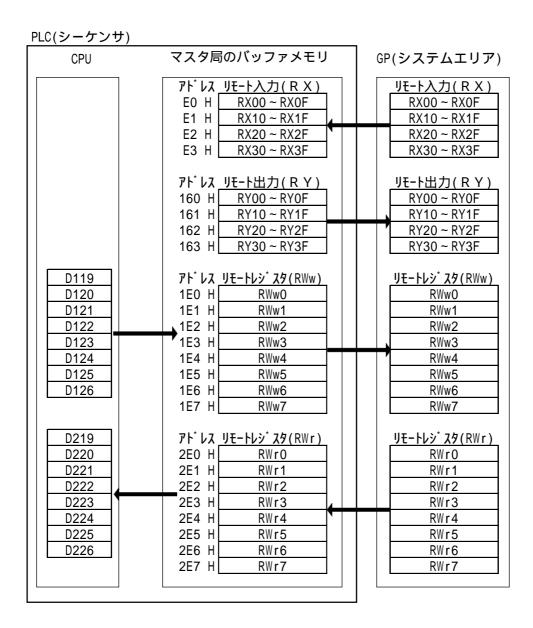
GP マスタ局

アドレス	内容
RWrn	
RWrn+1	
RWrn+2	
RWrn+3	
RWrn+4	2 局占有の場合 8 点
RWrn+5	
RWrn+6	
RWrn+7	
RWrn+8	
RWrn+9	
R Wrn+A	3局占有の場合12点
RWrn+B	
RWrn+C	
RWrn+D	4 局占有の場合16点
R Wrn+E	
R Wrn+F	

・m、nについて

以下の表のようにリモートレジスタでは4h単位で求められる。

局番号	m	n
1	0	100
2	4	104
3	8	108
~	~	~


通常モニタではマスタ局の RWw へ書込みされた値は、ユーザエリア内のリンクエリアの RWw(+36 ~ +51)へ反映され、ユーザエリア内のリンクエリアの RWr(+20 ~ +35)の値が常時マスタ局の RWr へ反映されます。**参照** 8.6 占有局

通常モニタ方法によるモニタ時シーケンスプログラム例

<シーケンスプログラム例>

通常モニタによる表示時シーケンサプログラム例

以下の図は、PLC(シーケンサ)CPU、マスタ局のバッファメモリ、GP(システムエリア)の関係を示しています。

上記は、CPUのD119 ~ D126のデータをRWw0 ~ RWw7に転送する例と、RWr0 ~ RWr7のデータをD219 ~ D226に転送する例です。

8.5 専用コマンドモニタ

8.5.1 専用コマンドモニタ使用時の GP レジスタ定義

マスタ局 GP

アドレス	内容
RWwm	コマンド
RWwm+1	
RWwm+2	各コマンドによる
RWwm+3	(各コマンドの詳細
RWwm+4	
RWwm+5	参照)2局占有の場
RWwm+6	合8点
RWwm+7	
RWwm+8	3局占有の場合12点
RWwm+9	
RWwm+A	
RWwm+B	
RWwm+C	4局占有の場合16点
RWwm+D	
RWwm+E	
RWwm+F	

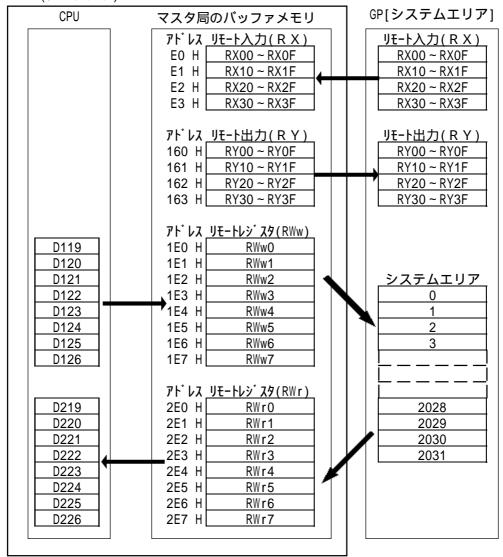
GP マスタ局

アドレス	内容
RWrn	レスポンス *1
RWrn+1	
RWrn+2	各コマンドによる
RWrn+3	(各コマンドの詳細
RWrn+4	参照)2局占有の場
RWrn+5	
RWrn+6	合8点
RWrn+7	
RWrn+8	3局占有の場合12点
RWrn+9	
RWrn+A	
RWrn+B	
RWrn+8	4 局占有の場合16点
RWrn+D	
RWrn+E	
RWrn+F	

MEMO

・m、nについて

以下の表のようにリモートレジスタでは4h単位で求められる。


局番号	m	n
1	0	100
2	4	104
3	8	108
~	~	~

^{*1} エラー発生時にのみ、エラーコード(8.7エラーコード一覧)がセットされます。

各コマンドの詳細

以下の図は、PLC(シーケンサ)CPU、マスタ局のバッファメモリ、GP[システムエリア]の関係を示しています。

PLC(シーケンサ)

上記はCPUのD119を先頭としてコマンドを格納し、D219を先頭として読み出しデータを格納した例です。

コマンド一覧

コマント゛	名称	内容
1	イニシャル設定コマンド	動作モード切り替え
	連続リードコマンド	G P のシステムエリアの指定アドレスからワー
2		ド点数分データを読み出す
	ランダムリードコマンド	GPのシステムエリアの複数アドレスからデー
3		夕を読み出す
	連続ライトコマンド	G P のシステムエリアの指定アドレスへワード
4		点数分データを書き込む
	ランダムライトコマンド	│G P のシステムエリアの複数アドレスヘデータ │
5		を書き込む
	モニタ登録コマンド	モニタしたNGPのシステムエリアの複数アド
6		レスを登録する
	常時書き込み登録コマンド	書き込みしたい複数のGPのシステムエリアの
8		アドレスを登録する

イニシャル設定コマンド

アドレス	内容
RWwm(H)	1:イニシャル設定
RWwm(L)	1:専用コマンドモニタモードで動作する
	2:通常モニタモードで動作する
$RWwm + 1 \sim RWwm + F$	使用不可
RWrn~RWrn+F	使用不可

重要・イニシャル設定コマンド(通常モニタor専用コマンドモニタ)は GPのオフラインの設定でも可能です。ただし、ラダーで設定し た場合はラダーの設定が優先になります。ラダーの設定がなけ ればオフラインの設定が有効になります。

<シーケンスプログラム例>(イニシャル設定コマンドを使って、専用コマンドモニタモードで動作させる例)

- [= k 1 D 1 0 0 0] 他のコマンドを実行するためのラダープログラム

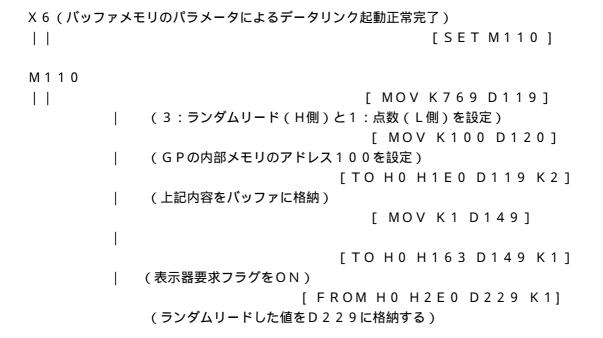
連続リードコマンド

アドレス	内容
RWwm(H)	2:連続リード
RWwm (L)	1 ~ 1 4 : ワード点数 (4 局占有max 1 4 点、3 局占有max 1 0 点、2 局占有max 6 点)
RWwm + 1	0~2031:GPのシステムエリアの指定アドレス
RWwm + 2 ~ RWwm + F	使用不可
RWrn~RWrn+D	GPのシステムエリアの指定アドレスからワード点数分読み出したデータ
RWrn+E~RWrn+F	使用不可

<シーケンスプログラム例>

・GPの内部メモリのアドレス0から6ワード分の内容を連続リードする。

```
X6(バッファメモリのパラメータによるデータリンク起動正常完了)
                                     [SET M110]
  M 1 1 0
                               [ MOV K518 D119]
  | \cdot |
            (2:連続リード(H側)と6:点数(L側)を設定)
                                [ MOV K0 D120]
            (GPの内部メモリのアドレス「0」を設定)
                            [TO H0 H1E0 D119 K2]
            (上記内容をバッファに格納)
                                [ MOV K1 D149]
                            [TO H0 H163 D149 K1]
            (表示器要求フラグをON)
             ·----[ FROM H0 H2E0 D229 K6]
            (連続リードした値をデバイスD229に格納)
<<GPのTタグがタッチされたことをPLCに通知し、更に連続リードコマンドを利用して
 タッチされた値をマスタ局がリードする方法>>
< LS13を利用する場合のシーケンスプログラム例 > (括弧内の数字は L S 1 0 を利用する場合)
 X6(バッファメモリのパラメータによるデータリンク起動正常完了)
 [SET M 1 1 0 ]
M 9 0 3 6 (常時ON)
                    [ FROM H 0 H E 3 D 1 0 0 0 K 1 ]
  (D1000にバッファの内容を格納)
                         [SFR D1000 K5]
              (右へ5ビットシフト)
                                 (K6)
                          [MOV K 5 1 8 D 1 1 9]
 [ = H 4 5 D 1 0 0 0 ]
                 (連続リード6ワードを設定)
  (H23)
(タッチON完了フラグ)
                     [MOV K13 D120]
                         (K10)(GP内部メモリアドレス13を設定)
                    [TOHOH1E0D119K2]
                 (上記内容をバッファに格納)
                     [MOV K 1 D 1 4 9]
                    [TOH0H163D149K1]
```


(表示器要求フラグON)

・ランダムリードコマンド

アドレス	内容
RWwm(H)	3:ランダムリード
RWwm(L)	1~14:ワード点数(4局占有max14点、3局占有max10点、2
	局占有max 6 点)
RWwm + 1 ~ RWwm + F	0~2031:GPのシステムエリアの指定アドレス
RWrn~RWrn+D	G Pのシステムエリアの指定アドレスから読み出したデータ
RWrn+E~RWrn+F	使用不可

<シーケンスプログラム例>

・GP内部メモリのアドレス100の内容をランダムリードする。

• 連続ライトコマンド

アドレス	内容
RWwm(H)	4:連続ライト
RWwm(L)	1 ~ 1 4 : ワード点数 (4 局占有max 1 4 点、 3 局占有max
	10点、2局占有max6点)
R W w m + 1	0~2031*:GPのシステムエリアの指定アドレス
$RWwm + 2 \sim RWwm + F$	書き込みデータ
RWrn~RWrn+F	使用不可

重要 ・ リンク用エリアは書込み不可

<シーケンスプログラム例>

・GPの内部メモリのアドレス2026から6ワード分に対して連続ライトを行う。 ライトするデータは1、2、3、4、5、6の場合。

```
X6(バッファメモリのパラメータによるデータリンク起動正常完了)
                                   [SET M110]
| \cdot |
M 1 1 0
                            [ MOV K1030 D119]
(4:連続ライト(H側)と6:点数(L側)をセット)
                             [ MOV K2026 D120]
         (GPの内部メモリのアドレスを設定)
                             [ MOV K1 D121]
          ( GPの内部メモリのアドレス2026に1をライトする準備)
                             [ MOV K2 D122]
          ( GPの内部メモリのアドレス2027に2をライトする準備)
                             [ MOV K3 D123]
          ( GPの内部メモリのアドレス2028に3をライトする準備)
                             [ MOV K4 D124]
          ( GPの内部メモリのアドレス2029に4をライトする準備)
                             [ MOV K5 D125]
          ( GPの内部メモリのアドレス2030に5をライトする準備)
                             [ MOV K6 D126]
          ( G P の内部メモリのアドレス 2 0 3 1 に 6 をライトする準備 )
                              [ MOV K1 D149]
       1
                           [TO H0 H1E0 D119 K8]
          (上記内容をバッファに格納)
                         [TO H0 H163 D149 K1]
          (表示器要求フラグをON)
```

・ランダムライトコマンド

アドレス	内容
RWwm(H)	5:ランダムライト
RWwm(L)	1 ~ 7:ワード点数(4局占有max7点、3局占有max5 点、2局占有max3点)
R W w m + 1	0~2031*:GPのシステムエリアの指定アドレス
R W w m + 2	書き込みデータ
~	
RWwm+D	0~2031*:GPのシステムエリアの指定アドレス
RWwm+E	書き込みデータ
RWwm+F	使用不可
RWrn~RWrn+3	使用不可

重 要 ・ リンク用エリアは書込み不可

<シーケンスプログラム例>

・GPの内部メモリのアドレス0、1100、1979に対してデータをランダムライトする例。 ライトするデータはそれぞれ1、2、3の場合。

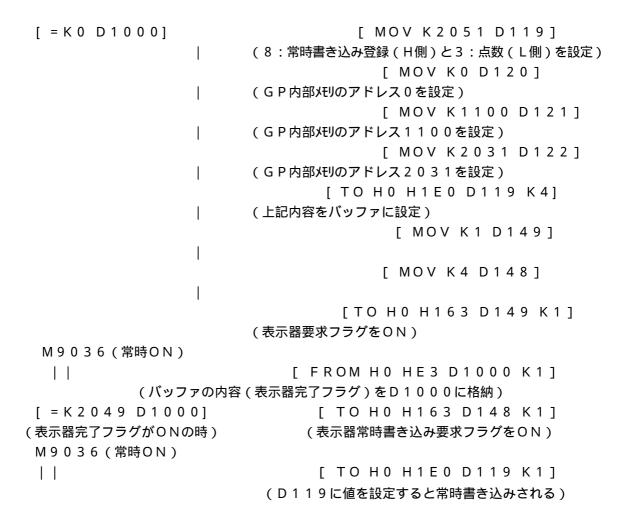
```
X6(バッファメモリのパラメータによるデータリンク起動正常完了)
                                   [SET M110]
M 1 1 0
[ MOV K1283 D119]
       (5:ランダムライト(H側)と3:点数(L側)を設定)
                            [ MOV K0 D120]
          ( GPの内部メモリのアドレス0を設定)
                            [ MOV K1 D121]
          ( G P の内部メモリのアドレス 0 に 1 をライトする準備)
                            [ MOV K1100 D122]
          ( G P の内部メモリのアドレス 1 1 0 0 を設定)
                            [ MOV K2 D123]
          ( GPの内部メモリのアドレス1100に2をライトする準備)
                            [ MOV K1979 D124]
          ( GPの内部メモリのアドレス1979を設定)
                            [ MOV K3 D125]
          ( GPの内部メモリのアドレス1979に3をライトする準備)
                         [TO HO H1EO D119 K7]
          (上記内容をバッファに設定)
                             [ MOV K1 D149]
                         [TO H0 H163 D149 K1]
         (表示器要求フラグをON)
```

モニタ登録コマンド

アドレス	内容
RWwm(H)	6:モニタ登録
RWwm(L)	1~14:ワード <u>点数(4局占有max14点、3局占</u>
	有max 1 0 点、 2 局占有max 6 点)
$RWwm + 1 \sim RWwm + F$	0~2031:GPのシステムエリアの指定アドレス
RWrn~RWrn+F	使用不可

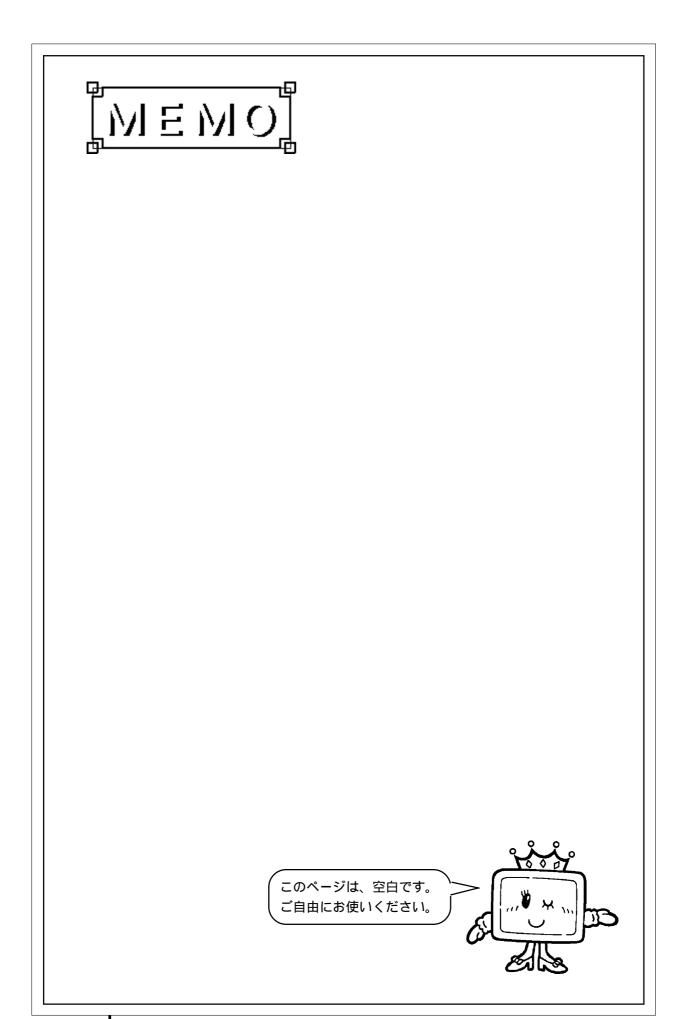
<シーケンスプログラム例>

・GPの内部メモリのアドレス6点(0、100、200、1000、1500、2031)をモニタ登録する例。


```
X6(バッファメモリのパラメータによるデータリンク起動正常完了)
                                    [SET M110]
 | | |
 M 1 1 0
 | | |
                              [ MOV H606 D119]
           (6:モニタ登録(H側)と6:点数(L側)をセット)
                              [ MOV K0 D120]
           ( G P の内部メモリのアドレス 0 を設定)
                              [ MOV K100 D121]
           ( G P の内部メモリのアドレス 1 0 0 を設定)
                              [ MOV K200 D122]
           ( GPの内部メモリのアドレス200を設定)
                              [ MOV K1000 D123]
           [ MOV K1500 D124]
           ( G P の内部メモリのアドレス 1 5 0 0 を設定)
                              [ MOV K2031 D125]
           ( G P の内部メモリのアドレス 2 0 3 1 を設定)
                           [TO H0 H1E0 D119 K7]
           (上記内容をバッファに設定)
                               [ MOV K1 D149]
                              [ MOV K2 D148]
                           [TO H0 H163 D149 K1]
           (表示器要求フラグをON)
                         [ FROM H0 H2E0 D229 K6]
           (モニタされた値をD229から6ワードの領域に格納する)
 M 9 0 3 6 (常時ON)
                       [ FROM H0 HE3 D1000 K1]
  (表示器完了フラグをD1000に格納する)
モニタ要求フラグを使用する場合は以下のシーケンス(つまり、実際にモニタを行う場合)
 [= K 2 0 4 9 D 1 0 0 0]
                         [ TO H0 H163 D148 K1]
(表示器完了フラグが〇Nの場合)
                      (表示器モニタ要求フラグをON)
```

・常時書き込み登録コマンド

アドレス	内容
RWwm(H)	8:常時書き込み登録
RWwm(L)	1~7:ワード点数(4局占有max7点、3局占有max5点、2局
	占有max 3 点)
RWwm+1~RWwm+F	0~2031*: GPのシステムエリアの指定アドレス
RWrn~RWrn+F	使用不可


重要 ・ リンク用エリアは書込み不可

< シーケンスプログラム例 > (GP内部メモリのアドレス0、1100、2031に対して常時書き込み登録を行う場合)

ラダープログラムおよび設定の詳細に関しては、三菱電機 (株)製「AJ61BT11/A1SJ61BT11 形 CC-Link システムマスタ・ローカルユニットユーザーズマニュアル(詳細編)」または、「AJ61QBT11/A1SJ61QBT11 形 CC-Linkシステムマスタ・ローカルユニットユーザーズマニュアル(詳細編)」をご参照ください。

占有局 8.6

8.6.1 2局占有

0		
0	システムデータ	
19 a	エリア	L
à	リンクエリア(a	
a . 7	~ a+7)	
a ı 8	リンクエリア	١
a+51	リンクエリア (a+8~a+51)	١
a+52	ユーザエリア	
2031	ユーザエリア (a+52~2031)	

月			
LSIJ7 (7-	- Bit	信号名称	内容
トアトレス)		יפוים כי בו	130
a~a+2	0~F	RXm0~RXmF~RX	ユーザ領域(RX)3ワード
		(m+2)0 ~ R X (m+2)F	占有(2局占有時)
a+3	0	R X (m + n) 0	表示器完了フラグ
	1	R X (m + n) 1	リザーブ
	2	R X (m + n) 2	リザーブ
	3	R X (m + n) 3	リザーブ
	4	R X (m + n) 4	リザーブ
	5	R X (m + n) 5	タッチON完了フラグ
	6	R X (m + n) 6	リザーブ
	7	RX(m+n)7	タグコード読出要求フラグ
	8	RX(m+n)8	リザーブ
		RX(m+n)9	イニシャルデータ設定完了フ
	9	, ,	ラグ
	10	RX(m+n)A	エラー状態フラグ
	11	R X (m + n) B	リモートREADY
	12	RX(m+n)C	リザーブ
	13	R X (m + n) D	リザーブ
\	14	RX(m+n)E	リザーブ
	15	R X (m + n) F	リザーブ
a+4 ~ a+7		空き	
a+8		リザーブ	
a+9		リザーブ	
a+10 ~ a+12	0~F	$RYm0 \sim RYmF \sim RY$	ユーザ領域(RY)3ワード
		(m+2)0 ~ R Y (m+2)F	占有(2局占有時)
a+13	0	R Y (m + n) 0	表示器要求フラグ
	1	R Y (m + n) 1	表示器モニタ要求フラグ
		R Y (m + n) 2	表示器常時書き込み要求フラ
	2	5.44	グ
	3	R Y (m + n) 3	リザーブ
	4	R Y (m + n) 4	リザーブ
	5	RY(m+n)5	リザーブ
	6	RY(m+n)6	リザーブ
	7	RY(m+n)7	リザーブ
	8	R Y (m + n) 8	リザーブ
		R Y (m + n) 9	イニシャルデータ設定要求フ
	9	D.V/m + n.) A	ラグ
	10	RY(m+n)A	エラーリセット要求フラグ
	11 12	R Y (m + n) B R Y (m + n) C	リザーブ リザーブ
	13		リザーブ
	14	R Y (m + n) D R Y (m + n) E	リザーブ
	15	R Y (m + n) F	リザーブ
a+14 ~ a+17	10	ベ + (iii · ii) i 空き	
a+18		リザーブ	
a+19		リザーブ	
a+20 ~ a+27		RWr	通常モニタ時のRWr(R
	1		M)
a+28 ~ a+35	1	空き	72447 - Ent c
a+36 ~ a+43		RWw	通常モニタ時のRWw(M R)
a+44 ~ a+51		空き	

網掛け部分は2~4局で共通して使用するエリアです。
aはシステムエリア先頭アドレス。(a>=20)
リンクエリアは専用コマンドモードの書き込み関係のコマンドで書き込むことはできません。
・補足説明
<システムデータエリア>
GPの画面切り替えデータやエラー情報などを書き込むエリアです。
各アドレスで書き込む内容が決まっています。
内容はメモリリンクタイプになります。

8.6.2 3局占有

	LSIU7 (7-	Bit	信号名称	内容
0	ドデバイス)			
[システムデータ]	a ~ a+4	0~F		ユーザ領域(RX)5ワード
19 エリア a リンクエリア(a			(m+4)0 ~ R X (m+4)F	占有(3局占有時)
a+7 ~ a+7)	a+5	0	R X (m + n) 0	表示器完了フラグ
a+8 リンクエリア		1	R X (m + n) 1	リザーブ
a+51 (a+8~a+51)		2	R X (m + n) 2	リザーブ
a+52 ユーザエリア		3	R X (m + n) 3	リザーブ
4 52 2224)		4	R X (m + n) 4	リザーブ
2031 (a+52 ~ 2031)		5	R X (m + n) 5	タッチON完了フラグ
		6	R X (m + n) 6	リザーブ
		7	R X (m + n) 7	タグコード読出要求フラグ
		8	R X (m + n) 8	リザーブ
		9	R X (m + n) 9	イニシャルデータ設定完了フ ラグ
		10	R X (m + n) A	エラー状態フラグ
		11	R X (m + n) B	リモートREADY
		12	R X (m + n) C	リザーブ
		13	R X (m + n) D	リザーブ
		14	R X (m + n) E	リザーブ
		15	RX(m+n)F	リザーブ
1	a+6 ~ a+7		空き	
	a+8		リザーブ	
	a+9		リザーブ	
1	a+10 ~ a+14	0~F	$RYm0 \sim RYmF \sim RY$	ユーザ領域(RY)5ワード
			$(m+4)0 \sim R Y (m+4)F$	占有(3局占有時)
	a+15	0	R Y (m + n) 0	表示器要求フラグ
		1	R Y (m + n) 1	表示器モニタ要求フラグ
		2	R Y (m + n) 2	表示器常時書き込み要求フラグ
1		3	RY(m+n)3	リザーブ
		4	RY(m+n)4	リザーブ
		5	RY(m+n)5	リザーブ
		6	RY(m+n)6	リザーブ
		7	RY(m+n)7	リザーブ
		8	R Y (m + n) 8	リザーブ
		9	R Y (m + n) 9	イニシャルデータ設定要求フ ラグ
		10	R Y (m + n) A	エラーリセット要求フラグ
		11	R Y (m + n) B	リザーブ
		12	R Y (m + n) C	リザーブ
		13	R Y (m + n) D	リザーブ
		14	RY(m+n)E	リザーブ
		15	RY(m+n)F	リザーブ
	a+16~a+17		空き	
	a+18		リザーブ	
	a+19		リザーブ	
	a+20 ~ a+31		RWr	通常モニタ時の R W r (R M)
	a+32 ~ a+35		空き	
	a+36 ~ a+47		RWw	通常モニタ時のRWw(M R)
	a+48 ~ a+51		空き	

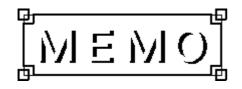
■ 網掛け部分は、2~4局で共通して使用するエリアです。 a はシステムエリア先頭アドレス。(a > = 2 0) リンクエリアは専用コマンドモードの書き込み関係のコマンドで書き込むことはできません。

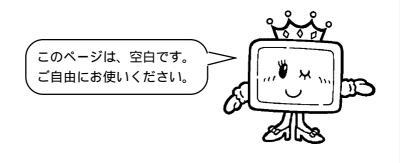
内容はメモリリンクタイプになります。

8.6.3 4局占有

	LSIJ7 (9-	Bit	信号名称	内容
0 システムデータ	ドアドレス)			
19 エリア	a ~ a+6	0~F	$RXm0 \sim RXmF \sim RX$	ユーザ領域(RX)7ワード
aリンクエリア(a			(m+6)0 ~ R X (m+6)F	占有(4局占有時)
$a+7 \sim a+7$	a+7	0	R X (m + n) 0	表示器完了フラグ
a l8 リンクエリア		1	R X (m + n) 1	リザーブ
a+51 (a+8~a+51)		2	R X (m + n) 2	リザーブ
a+52 ユーザエリア		3	R X (m + n) 3	リザーブ
2031 (a+52 ~ 2031)		4	R X (m + n) 4	リザーブ
2031		5	R X (m + n) 5	タッチON完了フラグ
		6	R X (m + n) 6	リザーブ
		7	R X (m + n) 7	タグコード読出要求フラグ
		8	R X (m + n) 8	リザーブ
		9	R X (m + n) 9	イニシャルデータ設定完了フ ラグ
	\	10	R X (m + n) A	エラー状態フラグ
		11	R X (m + n) B	リモートR E A D Y
		12	R X (m + n) C	リザーブ
		13	R X (m + n) D	リザーブ
		14	R X (m + n) E	リザーブ
		15	R X (m + n) F	リザーブ
	a+8	13	リザーブ	99-9
	a+9		リザーブ	
	a+10 ~ a+16	0~F	RYm0~RYmF~RY	ユーザ領域(RY)7ワード
1	a+10 * a+10	0 ~ 1	(m+6)0 ~ R Y (m+6)F	占有(4局占有時)
	a+17	0	R Y (m + n) 0	表示器要求フラグ
	атт	1	R Y (m + n) 1	表示器モニタ要求フラグ
		2	R Y (m + n) 2	表示器常時書き込み要求フラ
		2	K 1 (III + II) 2	グ
		3	R Y (m + n) 3	リザーブ
		4	RY(m+n)4	リザーブ
		5	R Y (m + n) 5	リザーブ
		6	RY(m+n)6	リザーブ
		7	RY(m+n)7	リザーブ
		8	RY(m+n)8	リザーブ
		9	RY(m+n)9	イニシャルデータ設定要求フ
				ラグ
		10	RY(m+n)A	エラーリセット要求フラグ
		11	RY(m+n)B	リザーブ
		12	RY(m+n)C	リザーブ
		13	RY(m+n)D	リザーブ
		14	RY(m+n)E	リザーブ
		15	RY(m+n)F	リザーブ
	a+18		リザーブ	
	a+19		リザーブ	
	a+20 ~ a+35		RWr	通常モニタ時のRWr(R M)
	a+36 ~ a+51		RWw	通常モニタ時のRWw(M R)
	1	!	<u>.</u>	! '' /

網掛け部分は、2~4局で共通して使用するエリアです。 a はシステムエリア先頭アドレス。(a > = 20) リンクエリアは専用コマンドモードの書き込み関係のコマンドで書き込むことはできません。


・補足説明


<システムデータエリア>

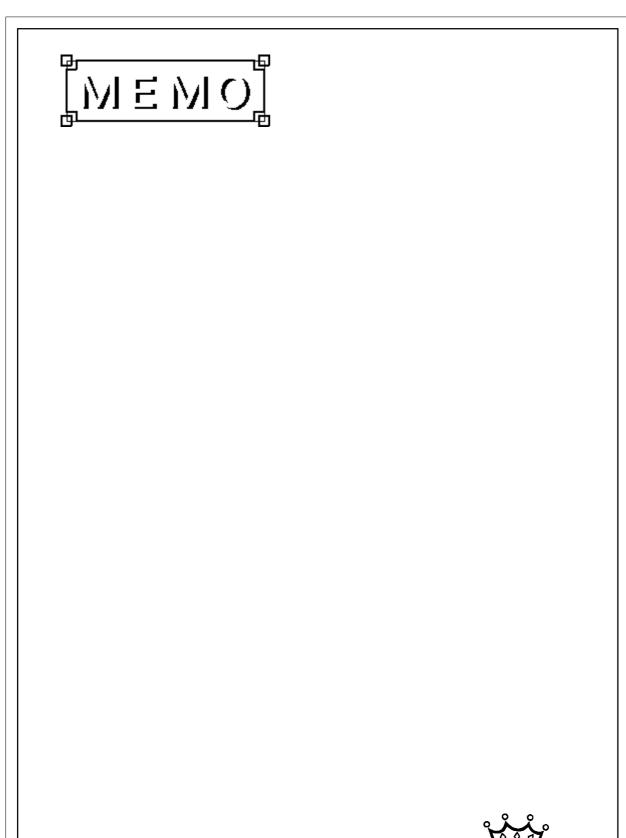
GPの画面切り替えデータやエラー情報などを書き込むエリアです。

各アドレスで書き込む内容が決まっています。

内部はメモリリンクタイプになります。

8.7 エラーコード一覧

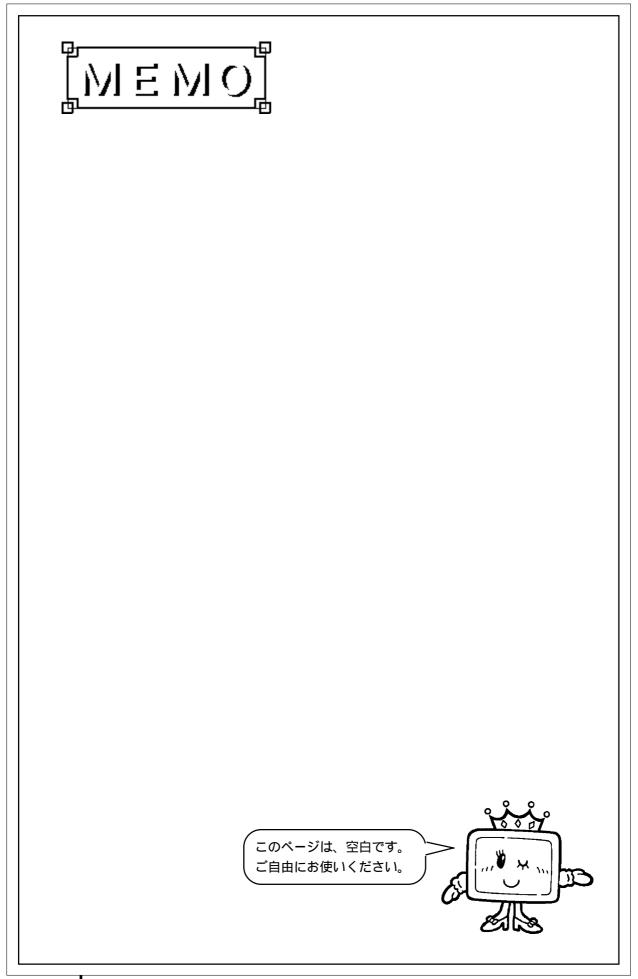
下記にエラーコードの一覧を示します。エラーコードは「上位通信エラー, (02:**)」で画面に表示されます。(**はエラーコードを意味します。)


エラーコード(**)	内容
01	指定デバイス点数が範囲外のエラー
02	指定アドレスが範囲外のエラー
03	未定義コマンドエラー
04	不正なイニシャルコマンドが指定された(イニシャルコマン
	ドは要求フラグを指定せず、イニシャルデータ設定要求フラ
	グを使用してください)
05	イニシャルコマンドで未定義のモードが指定された
06	モニター登録されていません
07	常時書き込み登録されていません
08	書き込み禁止システムエリアに書き込もうとした
09	オフラインへ移行した
14	ハードウェア無応答
15	ハードウェア異常
16	局番スイッチ設定エラー
17	ボーレートスイッチ設定エラー
18	<u> 局番設定スイッチ変化エラー</u>
19	ボーレートスイッチ変化エラー
1A	CRCエラー
1B	タイムオーバエラー
1C	0 チャンネルキャリア検出エラー
1D	1チャンネルキャリア検出エラー
1E	交信伝送路エラー
1F	Yデータ、またはRWwデータ数エラー
20	Yデータ数エラー
21	RWwデータ数エラー

専用コマンドモニタ時、コマンドにエラーがあった場合、GP は自動的にRWr に上記のエラーコードをセットし、エラー状態フラグ(RX(m+n)A)をONにして表示器完了フラグ(RX(m+n)0)をON します。

8.7.1 トラブルシューティング

状態	GP画面上のエラー表示(左下)
正常通信中にPLCの電源を抜いた	上位通信エラー(02:14)
PLCとGP間のケーブルが正しく繋がっていない	上位通信エラー(02:14)
GPの背面ユニットが完全に外れている	上位通信エラー(02:15)
GPの背面ユニットが正しく装着されていない	上位通信エラー(02:15)
GPがパラメータに未設定	上位通信エラー(02:14)
ボーレート不一致	上位通信エラー(02:14)
局番が重複している	上位通信エラー(02:14)
ターミネータ(終端抵抗)が接続されていない	上位通信エラー(02:1A)点滅表示


DeviceNet Slave I/O

各社 PLC と GP[DeviceNet Slave I/0]とのシステム構成・使用可能デバイス・環境設定例を説明します。

9.1 接続可能な PLC 一覧

GP と接続可能な PLC の一覧を示します。

社名	シリーズ名	CPU	リンクI/F	特記事項	画面作画ソフト
					での「PLC」設定
Rockwell	SLC500	SLC-5/04	1747-SDN		
(Allen-Bradley)					DeviceNet Slave I/O
	PLC-5	PLC-5/20	1771-SDN		

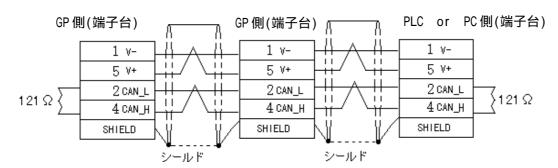
9.2 Rockwell (Allen-Bradley)

9.2.1 システム構成

PLC と GP を接続する場合のシステム構成を示します。

CPU	リンクI/F	結線図	ケーブル		GP
		-			
SLC-5/04	1747-SDN	<結線図1>	*1	DeviceNet ユニット	GP70シリーズ *2 (中型GPは除く)
PLC-5/20	1771-SDN	<結線図1>	*1	(GP070- DN41)	

*1 使用ケーブルは <9.2.2結線図>の「 DeviceNet専用ケーブル一覧」を参照してください。
*2 対応 GP シリーズは GP-470E、 GP-570T、 GP-570S、 GP-57JS、 GP-570VM、 GP-571T、 GP-675T、 GP-675S、 GP-870VM、 GP-477RE、 GP-577RT、 GP-577RS



- ・GP シリーズは、スレーブになります。
- ・Explicit メッセージ通信はサポートしていません。

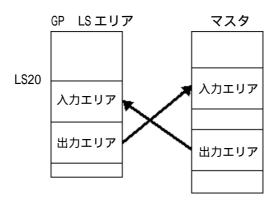
9.2.2 結線図

以下に示す結線図はDeviceNet Slave I/Oの推奨する結線図が異なる場合がありますが、本書の結線図にてご使用ください。

< 結線図1 >

DeviceNet専用ケーブル一覧

DeviceNet ケーブルは、以下のものを専用ケーブルとして使用してください。


- ・オムロン(株)製 太ケーブル、3線式(型式:形DCA2-3C10)
- ・オムロン (株) 製 細ケーブル、3線式(型式:形DCA1-3C10)
- ・Rockwell(Allen-Bradley)製 太ケーブル、5線式(型式:1485C-P1A50)
- ・Rockwell(Allen-Bradley)製 細ケーブル、5線式(型式:1485C-P1-C150)

上図のようにケーブル(5線式の場合)の配線を行ってから、本ユニットへ接続してください。

9.2.3 使用可能デバイス

GPでサポートしているデバイスの範囲を示します。通常のリンクタイプと異なり、DeviceNetでは、PLCのデバイスを任意にアクセスする仕組みがありません。

PLC側から見ると、GPシリーズは I/O ターミナル(リモート端子台) と同等の扱いになります。GP側ではホストとデータを受け渡しするデバイスとして GP内部の LS エリアを使用します。マスタの出力エリアがGPの入力エリアに、マスタの入力エリアがGPの出力エリアに割り付けられます。LS エリアには、入力エリアと出力エリアが連続します。(参照 以下の図)

設定内容	設定範囲	備考		
入力エリアサイズ(ワード)	0 ~ 127	書き込み不可		
出力エリアサイズ(ワード)	0 ~ 127	読み書き可		
1/0割り付け先頭アドレス	LS20 ~ LS1999			

- ・ 通信は、LS エリアのユーザエリア(LS20 から LS1999)のみを利用して行います。
- ・ システムエリア(LSO ~ LS19)および読み込みエリアの設定を利用して PLC との通信はできません。

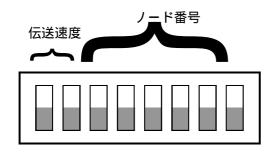
9.2.4 環境設定例

PLC 側の通信設定と、それに対応する GP 側の初期設定を示します。

通信の設定

SLC500の場合

	GP側の設定可能範囲			PLC側の設定可能範囲			
伝送速度(bps)	125k	250k	500k	125k 250k 500			
ノードアドレス	0 ~ 63			0 ~ 63			


PLC500の場合

	GP側の設定可能範囲			PLC側の設定可能範囲			
伝送速度(bps)	125k	250k	500k	125k 250k 500			
ノード番号	0 ~ 63			0 ~ 63			

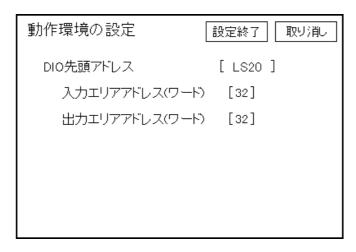
GP 側

< 伝送速度及びノード番号の設定 >

伝送速度及びノード番号の設定は、DeviceNet 拡張ユニット(型式: GP070-DN41)の背面ディップスイッチ(8連)で行います。従来のSIOの通信設定は、無効です。GPは63まで有効です。

伝送速度	DIP	DIP2		
125K	0	0		
250K	0	1		
500K	1	0		
Reserved	1	1		

ノード番号	D3	D4	D5	D6	D7	D8
0	0	0	0	0	0	0
1	0	0	0	0	0	1
2	0	0	0	0	1	0
:	•		:	:		
61	1	1	1	1	0	1
62	1	1	1	1	1	0
63	1	1	1	1	1	1


PLC 側

< 伝送速度及びノード番号の設定 >

PLC側の設定はRockwell(Allen-Bradley)製 DeviceNet用のソフトで設定してください。詳細はPLC側のマニュアルを参照ください。

入出力エリアの設定

GP側の入出力通信設定は、オフラインの「動作環境の設定」メニューで行ってください。 GP側の画面例 < 初期値 >

PLC 側

PLC側の設定はRockwell(Allen-Bradley)製 DeviceNet用のソフトで設定してください。詳細はPLC側のマニュアルを参照ください。

9.2.5 エラーコード表

以下にエラーコード一覧を示します。

各エラーコードは、(02:**)とGPの画面左下に表示されます。(**:はエラーコード)

DeviceNet ユニット特有のエラーコード

PLC の特有のエラーコードは、「上位通信エラー(02:**)」と GP の画面左下に表示されます。 (**:DeviceNet ユニット特有のエラーコード)

エラーコード	内容	要因				
14	ハードウェアからの応答がない	・ユニットが正常にささっていない ・ユニットが異常です				
16	通信異常が発生した	・通信の設定がおかしい ・通信ラインが異常である ・ノード番号が重なっている				

第 10 章 GP-H70 との接続

PLCとGP-H70とのシステム構成・結線図を説明します。

10-1 GP-H70 と接続するには

GP-H70用オプション

PLCとGP-H70を接続するには以下のオプションケーブル、ケーブル変換アダプタが使用できます。

オプション	内容
GP-H70 オプションケーブル [RS232Cタイプ] GPH70-C232-0 (3m) GPH70-C232-MS (10m)	本ケーブルはGP-H70への電源線と各種ホストへの通信線 (RS232C)およびGP-H70からのDOUT信号などが含まれています。ケーブルのPLC側はユーザーにおいて自由に配線できるように <u>コネクタは接続していません。</u>
GP-H70 オプションケーブル [RS422タイプ] GPH70-C422-0 (3m) GPH70-C422-MS (10m)	本ケーブルはGP-H70への電源線と各種ホストへの通信線 (RS422)およびGP-H70からのDOUT信号などが含まれています。 ケーブルのPLC側はユーザーにおいて自由に配線できるように コネクタは接続していません。
GP-H70 オプションケーブル [RS232Cタイプ] GPH70-D232 (3m) GPH70-D232-MS (10m)	本ケーブルはGP-H70への電源線と各種ホストへの通信線 (RS232C)およびGP-H70からのDOUT信号などが含まれています。ケーブルのPLC側は(DSUB25)ピンを接続しています。
GP-H70 オプションケーブル [RS422タイプ] GPH70-D422 (3m) GPH70-D422-MS (10m)	本ケーブルはGP-H70への電源線と各種ホストへの通信線 (RS422)およびGP-H70からのDOUT信号などが含まれています。 ケーブルのPLC側はDSUB25ピンを接続しています。
GP-H70 ケーブル変換アダプタ [RS232Cタイプ] (GPH70-AP232-0)	GP-H70の配線を端子台とDSUB25ピンに変換するアダプタです。DSUB25ピンには、GPシリーズのRS232Cケーブル(GP410-IS00-0)が接続可能です。またGPH70との接続には(GPH70-D232)が使用できます。
GP-H70 ケーブル変換アダプタ [RS422タイプ] (GPH70-AP422-0)	GP-H70の配線を端子台とDSUB25ピンに変換するアダプタです。GPH70との接続には(GPH70-D422)が使用できます。

結線方法

ケース

オプションケーブルは加工が必要です。本マニュアル「第2章 各PLCとGPの接続」には、GP-PLC 間の結線図が記載されていますが、GP-H70と他のGPシリーズとではI/Fの各ピンに割り付けられているコネクタピン番号が違いますので、以下のGP-H70とGPとのコネクタピン番号対応表(対応表1/対応表2)を参照していただき、GP-H70 PLC間のケーブルを加工してください。このケーブル以外にGP-H70に電源供給するためのケーブルも必要です。

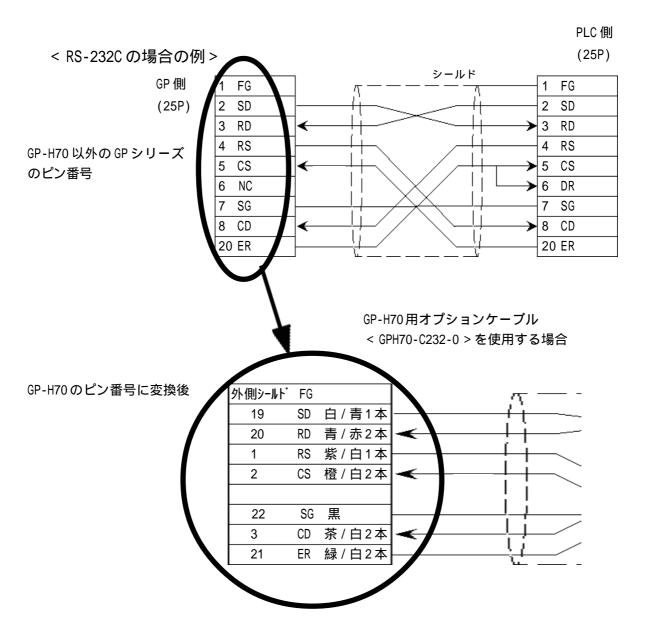
対応表1はケーブル < GPH70-C232-0 > を使用する場合、対応表2はケーブル < GPH70-C422-0 > を使用する場合の対応表です。

XJ/ICART OF THE OCCUPANT						
GP-H70側の ピン番号	信号名	電線色	マーク線の色	他のGPシリーズ のピン番号		
1	RS	紫	白1本	4		
2	CS	橙	白2本	5		
3	CD	茶	白2本	8		
19	SD	白	青1本	2		
20	RD	青	赤2本	3		
21	ER	緑	白2本	20		
00	00	H		_		

対応表1 GPH70-C232-0(RS-232C)

対応表2 GPH70-C422-0 (RS-422)

外部シールド

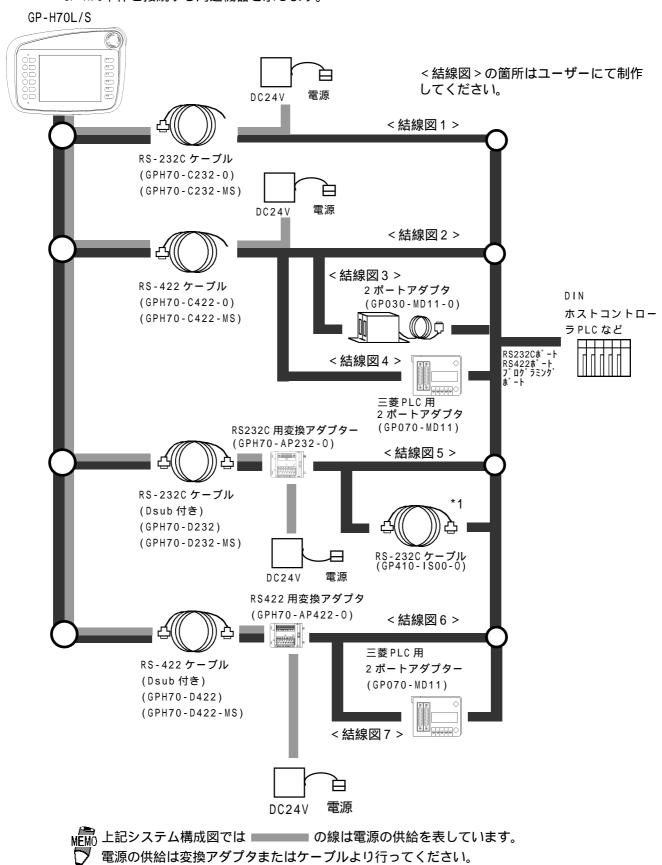

FG

GP-H70側の ピン番号	信号名	電線色 マーク線の色		他のGPシリーズ のピン番号
5	TRMX	桃		9
6	RDA	白		10
7	SDA	橙	白1本	11
8	CSA	茶	白1本	21
9	ERA	赤	白1本	22
24	RDB	青	赤1本	16
25	SDB	緑	白1本	15
26	CSB	灰	白1本	18
27	ERB	黒	白1本	19
22	SG	黒		7
ケース	FG	外部シールド		1

- ・ 22番(SG)は必ず接続相手のSG端子と接続してください。
- ・ オプションケーブルのPLC側を加工する場合は、以下の点に注意して ください。
 - < RS-422 接続時 >
 - ・26番(CSB)と27番(ERB)、8番(CSA)と9番(ERA)は、必ず短絡 させてください。
 - ・5番(TRMX)と6番(RDA)を接続することで、RDA-RDB 間に100 の終端抵抗が挿入されます。
 - ・メモリリンク方式でRS-422ケーブルを作成する場合は、必ず4 線式を選択してください。
 - < RS-232C 接続時 >
 - 5番(TRMX)、6番(RDA)、7番(SDA)、25番(SDB)、24番(RDB)、26番(CSB)、27番(ERB)、8番(CSA)、9番(ERA)のピンは使用しないでください。

以下に三菱電機(株)製 PLC (P2-1-8 < 結線図1 >)を接続する場合を例に、GP-H70以外のGPの信号名のピン番号からGP-H70のピン番号に変換する例を示します。

重 要


- ・使用しない線は、他の信号、コネクタケースに触れないようにしてください。
- ・ケーブルの外側のシールドは、必ずFGに接続してください。

・内部シールドは、22ピンのSGと同様に接続機器のシグナルグランドに接続してください。

10-2 システム構成図

GP-H70本体と接続する周辺機器を示します。

^{*1} このケーブルが使用できないPLCがありますので、ご注意ください。

10-3 結線図

10-2システム構成図に記載の機器間の結線図を示します。結線図はPLCとの接続に使用する 箇所のみ記載しています。

重要

- ・感電の恐れがありますので、必ず電源が供給されていない状態で接続してください。
- ・活線挿抜に関して、GP-H70と接続機器間に電位差が発生した場合はドライバ-ICが破損する可能性がありますので結線は電源が供給されていない状態で行ってください。
- ・GP-H70インターフェイス信号は、電源と同一ケーブルで外部機器へ配線しているため、電源ノイズの影響をうけることがあります。そのため、接続機器側がノイズに影響されないよう配慮してください。

< 結線図1 >

GPH70-C232-0 (3m) ・GP-H70 + または

とPLCを接続する場合

GPH70-C232-MS (10m)

GP-H70 以外の GP シ リーズのピン番号

				<i></i>	. ш ј		
GPH70	信号名	電線色	マーク線の色	DSUB25P			
ケース	FG	タトシールド	-	1	*1		
19	SD	白	青1本	2			
20	RD	青	赤2本	3			
1	RS	紫	白1本	4			
2	CS	橙	白2本	5			
	NC			6			
22	SG	黒	-	7	*2		
		内シール゛	-				
3	CD	茶	白2本	8			
	NC			9			
	NC			10			
	NC			11			
16	24V	青	-	12	*3		
17		緑	-				
18		灰	-				ご使用のPLC側
34	OV	橙	-	13	*4		_
35		茶	-		4	*5	
36		赤	-		1		→ וחחחחחו
	NC			14			
10	DOUT 1 C	桃	-	15			
28	DOUT 1 GND	紫	-	16			
14	EMG A	赤	白1本	17			
11	DOUT 0 C	白	-	18			
29	DOUT 0 GND	青	赤1本	19			
21	ER	緑	白2本	20			
12	OP.C	橙	白1本	21			
30	OP . GND	緑	白1本	22	ļ		
31	BUZ GND	灰	白1本	23			
32	EMG B	黒	白1本	24			
13	BUZ OUT	茶	白1本	25			

GP-H70

- *1 ケーブルの外側のシールドを1ピンに接続する。
- *2 ケーブルの内側のシールドと電線色の黒とを合わせて7ピンに接続する。
- *3 青、緑、灰の3本を合わせて12ピンに接続します。
- *4 橙、茶、赤の3本を合わせて13ピンに接続します。
- *5 第2章 各社 PLC と GP との接続に記載の結線を参照してください。

- ・上記の接続例はRS232C用変換アダプタには使用できません。
- ・RS232C用変換アダプタをご使用になる場合は、GP-H70 RS232C用変換アダプタ取扱説明書を参照してください。
- ・ 本ケーブルのPLC側はユーザーでの加工が必要です。ケーブルの線材はAWG28を使用しています。このため、使用されるコネクタはソルダーカップタイプ(半田付けタイプ)を使用してください。
- ・使用しない線は、他の信号、コネクタケースに触れないようにしてください。

<結線図2>

GPH70-C422-0 (3m)

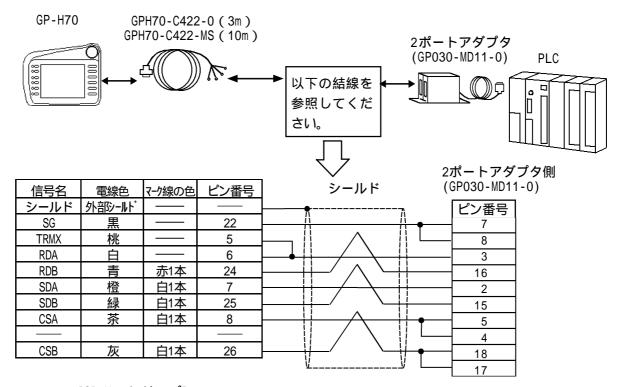
•GP-H70 +

または GPH70-C422-MS (10m) とPLCを接続する場合

GP-H70 以外の GP シ リーズのピン番号

				''	ー人のピノ	田与		
GPH70	信号名	電線色	マーク線の色		DSUB25P			
ケース	FG	シールト゛	-		1	*1		
10	DOUT 1 C	黄	黒1本		2			
28	DOUT 1 GND	桃	黒1本		3			
11	DOUT 0 C	紫	白1本		4			
29	DOUT O GND	白	青1本		5			
12	OP.C	青	赤2本		6			
22	SG	黒	-		7			
30	OP . GND	橙	白2本		8	<u> </u>		
5	TRMX	桃	-		9			
6	RDA	白	-		10			
7	SDA	橙	白1本		11	Ţ		
16	24V	桃	黒2本		12	*2		ずは田のいる側
17	-	白	青2本					ご使用のPLC側
18		橙	黒1本					
34	OV	紫	白2本		13	*3	*4	7777
35		青	黒1本			4	- -	▶
36		緑	黒1本			•	•	
	NC				14			
25	SDB	緑	白1本		15	<u> </u>		
24	RDB	青	赤1本		16	<u> </u>		
14	EMG A	灰	白2本		17			
26	CSB	灰	白1本		18			
27	ERB	黒	白1本		19			
	NC				20			
8	CSA	茶	白1本		21			
9	ERA	赤	白1本		22	ļ		
31	BUZ GND	茶	白2本		23	ļ		
32	EMG B	赤	白2本		24	ļ		
13	BUZ OUT	緑	白2本		25			

- *1 ケーブルの外側のシールドを1ピンに接続する。
- *2 桃(黒2本)、白(青2本)、橙(黒1本)の3本を合わせて12ピンに接続します。
- *3 紫(白2本)、青(黒1本)、緑(黒1本)を3本を合わせて13ビンに接続します。
- *4 **第2章 各社 PLC と GP との接続**に記載の結線を参照してください。



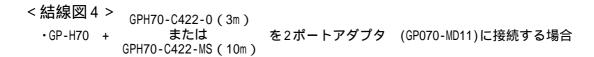
- ・上記の接続例はRS422用変換アダプタには使用できません。
- ・RS422用変換アダプタをご使用になる場合は、GP-H70 RS422用変換アダプタ取扱説明書を参照してください。
- ・本ケーブルのPLC側はユーザーでの加工が必要です。ケーブルの線材はAWG28を使用しています。このため、使用されるコネクタはソルダーカップタイプ(半田付けタイプ)を使用してください。
- ・使用しない線は、他の信号、コネクタケースに触れないようにしてください。

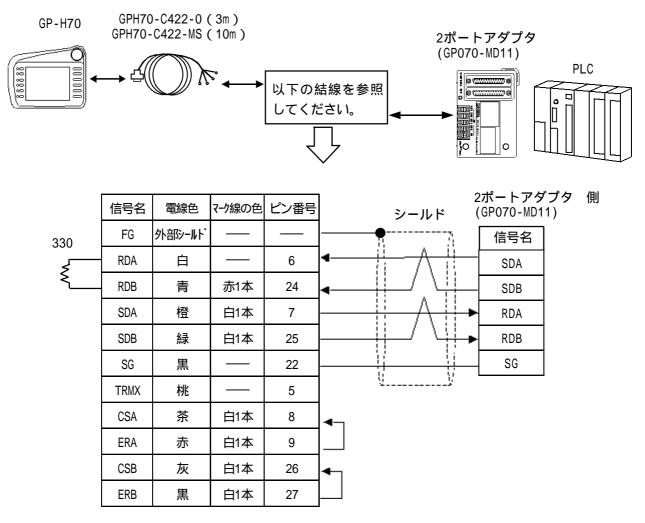
<結線図3 > GPH70-C422-0(3m)

・GP-H70 + または GPH70-C422-MS (10m)

を2ポートアダプタ(GP030-MD11-0)に接続する場合

[GP-H70シリーズ]

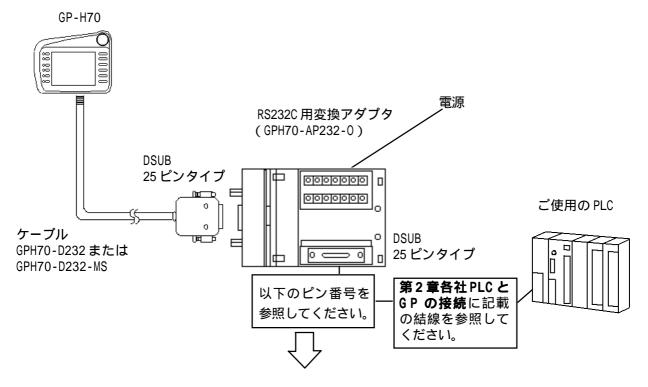

ピン番は、GP-H70本体側コネクタのピン番号を記載しています。


[2ポートアダプタ]

ピン番は、デジタル製2ポートアダプタ(GP030-MD11-0)側コネクタのピン番号を記載しています。

MEMO ・ 使用しない線は、他の信号、コネクタケースに触れないようにしてください。

[GP-H70シリーズ] ピン番は、GP-H70本体側コネクタのピン番号を記載しています。



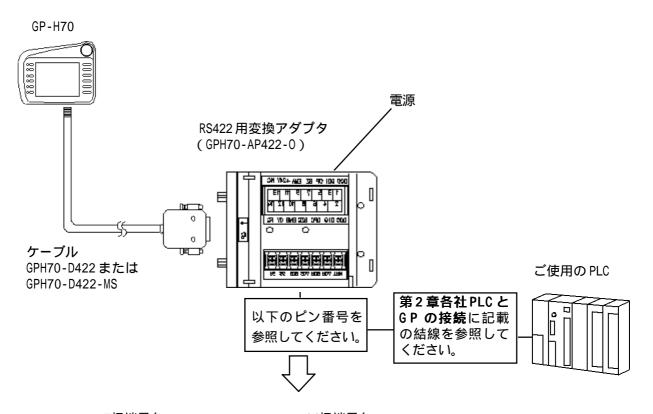
- ・終端抵抗はTRMXを使用せず、RDA・RDBの信号間に2ポートアダプタ に付属しています 330Ω の抵抗を接続してください。
- ・画面作成ソフトは GP-PRO/PB for Windows Ver.3.0 以降が必要です。(通信プロトコルは、V3.20 以降)
- ・オフラインメニューの設定で「アダプタ使用モード/直結専用モード」設定を "2PORT+GPH"に設定してください。
- ・使用しない線は、他の信号、コネクタケースに触れないようにしてください。

< 結線図5 >

GPH70-D232 (3m)

・GP-H70 + または + RS232C 用変換アダプタ (GPH70-AP232-0)を PLC と接続する場合 GPH70-D232-MS (10m)

Dsubコネクタ


ピン番号	信号名
1	FG
2	SD
3	RD
4	RS
5	CS
7	SG
8	CD
14	+5V(出力)
20	ER

14極端子台

ピン番号	信号名(表記名)		
1	DOUTO.C	(D00)	
2	DOUTO.GND	(DOG)	
3	DOUT1.C	(D01)	
4	DOUT1.GND	(D1G)	
5	OP.C	(OP)	
6	OP.GND	(OPG)	
7	BUZZ OUT	(BZ)	
8	BUZZ GND	(BZG)	
9	EMG A	(EMA)	
10	EMG B	(EMB)	
11	+24V(入力)	(+24V)	
12	0V	(OV)	
13	NC	(NC)	
14	FG	(FG)	

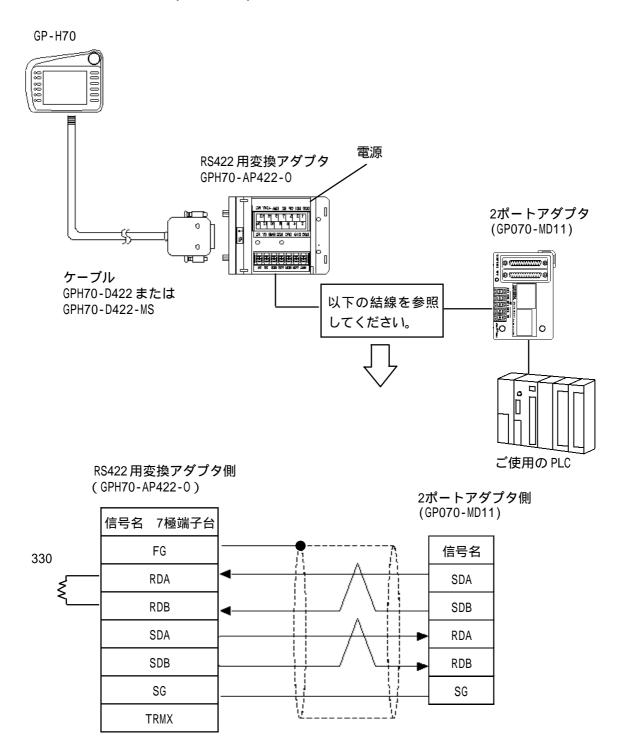
<結線図6>

GPH70-D422 (3m)
・GP-H70 + または +RS422 用変換アダプタ (GPH70-AP422-0)を PLC と接続する場合 GPH70-D422-MS (10m)

7極端子台

· 12/10 7 H				
ピン番号	信号名			
1	FG			
2	SG			
3	SDB			
4	SDA			
5	RDB			
6	RDA			
7	TRMX(TRM)*1			

*1 TRMXとRDAを接続することで、RDA-RDB間に100 の終端 抵抗が挿入されます。


14極端子台

ピン番号	信号名(表記名)		
1	DOUTO.C	(D00)	
2	DOUTO.GND	(DOG)	
3	DOUT1.C	(D01)	
4	DOUT1.GND	(D1G)	
5	OP.C	(OP)	
6	OP.GND	(OPG)	
7	BUZZ OUT	(BZ)	
8	BUZZ GND	(BZG)	
9	EMG A	(EMA)	
10	EMG B	(EMB)	
11	+24V(入力)	(+24V)	
12	0V	(OV)	
13	NC	(NC)	
14	FG	(FG)	

< 結線図7 >

GPH70-D422 (3m) •GP-H70 + + RS422 用変換アダプタ (GPH70-AP422-0) または GPH70-D422-MS (10m)

と2ポートアダプタ (GP070-MD11)をPLCと接続する場合

MEMO ・終端抵抗はTRMXを使用せず、RDA・RDBの信号間に2ポートアダプタ に付属してい ます330Ωの抵抗を接続してください。

付録 1

連続アドレスの最大データ数

連続アドレスの読み出し時の最大データ数を各PLCごとに示します。ブロック転送を利用される場合に、ご参照ください。

- ・ 以下の方法でデバイスを指定すると、デバイスの読み出しの 回数が増えるため、データ通信速度が低下します。
 - ・連続アドレス最大データ数の範囲を超えている場合
 - ・アドレスを分割して指定している場合
 - ・デバイスの種類が異なる場合

データ通信を高速に行うには、画面**単位でデバイスが連続になるようにタグのレイアウト設計を行ってください。

付1.1 各社 PLC の連続アドレスの最大データ数

三菱電機㈱製 PLC

< MELSEC-A シリーズ >

デバイス	連続アドレス 最大データ数	デバイス	連続アドレス 最大データ数
入力リレー X		データレジスタ D	
出力リレー Y		リンクレジスタ ₩	
内部リレー M		ファイルレジスタ R	640 - 1
保持リレー L		拡張ファイルレジスタ R	64ワード
リンクリレー B	32ワード	タイマ (現在値) TN	
タイマ (接点) TS		カウンタ(現在値) CN	
タイマ(コイル) TC			
カウンタ (接点) CS			
カウンタ (コイル) CC			

^{*1} アラーム、折れ線グラフの画面も含みます。

< MELSEC-FX シリーズ>

デバイス	連続アドレス 最大データ数
入力リレー X	
出力リレー Y	
内部リレー M	
ステート S	
タイマ (接点) TS	32ワード
カウンタ (接点) CC	
データレジスタ D	
タイマ (現在値) TN	
カウンタ (現在値) CN	

< MELSEC-F₂シリーズ>

	•
デバイス	連続アドレス 最大データ数
入力リレー	
出力リレー	
タイマ(接点)	
カウンタ(接点)	
補助リレー	
キープリレー	
ステート	8ワード
データレジスタ W	
タイマ (現在値) TC	
タイマ (現在値) TS	
カウンタ(現在値) CC	
カウンタ(現在値) CS	

< MELSEC-FX シリーズ > (リンク I/F 使用)

デバイス	連続アドレス 最大データ数
入力リレー	
出力リレー	
補助リレー	32ワード
ステート	
特殊補助リレー	
タイマ接点	
カウンタ接点	
タイマ現在値	
カウンタ現在値	64ワード
データレジスタ	
特殊データレジスタ	

< MELSEC-QnA シリーズ>

デバイス	連続アドレス 最大データ数	デバイス	連続アドレス 最大データ数
入力リレ ー X		積算タイマ(接点) SS	
出力リレー Y		積算タイマ(コイル)	
内部リレー M		カウンタ(接点) CS	
特殊リレー SM		カウンタ(コイル) CC	
ラッチリレー L		タイマ (現在値) TN	
アナンシェータ F	280ワード	積算タイマ(現在値)	280ワード
エッジリレー V		カウンタ(現在値) CN	200'J — F
ステップリレー S		データレジスタ D	
リンクリレー B		特殊レジスタ SD	
特殊リンクリレー SB		リンクレジスタ W	
タイマ(接点) TS		特殊リンクレジスタ SW	
タイマ(コイル) TC		ファイルレジスタ R	

CPU 直結の場合は全デバイス480 ワードです

オムロン(株)製 PLC

< SYSMAC Cシリーズ>

デバイス	連続アドレス 最大データ数	
入出力リレー	40U - F	
内部補助リレー	19ワード	
データリンクリレー LR	10ワード	
保持リレー HR	100	
補助記憶リレー AR	28ワード	
タイマ(接点) TIM	48ワード	
カウンタ(接点) CNT	400 1	
データメモリ DM	64ワード	
タイマ(現在値) TIM	48ワード	
カウンタ(現在値) CNT	40·7 — F	

< SYSMAC CV シリーズ>

デバイス	連続アドレス 最大データ数
入出力リレー	
内部補助リレー	
SYSMAC BUS/2 リモートI/0リレー	19ワード
データリンクリレー	197-1
保持リレー	
SYSBUS リモートI/Oリレー	
特殊補助リレー A	28ワード
タイマ (接点) T	48ワード
カウンタ (接点) C	40 7 — 11
データメモリ D	64ワード
タイマ (現在値) T	40 T _ L
カウンタ(現在値) C	48ワード

< SYSMAC CS1 シリーズ>

デバイス	連続アドレス読み出し 最大デバイス数
チャンネル1/0	
内部補助リレー	
保持リレー	
特殊補助リレー	
タイマ(接点)	255ワード
カウンタ(接点)	
タイマ(現在値)	
カウンタ(現在値)	
データメモリ	
拡張データメモリ (E0~EC)	
拡張データメモリ (カレントバンク)	
タスクフラグ	16ワード
インデックスレジスタ	32ワード
データレジスタ	16ワード

富士電機㈱製 PLC

< MICREX-Fシリーズ>

デバイス	連続アドレス 最大データ数	デバイス	連続アドレス 最大データ数
入出力リレー B		タイマ 0.1(現在値) W9	
補助リレー M		カウンタ(現在値) CR	
キープリレー K	48ワード	カウンタ(設定値) CS	24ワード
微分リレー D		データメモリ BD	
リンクリレー L		データメモリ DI	
タイマ (0.01秒) T		データメモリ SI	
タイマ (0.1秒) T	1ワード	ファイルメモリ(W30)	48ワード
カウンタ C		ファイルメモリ(W31)	407-1
直接入出力	48ワード	ファイルメモリ(W32)	
タイマ 0.01(現在値) TR	24ワード	ファイルメモリ(W33)	24ワード
タイマ 0.01(設定値) TS	24 J — 1·	ファイルメモリ(W34)	24 J — 1 ³

< FLEX_PC Nシリーズ>

デバイス	連続アドレス 最大データ数	デバイス	連続アドレス 最大データ数
入力リレー X		データレジスタ D	
出力リレー Y		特殊レジスタ D	
内部リレー M		リンクレジスタ ₩	
拡張内部リレー M	105ワード	ファイルレジスタ R	105 U — K
ラッチリレー L		タイマ (現在値) T	105ワード
拡張ラッチリレー L		タイマ (設定値) TS	
特殊リレー M		カウンタ (現在値) C	
タイマ T		カウンタ(設定値) CS	
カウンタ C			

㈱安川電機製 PLC

- < Memocon-SC シリーズ>
- < Memocon Microシリーズ>

デバイス	連続アドレス 最大データ数
コイル(出力/内部)	250ワード
入力リレー	250 7 F
リンクコイル D	128ワード
入力レジスタ	
出力/保持レジスタ	
リンクレジスタ R	125ワード
定数レジスタ	
拡張レジスタ	

< PROGIC-8シリーズ>

デバイス	連続アドレス 最大データ数
出力コイル 0	
入力リレー I	250ワード
内部コイル N	
リンクコイル D	128ワード
データレジスタ ₩	
入力レジスタ D	125ワード
リンクレジスタ R	

< Control Pack シリーズ>

デバイス	連続アドレス 最大データ数
入力レジスタ	
出力レジスタ	250ワード
システムレジスタ	
システムレジスタ	
データレジスタ	
共通レジスタ	125ワード
入力レジスタ	
出力レジスタ	

< MP900/CP-9200SH シリーズ>

デバイス	連続アドレスの 最大データ数
出力コイル	
入力リレー	125ワード
特殊保持レジスタ	
入力レジスタ	

< GL130 シリーズ >

デバイス	連続アドレス 最大データ数	デバイス	連続アドレス 最大データ数
コイル		リンクレジスタ 1.2	125ワード
入力リレー		MCリレー	
リンクコイル 1.2		MCコイル	
入力レジスタ	125ワード	CMコードリレー 1.2	16ワード
出力レジスタ		MCコントロールリレー 1.2	
特殊レジスタ		MCコントロールコイル 1.2	

㈱日立製作所製 PLC

デバイス	連続アドレス 最大データ数
リレー	
タイマ (接点) T	
カウンタ (接点) C	
タイマ・カウンタ(現在値) T	100ワード
タイマ・カウンタ(現在値) B	
レジスタ	
ファイルレジスタ (ファイル1)	

< HIDIC-S10 シリーズ> < HIDIC H(HIZAC H)シリーズ>

デバイス	連続アドレス 最大データ数
外部入力 X	
外部出力	
Y リモート入力リレー	
X リモート出力リレー	
Y 内部出力	
R 第1CPUリンク	
L 第2CPUリンク	
L データエリア	
M オンディレータイマ	
TD シングルショットタイマ	
SS	60ワード
ウォッチドッグタイマ WD	
WD モノステーブルタイマ MS	
MS 積算タイマ TMR	
TMR アップカウンタ	
CU リングカウンタ	
RCU アップダウンカウンタ	
CT ワード内部出力	
WR タイマ・カウンタ経過値	
TC ネットワークリンクエリア	
WN	

< HIZAC ECシリーズ>

	デバイス	連続アドレス最大データ数	
	7717	アドレス	垂直アドレス
ビ	外部入力 X		
ットデ	外部出力 Y	40.5	1ワード
バイ	内部出力 M	16ワード	
ス	タイマまたはカウンタ TC000~TC095		
ס-	外部入力 WX		
ードド	外部出力 WY		1ワード
ドデバイ	内部出力 WM	8ワード	
ス	タイマまたはカウンタ TC100~TC195 TC200~TC295		

シャープ㈱製 PLC

<ニューサテライトJWシリーズ>

デバイス	連続アドレス 最大データ数	デバイス	連続アドレス 最大データ数
入力リレー X		オンディレータイマ(設定値) TS	
出力リレー Y		オンディレータイマ(計数値) TC	
内部リレー R		ワンショットタイマ(設定値) US	
グローバルリンク G		ワンショットタイマ (計数値) UC	
イベント E	256□ _ 방	アップダウンカウンタ(設定値) CS	256ワード
キープリレー K	256ワード	アップダウンカウンタ(計数値) CC	
オンディレータイマ T		ワークレジスタ FW	
ワンショットタイマ U		データレジスタ DW	
アップダウンカウンタ C		拡張レジスタ MS	
Eワード EW			

松下電工(株)製 PLC

< MEWNET シリーズ >

デバイス	連続アドレス 最大データ数	デバイス	連続アドレス 最大データ数
入力リレー X		リンクレジスタ Ld	
出力リレー Y		データレジスタ DT	27ワード
内部リレー R	27ワード	ファイルレジスタ FL	
リンクリレー L		タイマ/カウンタ(設定値) SV	24ワード
特殊リレー R		タイマ/カウンタ(経過値) EV	24·7 – F
タイマ (接点) T	8ワード		
カウンタ (接点) C	۱ - ره		

横河電機(株)製 PLC

< FACTORY ACE シリーズ>

デバイス	連続アドレス 最大データ数	デバイス	連続アドレス 最大データ数
入力リレー X 出力リレー Y	1ワード	タイマ(現在値) TP タイマ(設定値) TS	
内部リレー	63ワード	カウンタ(現在値) CP	
共有リレー E	1ワード	カウンタ(設定値) CS	
タイマ (接点) T カウンタ (接点) C	16ワード	データレジスタ D コモンレジスタ B *1	63ワード
特殊リレー M リンクリレー L	63ワード	ファイルレジスタ <u>B *1</u> 特殊レジスタ Z	
		リンクレジスタ ₩	

*1 デバイスBはFA500の場合はコモンレジスタ、FA-M3の場合はファイルレジスタとなります。

豊田工機(株)製 PLC

< TOYOPUC-PC2 シリーズ>

デバイス	連続アドレス 最大データ数	デバイス	連続アドレス 最大データ数
入力リレー X		タイマ (接点) T	
出力リレー Y		カウンタ (接点) C	
内部リレー M	120 T _ F	データレジスタ D	420U — E
キープリレー K	128ワード -	リンクレジスタ R	128ワード
リンクリレー L		ファイルレジスタ B	
エッジ検出 P		現在値レジスタ N	

< TOYOPUC-PC3Jシリーズ>

	· ·
デバイス	連続アドレス最大データ数
入力(X)	
出力(Y)	
内部リレー(M)	
キープリレー(K)	
リンクリレー(L)	
特殊リレー(∀)	
エッジ検出(P)	
タイマ(T)	
カウンタ(C)	
データレジスタ(D)	
リンクレジスタ(R)	
特殊レジスタ(S)	
現在値レジスタ(N)	
ファイルレジスタ(B)	128ワード
拡張入力(EX)	
拡張出力(EY)	
拡張内蔵リレー(EM)	
拡張キープリレー(EK)	
拡張リンクリレー(EL)	
拡張特殊リレー(EV)	
拡張エッジリレー(EP)	
拡張タイマ(ET)	
拡張カウンタ(EC)	
拡張特殊レジスタ(ES)	
拡張現在値レジスタ(EN)	
拡張設定値レジスタ(H)	
拡張データレジスタ(U)	

㈱東芝製 PLC

< PROSEC EXシリーズ>

デバイス	連続アドレス 最大データ数
外部入力 X	
外部出力 Y	
補助リレー R	
リンクレジスタリレー Z	
タイマ (接点) T	32ワード
カウンタ (接点) C	
データレジスタ D	
タイマ (現在値) T	
カウンタ (現在値) C	

< PROSEC Tシリーズ>

デバイス	連続アドレス 最大データ数	デバイス	連続アドレス 最大データ数
外部入力1 X		タイマ (接点) T	
外部出力1 Y		カウンタ (接点) C	
外部入力2 I		データレジスタ D	
外部出力2 0	22日 1	リンクレジスタ ₩	32ワード
内部リレー R	32ワード -	ファイルレジスタ F	
特殊リレー S		タイマ (現在値) T	
リンクレジスタリレー Z		カウンタ (現在値) C	
リンクリレー L			

㈱東芝製 PLC、東芝機械㈱製 PLC

< PROVISOR Bシリーズ、PROVISOR TC200シリーズ>

デバイス	連続アドレス 最大データ数	デバイス	連続アドレス 最大データ数
入力リレー X		エッジリレー E	
出力リレー Y		タイマ (接点) T	
内部リレー M		カウンタ (接点) C	
拡張内部リレー1 G	16ワード -	汎用レジスタ1	16ワード
拡張内部リレー2 H		汎用レジスタ2	
特殊補助リレー A		タイマ/カウンタ (現在値)	
ラッチリレー L		タイマ/カウンタ (現在値)	
シフトレジスタ S			

光洋電子工業㈱製 PLC

< KOSTAC SG シリーズ>

<	KOSTAC	SU	シリ	ノーズ >

デバイス	連続アドレス 最大データ数	デバイス	連続アドレス 最大データ数		
入力リレー I		入カリレー I			
出力リレー Q		出カリレー Q			
内部リレー M		内部リレー M			
ステージ S		ステージ S			
全局伝送リレー(入力) Gl			全局伝送リレー(入力) GI	420 T _ F	
特定局伝送リレー(出力) GQ	128ワード	タイマ (接点) T	128ワード		
タイマ (接点) T		カウンタ (接点) C			
カウンタ (接点) C			データメモリ R		
データメモリ R					タイマ (経過値) R
タイマ (経過値) R		カウンタ(経過値) R			
カウンタ (経過値) R					

< KOSTAC SZシリーズ>

デバイス	連続アドレス 最大データ数
入力リレー I	
出力リレー Q	
内部リレー M	
タイマ (接点) T	
カウンタ (接点) C	128ワード
データメモリ R	
ステージ S	
タイマ (経過値) R	
カウンタ (経過値) R	

< KOSTAC SR シリーズ>

デバイス	連続アドレス 最大データ数
入力・出力	
内部リレー	
タイマ・カウンタ (接点) R	128ワード
タイマ・カウンタ (経過値) R	
データレジスタ R	

GE Fanuc Automation製PLC

< SNP-X プロトコル>

デバイス	連続アドレス 最大データ数
入力リレー I	
出力リレー Q	
内部リレー M	
グローバルリレー G	
一時リレー T	
システム状態リレー SA	128ワード
システム状態リレー SB	
システム状態リレー SC	
レジスタ R	
アナログ入力 Al	
アナログ出力 AQ	

ファナック(株)製

モーションコントローラ

< FANUC Power Mateシリーズ>

デバイス	連続アドレス 最大データ数
入力リレー X	
出力リレー Y	
内部リレー	
キープリレー K	
データテーブル D	128ワード
タイマ T	
カウンタ C	

Siemems 製 PLC

< SIMATIC S5シリーズ>

デバイス	連続アドレス 最大データ数
入力リレー I	
出力リレー Q	
内部リレー F	
タイマ T	64ワード
カウンタ C	
データレジスタ D	
拡張データレジスタ X	

<SIMATIC S7-200シリーズ(PPI)>

デバイス	連続アドレス 最大データ数
入力	
出力	
内部メモリ	25ワード
特殊メモリ	
変数メモリ	
タイマワード	10ワード
カウンタワード	10 7 — 1

<SIMATIC S7-300/400シリーズ(MPI)> <SIMATIC S7-300/400シリーズ(3964/RK512)>

デバイス	連続アドレス 最大データ数
入力	
出力	64ワード
内部	04·7 — F
データブロック	

デバイス	連続アドレス 最大データ数
データブロック	64ワード

和泉電気㈱製 PLC

< FA シリーズ>

デバイス	連続アドレス 最大データ数
入力リレー XW	
出力リレー YW	
内部リレー MW	
シフトレジスタ RW	
データレジスタ D	
コントロールレジスタ D	100ワード
タイマ (設定値) TS	
タイマ (現在値) T	
タイマ 10msec(現在値) H	
カウンタ (設定値) CS	
カウンタ(現在値) C	

< MICRO³ >

デバイス	連続アドレス 最大データ数
入力リレー X	20 - 5
出力リレー Y	2ワード
内部リレー M	13ワード
シフトレジスタ R	4ワード
タイマ (設定値) T	
タイマ (計数値) t	32ワード
カウンタ (設定値) C	32) — [1
カウンタ (計数値) c	
データレジスタ D	100ワード

Allen Bradley製PLC

< AB SLC500シリーズ>

デバイス	連続アドレス 最大データ数
ビット B	
タイマ TP/TA	
カウンタ CP/CA	118ワード
タイマ TT/TN	110.7 - 1
カウンタ CU/CD/CN	
整数 N	

< AB PLC-5シリーズ>

デバイス	連続アドレス 最大データ数
入力リレー I	
出力リレー 0	64ワード
内部リレー B	64·7 — F
データレジスタ N/D/A	
タイマ TP/TA	
カウンタ CP/CA	40ワード
タイマ TT/TN	40 J — 1 ³
カウンタ CU/CD	

(株)キーエンス製 PLC

< KZ-A500 シリーズ>

デバイス	連続アドレス 最大データ数
入力リレー X	32ワード
出力リレー Y	
内部リレー M	
ラッチリレー L	
リンクリレー B	
アナンシェータリレー F	
特殊リレー M9	
タイマ(接点)TS	
タイマ(コイル) TC	16ワード
カウンタ(接点) CS	
カウンタ(コイル) CC	
タイマ(現在値) TN	
カウンタ(現在値) CN	
データレジスタ D	64ワード
リンクレジスタ W	
ファイルレジスタ R	
特殊レジスタ D9	

< KZ-300/KZ-350 シリーズ>

デバイス	連続アドレス 最大データ数	
入力リレー		
出力リレー		
補助リレー	19ワード	
内部補助リレー		
特殊補助リレー		
タイマ T	40 T _ L	
カウンタ C	48ワード	
データメモリ DM	64ワード	
テンポラリ データメモリ TM	10フード	

(株)神鋼電機製 PLC

< SELMART シリーズ >

デバイス	連続アドレス 最大データ数
データレジスタ	64ワード

松下電器産業製 PLC

< Panadac P7000シリーズ>

デバイス	連続アドレス 最大データ数	デバイス	連続アドレス 最大データ数
入出力リレー		データメモリ	
内部リレー		リンクレジスタ	58ワード
リンクリレー		タイマ (設定値)	50.7 - 1
ステータスリレー	50.	タイマ (現在地)	
MCステータスリレー	58ワード	カウンタ値	20 🗆 🗠
タイマステートリレー		位置データ	29ワード
タイマアップリレー		CPU入力リレー	F0 - 1°
		CPU出力リレー	58ワード

オリムベクスタ (株)製PLC

< E1 シリーズ >

デバイス	連続アドレスの最大データ数
1	
IU	
ID	
0	
M	
R	
RD	
В	64ワード
MS	
SY	
AD	
DA	
SL	
SH	
SR	
SD	
MP	

山武 SDC シリーズ

デバイス	連続アドレス 最大データ数
データ	5ワード

______ --JPCN-1 による接続 - -

日立製作所製 PLC

< HIDIC-S10 シリーズ>

デバイス	連続アドレスの最大データ数
入力リレー	
出力リレー	
内部リレー	
グローバルリンク	
Eワード	
イベント	
キープリレー	
オンディレータイマ(計数値)	119ワード
オンディレータイマ(設定値)	
ワンショットタイマ(計数値)	
ワンショットタイマ(設定値)	
アップダウンカウンタ(計数値)	
アップダウンカウンタ(設定値)	
データレジスタ	
ワードレジスタ	
拡張レジスタ	

--JPCN-1 による接続 --

三菱電機製 PLC

< MELSEC-A シリーズ >

デバイス	連続アドレスの最大データ数
入力リレー	
出力リレー	
内部リレー	
特殊リレー	
アナンシェータ	
保持リレー	
リンクリレー	
タイマ(接点)	
タイマ(コイル)	60ワード
カウンタ(接点)	
カウンタ(コイル)	
タイマ(現在値)	
カウンタ(現在値)	
データレジスタ	
リンクレジスタ	
ファイルレジスタ	

-- イーサネットによる接続 --

三菱電機製 PLC

< MELSEC-A シリーズ>

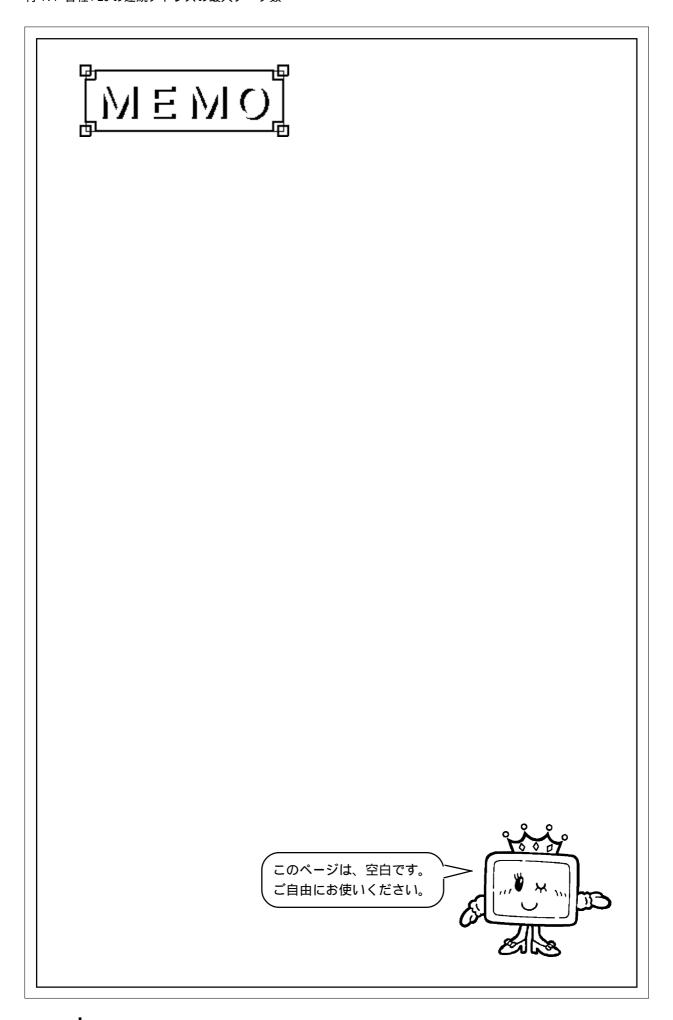
デバイス	連続アドレス 最大データ数
入力リレー	42/(/ / 20
出力リレー]
保持リレー	
特殊リレー	
アナンシェータ	128ワード
リンクリレー	1
タイマ(接点)	
タイマ(コイル)	
カウンタ(接点)	
カウンタ(コイル)	
タイマ(現在値)	
カウンタ(現在値)	
データレジスタ	258ワード
特殊レジスタ	
リンクレジスタ]
ファイルレジスタ	

東芝製 PLC

< PROSEC Tシリーズ>

デバイス	最大アドレス 最大データ数	
外部入力デバイス		
外部出力デバイス		
補助リレー		
特殊リレー	248ビット	
リンクレジスタリレー	240 ビット	
リンクリレー		
タイマ (接点)		
カウンタ(接点)		
タイマ (現在値)		
カウンタ (現在値)	248ワード	
データレジスタ		
リンクレジスタ		
ファイルレジスタ		

横河電機(株)製PLC


< FACTORY ACE シリーズ>

デバイス	最大アドレス 最大データ数	
入力リレー	1ワード	
出力リレー	ין – פיז	
内部リレー	64ワード	
共有リレー	1ワード	
特殊リレー	0.45	
リンクリレー	64ワード	
タイマ (接点)	16ワード	
カウンタ(接点)	107-1	
タイマ (現在値)		
カウンタ (現在値)		
タイマ (設定値)	64ワード	
カウンタ (設定値)		
データレジスタ		
ファイルレジスタ		
共有レジスタ		
特殊レジスタ		
リンクレジスタ		

--DeviceNet による接続 --

Rockwell(Allen-Bradley)製PLC

デバイス	連続アドレスの最大データ数	
LS	127ワード	

付録 2 デバイスコードとアドレスコード

デバイスコードとアドレスコードは、EタグまたはKタグの間接アドレス指定時に使用します。 EタグまたはKタグで指定したワードアドレスに、表示するデータのワードアドレスをコード化 して格納します。(コードの格納は、PLC側またはTタグ、Kタグなどで行います)

例) 三菱電機(株)製 MELSEC-Aシリース・

GP-PRO/PB でEタグの「ワードアドレス」を「D0000」に設定している場合、内部リレー M0016のデータを GP で表示するには、次のように格納します。

D0000 9000 デバイスコード D0001 0001 アドレスコード

M0016 のデバイスコードは「9000」、アドレスコードは「0001」(0016 ÷ 16)です。

付 2.1 各社 PLC のデバイスコードとアドレスコード

各PLCのコード表を示します。「LSエリア」はGP内部にあるデバイスです。 ×はEタグ、Kタグ間接アドレス指定には使用できません。

三菱電機㈱製 PLC

< MELSEC-A シリーズ > (AnA/AnU/A2US/A2USH-S1)

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
ビ	入力リレー	X0000 ~	8000	ワードアドレスの下一桁の 「0」を除いた値
ット	出力リレー	Y0000 ~	8800	ワードアドレスの下一桁の 「0」を除いた値
デ	内部リレー	M0000 ~	9000	ワードアドレス÷16の値
バイ	特殊リレー	M9000 ~	B000	(ワードアドレス - 9000)÷ 16の値
ス	アナンシェータ	F0000 ~	B800	ワードアドレス÷16の値
ヮ	タイマ (現在値)	TN0000 ~	6000	ワードアドレス
	カウンタ(現在値)	CN0000 ~	7000	ワードアドレス
۲	データレジスタ	D0000 ~	0000	ワードアドレス
デ	特殊レジスタ	D9000 ~	0000	ワードアドレス
バ	リンクレジスタ	W0000 ~	4800	ワードアドレス
イス	ファイルレジスタ	R0000 ~	5800	ワードアドレス
	LSエリア	LS0000 ~	4000	ワードアドレス

< MELSEC-A \gt \lor \lor \lor \lor \lor (AnN/A2C/A1S/A3H/A0J2/A1SJ/A2SH/A1SH/A2CJ-S3)

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
ビ	入力リレー	X0000 ~	8000	ワードアドレスの下一桁の 「0」を除いた値
りト	出力リレー	Y0000 ~	8800	ワードアドレスの下一桁の 「0」を除いた値
デ	内部リレー	M0000 ~	9000	ワードアドレス÷16の値
バイ	特殊リレー	M9000 ~	B000	(ワードアドレス - 9000) ÷ 16の値
ス	アナンシェータ	F000 ~	B800	ワードアドレス÷16の値
ワ	タイマ(現在値)	TN000 ~	6000	ワードアドレス
	カウンタ (現在値)	CN000 ~	7000	ワードアドレス
ドデ	データレジスタ	D0000 ~	0000	ワードアドレス
バ	リンクレジスタ	W0000 ~	4800	ワードアドレス
1	ファイルレジスタ	R0000 ~	5800	ワードアドレス
ス	LSエリア	LS0000 ~	4000	ワードアドレス

< MELSEC-F₂シリーズ>

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
	タイマ(現在値)	TC050 ~ TC450 ~ TC550 ~ TC650 ~	×	×
ワー	タイマ(設定値)	TS050 ~ TS450 ~ TS550 ~ TS650 ~	×	×
ドデバ	カウンタ(現在値)	CC060 ~ CC460 ~ CC560 ~ CC660 ~	×	×
イス	カウンタ(設定値)	CS060 ~ CS460 ~ CS560 ~ CS660 ~	×	×
	データレジスタ	DW700 ~	0000	ワードアドレス - 700の値
	LSエリア	LS0000 ~	4000	ワードアドレス

< MELSEC-FX シリーズ > (FX₀)

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
ビッ	入力リレー	X000	8000	ワードアドレス
F	出力リレー	Y000	8800	ワードアドレス
デバ	内部リレー	M000 ~	9000	ワードアドレス÷16の値
イス	ステート	S000 ~	9800	ワードアドレス÷16の値
ワー	タイマ (現在値)	TN000 ~	6000	ワードアドレス
ドデ	カウンタ (現在値)	CN000 ~	7000	ワードアドレス
バ	データレジスタ	D000 ~	0000	ワードアドレス
イス	LSエリア	LS0000 ~	4000	ワードアドレス

$< MELSEC-FX > U - X > (FX_1/FX_2/FX_{2N}/FX_{0N})$

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
ビッ	入力リレー	X000 ~	8000	ワードアドレスの下一桁の 「0」を除いた値
トデバ	出力リレー	Y000 ~	8800	ワードアドレスの下一桁の 「0」を除いた値
1	内部リレー	M0000 ~	9000	ワードアドレス÷16の値
ス	ステート	S000 ~	9800	ワードアドレス÷16の値
ワー	タイマ (現在値)	TN000 ~	6000	ワードアドレス
ドゴ	カウンタ(現在値)	CN000 ~	7000	ワードアドレス
デババ	データレジスタ	D000 ~	0000	ワードアドレス
イス	LSエリア	LS0000 ~	4000	ワードアドレス

< MELSEC-QnA シリーズ>

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
	入力リレー	X0000 ~	8000	ワードアドレスの下一桁の 「0」を除いた値
	出力リレー	Y0000 ~	8800	ワードアドレスの下一桁の 「0」を除いた値
	内部リレー	M00000 ~	9000	ワードアドレス÷16の値
ビ	特殊リレー	SM0000 ~	B000	ワードアドレス÷16の値
ツ	ラッチリレー	L00000 ~	C000	ワードアドレス÷16の値
トデ	アナンシェータ	F00000 ~	B800	ワードアドレス÷16の値
バ	エッジリレー	V0000 ~	9800	ワードアドレス÷16の値
1	ステップリレー	S0000 ~	A800	ワードアドレス÷16の値
ス	リンクリレー	B0000 ~	C800	ワードアドレスの下一桁の 「0」を除いた値
	特殊リンクリレー	SB000 ~	A000	ワードアドレスの下一桁の 「0」を除いた値
	タイマ (現在値)	TN00000 ~	6000	ワードアドレス
	積算タイマ (現在値)	SN00000 ~	5000	ワードアドレス
	カウンタ (現在値)	CN00000 ~	7000	ワードアドレス
ヮ	データレジスタ	D00000 ~	0000	ワードアドレス
1	特殊レジスタ	SD0000 ~	6800	ワードアドレス
ドデ	リンクレジスタ	W0000 ~	4800	ワードアドレス
」 ア	特殊リンクレジスタ	SW000 ~	7800	ワードアドレス
1	ファイルレジスタ (通常)	R00000 ~	5800	ワードアドレス
ス	ファイルレジスタ	0R0000 ~	0600	ワードアドレス
	(連番)	1R0000 ~	0800	ワードアドレス
	LSエリア	LS0000 ~	4000	ワードアドレス

オムロン(株)製 PLC

< SYSMAC Cシリーズ>

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
ビッ	入力リレー 内部補助リレー	000 ~	9100	ワードアドレス
۲	アナログ設定値格納エリア	220 ~	9100	ワードアドレス
デ	データリンクリレー	LR00 ~	C900	ワードアドレス
バ	特殊補助リレー	244 ~	9100	ワードアドレス
イス	補助記憶リレー	AR00 ~	B000	ワードアドレス
	保持リレー	HR00 ~	C100	ワードアドレス
ワー	タイマ (現在値)	T1M000 ~	6000	ワードアドレス
ドゴ	カウンタ(現在値)	CNT000 ~	7000	ワードアドレス
デバ	データメモリ	DM0000 ~	0000	ワードアドレス
イス	LSエリア	LS0000 ~	4000	ワードアドレス

< SYSMAC- シリーズ>

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
	入出力リレー	000 ~	9100	ワードアドレス
ビ	入出力リレー	300 ~	9100	ワードアドレス
リツ	内部補助リレー	030 ~	9100	ワードアドレス
۲	内部補助リレー	310 ~	9100	ワードアドレス
デ	特殊補助リレー	236 ~	9100	ワードアドレス
バ	特殊補助リレー	256 ~	9100	ワードアドレス
イス	保持リレー	HR00 ~	C100	ワードアドレス
	補助記憶リレー	AR00 ~	B000	ワードアドレス
	リンクリレー	LR00 ~	C900	ワードアドレス
ワー	タイマ (現在値)	T1M000 ~	6000	ワードアドレス
ードーデ	カウンタ(現在値)	CNT000 ~	7000	ワードアドレス
バ	データメモリ	DM0000 ~	0000	ワードアドレス
イス	LSエリア	LS0000 ~	4000	ワードアドレス

< SYSMAC CV シリーズ>

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
	入力リレー 内部補助リレー	000 ~	9100	ワードアドレス
ビッ	SYSMAC BUS/2 リモートI/Oリレー	0200 ~	9100	ワードアドレス
-	データリンクリレー	1000 ~	9100	ワードアドレス
デ	特殊補助リレー	A000 ~	B000	ワードアドレス
バ	保持リレー	1200 ~	9100	ワードアドレス
イフ	内部補助リレー	1900 ~	9100	ワードアドレス
ス	SYSMAC BUS/2 リモートI/0リレー	2300 ~	9100	ワードアドレス
ワー	タイマ (現在値)	T0000 ~	6000	ワードアドレス
- ド デ	カウンタ(現在値)	C0000 ~	7000	ワードアドレス
バ	データメモリ	D0000 ~	0000	ワードアドレス
イス	LSエリア	LS0000 ~	4000	ワードアドレス

< SYSMAC CS1シリーズ>

デバイス	ワードアドレス	デバイスアドレス	備考
チャンネル1/0	000000 ~	9000	ワードアドレス
内部補助リレー	W00000 ~	8200	ワードアドレス
保持リレー	H00000 ~	C000	ワードアドレス
特殊補助リレー	A00000 ~	B000	ワードアドレス
タイマ(現在値)	T0000 ~	6000	ワードアドレス
カウンタ(現在値)	C0000 ~	7000	ワードアドレス
データメモリ	D0000 ~	0000	ワードアドレス
拡張データメモリ (EO~EC)	E000000 ~	9200	ワードアドレス
	E100000 ~	9400	ワードアドレス
	E200000 ~	9600	ワードアドレス
	E300000 ~	9800	ワードアドレス
	E400000 ~	9A00	ワードアドレス
	E500000 ~	9000	ワードアドレス
	E600000 ~	9E00	ワードアドレス
	E700000 ~	A000	ワードアドレス
	E800000 ~	A200	ワードアドレス
	E900000 ~	A400	ワードアドレス
	EA00000 ~	A600	ワードアドレス
	EB00000 ~	A800	ワードアドレス
	EC00000 ~	AA00	ワードアドレス
拡張データメモリ (カレントバンク)	EM00000 ~	1000	ワードアドレス
タスクフラグ	TKO~	5000	ワードアドレス÷2
インデックスレジスタ	IRO~	2000	ワードアドレス
データレジスタ	DRO ~	3000	ワードアドレス
LSエリア	LS0000 ~	4000	ワードアドレス

富士電機㈱製 PLC

< MICREX-Fシリーズ>

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
	入力リレー	WB0000 ~	8040	ワードアドレス
ビ	直接入出力	W24.0000 ~	4840	ワードアドレス
ッ	補助リレー	WM0000 ~	9040	ワードアドレス
トデ	キープリレー	WK000 ~	C040	ワードアドレス
」 ア	微分リレー	WD000 ~	D040	ワードアドレス
1	リンクリレー	WL000 ~	C840	ワードアドレス
ス	特殊リレー	WF0000 ~	B040	ワードアドレス
	アナウンスリレー	WA0000 ~	B840	ワードアドレス
	タイマ0.01秒 (現在値)	TR0000 ~	6080	ワードアドレス
	タイマ0.01秒 (設定値)	TS0000 ~	6880	ワードアドレス
	タイマ0.1秒 (現在値)	W9.000 ~	6480	ワードアドレス
ヮ	カウンタ (現在値)	CR0000 ~	7080	ワードアドレス
	カウンタ (設定値)	CS0000 ~	7880	ワードアドレス
ドー	データメモリ	BD0000 ~	0080	ワードアドレス
デバ		D10000 ~	0880	ワードアドレス
1		\$10000 ~	0440	ワードアドレス
ス	ファイルメモリ	W30.0000 ~	2040	ワードアドレス
		W31.0000 ~	2240	ワードアドレス
		W32.0000 ~	2440	ワードアドレス
		W33.0000~	2680	ワードアドレス
		W34.0000 ~	2880	ワードアドレス
	LSエリア	LS0000 ~	4040	ワードアドレス

< FLEX-PC シリーズ>

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
Ľ	入力リレー	WX000 ~	8040	ワードアドレス
ッ	出力リレー	WY000 ~	8840	ワードアドレス
۲	内部リレー	WM000 ~	9040	ワードアドレス
デ	拡張内部リレー	WM040 ~	9840	ワードアドレス
バ	ラッチリレー	WL000 ~	C040	ワードアドレス
イス	拡張ラッチリレー	WL040 ~	C840	ワードアドレス
	特殊リレー	WM800 ~	×	×
	タイマ (現在値)	T0000 ~	6000	ワードアドレス
	タイマ (設定値)	TS0000 ~	6800	ワードアドレス
ワー	カウンタ(現在値)	C0000 ~	7000	ワードアドレス
	カウンタ (設定値)	CS0000 ~	7800	ワードアドレス
デ	データレジスタ	D0000 ~	0040	ワードアドレス
バ	特殊レジスタ	D8000 ~	×	×
イ_	リンクレジスタ	W0000 ~	0440	ワードアドレス
ス	ファイルレジスタ	R0000 ~	4840	ワードアドレス
	LSエリア	LS0000 ~	4040	ワードアドレス

㈱安川電機製 PLC

< Memocon-SC > U - \vec{x} > (U84/84J/U84S/GL40S/GL60H/GL70H/GL60S)

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
	入力レジスタ	30001 ~	1240	ワードアドレス - 30001の値
ワー	出力/保持レジスタ	40001 ~	0040	ワードアドレス - 40001の値
ドデ	リンクレジスタ	R0001 ~	4840	ワードアドレス - 1の値
バイス	定数レジスタ	31001 ~	1440	ワードアドレス - 31001の値
	拡張レジスタ	A0000 ~	1040	ワードアドレス
	LSエリア	LS0000 ~	4040	ワードアドレス

< Memocon-SC シリーズ > (GL120/GL130)

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
	入力レジスタ	300001 ~	1240	ワードアドレス - 300001の 値
ワ ド	出力レジスタ	400001 ~	0040	ワードアドレス - 400001の 値
デバイ	保持レジスタ	400513 ~	0040	ワードアドレス - 400001の 値
Ż	定数レジスタ	700001 ~	×	×
	LSエリア	LS0000 ~	4040	ワードアドレス

< PROGIC-8シリーズ>

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
ワ	データレジスタ	W1 ~	0040	ワードアドレス - 1の値
ドデ	入力レジスタ	Z1 ~	1240	ワードアドレス - 1の値
バイ	リンクレジスタ	R1 ~	4840	ワードアドレス - 1の値
ż	LSエリア	LS0000 ~	4040	ワードアドレス

< Control Pack/MP900シリーズ>

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
	入力レジスタ	49744 ~	0040	ワードアドレス - 40001の値
ワ	出力レジスタ	49872 ~	0040	ワードアドレス - 40001の値
 	システムレジスタ	30001 ~	1240	ワードアドレス - 30001の値
デバ	データレジスタ	31001~ (CP-9200Hのみ)	1440	ワードアドレス - 31001の値
イス		40001 ~	0040	ワードアドレス - 40001の値
	共通レジスタ	42049 ~	0040	ワードアドレス - 40001の値
	LSエリア	LS0000 ~	4040	ワードアドレス

< Memocon Micro >

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
ワード	入力レジスタ	30001 ~	1240	ワードアドレス - 30001の値
-デバイ	出力/保持レジスタ	40001 ~	0040	ワードアドレス - 40001の値
ス	LSエリア	LS0000 ~	4040	ワードアドレス

㈱日立製作所製 PLC

< HIDIC S10 シリーズ>

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
	入力リレー	XW000 ~	8040	ワードアドレスの下一桁の 「0」を除いた値
	出力リレー	YW000 ~	8840	ワードアドレスの下一桁の 「0」を除いた値
	内部リレー	RW000 ~	9040	ワードアドレスの下一桁の 「0」を除いた値
ビッ	グローバルリンク	GW000 ~	C840	ワードアドレスの下一桁の 「0」を除いた値
トデ	システムレジスタ	SW000 ~	B040	ワードアドレスの下一桁の 「0」を除いた値
バ	Eワード	EW400 ~	×	×
イス	イベント	EW000 ~	A040	ワードアドレスの下一桁の 「0」を除いた値
	キープリレー	K0000 ~	C040	ワードアドレスの下一桁の 「0」を除いた値
	オンディレータイマ	TW000 ~	E040	ワードアドレスの下一桁の 「0」を除いた値
	ワンショットタイマ	UW000 ~	E240	ワードアドレスの下一桁の 「0」を除いた値
	アップダウンカウンタ	CW000 ~	F040	ワードアドレスの下一桁の 「0」を除いた値
	オンディレータイマ (計数値)	TC000 ~	6000	ワードアドレス
	オンディレータイマ (設定値)	TS000 ~	6800	ワードアドレス
ワ	ワンショットタイマ (計数値)	UC000 ~	6200	ワードアドレス
 - +	ワンショットタイマ (設定値)	U\$000 ~	6A00	ワードアドレス
- デ バ	アップダウンカウンタ (計数値)	CC000 ~	7000	ワードアドレス
1	アップダウンカウンタ (設定値)	C\$000 ~	7800	ワードアドレス
ス	データレジスタ	DW000 ~	0040	ワードアドレス
	ワークレジスタ	FW000 ~	0840	ワードアドレス
	拡張レジスタ	MS000 ~	3040	ワードアドレス
	LSエリア	LS0000 ~	4040	ワードアドレス

< HIDIC H (HIZAC H)シリーズ>

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
	外部入力	WX0000 ~	×	×
ビ	外部出力	WY0000 ~	×	×
ット	リモート入力リレー	WX1000 ~	×	×
デ	リモート出力リレー	WY1000 ~	×	×
バイ	第1CPUリンク	WL000 ~	C800	ワードアドレス
ス	第2CPUリンク	WL1000 ~	C800	ワードアドレス
	データエリア	WM000 ~	9000	ワードアドレス
ワ 	タイマ・カウンタ (経過値)	TC000 ~	6000	ワードアドレス
ドデ	ワード内部出力	WR0000 ~	0000	ワードアドレス
バ	ネットワークリンクエリア	WN0000 ~	5000	ワードアドレス
イス	LSエリア	LS0000 ~	4000	ワードアドレス

<HIZAC ECシリーズ>

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
	外部入力	WX000 ~		
		WX020 ~		
		WX040 ~		
		WX060 ~		
		WX080 ~	0040	
		WX100 ~	8240	ワードアドレス
		WX120 ~		
		WX140 ~		
		WX160 ~		
		WX180 ~		
	外部出力	WY200 ~		ワードアドレス - 200の値
		WY220 ~		
ビッ		WY240 ~		
		WY260 ~		
デ		WY280 ~	0.4.40	
バ		WY300 ~	8A40	
1		WY320 ~		
ス		WY340 ~		
		WY360 ~		
		WY380 ~		
	内部出力	WM400 ~	9240	(ワードアドレス - 400)÷2 の値
		WM700 ~	9240	(ワードアドレス - 400) ÷ 2 の値
		WM960 ~	9240	(ワードアドレス - 400) ÷ 2 の値
ワード	タイマ・カウンタ (経過値)	TC100 ~	6000	ワードアドレス - 100の値
ードデバィ	タイマ・カウンタ (設定値)	TC200 ~	6400	ワードアドレス - 200の値
イス	LSエリア	LS0000 ~	4040	ワードアドレス

シャープ(株)製 PLC

<ニューサテライトJWシリーズ>

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
	リレー	A0000 ~ (J0000 ~)	9000	ワードアドレス÷2の値
	タイマ・カウンタ	T0000 ~	6000	ワードアドレス
	(現在値)	B0000 ~ (b0000 ~)	7000	ワードアドレス÷2の値
	レジスタ	09000 ~	0000	ワードアドレス÷2の値
ワ		19000 ~	0200	ワードアドレス÷2の値
		29000 ~	0400	ワードアドレス÷2の値
ドデ		39000 ~	0600	ワードアドレス÷2の値
バ		49000 ~	0800	ワードアドレス÷2の値
1		59000 ~	0A00	ワードアドレス÷2の値
ス		69000 ~	0000	ワードアドレス÷2の値
		79000 ~	0E00	ワードアドレス÷2の値
		89000 ~	1000	ワードアドレス÷2の値
		99000 ~	1200	ワードアドレス÷2の値
	ファイルレジスタ	1000000 ~	×	×
	LSエリア	LS0000 ~	4000	ワードアドレス

松下電工(株)製 PLC

< MEWNET シリーズ >

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
ビ	入力リレー	WX000 ~	8000	ワードアドレス
ッ	出力リレー	WY000 ~	8800	ワードアドレス
トデ	内部リレー	WR000 ~	9000	ワードアドレス
バイ	リンクリレー	WL000 ~	C800	ワードアドレス
ス	特殊リレー	WR900 ~	9000	ワードアドレス
ワ	タイマ・カウンタ (経過値)	EV0000 ~	6000	ワードアドレス
 	タイマ・カウンタ (設定値)	SV0000 ~	6800	ワードアドレス
デ	データレジスタ	DT000 ~	0000	ワードアドレス
バ	リンクレジスタ	Ld0000 ~	4800	ワードアドレス
イフ	ファイルレジスタ	FL00000 ~	5800	ワードアドレス
ス	LSエリア	LS0000 ~	4000	ワードアドレス

横河電機㈱製 PLC

< FA500(1:1 通信する場合) >

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
	入力リレー	X00201 ~	×	×
ビ	出力リレー	Y00201 ~	×	×
ット	内部リレー	10001 ~	9000	(ワードアドレス - 1) ÷ 16の 値
デバ	共有リレー	E0001 ~	B800	(ワードアドレス - 1) ÷ 16の 値
イス	特殊リレー	M001 ~	B000	(ワードアドレス - 1) ÷ 16の 値
	リンクリレー	L0001 ~	C000	(ワードアドレス - 1) ÷ 16の 値
	タイマ (現在値)	TP001 ~	6000	ワードアドレス - 1の値
	タイマ(設定値)	TS001 ~	6800	ワードアドレス - 1の値
ワー	カウンタ (現在値)	CP001 ~	7000	ワードアドレス - 1の値
	カウンタ (設定値)	CS001 ~	7800	ワードアドレス - 1の値
デ	データレジスタ	D0001 ~	0000	ワードアドレス - 1の値
バ	コモンレジスタ	B0001 ~	2000	ワードアドレス - 1の値
イフ	特殊レジスタ	Z001 ~	5000	ワードアドレス - 1の値
ス	リンクレジスタ	W0001 ~	5800	ワードアドレス - 1の値
	LSエリア	LS0000 ~	4000	ワードアドレス

CPU 番号1のみ使用できます。

< FA500(1:n 通信する場合) >

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
	入力リレー	X00201 ~	×	×
ビ	出力リレー	Y00201 ~	×	×
ット	内部リレー	10001 ~	9000	(ワードアドレス - 1) ÷ 16の 値
デバ	共有リレー	E0001 ~	B800	(ワードアドレス - 1) ÷ 16の 値
イス	特殊リレー	M001 ~	B000	(ワードアドレス - 1)÷16の 値
	リンクリレー	L0001 ~	C000	(ワードアドレス - 1) ÷ 16の 値
	タイマ (現在値)	TP001 ~	6000	ワードアドレス - 1の値
 7	タイマ(設定値)	TS001 ~	6800	ワードアドレス - 1の値
	カウンタ(現在値)	CP001 ~	7000	ワードアドレス - 1の値
۲	カウンタ (設定値)	CS001 ~	7800	ワードアドレス - 1の値
デ	データレジスタ	D0001 ~	0000	ワードアドレス - 1の値
バ	コモンレジスタ	B0001 ~	2000	ワードアドレス - 1の値
イ	特殊レジスタ	Z001 ~	5000	ワードアドレス - 1の値
^	リンクレジスタ	W0001 ~	5800	ワードアドレス - 1の値
	LSエリア	LS0000 ~	4000	ワードアドレス

ステーション No.1 の CPU 番号1 のみ使用できます。

< FA-M3(1:1 通信する場合) >

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
	入力リレー	X00201 ~	×	×
ビ	出力リレー	Y00201 ~	×	×
ット	内部リレー	100001 ~	9000	(ワードアドレス - 1) ÷ 16の 値
デバ	共有リレー	E0001 ~	B800	(ワードアドレス - 1)÷16の 値
イス	特殊リレー	M0001 ~	B000	(ワードアドレス - 1) ÷ 16の 値
	リンクリレー	L00001 ~	C000	(ワードアドレス - 1)÷16の 値
	タイマ (現在値)	TP0001 ~	6000	ワードアドレス - 1の値
	タイマ(設定値)	TS0001 ~	6800	ワードアドレス - 1の値
ワ	カウンタ (現在値)	CP0001 ~	7000	ワードアドレス - 1の値
	カウンタ (設定値)	CS0001 ~	7800	ワードアドレス - 1の値
ドー	データレジスタ	D0001 ~	0000	ワードアドレス - 1の値
デ バ	ファイルレジスタ	B00001 ~	2000	ワードアドレス - 1の値
ハイ	共有レジスタ	R0001 ~	0800	ワードアドレス - 1の値
ス	特殊レジスタ	Z001 ~	5000	ワードアドレス - 1の値
	リンクレジスタ	W00001 ~	5800	ワードアドレス - 1の値
	LSエリア	LS0000 ~	4000	ワードアドレス

CPU 番号 1 のみ使用できます。

< FA-M3(1:n 通信する場合) >

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
	入力リレー	X00201 ~	×	×
ビ	出力リレー	Y00201 ~	×	×
ット	内部リレー	100001 ~	9000	(ワードアドレス - 1)÷16の 値
- デ バ	共有リレー	E0001 ~	B800	(ワードアドレス - 1)÷16の 値
1	特殊リレー	M0001 ~	B000	(ワードアドレス - 1)÷16の 値
ス	リンクリレー	L00001 ~	C000	(ワードアドレス - 1)÷16の 値
	タイマ (現在値)	TP0001 ~	6000	ワードアドレス - 1の値
	タイマ(設定値)	TS0001 ~	6800	ワードアドレス - 1の値
ワ	カウンタ(現在値)	CP0001 ~	7000	ワードアドレス - 1の値
	カウンタ (設定値)	CS0001 ~	7800	ワードアドレス - 1の値
۲	データレジスタ	D0001 ~	0000	ワードアドレス - 1の値
デ	ファイルレジスタ	B0001 ~	2000	ワードアドレス - 1の値
バイス	共有レジスタ	R0001 ~	0800	ワードアドレス - 1の値
	特殊レジスタ	Z001 ~	5000	ワードアドレス - 1の値
	リンクレジスタ	W0001 ~	5800	ワードアドレス - 1の値
	LSエリア	LS0000 ~	4000	ワードアドレス

ステーション No.1 の CPU 番号 1 のみ使用できます。

< FA-M3(イーサネット通信する場合) >

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
	入力リレー	X00201 ~	×	×
ビ	出力リレー	Y00201 ~	×	×
ット	内部リレー	100001 ~	9000	(ワードアドレス - 1)÷16の 値
デバ	共有リレー	E0001 ~	B800	(ワードアドレス - 1) ÷ 16の 値
イス	特殊リレー	M0001 ~	B000	(ワードアドレス - 1) ÷ 16の 値
	リンクリレー	L00001 ~	C000	(ワードアドレス - 1) ÷ 16の 値
	タイマ (現在値)	TP0001 ~	6000	ワードアドレス - 1の値
	タイマ(設定値)	TS0001 ~	6800	ワードアドレス - 1の値
ワ	カウンタ (現在値)	CP0001 ~	7000	ワードアドレス - 1の値
	カウンタ(設定値)	CS0001 ~	7800	ワードアドレス - 1の値
ドーデ	データレジスタ	D0001 ~	0000	ワードアドレス - 1の値
」	ファイルレジスタ	B0001 ~	2000	ワードアドレス - 1の値
イ	共有レジスタ	R0001 ~	0800	ワードアドレス - 1の値
ス	特殊レジスタ	Z001 ~	5000	ワードアドレス - 1の値
	リンクレジスタ	W0001 ~	5800	ワードアドレス - 1の値
	LSエリア	LS0000 ~	4000	ワードアドレス

CPU 番号1のみ使用できます。

豊田工機㈱製 PLC

< TOYOPUC-PC2 シリーズ>

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
Ľ	入力リレー	X0000 ~	8000	ワードアドレス
ット	出力リレー	Y0000 ~	8800	ワードアドレス
ーデ	内部リレー	M0000 ~	9000	ワードアドレス
バイ	キープリレー	K0000 ~	C000	ワードアドレス
ス	リンクリレー	L0000 ~	C800	ワードアドレス
	現在値レジスタ	N0000 ~	6000	ワードアドレス
ワー	データレジスタ	D0000 ~	0000	ワードアドレス
ドデ	リンクレジスタ	R0000 ~	4800	ワードアドレス
バ	ファイルレジスタ	B0000 ~	7800	ワードアドレス
イス	特殊レジスタ	S0000 ~	5000	ワードアドレス
	LSエリア	LS0000 ~	4000	ワードアドレス

< TOYOPUC-PC3Jシリーズ>

	1	I	-* i * / · · ·	
	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
		1X0000 ~	8000	ワードアドレス
	入力	2X0000 ~	8200	ワードアドレス
		3X0000 ~	8400	ワードアドレス
		1Y0000 ~	8800	ワードアドレス
	出力	1Y0000 ~	8A00	ワードアドレス
		1Y0000 ~	8C00	ワードアドレス
		1M0000 ~	9000	ワードアドレス
	内部リレー	2M0000 ~	9200	ワードアドレス
		3M0000 ~	9400	ワードアドレス
		1K0000 ~	C000	ワードアドレス
	キープリレー	1K0000 ~	C200	ワードアドレス
		1K0000 ~	C400	ワードアドレス
ľ		1L0000 ~	C800	ワードアドレス
ビッ	リンクリレー	2L0000 ~	CA00	ワードアドレス
۲		3L0000 ~	CC00	ワードアドレス
デ		1V0000 ~	B000	ワードアドレス
	特殊リレー	2V0000 ~	B200	ワードアドレス
バ		3V0000 ~	B400	ワードアドレス
イ		1T0000 ~	E000	ワードアドレス
ス	タイマ	1T0000 ~	E200	ワードアドレス
		1T0000 ~	E400	ワードアドレス
		100000 ~	F000	ワードアドレス
	カウンタ	200000 ~	F200	ワードアドレス
		300000 ~	F400	ワードアドレス
	拡張入力	EX0000 ~	8600	ワードアドレス
	拡張出力	EY0000 ~	8E00	ワードアドレス
	拡張内部リレー	EM0000 ~	9600	ワードアドレス
	拡張キープリレー	EK0000 ~	C600	ワードアドレス
	拡張リンクリレー	EL0000 ~	CE00	ワードアドレス
	拡張特殊リレー	EV0000 ~	B600	ワードアドレス
	拡張タイマ	ET0000 ~	E600	ワードアドレス
	拡張カウンタ	EC0000 ~	F600	ワードアドレス
		1D0000 ~	0000	ワードアドレス
	データレジスタ	2D0000 ~	0200	ワードアドレス
		3D0000 ~	0400	ワードアドレス
		1R0000 ~	4800	ワードアドレス
	リンクレジスタ	2R0000 ~	4A00	ワードアドレス
ワ		3R0000 ~	4C00	ワードアドレス
ĺ		1\$0000 ~	5000	ワードアドレス
ド	特殊レジスタ	2\$0000 ~	5200	ワードアドレス
- デ		3\$0000 ~	5400	ワードアドレス
バ		1N0000 ~	6000	ワードアドレス
	現在値レジスタ	2N0000 ~	6200	ワードアドレス
イフ		3N0000 ~	6400	ワードアドレス
ス	ファイルレジスタ	B0000 ~	7800	ワードアドレス
	拡張特殊レジスタ	ES0000 ~	5600	ワードアドレス
	拡張現在値レジスタ	EN0000 ~	6600	ワードアドレス
	拡張設定値レジスタ	H0000 ~	7600	ワードアドレス
	拡張データレジスタ	U0000 ~	6000	ワードアドレス
	LSエリア	LS0000 ~	4000	ワードアドレス

㈱東芝製 PLC

< PROSEC EXシリーズ>

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
ビッ	外部入力	XW0000 ~	8040	ワードアドレス
トデ	外部出力	YW0000 ~	8840	ワードアドレス
バ	補助リレー	RW0000 ~	9040	ワードアドレス
イス	リンクレジスタ(リレー)	ZW0000 ~	C840	ワードアドレス
ワー	タイマ (現在値)	T0000 ~	6000	ワードアドレス
-ドデバノ	カウンタ (現在値)	C0000 ~	7000	ワードアドレス
	データレジスタ	D00000 ~	0040	ワードアドレス
1 ス	LSエリア	LS0000 ~	4040	ワードアドレス

< PROSEC Tシリーズ>

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
ビッ	外部入力	XW000 ~	8000	ワードアドレス
-	外部出力	YW000 ~	8800	ワードアドレス
デバ	内部リレー	RW000 ~	9000	ワードアドレス
イス	特殊リレー	SW000 ~	B000	ワードアドレス
	タイマ (現在値)	T000 ~	6000	ワードアドレス
ワー	カウンタ(現在値)	C000 ~	7000	ワードアドレス
ドデ	データレジスタ	D0000 ~	0000	ワードアドレス
バ	リンクレジスタ	W0000 ~	4800	ワードアドレス
イス	ファイルレジスタ	F0000 ~	5800	ワードアドレス
	LSエリア	LS0000 ~	4000	ワードアドレス

< PROVISOR Bシリーズ>

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
	入力リレー	XW00 ~	8000	ワードアドレス
	出力リレー	YW00 ~	8800	ワードアドレス
	内部リレー	RW00 ~	9000	ワードアドレス
ビ	拡張内部リレー1	GW00 ~	9200	ワードアドレス
ット	拡張内部リレー2	HW00 ~	9400	ワードアドレス
デ	特殊補助リレー	AW00 ~	B000	ワードアドレス
バ	ラッチリレー	LW00 ~	C000	ワードアドレス
1	シフトレジスタ	SW00 ~	C200	ワードアドレス
ス	エッジリレー	EW00 ~	C400	ワードアドレス
	タイマ(接点)	TW00 ~	E000	ワードアドレス
	カウンタ(接点)	CW00 ~	F000	ワードアドレス
ワ	タイマ/カウンタ (現在値)	P000 ~	6000	ワードアドレス
 - +	タイマ/カウンタ (設定値)	V000 ~	7000	ワードアドレス
デ	汎用レジスタ1	D000 ~	0000	ワードアドレス
バ	汎用レジスタ2	B000 ~	2000	ワードアドレス
イス	LSエリア	LS0000 ~	4000	ワードアドレス

東芝機械(株)製 PLC

< PROVISOR TC200シリーズ>

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
	入力リレー	XW00 ~	8000	ワードアドレス
	出力リレー	YW00 ~	8800	ワードアドレス
ビ	内部リレー	RW00 ~	9000	ワードアドレス
ツ	拡張内部リレー1	GW00 ~	9200	ワードアドレス
 	拡張内部リレー2	HW00 ~	9400	ワードアドレス
デバ	特殊補助リレー	AW00 ~	B000	ワードアドレス
1	ラッチリレー	LW00 ~	C000	ワードアドレス
ス	シフトレジスタ	SW00 ~	C200	ワードアドレス
	エッジリレー	EW00 ~	C400	ワードアドレス
	タイマ(接点)	TW00 ~	E000	ワードアドレス
	カウンタ(接点)	CW00 ~	F000	ワードアドレス
ワー	タイマ/カウンタ (現在値)	P000 ~	6000	ワードアドレス
- ド	タイマ/カウンタ (設定値)	V000 ~	7000	ワードアドレス
バ	汎用レジスタ1	D000 ~	0000	ワードアドレス
1	汎用レジスタ2	B000 ~	2000	ワードアドレス
ス	LSエリア	LS0000 ~	4000	ワードアドレス

光洋電子工業(株)製 PLC

< KOSTAC SG シリーズ>

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
	入力リレー	R40400 ~	8100	ワードアドレス - 40400の値
	出力リレー	R40500 ~	8900	ワードアドレス - 40500の値
ビ	内部リレー	R40600 ~	9100	ワードアドレス - 40600の値
ット	ステージ	R41000 ~	A100	ワードアドレス - 41000の値
デバ	全局伝送リレー (入力)	R40000 ~	C900	ワードアドレス - 40000の値
イス	特別局伝送リレー (出力)	R40200 ~	CD00	ワードアドレス - 40200の値
	タイマ(接点)	R41100 ~	E100	ワードアドレス - 41100の値
	カウンタ(接点)	R41140 ~	F100	ワードアドレス - 41140の値
ワ	タイマ (経過値)	R0000 ~	6000	ワードアドレス
	カウンタ (経過値)	R1000 ~	7000	ワードアドレス - 1000の値
۲	データメモリ1	R400 ~	0800	ワードアドレス - 400の値
デ	データメモリ2	R1400 ~	0000	ワードアドレス - 1400の値
バイ	データメモリ3	R10000 ~	5800	ワードアドレス - 10000の値
ス	LSエリア	LS0000 ~	4000	ワードアドレス

< KOSTAC SUシリーズ>

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
	入力リレー	R40400 ~	8100	ワードアドレス - 40400の値
	出力リレー	R40500 ~	8900	ワードアドレス - 40500の値
ビ	内部リレー	R40600 ~	9100	ワードアドレス - 40600の値
ット	ステージ	R41000 ~	A100	ワードアドレス - 41000の値
デバ	リンクリレー/リンク 入力	R40000 ~	C900	ワードアドレス - 40000の値
イス	特殊リレー	R41200 ~ R41215 ~	B100	ワードアドレス - 41200の値
	タイマ (接点)	R41100 ~	E100	ワードアドレス - 41100の値
	カウンタ(接点)	R41140 ~	F100	ワードアドレス - 41140の値
	タイマ(経過値)	R0000 ~	6000	ワードアドレス
ワ	カウンタ (経過値)	R1000 ~	7000	ワードアドレス - 1000の値
	データレジスタ	R1400 ~	0000	ワードアドレス - 1400の値
デバ	特殊レジスタ	R700 ~ R7400 ~	×	×
1	拡張レジスタ	R10000 ~	5800	ワードアドレス - 10000の値
ス	LSエリア	LS0000 ~	4000	ワードアドレス

< KOSTAC SZシリーズ>

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
	入力リレー	R40400 ~	8100	ワードアドレス - 40400の値
ビッ	出力リレー	R40500 ~	8900	ワードアドレス - 40500の値
-	内部リレー	R40600 ~	9100	ワードアドレス - 40600の値
デババ	ステージ	R41000 ~	A100	ワードアドレス - 41000の値
イス	タイマ (接点)	R41100 ~	E100	ワードアドレス - 41100の値
	カウンタ(接点)	R41140 ~	F100	ワードアドレス - 41140の値
ワー	タイマ (経過値)	R0000 ~	6000	ワードアドレス
ード	カウンタ(経過値)	R1000 ~	7000	ワードアドレス - 1000の値
デバ	データメモリ2	R2000 ~	0000	ワードアドレス - 1400の値
イス	LSエリア	LS0000 ~	4000	ワードアドレス

< KOSTAC SR シリーズ>

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
Ľ	入力・出力	R000 ~	9000	ワードアドレス÷2の値
ッ		R070	9000	ワードアドレス÷2の値
۲	内部リレー	R016 ~	9000	ワードアドレス÷2の値
デ		R076	9000	ワードアドレス÷2の値
バ	シフトレジスタ	R040 ~	9000	ワードアドレス÷2の値
イス	タイマ・カウンタ (接点)	R060 ~	9000	ワードアドレス÷2の値
ワード	タイマ・カウンタ (経過値)	R600 ~	6000	ワードアドレス - 600の値
-デバイ	データレジスタ	R400 ~	0000	(ワードアドレス - 400)÷2 の値
ス	LSエリア	LS0000 ~	4000	ワードアドレス

GE Fanuc Automation製PLC

<シリーズ90-70/90-30 >

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
	入力リレー(I)	100001 ~	8000	(ワードアドレス - 1) ÷ 16の 値
	出力リレー(Q)	Q00001 ~	8800	(ワードアドレス - 1)÷16の 値
ビ	内部リレー(M)	M00001 ~	9000	(ワードアドレス - 1)÷16の 値
ット	グローバルリレー(G)	G0001 ~	C200	(ワードアドレス - 1)÷16の 値
デバ	一時リレー(T)	T001 ~	9400	(ワードアドレス - 1)÷16の 値
イス	システム状態リレー(SA)	SA001 ~	A200	(ワードアドレス - 1)÷16の 値
	システム状態リレー(SB)	SB001 ~	A400	(ワードアドレス - 1)÷16の 値
	システム状態リレー(SC)	SC001 ~	A800	(ワードアドレス - 1)÷16の 値
	システム状態リレー(S)	S001 ~	AA00	(ワードアドレス - 1)÷16の 値
ヮ	レジスタ(R)	R00001 ~	0000	ワードアドレス - 1の値
 - 	アナログ入力(AI)	A10001 ~	0A00	ワードアドレス - 1の値
バイ	アナログ出力(AQ)	AQ0001 ~	0000	ワードアドレス - 1の値
Ż	LSエリア	LS0000 ~	4000	ワードアドレス

ファナック(株)製モーションコントローラ

< FANUC Power Mateシリーズ>

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
Ľ	入力リレー(X)	X00000 ~ X01000 ~	8000	ワードアドレス÷2の値
ツトデ	出カリレー(Y)	Y00000 ~ Y01000 ~	9000	ワードアドレス÷2の値
バイ	内部リレー(R)	R00000 ~	C000	ワードアドレス÷2の値
ス	キープリレー(K)	K0000 ~	D000	ワードアドレス÷2の値
ワー	タイマ(T)	T0000 ~	6800	ワードアドレス÷2の値
ド	カウンタ(C)	C0000 ~	7800	ワードアドレス÷2の値
デバ	データテーブル(D)	D00000 ~	0000	ワードアドレス÷2の値
イス	LSエリア	LS0000 ~	4000	ワードアドレス

和泉電気㈱製 PLC

< FA シリーズ >

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
ビッ	入力リレー	WX00 ~	8000	ワードアドレス÷2の値
F	出力リレー	WY000 ~	8800	ワードアドレス÷2の値
デバ	内部リレー	WM000 ~	9000	ワードアドレス÷2の値
イス	シフトレジスタ	WR000 ~	C000	ワードアドレス÷16の値
	タイマ (設定値)	TS000 ~	6800	ワードアドレス
ワ	タイマ (現在値)	T000 ~	6000	ワードアドレス
 	タイマ10msec (現在値)	H000 ~	6400	ワードアドレス
デ	カウンタ(設定値)	CS000 ~	7800	ワードアドレス
バ	カウンタ(現在値)	C000 ~	7000	ワードアドレス
イ -	データレジスタ	D0000 ~	0000	ワードアドレス
ス	コントロールレジスタ	D3000 ~	0000	ワードアドレス
	LSエリア	LS0000 ~	4000	ワードアドレス

< MICRO³(マイクロキューブ)>

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
ビッ	入力リレー	X0000 ~	8000	ワードアドレス÷2の値
トデ	出力リレー	Y0000 ~	8800	ワードアドレス÷2の値
バ	内部リレー	M0000 ~	9000	ワードアドレス÷2の値
イス	シフトレジスタ	R0000 ~	C000	ワードアドレス÷16の値
ワ	タイマ (設定値)	T0000 ~	6800	ワードアドレス
1	タイマ (計数値)	t0000 ~	6000	ワードアドレス
ドゴ	カウンタ(設定値)	C0000 ~	7800	ワードアドレス
デ バ	カウンタ(計数値)	c0000 ~	7000	ワードアドレス
イ	データレジスタ	D0000 ~	0000	ワードアドレス
ス	LSエリア	LS0000 ~	4000	ワードアドレス

Siemens 製 PLC

< SIMATIC-S5 シリーズ(リンク I/F 使用) >

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
ワード	データレジスタ	D003000 ~	0040	上位二桁: DB番号 - 3の値をHEXに した値 下位二桁: DW番号をHEXにした値
デバイス	拡張データレジスタ	X003000 ~	5840	上位二桁: DB番号 - 3の値をHEXに した値 下位二桁: DW番号をHEXにした値
	LSエリア	LS0000 ~	4040	ワードアドレス

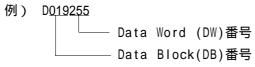
データレジスタ、拡張データレジスタのアドレスコード

例) D019255

Data Word (DW)番号
Data Block(DB)番号

アドレスコード

上位二桁:019-3=16(DEC) 10(HEX)


下位二桁:255(DEC) FF(HEX)

アドレスコードは「10FF」

< SIMATIC-S5 シリーズ(CPU 直結) >

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
ビッ	入力リレー	IW000 ~	8140	ワードアドレス÷2の値
トデバ	出力リレー	QW000 ~	8940	ワードアドレス÷2の値
イス	内部リレー	FW000 ~	9140	ワードアドレス÷2の値
ワ	タイマ	T000 ~	6000	ワードアドレス
-	カウンタ	C000 ~	7000	ワードアドレス
ドデバイ	データレジスタ	D002000 ~	0040	上位二桁: DB番号 - 2の値をHEXに した値 下位二桁: DW番号をHEXにした値
ス	拡張データレジスタ	X002000 ~	5840	上位二桁: DB番号 - 2の値をHEXに した値 下位二桁: DW番号をHEXにした値
	LSエリア	LS0000 ~	4040	ワードアドレス

データレジスタ、拡張データレジスタのアドレスコード

アドレスコード

上位二桁:019-2=17(DEC) 11(HEX)

下位二桁:255(DEC) FF(HEX)

アドレスコードは「11FF」

< SIMATIC S7-300/400シリーズ(MPI)>

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
ビッ・	入力ビット	EW00000 ~	8000	ワードアドレス÷2の値
トデバ	出力ビット	AW00000 ~	8800	ワードアドレス÷2の値
イス	内部ビット	MW00000 ~	9000	ワードアドレス÷2の値
ワー	データブロック	DB00W00000 ~	7000	ワードアドレス÷2の値
ドデバ	タイマワード	T00000 ~	6000	ワードアドレス
イス	カウンタワード	C00000 ~	7000	ワードアドレス

< SIMATIC S7-300/400シリーズ(PPI)>

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
ワードデバイス	データブロック	DB00W0000 ~	7000	ワードアドレス ÷2の値

< SIMATIC S7-200シリーズ(PPI) >

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
	入力ビット	IW0 ~	9000	ワードアドレス ÷2の値
ビッ	出力ビット	QWO ~	8800	ワードアドレス ÷2の値
トアド	内部ビット	MWOO ~	C800	ワードアドレス ÷2の値
・レス	特殊メモリ	SMW00 ~	B800	ワードアドレス ÷2の値
	変数メモリ	VW0000 ~	D000	ワードアドレス ÷2の値
ワードア	タイマワード	T000 ~	0400	ワードアドレス ÷2の値
アドレス	カウンタワード	C000 ~	0800	ワードアドレス ÷2の値

Rockwell (Allen-Bradley)製PLC

< AB SLC500シリーズ>

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
ビットデバイス	ビット	B003000 ~ B010000 ~	9040	上位二桁: DB番号 - 3の値をHEX にした値 下位二桁: DW番号をHEXにした値
	タイマ (PRE : 設定値)	TP004000 ~ TP010000 ~	6800	上位二桁: DB番号 - 4の値をHEX にした値 下位二桁: DW番号をHEXにした値
ワ - 	タイマ (ACC:現在値)	TA004000 ~ TA010000 ~	6000	上位二桁: DB番号 - 4の値をHEX にした値 下位二桁: DW番号をHEXにした値
ドデバイス	カウンタ (PRE:設定値)	CP005000 ~ CP010000 ~	7800	上位二桁: DB番号 - 5の値をHEX にした値 下位二桁: DW番号をHEXにした値
	カウンタ (ACC:現在値)	CA005000 ~ CA010000 ~	7000	上位二桁: DB番号 - 5の値をHEX にした値 下位二桁: DW番号をHEXにした値
	整数	N007000 ~ N010000 ~	0040	上位二桁: DB番号 - 7の値をHEX にした値 下位二桁: DW番号をHEXにした値
	LSエリア	LS0000 ~	4040	ワードアドレス

アドレスコード

上位二桁:019-3=16(DEC) 10(HEX) 下位二桁:255(DEC) FF(HEX)

アドレスコードは「10FF」

< AB PLC-5シリーズ>

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
ビッ・	入力リレー	1000 ~	8040	ワードアドレス
トデバ	出力リレー	0000 ~	8840	ワードアドレス
イス	内部リレー	B3000 ~	9040	ワードアドレス - 3000の値
	タイマ (ACC:現在値)	TA3000 ~	6000	ワードアドレス - 3000の値
ワ	タイマ (PRE:設定値)	TP3000 ~	6800	ワードアドレス - 3000の値
	カウンタ(ACC:現在値)	CA3000 ~	7000	ワードアドレス - 3000の値
ド	カウンタ(PRE:設定値)	CP3000 ~	7800	ワードアドレス - 3000の値
デバ	データレジスタ Integer	N3000 ~	0040	ワードアドレス - 3000の値
1	データレジスタBCD	D3000 ~	0240	ワードアドレス - 3000の値
ス	データレジスタASCII	A3000 ~	0440	ワードアドレス - 3000の値
	LSエリア	LS0000 ~	4040	ワードアドレス

(株)キーエンス製 PLC

< KZ-300/KZ-350 シリーズ >

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
	入力リレー	00 ~	9100	ワードアドレス
ビッ		70 ~	9100	ワードアドレス
トデ	出力リレー	05 ~	9100	ワードアドレス
バ		75 ~	9100	ワードアドレス
イス	内部補助リレー	10 ~	9100	ワードアドレス
	特殊補助リレー	20 ~	9100	ワードアドレス
	タイマ (現在値)	T000 ~	6000	ワードアドレス
ワー	カウンタ (現在値)	C000 ~	7000	ワードアドレス
ドデ	データメモリ	DM0000 ~	0000	ワードアドレス
/バイス	テンポラリ データメモリ	TM00 ~	C100	ワードアドレス
	LSエリア	LS0000 ~	4000	ワードアドレス

< KZ-A500 シリーズ >

	デバイス	ワードアドレス	デバイスコード	アドレスコード
ビッ・	入力リレー	X0000 ~	8000	ワードアドレスの下一桁の 「0」を除いた値
	出力リレー	Y0000 ~	8800	ワードアドレスの下一桁の 「0」を除いた値
トデ	内部リレー	M0000 ~	9000	ワードアドレス÷16の値
バイ	特殊リレー	M9000 ~	B000	(ワードアドレス 9000) ÷16の値
ス	ラッチリレー	L0000 ~	C000	ワードアドレス÷16の値
	アナンシェータリレー	F0000 ~	B800	ワードアドレス÷16の値
	タイマ (現在地)	TN0000 ~	6000	ワードアドレス
ワ	カウンタ(現在地)	CN0000 ~	7000	ワードアドレス
 	データレジスタ	D0000 ~	0000	ワードアドレス
デ	特殊レジスタ	D9000 ~	0000	ワードアドレス
バイス	リンクレジスタ	W0000 ~	4800	ワードアドレス
	ファイルレジスタ	R0000 ~	5800	ワードアドレス
	LSエリア	LS0000 ~	4000	ワードアドレス

神鋼電機㈱製 PLC

< SELMART シリーズ >

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
ワードデ	データレジスタ	D00000 ~	0000	ワードアドレス
バイス	LSエリア	LS0000 ~	4000	ワードアドレス

松下電器産業(株)製PLC

< Panadac7000 シリーズ >

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
	入力リレー	I N0000 ~	8000	ワードアドレス
	出力リレー	OT0000 ~	8800	ワードアドレス
	内部リレー	RL0000 ~	9000	ワードアドレス
ビ	保持リレー	KR0000 ~	C000	ワードアドレス
ッ	リンクリレー	LK0000 ~	C800	ワードアドレス
トデ	ステータスリレー	ST0000 ~	9800	ワードアドレス
」 ア	MCステータスリレー	MS0000~	9A00	ワードアドレス
イ	タイマステータスリレー	TS0000~	E200	ワードアドレス
ス	タイマアップリレー	TU0000 ~	E000	ワードアドレス
	カウントアップリレー	CU0000 ~	F000	ワードアドレス
	CPU入力リレー	C10000 ~	8200	ワードアドレス
	CPU出力リレー	C00000 ~	8A00	ワードアドレス
	データメモリ	M0000 ~	0000	ワードアドレス
· ?	リンクレジスタ	LM0000 ~	4800	ワードアドレス
' 	タイマ(設定値)	TM0000 ~	6800	ワードアドレス
デ	タイマ(現在値)	CT0000 ~	6000	ワードアドレス
バイ	カウンタ値	TC0000 ~	7000	ワードアドレス
ス	位置データ	PM0000 ~	0800	ワードアドレス
	LSエリア	LS0000 ~	4000	ワードアドレス

オリムベクスタ (株)製PLC

	デバイス	ワードアドレス	デバイスコード	アドレスコード
	入力レジスタ	10001 ~	8000	ワードアドレス
ビッ	ONイベント入力レジスタ	IU001 ~	8800	ワードアドレス
	OFFイベント入力レジスタ	ID001 ~	9000	ワードアドレス
	出力レジスタ	00001 ~	B000	ワードアドレス
デ	位置レジスタ	M0001 ~	C800	ワードアドレス
バイ	汎用倍長レジスタ	RD001 ~	E000	ワードアドレス
, ス	ベースレジスタ	B000 ~	F000	ワードアドレス
	現在モータステータス	MS001 ~	A800	ワードアドレス
	SYレジスタ	SY001 ~	D000	ワードアドレス
	アナログ入力レジスタ	AD001 ~	5800	ワードアドレス
	アナログ出力レジスタ	DA001 ~	4800	ワードアドレス
ワー	速度レジスタ低速	SL001 ~	6800	ワードアドレス
' 	速度レジスタ高速	SH001 ~	7000	ワードアドレス
デ	速度レジスタ加速	SR001 ~	7800	ワードアドレス
バイス	速度レジスタ減速	SD001 ~	1000	ワードアドレス
	現在モータ位置	MP001 ~	3800	ワードアドレス
	汎用レジスタ	R0001 ~	0000	ワードアドレス
	LSエリア	LS0000 ~	4000	ワードアドレス

(株)山武製 調節計

< SDC シリーズ>

	デバイス	ワードアドレス	デバイスコード	アドレスコード
			(HEX)	
		0000 ~	8000	ワードアドレス
		1000 ~	8200	ワードアドレス-1000
ワ		2000 ~	8400	ワードアドレス-2000
	│ ド ゴ	3000 ~	8600	ワードアドレス-3000
<u>Γ</u> デ		4000 ~	8800	ワードアドレス-4000
ーバ		5000 ~	9000	ワードアドレス-5000
1 7		6000 ~	9200	ワードアドレス-6000
l ス		7000 ~	9400	ワードアドレス-7000
		8000 ~	9600	ワードアドレス-8000
	LSエリア	LS0000 ~	4000	ワードアドレス

号機番号1のみ使用可能です。

メモリリンク方式

	ワードアドレス	デバイスコード (HEX)	アドレスコード
ワード イス	0~	4040	ワードアドレス

CC-Link

	デバイス	ワードアドレス	デバイスコード (HEX)	アドレスコード
ワードデバイス	LSエリア	LS0000 ~	4000	ワードアドレス

DeviceNet

	デバイス	ワードアドレス	デバイスコード	アドレスコード
ワードデバイス	LSエリア	LS0000 ~	4000	ワードアドレス

付録3

デバイスモニタ

デバイスモニタを使用すると、GP上でPLCの任意のデバイスメモリのモニタ/変更を行うことができます。GPの表示中の画面に関係なく、GPのウィンドウ画面においてモニタ/変更ができます。

- ・ GPで使用可能なデバイスのモニタ / 変更ができます。
- ・ 専用のウィンドウ画面において入出力リレー、データメモリなどのランダム表示 / 一括表示 を行うことができます。
- ・ ビットデバイスのON/OFF表示、ワードデバイスの現在値表示(2/8/10/16進表示選択可能) を行うことができます。

使用可能 GP : GP-477R、GP-577R、GP-377R、GP-470、GP-570、GP-571、GP-675、GP-370、GP-

377、GP-H70(システムバージョン 1.20 以降)

使用可能 PLC :・三菱電機 (株)製 MELSEC-A シリーズ CPU 直結 (CPU: A2A、A3A)

・三菱電機(株)製 MELSEC-FX シリーズ (使用可能 CPU は 1-3 接続可能 PLC 一覧に記載)

- ・三菱電機(株)製 MELSEC-Q シリーズ CPU 直結 (使用可能 CPU は 1-3 接続可能 PLC 一覧に記載)
- ・三菱電機(株)製 MELSEC-AnA シリーズ リンク (使用可能 CPU は 1-3 接続可能 PLC 一覧に記載)
- ・ 三菱電機(株)製 MELSEC-AnN シリーズ リンク (使用可能 CPU は 1-3 接続可能 PLC 一覧に記載)
- ・三菱電機(株)製 MELSEC-AnN シリーズ CPU 直結 (使用可能 CPU は 1-3 接続可能 PLC 一覧に記載)
- ・オムロン(株)製 SYSMAC Cシリーズ (使用可能 CPU は 1-3 接続可能 PLC 一覧に記載)
- ・オムロン(株)製 SYSMAC シリーズ (使用可能 CPU は 1-3 接続可能 PLC 一覧に記載)
- ・オムロン(株)製 SYSMAC CS1 シリーズ (使用可能 CPU は 1-3 接続可能 PLC 一覧に記載)

GPでデバイスモニタを使用するには、GP-PRO/PB でデバイスモニタの登録を行います。 参照 オペレーションマニュアル 4-2-5 デバイスモニタ 本章は三菱電機(株)製MELSEC-Aシリーズを基本として説明しています。

重要・デバイスモニタは予約タグ約90個分を使用します。そのため、

GPで表示する画面によってはデバイスモニタを表示すると合計 が最大タグ数を超える場合があります。この場合、デバイスモ ニタが正常に動作しない場合があります(画面下に「タグ数が オーバーしています」と表示されます)。 デバイスモニタを使 用することによって最大タグ数を超える場合には、その画面で はデバイスモニタを使用しないでください。

- ・ デバイスモニタでは、将来の拡張を考慮してPLCの現在のデバ イス範囲外の設定ができますが、範囲外のデバイスを表示しよ うとすると、画面下に「上位通信エラー」が表示されます。そ の場合は、デバイスを範囲内に変更、または削除してください。 また、範囲外のデバイスへ書き込みを行った場合、「上位通信工 ラー」は表示され続けます。「上位通信エラー」表示を消すには、 GPの電源をOFFしてから再度ONするか、オフラインからリセッ トを行う必要があります。範囲外への書き込みは絶対に行わな いでください。
- デバイスモニタでモニタできるデバイスは、2-*-3/5-*-3 使 用可能デバイスに記載されているデバイスのみです。
- デバイスモニタを使用する場合は、ユーザエリア LS2096 ~ LS4095は予約となり使用できません。

グローバルウインドウ設定について

デバイスモニタはGPのグローバルウインドウ機能を使用します。

デバイスモニタを使用する場合は、他のグローバルウインドウは表示できません。

GP オフラインで「1. 初期設定」の「1. システム環境の設定」の「3. グローバルウインドウの 設定」で以下のとおり設定してください。

> グローバルウインドウ:使用する グローバルウインドウ指定:間接

データ形式:BIN

付3.1 機能

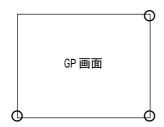
ランダムモニタ

- 任意の8点のデバイスをモニタすることができます。
- 1点単位でモニタするビットデバイス・ワードデバイスを指定することができます。
- ビットデバイスはON/OFF表示、ワードデバイスは2・8・10・16進数表示をすることができ ます。
- モニタしているデバイスに対してデータを書き込むことができます。

一括モニタ

- 連続した8点のデバイスをモニタすることができます。
- ワードデバイスを指定することができます。
- データは2・8・10・16進数表示をすることができます。
- 前頁・次頁で前後のデバイス8点をモニタすることができます。
- モニタする先頭デバイスを指定できます。
- ・ モニタしているデバイスに対してデータを書き込むことができます。

書き込み


- ・ モニタしている画面に関係なく、任意のデバイスのデータを書き込むことができます。
- ビットデバイス・ワードデバイスを指定することができます。
- ・ ビットデバイスはON/OFFによる変更、ワードデバイスは16進数数値入力ができます。

三菱電機(株)製MELSEC-FX対応のデバイスモニタをご使用に ある場合は、32ビット長デバイス(CN200~CN255)のモニタリ ングは、2進数・8進数は下位2バイト(16ビット)のみが表示 となります。16進数・10進数では32ビットすべて表示されま す。

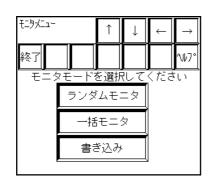
付3.2 画面操作

付3.2.1 起動

1) GPの画面上で を押さえたまま を押し、そ のままの状態で左下 を押します。

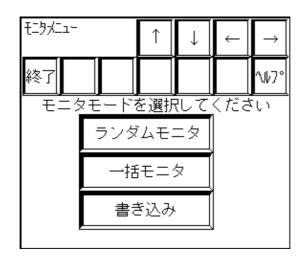
参照 各ユーザーズマニュアル「タッチ パネルの設定」

「メニューバー」が表示されます。



2) メニューバーから[モニタ]を選択します。

「モニタメニュー」が表示されます。


重要・ メニューバーにモニタが表示されない 場合は、グローバルウインドウの設定 が正しいか確認してください。

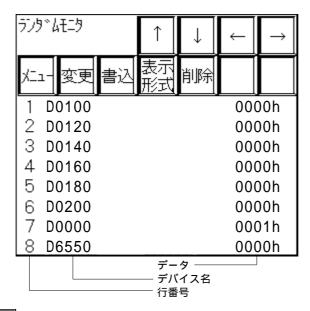
> 参照 グローバルウインドウ設定に ついて

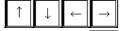
付3.2.2 モニタメニュー

PLCの各デバイスをモニタリングすることができます。 このウィンドウではデバイスモニタのモードを選択します。

 ランダムモニタ
 任意の8点のデバイスをモニタします。

 連続した8点のデバイスをモニタします。


 書き込み
 任意のデバイスへのデータ書き込みを行います。


 ↑ ↓ ← → デバイスモニタのウィンドウ表示位置を移動します。

 終了
 デバイスモニタを終了します。

ランダムモニタ

任意の8点のデバイスをモニタします。

ウィンドウの表示位置を移動します。

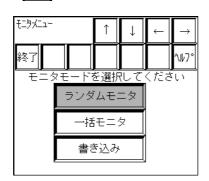
ᄯᅺ

「モニタメニュー」へ戻ります。

変更

「変更 行選択」を表示し、デバイス、アドレスの変更モードへ移行します。

書込


「書込 行選択」を表示し、データの書込みモードへ移行します。

表示形式

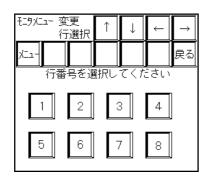
「表示 行選択」を表示し、データの表示モードへ移行します。

削除

「削除 行選択」を表示し、選択した行番号の表示を削除します。

1)「モニタメニュー」から[ランダムモニタ]を 選択します。

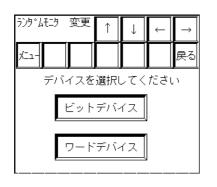
ランタ	ランタ			\downarrow	←	\rightarrow
د_بلا	変更	書込	表示 形式	削除		
1	D0100)			000)0h
2	D0120)			000)0h
3	D0140)			000)0h
4	D0160)			000)0h
5	D0180)			000)0h
6	D0200)			000)0h
7	D0000)			000)1h
8	D6550)			000)0h


2)「ランダムモニタ」が表示されます。

変更

モニタするデバイス、アドレスの変更を行うことができます。

ランタ゛ムモニタ	\uparrow	\downarrow	←	\rightarrow
灯1-変更 書込	表示 形式	削除		
1 D0100			000	00h
2 D0120 3 D0140			000	00h
3 D0140			000	00h
4 D0160			000	00h
5 D0180			000	00h
6 D0200			000	00h
7 D0000			000)1h
8 D6550			000	00h


1)「ランダムモニタ」で[変更]を選択します。 「ランダムモニタ 変更 行選択」が表示されま す。

2)変更する行番号を選択します。 「ランダムモニター変更」が表示されます。

「ランダムモニタ」で直接変更したいデバイスまたはアドレス をタッチしても選択できます。

3)変更するデバイスを選択します。

ビットデバイス

ビットデバイスをモニタする場合に選択します。

ワードデバイス

ワードデバイスをモニタする場合に選択します。

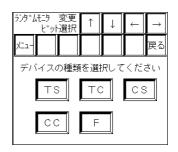
УГа-

メニュー画面に戻ります。

戻る

1つ前の画面に戻ります。

ビットデバイス


を選択した場合

4)「ランダムモニタ 変更」で、モニタするデバイスの種類を選択します。

次へ

残りのデバイスの種類が表示されま す。

ワードデバイス

を選択した場合

うンタ ゙ ムモニタ 変更 ワート ゙ 選択	₹ 1	\rightarrow	↓	\uparrow
Х <u>-</u> 1-			次へ	戻る
デバイスの種	類を選	沢して	< <i>†</i> 23	さい
X	Υ		D	
W	R		F	

次个

残りのデバイスの種類が表示されま す。

ランダムモニタ 変更 ワード選択	\uparrow	\downarrow	←	\rightarrow
/==-k				戻る
デバイスの種類	を選打	尺して	< <i>†</i> 2	さい
TN		CN		
М		MS 特殊!	3]	

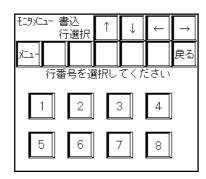
ランタ <i>``l</i>		変更 選択	1	\downarrow	Ų ↓	\rightarrow
Х <u>Г</u> а-						戻る
デバ	イス名	≤ M	0	0 0	0 (0 0
	アドレ	ノスを	入力し	てく	ださい	١
1	2	3	4	5	6	7
8	9	0	Α	В	С	D
E	F	С	L		ENT	

5) モニタするデバイスのアドレスを入力し、 [ENT]を押します。

モニタするデバイスのアドレスが変更されま す。

- ・ デバイスはご使用の PLC により異なります。
- ・ デバイスアドレスの入力は、将来の拡張を考慮して、ご使用 になる PLC のデバイス範囲を越えて入力ができるようになっ ています。

デバイスの範囲外をモニタしようとすると、画面下に「上位 通信エラー」が表示されます。


このような場合、モニタされているデバイスを、ご使用のPLC の範囲に変更してください。

書き込み

モニタするデバイス、アドレスヘデータ書き込みを行うことができます。

ランタ゛ムモニタ	\uparrow	\downarrow	←	\rightarrow
火ュー 変更 書	表示 形式	削除		
1 D0100			000	00h
2 D0120			000	00h
3 D0140			000	00h
4 D0160			000	00h
5 D0180			000	00h
6 D0200			000	00h
7 D0000			000)1h
8 D6550			000	00h

1)「ランダムモニタ」で[書込]を選択します。 「ランダムモニタ 書込 行選択」が表示されま す。

2) 書き込みを行うデバイスの行番号を選択します。

「ランダムモニタ 書込」が表示されます。

・「ランダムモニタ」で直接書き込みたいデバイスのデータを タッチしても選択できます。

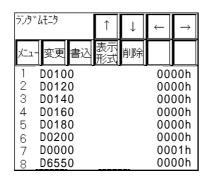
選択行のデバイスがビットデバイスの場合

1) データを選択します。

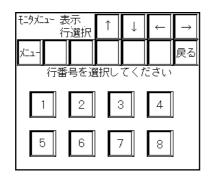
○FF ビットデバイスを OFF します。 ○N ビットデバイスを ON します。

選択行のデバイスがワードデバイスの場合

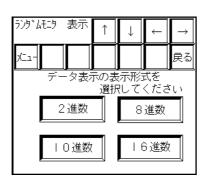
1) データを 16 進法で入力し、[ENT]を押します。 選択行のデバイスにデータが書き込まれます。


・ ランダムモニタ変更時と[ENT]キー の位置が異なります(データの誤っ た書き込みを防ぐため)。

入力に誤りがあると「入力エラー」が画面左上に点滅表示されます。 入力範囲 **参照** 2-*-3/5-*-3 使用可能デバイス

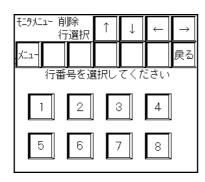

禁止: ・ ご使用の PLC 範囲外のデバイスに対しては、書き込みを行わないでください。

表示形式


データ表示の表示形式を選択することができます。ビットデバイスをモニタしている場合は、 表示形式の変更はできません。

1)「ランダムモニタ」で[表示形式]を選択します。 「ランダムモニタ 表示 行選択」が表示されま す。

2)表示形式を変更したい行番号を選択します。 「ランダムモニタ 表示」が表示されます。


3) データ表示の表示形式を選択します。

削除

選択行のデバイスのモニタを削除することができます。

ランタ゛	ランタヾ ム モニタ		\uparrow	\downarrow	←	\rightarrow
ىتكلا	変更	書込	表示 形式	削除		
1	D010	0			000	00h
2	2 D0120				000	00h
3	D014	0			000	00h
4	D016	0			000	00h
5	D018	0			000	00h
6	D020	0			000	00h
7	D000	0			000)1h
8	D655	0			000	00h

1)「ランダムモニタ」で[削除]を選択します。 「ランダムモニタ 削除 行選択」が表示されま す。

2)削除する行番号を選択します。 選択した行番号のモニタが削除されます。

一括モニタ

連続した8点のワードデバイスをモニタします。

一括t=9	\Box	$\boxed{}$	$oxed{}$	\rightarrow
灯1 変更 書込	表示形式		Δ	\Box
D0100	0000h			00h
D0101	D0101 0000			00h
D0102			00	00h
D0103			00	00h
D0104		0000h		
D0105	0000h			00h
D0106 0001			01h	
D0107			00	00h

 $\uparrow \qquad \downarrow \qquad \leftarrow \qquad \rightarrow \qquad$

ウィンドウの表示位置を移動します。

حدتلا

「モニタメニュー」へ戻ります。

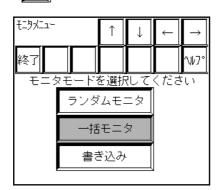
変更

「変更 行選択」を表示し、デバイス、アドレスの変更モードへ移行します。

書込

「書込 行選択」を表示し、データの書き込みモードへ移行します。

表示


「表示 行選択」を表示し、データの表示モードへ移行します。

^

モニタしているデバイスのアドレスを -8 します。

 ∇

モニタしているデバイスのアドレスを+8します。

1)「モニタメニュー」から[一括モニタ]を選択します。

一括モニタ	\uparrow	\rightarrow	\downarrow	\rightarrow	
灯上 変更 書込	表示形式		Δ	\Box	
D0100			0000h		
D0101	D0101 0000			00h	
D0102			00	00h	
D0103			00	00h	
D0104		0000h			
D0105	0000h			00h	
D0106 0000			00h		
D0107			00	00h	

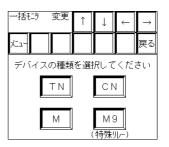
2)「一括モニタ」が表示されますので、変更にて モニタしたいデバイスを選択してください。

変更

モニタするデバイス、アドレスの変更を行うことができます。モニタを開始するデバイス、アドレスを変更します。

一括モニタ	\uparrow	\rightarrow	Ų.	\rightarrow	
灯上 変更 書込	表示 形式		Δ	\Box	
D0100		0000h			
D0101			0000h		
D0102			00	00h	
D0103			00	00h	
D0104	0000h			00h	
D0105			00	00h	
D0106			00	00h	
D0107			00	00h	

1)「一括モニタ」で[変更]を選択します。 「一括モニタ変更」が表示されます。


2)変更するデバイスの種類を選択します。

 火ニュー画面へ戻ります。

 戻る
 1つ前の画面に戻ります。

 次へ
 残りのデバイスの種類を表示します。

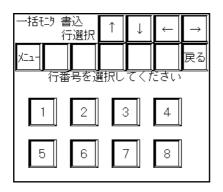
 す。

一括	E19 3	更更	\uparrow	\downarrow	—	\rightarrow
Х <u>Г</u> 1-						戻る
デバ	イス名	≛ D	0	0 (0 0	0 0
	アドレ	ノスを	入力し	てく	ださい	. Υ
1	2	3	4	5	6	7
8	9	0	Α	В	С	D
E	F	С	L		ΕNΤ	

3)モニタするアドレスを入力し[ENT]を押します。

重要 ・ デバイスアドレスの入力は、将来の拡張を考慮して、ご使用 になる PLC のデバイス範囲を越えて入力ができるようになっ ています。

> デバイスの範囲外をモニタしようとすると、画面下に「上位 通信エラー」が表示されます。


> このような場合、モニタされているデバイスを、ご使用のPLC の範囲に変更してください。

書き込み

モニタしているデバイスアドレスへデータ書き込みを行うことができます。

一括	一括단均			\downarrow	—	\rightarrow
-ىدتلا	変更	書込	表示 形式		Δ	\Box
DO	100				00	00h
DO	D0101				00	00h
DO	102				00	00h
DO	0103				00	00h
DO	104				00	00h
D0105					00	00h
D0106					00	00h
D(107				00	00h

1)「一括モニタ」で[書込]を選択します。「一括モニタ 書込 行選択」が表示されます。

- 2) 書き込みを行うデバイスの行番号を選択します。
 - 「一括モニタ 書込」が表示されます。

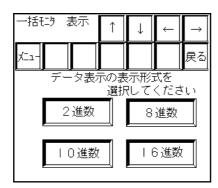
「一括モニタ」で直接書き込みたいデバイスのデータをタッチ しても選択できます。

一括	一括EI9 書込 ↑ ↓ ←					\rightarrow			
Х _⊐-						戻る			
現在の設定: D0100 0000h									
-	データ		0000h 0000 重で入力してください						
8	9	3	4 A	5 B	6 C	7 D			
E	F		L						

3) データを 16 進数で入力し、[ENT]を押します。 選択行のデバイスにデータが書き込まれます。

・ 一括モニタ変更時と[ENT]キーの位 置が異なります(データの誤った書 き込みを防ぐため)。

入力に誤りがあると「入力エラー」が画面左上に点滅表示されます。 入力範囲 **参照** 2-*-3/5-*-3 使用可能デバイス

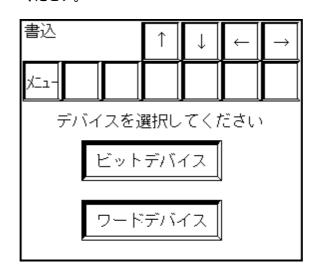

禁止: ・ ご使用の PLC の範囲外のデバイスに対しては、書き込みを行わないでください。

表示形式

モニタしているデータの表示形式を選択することができます。

一括モニタ	\uparrow	\downarrow	←	\rightarrow		
灯上 変更 書込	表示 形式		Δ	∇		
D0100			00	00h		
D0101	D0101			0000h		
D0102			0000h			
D0103			00	00h		
D0104	D0104 0000			00h		
D0105			00	00h		
D0106			00	00h		
D0107			00	00h		

1)「一括モニタ」で[表示形式]を選択します。 「一括モニタ 表示」が表示されます。



2) データ表示の表示形式を選択します。

付3.2.3 書き込み

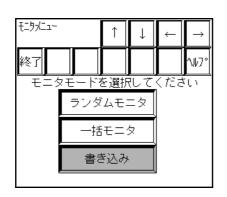
ご使用のPLCの任意のデバイスへデータ書き込みを行います。

禁止:・ご使用のPLCの範囲外のデバイスへの書き込みは行わないでください。

ビットデバイス

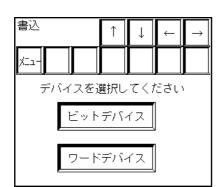
ビットデバイスに書き込む場合選択します。

ワードデバイス


ワードデバイスに書き込む場合選択します。

 $\uparrow \quad \downarrow \quad \downarrow \quad \leftarrow \quad \rightarrow \quad$

ウィンドウの表示位置を移動します。


- د تار

メニュー画面に戻ります。

1)「モニタメニュー」から[書き込み]を選択します。

「書込」が表示されます。

2)変更するデバイス (ビット・ワード)を選択します。

ここからは、ビットデバイスを選択したときとワードデバイスを選択したときに分けて説明します。


ビットデバイス

を選択した場合

3) 書き込むデバイスの種類を選択します。

次へ 残りのデバイスの種類を表示します。

書込	년 *개	選択	\uparrow	\downarrow	←	\rightarrow
ᄯᆚ						戻る
デバ	イスギ	ÉM	0	0 (0 0	0 0
	アドレ	ノスを	入力し	てく	ださい	. Υ
1	2	3	4	5	6	7
8	9	0	Α	В	С	D
E	F	С	L		EΝΊ	

4) 書き込むデバイスのアドレスを入力し、[ENT] を押します。

強制: ・ ご使用のPLCの範囲外へ書き込みを行った場合、「上記通信エラー」が画面下に表示され、消えなくなります。書き込みは必ず範囲内に対して行ってください。

書込 じか選択	\uparrow	$oxed{\downarrow}$	←	\rightarrow		
XII-				戻る		
デバイス名 M0000						
データを入力してください						
OFF		(ИС			

5)書き込みデータを入力します。

○FF ビットを OFF します。

○N ビットを ON します。

入力に誤りがあると「入力エラー」が画面左上に点滅表示されます。 入力範囲 **参照** 2-*-3/5-*-3 使用可能デバイス

ワードデバイス


を選択した場合

3) 書き込むデバイスの種類を選択します。

残りのデバイスの種類を表示しま す。

書込	ワード	選択	1	\downarrow	←	\rightarrow
У _1-						戻る
デバ	イス名	ÉD	0	0 0	0	0 0
アドレスを入力してください						
1 8	2 9	3	4 A	5 B	6 C	7 D
E	F				ENT	

4) 書き込むデバイスのアドレスを入力し[ENT] を押します。

入力に誤りがあると「入力エラー」が画面左上に点滅表示されます。 入力範囲 **参照** 2-*-3/5-*-3 使用可能デバイス

書込	ワート <u>゙</u>	選択	lacktriangle	\downarrow	←	\rightarrow	
-بتلا						戻る	
デノ	デバイス名 DO100 ENT						
データ 0000							
データを16進で入力してください							
1	2	3	4	5	6	7	
8	9	0	LA	В	С		

5) 書き込むデータを入力し[ENT]を押します。

・ ランダムモニタ / 一括モニタ変更時 と[ENT] キーの位置が異なります (データの誤った書き込みを防ぐた め)。