TVDA Device Module Library Function Template Library Guide

06/2017

The information provided in this documentation contains general descriptions and/or technical characteristics of the performance of the products contained herein. This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or subsidiaries shall be responsible or liable for misuse of the information contained herein. If you have any suggestions for improvements or amendments or have found errors in this publication, please notify us.

No part of this document may be reproduced in any form or by any means, electronic or mechanical, including photocopying, without express written permission of Schneider Electric.

All pertinent state, regional, and local safety regulations must be observed when installing and using this product. For reasons of safety and to help ensure compliance with documented system data, only the manufacturer should perform repairs to components.

When devices are used for applications with technical safety requirements, the relevant instructions must be followed.

Failure to use Schneider Electric software or approved software with our hardware products may result in injury, harm, or improper operating results.

Failure to observe this information can result in injury or equipment damage.

© 2017 Schneider Electric. All Rights Reserved.

Table of Contents

Chapter 1	Safety Information	9 13 17
		17
Chapter 2		19
2.1		21
		22
		23
	Global Variable List - GVL_ <name device="" module=""></name>	24
	Program - Prg_ <name device="" module=""></name>	26
	Adding Device Module to the Project	27
2.2	ATV•••_EtherNet/IP Device Modules	28
	Device Module Description	29
	Required Libraries	30
	Functional Description	31
	Adding Device Module to the Project	33
2.3	ATV•••_ModbusTCP Device Modules	34
	Device Module Description	35
	Required Libraries	36
	Functional Description	37
	Adding Device Module to the Project	39
2.4	ATV•••_CANopen Device Modules	40
	Device Module Description	41
	Required Libraries	43
	Functional Description	45
	Adding Device Module to the Project	47
2.5	ATV212_ModbusSL_2Motors_Bypass Device Module	48
	Device Module Description	49
	Required Libraries	51
	Global Variable List - GVL <name device="" module=""></name>	52
	Program - Prg_ <name device="" module=""></name>	56
	Adding Device Module to the Project	58

2.6	Encoder_AbsMlt_CANopen Device Module	60
	Device Module Description	61
	Required Libraries	62
	Global Variable List - GVL_ <name device="" module=""></name>	63
	Program - Prg_ <name device="" module=""></name>	64
	Adding Device Module to the Project	65
2.7	Encoder_AbsMlt_ModbusTCP Device Module	66
	Device Module Description	67
	Required Libraries	68
	Global Variable List - GVL_ <name device="" module=""></name>	69
	Program - Prg_ <name device="" module=""></name>	70
	Adding Device Module to the Project	71
2.8	Harmony_Wireless_ModbusSL Device Module	72
	Device Module Description	73
	Required Libraries	74
	Global Variable List - GVL_ <name device="" module=""></name>	75
	Program - Prg_ <name device="" module=""></name>	76
	Adding Device Module to the Project	77
2.9	Harmony_Wireless_ModbusTCP_• Device Modules	78
	Device Module Description	79
	Required Libraries	80
	Functional Description	81
	Adding Device Module to the Project	82
2.10	IO_ETB_ModbusTCP Device Module	83
	Device Module Description	84
	Global Variable List - GVL_ <name device="" module=""></name>	85
	Adding Device Module to the Project	87
2.11	Lexium_28_CANopen Device Module	88
	Device Module Description	89
	Required Libraries	91
	Global Variable List - GVL_ <name device="" module=""></name>	92
	Program - Prg_ <module name=""></module>	94
	Adding Device Module to the Project	95

2.12	Lexium_32A_CANmotion Device Module	96
	Device Module Description	97
	Required Libraries	98
	Global Variable List - GVL_ <name device="" module=""></name>	99
	Program - Prg_ <name device="" module=""></name>	101
	Adding Device Module to the Project	102
2.13	Lexium_32A_CANopen Device Module.	103
	Device Module Description	104
	Required Libraries	106
	Global Variable List - GVL_ <name device="" module=""></name>	107
	Program - Prg_ <name device="" module=""></name>	109
	Adding Device Module to the Project	110
2.14	Lexium_32i_CANopen Device Module	111
	Device Module Description	112
	Required Libraries	114
	Global Variable List - GVL_ <name device="" module=""></name>	115
	Program - Prg_ <name device="" module=""></name>	117
	Adding Device Module to the Project	118
2.15	Lexium_32M_EtherNetIP Device Module	119
	Device Module Description	120
	Required Libraries	121
	Functional Description	123
	Adding Device Module to the Project	124
2.16	Lexium_32M_ModbusTCP Device Module	125
	Device Module Description	126
	Required Libraries	127
	Functional Description	128
	Adding Device Module to the Project	130
2.17	Lexium_32S_Sercos Device Module	131
	Device Module Description	132
	Required Libraries	134
	Global Variable List - GVL_ <name device="" module=""></name>	135
	Program - Prg_ <name device="" module=""></name>	137
	Adding Device Module to the Project	139

2.18	Lexium_IL•2K_EtherNetIP Device Modules	140
	Device Module Description	141
	Required Libraries	142
	Functional Description	144
	Adding Device Module to the Project	145
2.19	Lexium_ILA_CANopen Device Module	146
	Device Module Description	147
	Required Libraries	148
	Global Variable List - GVL_ <name device="" module=""></name>	149
	Program - Prg_ <name device="" module=""></name>	151
	Adding Device Module to the Project	152
2.20	Lexium_ILE_CANopen Device Module	153
	Device Module Description	154
	Required Libraries	155
	Global Variable List - GVL_ <name device="" module=""></name>	156
	Program - Prg_ <name device="" module=""></name>	158
	Adding Device Module to the Project	159
2.21	Lexium_SD3_CANmotion Device Module	160
	Device Module Description	161
	Required Libraries	162
	Global Variable List - GVL_ <name device="" module=""></name>	163
	Program - Prg_ <name device="" module=""></name>	165
	Adding Device Module to the Project	166
2.22	MED_iEM3150_ModbusSL Device Module	167
	Device Module Description	168
	Required Libraries	170
	Global Variable List - GVL_ <name device="" module=""></name>	171
	Program - Prg_ <name device="" module=""></name>	173
	Adding Device Module to the Project	175
2.23	MED_PM3250_ModbusSL Device Module	176
	Device Module Description	177
	Required Libraries	179
	Global Variable List - GVL_ <name device="" module=""></name>	180
	Program - Prg_ <name device="" module=""></name>	183
	Adding Device Module to the Project	185

2.24	Motor_Ctrl_1D1S Device Module	186
	Device Module Description	187
	Required Libraries	188
	Global Variable List - GVL_ <name device="" module=""></name>	189
	Program - Prg_ <name device="" module=""></name>	190
	Adding Device Module to the Project	191
2.25	Motor Ctrl 2D1S Device Module	192
	Device Module Description	193
	Required Libraries	194
	Global Variable List - GVL <name device="" module=""></name>	195
	Program - Prg <name device="" module=""></name>	196
	Adding Device Module to the Project	197
2.26	OsiSense RFID EtherNetIP Device Module	198
	Device Module Description	199
	Required Libraries	200
	Functional Description	200
	Adding Device Module to the Project	201
2 27	OsiSense REID ModbusTCP Device Module	203
		204
	Required Libraries	200
	Functional Description	200
	Adding Device Module to the Project	207
2 28	OsiSense XI IW EtherNetIP Device Module	203
2.20		210
	Required Libraries	211
		212
	Adding Device Module to the Project	215
2 29	Preventa XPSMCM EtherNetIP Device Module	215
2.20		210
		217
		210
	Adding Device Module to the Project	219
2 20		220
2.50		221
		222
	Clobal Variable List CVL chame device modules	223
		224
	Adding Device Medule to the Project	225
		226

2.31	TeSysU_HW_1D Device Module	227
	Device Module Description	228
	Required Libraries	229
	Global Variable List - GVL_ <name device="" module=""></name>	230
	Program - Prg_ <name device="" module=""></name>	231
	Adding Device Module to the Project	232
2.32	TeSysU_HW_2D Device Module	233
	Device Module Description	234
	Required Libraries	235
	Global Variable List - GVL_ <name device="" module=""></name>	236
	Program - Prg_ <name device="" module=""></name>	237
	Adding Device Module to the Project	238
2.33	VSD_HW_1Motor_2DVS Device Module	239
	Device Module Description	240
	Required Libraries	241
	Global Variable List - GVL_ <name device="" module=""></name>	242
	Program - Prg_ <name device="" module=""></name>	244
	Adding Device Module to the Project	245
2.34	VSD HW 2Motors_2D2S Device Module	247
	Device Module Description	248
	Required Libraries	249
	Global Variable List - GVL <name device="" module=""></name>	250
	Program - Prg <name device="" module=""></name>	252
	Adding Device Module to the Project	253
Glossany	······································	255
Index		200
maex	•••••••••••••••••	209

Safety Information

Important Information

NOTICE

Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, service, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of this symbol to a "Danger" or "Warning" safety label indicates that an electrical hazard exists which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

DANGER indicates a hazardous situation which, if not avoided, **will result in** death or serious injury.

A WARNING

WARNING indicates a hazardous situation which, if not avoided, **could result in** death or serious injury.

CAUTION indicates a hazardous situation which, if not avoided, **could result** in minor or moderate injury.

NOTICE

NOTICE is used to address practices not related to physical injury.

PLEASE NOTE

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction and operation of electrical equipment and its installation, and has received safety training to recognize and avoid the hazards involved.

BEFORE YOU BEGIN

Do not use this product on machinery lacking effective point-of-operation guarding. Lack of effective point-of-operation guarding on a machine can result in serious injury to the operator of that machine.

WARNING

UNGUARDED EQUIPMENT

- Do not use this software and related automation equipment on equipment which does not have point-of-operation protection.
- Do not reach into machinery during operation.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

This automation equipment and related software is used to control a variety of industrial processes. The type or model of automation equipment suitable for each application will vary depending on factors such as the control function required, degree of protection required, production methods, unusual conditions, government regulations, etc. In some applications, more than one processor may be required, as when backup redundancy is needed.

Only you, the user, machine builder or system integrator can be aware of all the conditions and factors present during setup, operation, and maintenance of the machine and, therefore, can determine the automation equipment and the related safeties and interlocks which can be properly used. When selecting automation and control equipment and related software for a particular application, you should refer to the applicable local and national standards and regulations. The National Safety Council's Accident Prevention Manual (nationally recognized in the United States of America) also provides much useful information.

In some applications, such as packaging machinery, additional operator protection such as pointof-operation guarding must be provided. This is necessary if the operator's hands and other parts of the body are free to enter the pinch points or other hazardous areas and serious injury can occur. Software products alone cannot protect an operator from injury. For this reason the software cannot be substituted for or take the place of point-of-operation protection.

Ensure that appropriate safeties and mechanical/electrical interlocks related to point-of-operation protection have been installed and are operational before placing the equipment into service. All interlocks and safeties related to point-of-operation protection must be coordinated with the related automation equipment and software programming.

NOTE: Coordination of safeties and mechanical/electrical interlocks for point-of-operation protection is outside the scope of the Function Block Library, System User Guide, or other implementation referenced in this documentation.

START-UP AND TEST

Before using electrical control and automation equipment for regular operation after installation, the system should be given a start-up test by qualified personnel to verify correct operation of the equipment. It is important that arrangements for such a check be made and that enough time is allowed to perform complete and satisfactory testing.

WARNING

EQUIPMENT OPERATION HAZARD

- Verify that all installation and set up procedures have been completed.
- Before operational tests are performed, remove all blocks or other temporary holding means used for shipment from all component devices.
- Remove tools, meters, and debris from equipment.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Follow all start-up tests recommended in the equipment documentation. Store all equipment documentation for future references.

Software testing must be done in both simulated and real environments.

Verify that the completed system is free from all short circuits and temporary grounds that are not installed according to local regulations (according to the National Electrical Code in the U.S.A, for instance). If high-potential voltage testing is necessary, follow recommendations in equipment documentation to prevent accidental equipment damage.

Before energizing equipment:

- Remove tools, meters, and debris from equipment.
- Close the equipment enclosure door.
- Remove all temporary grounds from incoming power lines.
- Perform all start-up tests recommended by the manufacturer.

OPERATION AND ADJUSTMENTS

The following precautions are from the NEMA Standards Publication ICS 7.1-1995 (English version prevails):

- Regardless of the care exercised in the design and manufacture of equipment or in the selection and ratings of components, there are hazards that can be encountered if such equipment is improperly operated.
- It is sometimes possible to misadjust the equipment and thus produce unsatisfactory or unsafe operation. Always use the manufacturer's instructions as a guide for functional adjustments. Personnel who have access to these adjustments should be familiar with the equipment manufacturer's instructions and the machinery used with the electrical equipment.
- Only those operational adjustments actually required by the operator should be accessible to the operator. Access to other controls should be restricted to prevent unauthorized changes in operating characteristics.

About the Book

At a Glance

Document Scope

This document describes the function templates of the TVDA Device Module Library.

Validity Note

This document has been updated for the release of SoMachine V4.3.

Related Documents

Title of Documentation	Reference Number
SoMachine EnergyEfficiencyToolbox Library Guide	<u>EIO0000001157 (ENG)</u>
SoMachine Industrial EtherNet, User Guide	<u>EIO000002215</u>
SoMachine Machine Energy Dashboard Library Guide	<u>EIO0000001163 (ENG)</u>
SoMachine Modbus and ASCII Read/Write Functions	<u>EIO000000361 (ENG)</u>
PLCCommunication Library Guide	
SoMachine ModbusEnergyEfficiencyToolbox Library Guide	<u>EIO0000001224 (ENG)</u>
SoMachine PLCCommunication Library Guide	<u>EIO000000361 (ENG)</u>
SoMachine, Programming Guide	<u>EIO000000067 (ENG)</u>
SoMachine TeSys Motor Starters Functions TeSys Library Guide	<u>EIO000000657 (ENG)</u>
Altivar Library Function Blocks Software Manual	<u>0198441113880 (ENG)</u>
Lexium Library Function Blocks Software Manual	<u>0198441113892 (ENG)</u>
LXM28 Library Function Blocks Software Manual	<u>0198441114079 (ENG)</u>
LXM32i Library Function Blocks Library Guide	<u>0198441114011 (ENG)</u>
ILX Library Function blocks Software Manual	<u>0198441113886 (ENG)</u>
Harmony XB5R ZBRN1/ ZBRN2 User Manual	<u>EIO000001177 (ENG)</u>
Motion Control Library Guide	<u>EI000002221 (ENG)</u>

You can download these technical publications and other technical information from our website at http://www.schneider-electric.com/en/download

Product Related Information

WARNING

LOSS OF CONTROL

- The designer of any control scheme must consider the potential failure modes of control paths and, for certain critical control functions, provide a means to achieve a safe state during and after a path failure. Examples of critical control functions are emergency stop and overtravel stop, power outage and restart.
- Separate or redundant control paths must be provided for critical control functions.
- System control paths may include communication links. Consideration must be given to the implications of unanticipated transmission delays or failures of the link.
- Observe all accident prevention regulations and local safety guidelines.¹
- Each implementation of this equipment must be individually and thoroughly tested for proper operation before being placed into service.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

¹ For additional information, refer to NEMA ICS 1.1 (latest edition), "Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control" and to NEMA ICS 7.1 (latest edition), "Safety Standards for Construction and Guide for Selection, Installation and Operation of Adjustable-Speed Drive Systems" or their equivalent governing your particular location.

A WARNING

UNINTENDED EQUIPMENT OPERATION

- Only use software approved by Schneider Electric for use with this equipment.
- Update your application program every time you change the physical hardware configuration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Terminology Derived from Standards

The technical terms, terminology, symbols and the corresponding descriptions in this manual, or that appear in or on the products themselves, are generally derived from the terms or definitions of international standards.

In the area of functional safety systems, drives and general automation, this may include, but is not limited to, terms such as *safety, safety function, safe state, fault, fault reset, malfunction, failure, error, error message, dangerous,* etc.

Standard	Description
EN 61131-2:2007	Programmable controllers, part 2: Equipment requirements and tests.
ISO 13849-1:2008	Safety of machinery: Safety related parts of control systems. General principles for design.
EN 61496-1:2013	Safety of machinery: Electro-sensitive protective equipment. Part 1: General requirements and tests.
ISO 12100:2010	Safety of machinery - General principles for design - Risk assessment and risk reduction
EN 60204-1:2006	Safety of machinery - Electrical equipment of machines - Part 1: General requirements
EN 1088:2008 ISO 14119:2013	Safety of machinery - Interlocking devices associated with guards - Principles for design and selection
ISO 13850:2006	Safety of machinery - Emergency stop - Principles for design
EN/IEC 62061:2005	Safety of machinery - Functional safety of safety-related electrical, electronic, and electronic programmable control systems
IEC 61508-1:2010	Functional safety of electrical/electronic/programmable electronic safety- related systems: General requirements.
IEC 61508-2:2010	Functional safety of electrical/electronic/programmable electronic safety- related systems: Requirements for electrical/electronic/programmable electronic safety-related systems.
IEC 61508-3:2010	Functional safety of electrical/electronic/programmable electronic safety- related systems: Software requirements.
IEC 61784-3:2008	Digital data communication for measurement and control: Functional safety field buses.
2006/42/EC	Machinery Directive
2014/30/EU	Electromagnetic Compatibility Directive
2014/35/EU	Low Voltage Directive

Among others, these standards include:

In addition, terms used in the present document may tangentially be used as they are derived from other standards such as:

Standard	Description
IEC 60034 series	Rotating electrical machines
IEC 61800 series	Adjustable speed electrical power drive systems
IEC 61158 series	Digital data communications for measurement and control – Fieldbus for use in industrial control systems

Finally, the term *zone of operation* may be used in conjunction with the description of specific hazards, and is defined as it is for a *hazard zone* or *danger zone* in the *Machinery Directive* (2006/42/EC) and ISO 12100:2010.

NOTE: The aforementioned standards may or may not apply to the specific products cited in the present documentation. For more information concerning the individual standards applicable to the products described herein, see the characteristics tables for those product references.

Chapter 1 Introduction

Device Modules

What are Device Modules

Device Modules are application code templates that provide a quick and efficient way to integrate field devices such as variable speed drives (VSD) or servo drives in the SoMachine project. The Device Modules are implemented on function templates, a mechanism within SoMachine to recall predefined application program contents.

Each Device Module contains the required SoMachine application content to control the field device, to monitor its status, and to handle errors that are detected. It includes a separate global variable list to access the different device functionalities available to the entire SoMachine automation project.

Device Modules are available for many field devices, either connected to the control system via fieldbus or hardwired. In addition, functional components that are directly associated to field devices are also contained within the Device Modules.

How to Work with Device Modules

Device Modules are represented in SoMachine as code segments within a function template library.

All Device Modules described in this document are available within the SoMachine programming environment under **Tools** \rightarrow **Template Repository** \rightarrow **TVDA Device Module Library**. For more information, refer to the **Managing Function Templates** (see SoMachine, Programming Guide) online help.

Device Modules can become integrated into the application by drag-and-drop in one step. To achieve this, open the **Software Catalog** in the SoMachine Logic Builder. From the tab **Macros** in the **Software Catalog**, you can drag the desired Device Modules from the **TVDA Device Module** Library and drop it on the **Applications tree**. As a result, the **Add Function From Template** dialog box opens where you can perform the respective settings for adding the Device Modules.

NOTE: The name of the inserted objects corresponds with the name which has been assigned to the Device Module during the dialog **Add Function From Template** *(see SoMachine, Programming Guide)*.

Each Device Module provides a set of application objects. For a clear separation within the project, all Device Module application content inserted appears grouped in the **Application tree**:

The Program (PRG) as part of a Device Module is added automatically to the task configuration of the project.

The variables (interface) of the Device Modules are declared in a global variable list (GVL). They are accessible in the project as described in the following example.

To access to the variable which indicates the communication state of the Altivar32 with the assigned instance name M_{Y} _ATV32, you can write the following code:

```
IF NOT(GVL_My_ATV32_CANopen.xComOk)THEN
(*your program code*);
END_IF
```

Typically Device Modules include a field device. These devices are added under the associated fieldbus manager. This assumes that the respective fieldbus manager has been configured in the project before you can instantiate a Device Module. For example, the Device Module ATV32_CANopen requires a configured CANopen manager.

Chapter 2 Device Modules Descriptions

What Is in This Chapter?

This chapter contains the following sections:

Section	Торіс	Page
2.1	ATS22_ModbusSL Device Module	21
2.2	ATV••••_EtherNet/IP Device Modules	28
2.3	ATVModbusTCP Device Modules	34
2.4	ATV••••_CANopen Device Modules	40
2.5	ATV212_ModbusSL_2Motors_Bypass Device Module	48
2.6	Encoder_AbsMlt_CANopen Device Module	60
2.7	Encoder_AbsMlt_ModbusTCP Device Module	66
2.8	Harmony_Wireless_ModbusSL Device Module	72
2.9	Harmony_Wireless_ModbusTCP_• Device Modules	78
2.10	IO_ETB_ModbusTCP Device Module	83
2.11	Lexium_28_CANopen Device Module	88
2.12	Lexium_32A_CANmotion Device Module	96
2.13	Lexium_32A_CANopen Device Module	103
2.14	Lexium_32i_CANopen Device Module	111
2.15	Lexium_32M_EtherNetIP Device Module	119
2.16	Lexium_32M_ModbusTCP Device Module	125
2.17	Lexium_32S_Sercos Device Module	131
2.18	Lexium_IL•2K_EtherNetIP Device Modules	140
2.19	Lexium_ILA_CANopen Device Module	146
2.20	Lexium_ILE_CANopen Device Module	153
2.21	Lexium_SD3_CANmotion Device Module	160
2.22	MED_iEM3150_ModbusSL Device Module	167
2.23	MED_PM3250_ModbusSL Device Module	176
2.24	Motor_Ctrl_1D1S Device Module	186
2.25	Motor_Ctrl_2D1S Device Module	192
2.26	OsiSense_RFID_EtherNetIP Device Module	198
2.27	OsiSense_RFID_ModbusTCP Device Module	204
2.28	OsiSense_XUW_EtherNetIP Device Module	210

Section	Торіс	Page
2.29	Preventa_XPSMCM_EtherNetIP Device Module	216
2.30	TeSysU_CANopen_Standard Device Module	221
2.31	TeSysU_HW_1D Device Module	227
2.32	TeSysU_HW_2D Device Module	233
2.33	VSD_HW_1Motor_2DVS Device Module	239
2.34	VSD_HW_2Motors_2D2S Device Module	247

Section 2.1 ATS22_ModbusSL Device Module

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	22
Required Libraries	
Global Variable List - GVL_ <name device="" module=""></name>	
Program - Prg_ <name device="" module=""></name>	
Adding Device Module to the Project	27

Device Module Description

Graphical Representation

ATS22_ModbusSL Device Module Description

The Device Module provides a ready-to-use coding template as a pattern to monitor and control an Altistart 22 soft start - soft stop unit via Modbus SL through a SoMachine controller.

The Device Module ATS22_ModbusSL is represented by a function template and consists of a global variable list (GVL), and a program. After instantiation of the Device Module, these objects are added to your project. They appear with the name which has been assigned using **Add Function From Template** (see SoMachine, Programming Guide).

The GVL provides the variables which are used to monitor and control a soft start - soft stop with the Altistart 22.

After instantiation, a variable wModbusToken is added to a global variable list with the name GVL. In the program, when the wModbusToken variable is equal to zero, the communication can start. When the communication starts, the used slave address is written to the variable. When the communication is finished, the value 0 is written to the variable. Use this variable to organize other Modbus SL communication function blocks in your application.

The program provides the following features:

- monitor the communication state of the device
- monitor the state of the device
- control the device in auto mode
- control the device in manual mode
- control the device in local mode

Required Libraries

Required Libraries Used in the ATS22_ModbusSL Device Module

The following function blocks are used in the program organization units (POU) of the Device Module. The corresponding libraries are added to the project when the Device Module is added.

Function Block	Library	Namespace	Vendor
Mot2D1S	TeSys Library	SE_TESYS	Schneider Electric
READ_VAR	PLCCommunication	SEN	Schneider Electric
WRITE_VAR			

Global Variable List - GVL_<name device module>

Global Variables Provided by the ATS22_ModbusSL Device Module

The table presents the variables provided with the global variable list:

Variable	Data Type	Description	
xSelAutMode	BOOL	Selects auto mode for the FB.	
xSelManMode	BOOL	Selects manual mode for the FB.	
xCmdLocFwd	BOOL	Local start (latch mode) of the motor in a forward direction during manual mode.	
xCmdLocStop	BOOL	Local stop of the motor during manual mode.	
xCmdManFwd	BOOL	Starts (latch mode) the motor during manual mode.	
xCmdManStop	BOOL	Stops the motor during manual mode.	
xCmdAutFwd	BOOL	Starts (jog mode) the motor during auto mode.	
xCmdErrRst	BOOL	Resets the FB in case of an alarm state.	
xExtLock	BOOL	External signal to lock the FB (for example state of the emergency stop).	
xExtErr	BOOL	External signal to set the FB into error detected state (reset required).	
xStatAutMode	BOOL	FB is selected for auto mode.	
xStatManMode	BOOL	FB is selected for manual mode.	
xStatErr	BOOL	FB is in error state, reset required.	
xDriveCmdFrwhStop	BOOL	Activates the freewheel deceleration within the control word xDriveCmdRun.	
xDriveCmdEn2ndPara	BOOL	Enables the second set of parameters.	
xDriveCmdLocMode	BOOL	Forces local commands directly on the drive. Not related to the local commands used in the program.	
xDriveRst	BOOL	Resets the drive in case of an error state.	
xMcbRdy	BOOL	Indicates the state of Motor Circuit Breaker (MCB). Mapped to the physical input where the respective auxiliary contact of the MCB is connected.	
xDriveRun	BOOL	Signal associated with the status word which indicates the motor is energized through the Altistart 22.	
xDriveRdy	BOOL	Signal associated with the status word which indicates the Altistart 22 is operational.	
xDriveTrip	BOOL	Signal associated with the status word which indicates whether an error has been detected on the Altistart 22.	
xDriveWarn	BOOL	Signal associated with the status word which indicates whether an advisory condition exists on the Altistart 22.	

Variable	Data Type	Description
xDriveLocMode	BOOL	Signal associated with the status word which indicates whether the local command is forced on the Altistart 22.
xDriveRamping	BOOL	Signal associated with the status word which indicates whether the motor is accelerating or decelerating.
byDriveMotCurr	BYTE	Signal associated with the status word which indicates the present motor current in percent of the rated motor current. Range: 0200%
xAlertLock	BOOL	FB is blocked by i_xLock.
xAlarmFbckTmout	BOOL	FB is in alarm state due to undetected feedback signal during the monitoring time.
xAlarmExt	BOOL	FB is in alarm state due to detected i_xErr.
xComOk	BOOL	Indicates the communication state of the device. TRUE = communication state operational FALSE = communication state not operational
byComErrRead	BYTE	Indicates the error ID in case of a detected communication error during read request.
dwOperErrRead	DWORD	Indicates the error ID in case of a detected operation error during read request.
byComErrWrite	BYTE	Indicates the error ID in case of a detected communication error during write request.
dwOperErrWrite	DWORD	Indicates the error ID in case of a detected operation error during write request.
xComInit	BOOL	Indicates that the communication has been successfully intialized.

Program - Prg_<name device module>

Program Contained in the ATS22_ModbusSL Device Module

The program is divided into 3 actions and is created in programming language CFC (Continuous Function Chart). All actions will be called on each program execution.

Action - A01_ReadParameter

By the program code in this action, the status word of the device is read via Modbus SL using the FB READ_VAR.

The Modbus communication is managed internally with the variable GVL.wModbusToken. The token coordinates the execution of all Modbus function blocks configured in the project. The token is being reserved by the active Modbus function block until the Modbus operation has been completed. If the read process of the status word is possible, the variable GVL.wModbusToken will be reserved (the slave address is written on it), until the request is completed.

The value of the status word is assigned to the corresponding variables which have been declared in the associated GVL *(see page 24)*.

Action - A02_AltistartControl

By the program code in this action, the motor control FB is called.

Implemented features are:

- Mapping of the manual commands to the control word.
- FB instance (MOTIDIS) call with assigned parameters.
- Extracting of the status word (detailed alarm and alert information) to boolean variables.

Action - A03_WriteParameter

By the program code in this action the control word of the device is written via Modbus SL using the FB wRITE_VAR.

The Modbus communication is managed internally with the variable GVL.wModbusToken. The token controls execution of all Modbus function blocks configured in the project. The token is being reserved by the active Modbus function block until the Modbus operation has been completed. If the write process of the control word is possible, the GVL.wModbusToken will be reserved (the slave address is written on it) until the request is completed.

Adding Device Module to the Project

Instantiation of the Device Module

The instantiation of this Device Module requires that a Modbus manager be added to the serial interface of your controller.

Using **Add Function from Template** *(see SoMachine, Programming Guide)* for this Device Module, you can:

- map variables to physical inputs and outputs of your configuration
- adjust initial values for selected variables which are part of the template

Variable selected for I/O mapping (input):

Variable	Data Type	Default Value	Description
GVL_ <modul name="">.xMcbRdy</modul>	BOOL	-	Signal associated with the motor circuit breaker contact indicating that the device is under power.

Variables selected for parameterization (constant):

Variable	Data Type	Default Value	Description
Prg_ <modul name="">.c_bywAddr</modul>	BYTE	1	Modbus slave address of the device.
<pre>Prg_<module name="">.c_byChanNb</module></pre>	BYTE	1	Communication port of the controller.
Prg_ <modul name="">.c_xEnFbckCtrl</modul>	BOOL	TRUE	Enables the monitoring of the feedback signals of the motor run state.
Prg_ <modul name="">.c_iDlyTimeFbckCtrl</modul>	INT	2	Delay time in seconds to determine that the feedback signal is inoperable and to activate an alarm.

Section 2.2 ATV•••_EtherNet/IP Device Modules

Overview

This section provides a generic description for the following Device Modules:

- ATV32_EtherNetIP
- ATV71_EtherNetIP
- ATV320_EtherNetIP
- ATV340_EtherNetIP
- ATV6xx_EtherNetIP
- ATV9xx_EtherNetIP

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	29
Required Libraries	30
Functional Description	31
Adding Device Module to the Project	33

Device Module Description

Graphical Representation

- 1 Altivar 32
- 2 Altivar 71
- 3 Altivar 320 Compact and Book format
- 4 Altivar 340
- 5 Altivar 6••
- 6 Altivar 9••

Device Module Description

Each Device Module covered by this description provides the application objects and the device which are required to monitor and control the associated Altivar type via EtherNet/IP with a Schneider Electric SoMachine controller. Each device (Altivar) requires the **Industrial Ethernet manager** under the Ethernet interface of the controller within the **Devices tree** of the Logic Builder configuration.

Required Libraries

Required Libraries Used in a Device Module

A Device Module implements objects from one or more libraries. The objects and the associated libraries are listed in the following tables.

Function/Function block	Library	Namespace	Vendor
MC_Power	GMC Independent PLCopen MC	GIPLC	Schneider Electric
MC_Reset			
MC_Stop			
MC_Jog			
MC_MoveVelocity			
MC_ReadActualVelocity			
MC_ReadStatus			
MC_ReadAxisError			
SetDriveRamp_ATV	GMC Independent Altivar	GIATV	
SetFrequencyRange_ATV			
StoreParameters_ATV			
EIPGetHealthBit	EtherNetIP Scanner	EIPSC	
EIPStartConnection			
EIPStopConnection			
FB_RemoteAdapter	EtherNetIP Remote Adapter	EIPRA	

Enumeration	Library	Namespace	Vendor
OperationErrorCodes	EtherNetIP Scanner	EIPSC	Schneider Electric
CIPOperationErrorCodes			
CommunicationErrorCodes			
eStatus	EtherNetIP Remote Adapter	EIPRA	
eAdapterErrorInfo			

NOTE: The library EtherNetIP Scanner is not supported by the motion controller LMC078.

Functional Description

Device - <name device module>

Each Device Module implements the device for the associated Altivar type for EtherNet/IP. The device is added under the **Industrial Ethernet manager** in your configuration with the instance name assigned within the **Add Function From Template** dialog box.

The device is preconfigured. The configuration includes the connection for the native drive control profile with the assemblies 100 (output) and 101 (input).

The Requested Packet Interval (RPI) is configured to:

- 10 ms for the Altivar 32, 320, 340, 6.., and 9..
- 30 ms for the Altivar 71

Global Variable List - GVL_<name device module>

The Device Module implements a GVL. This GVL is added under the **Application** node in the folder with the name assigned within the **Add Function From Template** dialog box. The GVL has the same name as the device instance with the prefix GVL_.

The GVL contains the variables which build the interface from the implemented program code to the application. The clear name of the GVL and the uniform naming of the variables facilitate a simple and structured implementation into the application.

Program - Prg_<name device module>

The Device Module implements a program. This program is added under the **Application** node within a folder with the name assigned within the **Add Function From Template** dialog box. The program has the same name as the device instance with the prefix Prg_. A program-call is added automatically to the associated task.

For basic control functions, the program code does not need to be modified, all required signals and control parameter are linked to the associated variables in the GVL.

The program is divided into several actions. These are described in the following table.

NOTE: The program logic of the action A01_ComCtrl is not supported in an application of a motion controller LMC078.

Name of the action	Description
A01_ComCtrl	Processes the functions to monitoring and control of the EtherNet/IP communication with the device.
A02_Ctrl_ATV	Contains a selection of function block calls to control and monitor the Altivar. Each function block is called in each program cycle.
A03_Config_ATV	Contains a selection of function block calls to write a set of parameters to the Altivar.
A04_FbErrorDetection	Contains the logic for the evaluation of the error messages which are provided by the motion control (MC_) function blocks.

Further information about the control logic is available inside the program in terms of comments.

Adding Device Module to the Project

Instantiation of the Device Module

The instantiation of this Device Module requires the **Industrial Ethernet manager** under the Ethernet interface of your controller within the **Devices tree** of the Logic Builder configuration.

Using Add Function From Template you can:

- Select the fieldbus master which manages the device
- Assign the IP address for the device
- Map variables to physical inputs and outputs of your configuration
- Adjust initial values for selected variables which are part of the template

Variable selected for I/O mapping (input):

Variable	Data type	Default value	Description
GVL_ <name device="" module="">.xMcbRdy</name>	BOOL	-	Indicates the state of
			motor circuit breaker.

Section 2.3 ATV•••_ModbusTCP Device Modules

Overview

This section provides a generic description for the following Device Modules:

- ATV32_ModbusTCP
- ATV320_ModbusTCP
- ATV340_ModbusTCP
- ATV6xx_ModbusTCP
- ATV9xx_ModbusTCP

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	35
Required Libraries	36
Functional Description	37
Adding Device Module to the Project	39

Device Module Description

Graphical Representation

- 1 Altivar 32
- 2 Altivar 320 Compact and Book format
- 3 Altivar 340
- 4 Altivar 6••
- 5 Altivar 9••

Device Module Description

Each Device Module covered by this description provides the application objects and the device which are required to monitor and control the associated Altivar type via Modbus TCP with a Schneider Electric SoMachine controller. Each device (Altivar) requires the **Industrial Ethernet manager** under the Ethernet interface of the controller within the **Devices tree** of the Logic Builder configuration.

Required Libraries

Required Libraries Used in a Device Module

A Device Module implements objects from one or more libraries. The objects and the associated libraries are listed in the following table.

Function/Function block	Library	Namespace	Vendor
MC_Power	GMC Independent PLCopen MC	GIPLC	Schneider Electric
MC_Reset			
MC_Stop			
MC_Jog			
MC_MoveVelocity			
MC_ReadActualVelocity			
MC_ReadStatus			
MC_ReadAxisError			
SetDriveRamp_ATV	GMC Independent Altivar	GIATV	
SetFrequencyRange_ATV			
StoreParameters_ATV			
IOS_GetHealth	ModbusTCPIOScanner	SE_IOS	
Functional Description

Device - <name device module>

Each Device Module implements the device for the associated Altivar type for Modbus TCP. The device is added under the **Industrial Ethernet manager** in your configuration with the instance name assigned within the **Add Function From Template** (see SoMachine, Programming Guide) dialog box.

The device is preconfigured. The configuration includes the **ModbusTCP channel** for the cyclic data exchange with the device. The repetition rate for the channel is selected with 10 ms.

Global Variable List - GVL_<name device module>

The Device Module implements a GVL. This GVL is added under the **Application** node in the folder with the name assigned within the **Add Function From Template** dialog box. The GVL has the same name as the device instance with the prefix GVL_.

The GVL contains the variables which build the interface from the implemented program code to the application. The clear name of the GVL and the uniform naming of the variables facilitate a simple and structured implementation into the application.

Program - Prg_<name device module>

The Device Module implements a program. This program is added under the **Application** node within a folder with the name assigned within the **Add Function From Template** dialog box. The program has the same name as the device instance with the prefix Prg_. A program-call is added automatically to the associated task.

For basic control functions, the program code does not need to be modified, all required signals and control parameter are linked to the associated variables in the GVL.

Name of the action	Description
A01_ComStat	Processes the functions to monitoring and control of the Modbus TCP communication with the device.
A02_Ctrl_ATV	Contains a selection of function blocks calls to control and monitor the Altivar. Each function block is called in each program cycle.
A03_Config_ATV	Contains a selection of function blocks calls to write a set of parameters to the Altivar.
A04_FbErrorDetection	Contains the logic for the evaluation of the error messages which are provided by the motion control (MC_{-}) function blocks.

The program is divided into several actions. These are described in the following table.

NOTE: For monitoring the communication state of the device, the channel ID of the configured Modbus TCP channel must be set as value for the variable GVL_<name device

module>.c_uiChannelId. The channel ID is automatically generated when the device is added to the project and can be obtained through the **Device Editor** in the tab **Modbus TCP Slave** configuration.

Further information about the control logic is available inside the program in terms of comments.

Adding Device Module to the Project

Instantiation of the Device Module

The instantiation of this Device Module requires the **Industrial Ethernet manager** under the Ethernet interface of your controller within the **Devices tree** of the Logic Builder configuration.

Using Add Function From Template (see SoMachine, Programming Guide), you can:

- Select the fieldbus master which manages the device
- Assign the IP address for the device
- Map variables to physical inputs and outputs of your configuration
- · Adjust initial values for selected variables which are part of the template

Variable selected for I/O mapping (input):

Variable	Data type	Default value	Description
GVL_ <name device="" module="">.xMcbRdy</name>	BOOL	-	Indicates the state of
			motor circuit breaker.

Section 2.4 ATV•••_CANopen Device Modules

Overview

This section provides a generic description for the following Device Modules:

- ATV312_CANopen
- ATV32_CANopen
- ATV71_CANopen
- ATV71_CANopen_Enc
- ATV320_CANopen
- ATV340_CANopen
- ATV6xx_CANopen
- ATV9xx_CANopen

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	41
Required Libraries	43
Functional Description	45
Adding Device Module to the Project	47

Device Module Description

Graphical Representation

Device Module Description

Each Device Module covered by this description provides the application objects and the device which are required to monitor and control the associated Altivar type via CANopen with a Schneider Electric SoMachine controller. Each device (Altivar) requires the CANopen manager under the CAN interface of the controller within the **Devices tree** of the Logic Builder configuration.

Required Libraries

Required Libraries Used in a Device Module

A Device Module implements objects from one or more libraries.

With the SoMachine V4.1 SP2, a new library concept was introduced for devices that comply with the PLCopen standard. Therefore, the motion control (MC_) function blocks for the Altivar 320, 340, 6••, and 9•• devices are provided in a new, fieldbus-independent library.

The objects and the associated libraries are listed in the following tables.

Function/Function block	Library	Namespace	Vendor	
Used only by the Device Modules ATV320_CANopen, ATV340_CANopen, ATV6xx_CANopen, and ATV9xx_CANopen.				
MC_Power	GMC Independent	GIPLC	Schneider Electric	
MC_Reset	PLCopen MC			
MC_Stop				
MC_Jog				
MC_MoveVelocity				
MC_ReadActualVelocity				
MC_ReadStatus				
MC_ReadAxisError				
SetDriveRamp_ATV	GMC Independent	GIATV		
SetFrequencyRange_ATV	Altivar			
StoreParameters_ATV				
Used only by the Device Modul ATV71_CANopen_Enc.	es ATV312_CANoper	n, ATV32_CANopen,A⊺	IV71_CANopen, and	
MC_Power_ATV	Altivar Library	SE_ATV	Schneider Electric	
MC_Reset_ATV				
MC_Stop_ATV				
MC_Jog_ATV				
MC_MoveVelocity_ATV				
MC_ReadAxisError_ATV				
SetDriveRamp_ATV				
SetFrequencyRange_ATV				
StoreParameters_ATV				
Used by the Device Modules supported in this description.				
GET_STATE	CAA CiA405	CIA405	CAA Technical Workgroup	

Enumeration	Library	Namespace	Vendor	
Used by the Device Modules supported in this description.				
DEVICE_STATE	CAA CiA405	CIA405	CAA Technical Workgroup	

Functional Description

Device - <name device module>

Each Device Module implements the device for the associated Altivar type for CANopen. The device is added under the CANopen manager in your configuration with the instance name assigned within the **Add Function From Template** dialog box.

The device is preconfigured and corresponds to the default configuration of the associated device except for the device Altivar 71 as part of the Device Module ATV71_CANopen_Enc.

The Device Module ATV71_CANopen_Enc supports an application where an encoder is linked to the drive Altivar 71 and the encoder value is read via CANopen from the controller. Therefore, the object **PUC** (pulse counter) is added to the first transmit PDO (Process Data Object) in the device editor of the Altivar 71. The resulting additional entry in the input mapping table represents the encoder value and is assigned to a variable in the associated GVL for monitoring purposes only.

Global Variable List - GVL_<name device module>

The Device Module implements a GVL. This GVL is added under the **Application** node in the folder with the name assigned within the **Add Function From Template** dialog box. The GVL has the same name as the device instance with the prefix GVL_.

The GVL contains the variables which build the interface from the implemented program code to the application. The clear name of the GVL and the uniform naming of the variables facilitate a simple and structured implementation into the application.

Program - Prg_<name device module>

The Device Module implements a POU of type **Program**. This program is added under the **Application** node within a folder with the name assigned within the **Add Function From Template** dialog box. The program has the same name as the device instance with the prefix Prg_. A program-call is added automatically to the associated task.

For the main control functions, the program code does not need to be modified, the required signals and control parameters are linked to the associated variables in the GVL.

Name of the action	Description
A01_GetNodeState	Contains the call of the GET_STATE function block to obtain the communication state for the CANopen device.
A02_Ctrl_ATV	Contains a selection of function block calls to control and monitor the Altivar. Each function block is called in each program cycle.
A03_Config_ATV	Contains a selection of function block calls to write a set of parameters to the Altivar.
A04_FbErrorDetection	Contains the logic for the evaluation of the error messages which are provided by the motion control (MC_{-}) function blocks.

The program is divided into several actions. They are described in the following table.

Further information about the control logic is available inside the program in terms of comments.

Adding Device Module to the Project

Instantiation of the Device Module

The instantiation of this Device Module requires the CANopen manager under the CAN interface of the controller within the **Devices tree** of the Logic Builder configuration.

Using Add Function From Template (see SoMachine, Programming Guide), you can:

- Select the fieldbus master which manages the device.
- Assign the node ID to the CANopen remote device.
- Map variables to physical inputs and outputs of your configuration.
- Adjust initial values for selected variables which are part of the template.

Variable selected for I/O mapping (input):

Variable	Data type	Default value	Description
GVL_ <name device="" module="">.xMcbRdy</name>	BOOL	-	Indicates the state of
			motor circuit breaker.

Variable selected for parameterization (constant):

Variable	Data type	Default value	Description
<pre>Prg_<name device="" module="">.c_udiTmotGetStat</name></pre>	UDINT	1000	Parameter for timeout monitoring on FB instance GET_STATE in ms.

Section 2.5 ATV212_ModbusSL_2Motors_Bypass Device Module

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	49
Required Libraries	
Global Variable List - GVL_ <name device="" module=""></name>	
Program - Prg_ <name device="" module=""></name>	
Adding Device Module to the Project	

Device Module Description

Graphical Representation

ATV212_ModbusSL_2Motors_Bypass Device Module Description

The Device Module provides a ready-to-use coding template as a pattern to monitor and control two motors. Each motor can be controlled either via an Altivar 212 variable speed drive, or with a direct online motor starter to bypass the drive. Only one motor can be controlled via the drive at the same time. The Altivar 212 is controlled and monitored via Modbus SL and the direct online motor starters are controlled and monitored via hardwired signals through a SoMachine controller.

The Device Module ATV212_ModbusSL_2Motors_Bypass is represented by a function template and consists of a global variable list (GVL), and a program. After instantiation of the Device Module, these objects are added to your project. They appear with the name which has been assigned using **Add Function From Template** (see SoMachine, Programming Guide).

The GVL provides the variables which are used to monitor and control an ATV212, the switching between the motors, and the bypass control of the motors.

After instantiation, a variable wModbusToken is added a global variable list with the name GVL. In the program, when the wModbusToken variable is equal to zero, the communication can start. When the communication starts, the used slave address is written to the variable. When the communication is finished, the value 0 is written to the variable. Use this variable to organize other Modbus SL communication function blocks in your application.

The program provides the following features:

- monitor the communication state of the drive
- · monitor the state of the drive and the direct online motor starters
- control both motors in auto mode
- control both motors in manual mode
- control both motors in local mode
- control both motors in bypass mode
- control one of the motors via the drive
- reset the drive in case an error state is detected

Required Libraries

Required Libraries Used in the ATV212_ModbusSL_2Motors_Bypass Device Module

The following function blocks are used in the program organization units (POU) of the Device Module. The corresponding libraries are added to the project when the Device Module is added.

Function Block	Library	Namespace	Vendor
Mot2D1S	TeSys library	SE_TESYS	Schneider Electric
READ_VAR	PLCCommunication	SEN	Schneider Electric
WRITE_VAR			

Global Variable List - GVL_<name device module>

Global Variables Provided by the ATV212_ModbusSL_2Motors_Bypass Device Module

The table presents the variables provided with the global variable list:

Variable	Data Type	Description
xMcbRdyDrive	BOOL	Indicates the state of the Motor Circuit Breaker (MCB). Mapped to the physical input where the respective auxiliary contact of the MCB is connected.
xMcbRdyBypass1	BOOL	Indicates the state of the MCB of the direct online motor starter of motor 1. Mapped to the physical input where the respective auxiliary contact of the MCB is connected.
xMcbRdyBypass2	BOOL	Indicates the state of the MCB of the direct online motor starter of motor 2. Mapped to the physical input where the respective auxiliary contact of the MCB is connected.
xContactorActvMot1	BOOL	Indicates one of the contactors of motor 1 is energized.
xContactorActvMot2	BOOL	Indicates one of the contactors of motor 2 is energized.
xSelBypassModeMot1	BOOL	Pre-selection for control of motor 1 via the direct online motor starter.
xSelBypassModeMot2	BOOL	Pre-selection for control of motor 2 via the direct online motor starter.
xSelDriveCtrlModeMot1	BOOL	Pre-selection for control of motor 1 via the drive.
xSelDriveCtrlModeMot2	BOOL	Pre-selection for control of motor 2 via the drive.
xSelAutModeMot1	BOOL	Selects auto mode for the FB of motor 1.
xSelAutModeMot2	BOOL	Selects auto mode for the FB of motor 2.
xSelManModeMot1	BOOL	Selects manual mode for the FB of motor 1.
xSelManModeMot2	BOOL	Selects manual mode for the FB of motor 2.
xCmdManFwdMot1	BOOL	Starts (latch mode) the motor 1 in a forward direction during manual mode.
xCmdManRevMot1	BOOL	Starts (latch mode) the motor 1 in a reverse direction during manual mode.
xCmdManStopMot1	BOOL	Stops the motor 1 during manual mode.
xCmdManFwdMot2	BOOL	Starts (latch mode) the motor 2 in a forward direction during manual mode.
xCmdManRevMot2	BOOL	Starts (latch mode) the motor 2 in a reverse direction during manual mode.
xCmdManStopMot2	BOOL	Stops the motor 2 during manual mode.

Variable	Data Type	Description
xCmdLocFwdMot1	BOOL	Local start (latch mode) of the motor 1 in a forward direction during manual mode.
xCmdLocRevMot1	BOOL	Local start (latch mode) of the motor 1 in a reverse direction during manual mode.
xCmdLocStopMot1	BOOL	Local stop of the motor 1 during manual mode.
xCmdLocFwdMot2	BOOL	Local start (latch mode) of the motor 2 in a forward direction during manual mode.
xCmdLocRevMot2	BOOL	Local start (latch mode) of the motor 2 in a reverse direction during manual mode.
xCmdLocSTopMot2	BOOL	Local stop of the motor 2 during manual mode.
xCmdAutFwdMot1	BOOL	Starts (jog mode) the motor 1 in a forward direction during auto mode.
xCmdAutRevMot1	BOOL	Starts (jog mode) the motor 1 in a reverse direction during auto mode.
xCmdAutFwdMot2	BOOL	Starts (jog mode) the motor 2 in a forward direction during auto mode
xCmdAutRevMot2	BOOL	Starts (jog mode) the motor 2 in a reverse direction during auto mode.
xCmdErrRstMot1	BOOL	Resets the FB controlling motor 1 in case of an alarm state.
	BOOL	Resets the FB controlling of motor 2 in case of an alarm state.
	BOOL	External signal to set the FB controlling motor 1 (for example state of the emergency stop).
	BOOL	External signal to set the FB controlling motor 2 (for example state of the emergency stop).
	BOOL	External signal to set the FB controlling motor 1, into error detected state (reset required).
	BOOL	External signal to set the FB controlling motor 2, into error detected state (reset required).
	BOOL	Activates the contactor of the direct online motor starter of motor 1.
	BOOL	Activates the contactor of the direct online motor starter of motor 2.
xCmdErrRstMot2	BOOL	Activates the contactor which links the motor 1 to the drive.
xExtLockMot1	BOOL	Activates the contactor which links the motor 2 to the drive.
xExtLockMot2	WORD	Speed reference for manual mode associated to the FB controlling motor 1 in units of 0.01 Hz.

Variable	Data Type	Description
xExtErrMot1	WORD	Speed reference for automatic mode associated to the FB controlling motor 1 in units of 0.01 Hz.
xExtErrMot2	WORD	Speed reference for manual mode associated to the FB controlling motor 2 in units of 0.01 Hz.
xCmdActvBypassContactMot1	WORD	Speed reference for automatic mode associated to the FB controlling motor 2 in units of 0.01 Hz.
xCmdActvBypassContactMot2	BOOL	Indicates motor 1 is selected for Bypass mode
xStatBypassModeMot2	BOOL	Indicates motor 2 is selected for Bypass mode.
xStatDriveCtrlModeMot1	BOOL	Indicates motor 1 is selected for ATV control mode.
xStatDriveCtrlModeMot2	BOOL	Indicates motor 2 is selected for ATV control mode.
xMotlRunBypassMode	BOOL	Indicates whether motor 1 is running in Bypass mode.
xMotlRunDriveMode	BOOL	Indicates whether motor 1 is running in ATV control mode.
xMot2RunBypassMode	BOOL	Indicates whether motor 2 is running in Bypass mode.
xMot2RunDriveMode	BOOL	Indicates whether motor 2 is running in ATV control mode.
xStatAutModeMot1	BOOL	FB controlling motor 1 is selected for auto mode.
xStatManModeMot1	BOOL	FB controlling motor 1 is selected for manual mode.
xStatLocModeMot1	BOOL	FB controlling motor 1 is selected for local mode.
xStatAutModeMot2	BOOL	FB controlling motor 2 is selected for auto mode.
xStatManModeMot2	BOOL	FB controlling motor 2 is selected for manual mode.
xStatLocModeMot2	BOOL	FB controlling motor 2 is selected for local mode.
xStatErrMotl	BOOL	FB controlling motor 1 is in error detected state, reset required.
xStatErrMot2	BOOL	FB controlling motor 2 is in error detected state, reset required.
xAlertLockMot1	BOOL	FB controlling motor 1 is blocked by i_xLock.
xAlertLockMot2	BOOL	FB controlling motor 2 is blocked by i_xLock.
xAlarmOpModeMot1	BOOL	Invalid operation mode selection received for motor 1.
xAlarmOpModeMot2	BOOL	Invalid operation mode selection received for motor 2.
xAlarmExtMot1	BOOL	FB controlling motor 1 is in alarm state due to detected i_xErr.
xAlarmExtMot2	BOOL	FB controlling motor 2 is in alarm state due to detected i_xErr.
xAlarmFbckTmoutMot1	BOOL	FB controlling motor 1 is in alarm state due to undetected feedback signal (i_xFwdFbck or i_xRevFbck) during the monitoring time.

Variable	Data Type	Description
xAlarmFbckTmoutMot2	BOOL	FB controlling motor 2 is in alarm state due to undetected feedback signal (i_xFwdFbck or i_xRevFbck) during the monitoring time.
xDriveForceDcBrake	BOOL	Signal associated with the command word to force the DC braking.
xDriveCmdEStop	BOOL	Signal associated with the command word to initiate an emergency stop on the drive.
xDriveRst	BOOL	Signal associated with the command word to reset the drive 212 in case of alarm state.
xDriveTrip	BOOL	Signal associated with the status word indicating whether an error has been detected on the drive.
xDriveAlarm	BOOL	Signal associated with the status word which indicates whether an alarm condition exists on the drive.
xDriveMcUVltgAlarm	BOOL	Signal associated with the status word which indicates whether an under-voltage condition exists on the drive.
xDriveDcBrakeForced	BOOL	Signal associated with the status word which indicates the DC braking is forced.
xDriveRunDir	BOOL	Signal associated with the status word which indicates the direction when the drive is running. (FALSE = forward, TRUE = reverse)
xDriveEStopActv	BOOL	Signal associated with the status word which indicates an emergency stop state for the drive.
xPtcMot10k	BOOL	Indicates a detected overheating of motor 1. Mapped to the physical input where the respective signaling contact is connected.
xPtcMot20k	BOOL	Indicates a detected overheating of motor 2. Mapped to the physical input where the respective signaling contact is connected.
xComOk	BOOL	Indicates the communication state of the drive. TRUE = communication state operational FALSE = communication state not operational
byComErrRead	BYTE	Indicates the error ID in case of a detected communication error during read request.
dwOperErrRead	DWORD	Indicates the error ID in case of a detected operation error during read request.
byComErrWrite	BYTE	Indicates the error ID in case of a detected communication error during write request.
dwOperErrWrite	DWORD	Indicates the error ID in case of a detected operation error during write request.
xComInit	BOOL	Indicates the communication state for the drive.

Program - Prg_<name device module>

Program Contained in the ATV212_ModbusSL_2Motors_Bypass Device Module

The program is divided into 6 actions and is created in programming language CFC. (continuous function chart). All actions will be called on each program execution.

Action - A01_ReadParameter

By the program code in this action the status word of the device is read via Modbus SL using the FB READ_VAR.

The Modbus communication is managed internally with the variable GVL.wModbusToken. The token is used to control the execution of all Modbus function blocks configured in the project. The token is being reserved by the active Modbus function block until the Modbus operation has been completed. If the read process of the status word is possible, the variable GVL.wModbusToken will be reserved (the slave address is written on it), until the request is completed.

The value of the status word is assigned to corresponding variables which have been declared in the GVL *(see page 52).*

Action - A02_ContactorControl

The program code in this action controls the contactors for selection if a motor shall be controlled either by the drive or by the direct online motor starter. The logic in this Device Module allows only one motor controlled by the drive at the same time. The commands for selecting the different control modes for both motors are assigned to corresponding variables which have been declared in the GVL_<module name>.

Action - A03_Motor1Control

By the program code in this action the motor control FB for motor 1 is called.

Implemented features are:

- Mapping the manual commands into the control word.
- FB instance (MOT2D1S) call with assigned parameters.
- Extracting of the status word (detailed alarm and alert information) to boolean variables.

Action - A04_Motor2Control

By the program code in this action the motor control FB for motor 2 is called.

Implemented features are:

- Mapping the manual commands into the control word.
- FB instance (MOT2D1S) call with assigned parameters.
- Extracting of the status word (detailed alarm and alert information) to boolean variables.

Action - A05_WriteParameter

By the program code in this action the control word of the device is written via Modbus SL using the FB <code>WRITE_VAR</code>.

The Modbus communication is managed internally with the variable GVL.wModbusToken. The token is used to control the execution of all Modbus function blocks configured in the project. The token is being reserved by the active Modbus function block until the Modbus operation has been completed. If the write process of the control word is possible, the GVL.wModbusToken will be reserved (the slave address is written on it) until the request is completed.

Action - A06_CheckState

By the program code in this action, the Modbus communication with the Altistart and the status of motor 1 and motor 2 is monitored.

Adding Device Module to the Project

Instantiation of the Device Module

The instantiation of this Device Module requires that a Modbus manager be added to the serial interface of your controller.

Using **Add Function from Template** *(see SoMachine, Programming Guide)* for this Device Module, you can:

- map variables to physical inputs and outputs of your configuration
- · adjust initial values for selected variables which are part of the template

Variables selected for I/O mapping (input):

Variable	Data Type	Default Value	Description
GVL_ <modul name="">.xMcbRdyDrive</modul>	BOOL	-	Indicates the state of Motor Circuit Breaker (MCB).
GVL_ <modul name="">.xMcbRdyBypass1</modul>	BOOL	_	Indicates the state of the MCB of the direct online motor starter of motor 1.
GVL_ <modul name="">.xMcbRdyBypass2</modul>	BOOL	_	Indicates the state of the MCB of the direct online motor starter of motor 2.
GVL_ <modul name="">.xContactorActvMot1</modul>	BOOL	-	Indicates one of the contactors of motor 1 is energized.
GVL_ <modul name="">.xContactorActvMot2</modul>	BOOL	-	Indicates one of the contactors of motor 2 is energized.

Variables selected for I/O mapping (output):

Variable	Data Type	Default Value	Description
GVL_ <modul name>.xCmdActvBypassContactMot1</modul 	BOOL	-	Activates the contactor of the direct online motor starter of motor 1.
GVL_ <modul name>.xCmdActvBypassContactMot2</modul 	BOOL	-	Activates the contactor of the direct online motor starter of motor 2.
GVL_ <modul name>.xCmdActvDriveContactMot1</modul 	BOOL	-	Activates the contactor which links the motor 1 to the drive.
GVL_ <modul name>.xCmdActvDriveContactMot2</modul 	BOOL	-	Activates the contactor which links the motor 2 to the drive.

Variable	Data Type	Default Value	Description
Prg_ <modul name="">.wAddr</modul>	WORD	1	Modbus slave address.
Prg_ <module name="">.c_byChanNb</module>	BYTE	1	Communication port of the controller.
<pre>Prg_<modul name="">.xEnFbckCtrlMot1</modul></pre>	BOOL	TRUE	Enables the monitoring of the feedback signals of the motor 1 run state.
Prg_ <modul name="">.c_iDlyTimeFbckCtrlMot1</modul>	INT	2	Delay time in seconds to determine that the feedback signal from motor 1 is inoperable and to activate an alarm.
Prg_ <modul name="">.c_iDlyTimeRevsMot1</modul>	INT	2	Delay time in seconds to invert the direction of the running motor 1.
Prg_ <modul name="">.c_xEnFbckCtrlMot2</modul>	BOOL	TRUE	Enables the monitoring of the feedback signals of the motor 2 run state.
Prg_ <modul name="">.c_iDlyTimeFbckCtrlMot2</modul>	INT	2	Delay time in seconds to determine that the feedback signal from motor 2 is inoperable and to activate an alarm.
<pre>Prg_<modul name="">.iDlyTimeRevsMot2</modul></pre>	INT	2	Delay time in seconds to invert the direction of the running motor 2.

Variables selected for parameterization (constant):

Section 2.6 Encoder_AbsMlt_CANopen Device Module

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	61
Required Libraries	62
Global Variable List - GVL_ <name device="" module=""></name>	
Program - Prg_ <name device="" module=""></name>	
Adding Device Module to the Project	

Device Module Description

Graphical Representation

Encoder_AbsMlt_CANopen Device Module Description

The Device Module provides a ready-to-use coding template as a pattern to monitor an absolute multiturn encoder (OsiCoder) via CANopen through a SoMachine controller.

The Device Module Encoder_AbsMlt_CANopen is represented by a function template and consists of a global variable list, a program including one action, and the device OsiCoder under the CANopen manager. After instantiation of the Device Module, these objects are added to your project. They appear with the name which has been assigned using **Add Function From Template** *(see SoMachine, Programming Guide).*

The GVL provides the variables which are used to monitor and control the OsiCoder.

The program provides the following features:

• monitor the communication state of the device

The device OsiCoder used in this Device Module differs from the standard OsiCoder device provided with the SoMachine **Device Repository**. On the used device the second transmit PDO (Process Data Object) was deactivated. For the first transmit PDO, the Event Time is set to 100 ms and the Inhibit Time is set to 10 ms. Therefore, there is a transmission between 10 ms (inhibit time) given data in the PDO has changed, and 100 ms (event time) given no data has changed.

Required Libraries

Required Libraries Used in the Encoder_AbsMlt_CANopen Device Module

The following function block is used in the POU of the template. The corresponding library is added automatically to the project when the Device Module is added.

Function Block	Library	Namespace	Vendor
Get_State	CAA CiA 405	CIA405	CAA Technical Workgroup

Global Variable List - GVL_<name device module>

Global Variables Provided by the Encoder_AbsMlt_CANopen Device Module

The table presents the variables provided with the global variable list:

Variable	Data Type	Description
udiEncVal	UDINT	Indicates the value of the encoder. This variable is already mapped to the object position value in the device dialog CANopen I/O mapping .
xComOk	BOOL	Indicates the communication state of the device. TRUE = communication state operational FALSE = communication state not operational
eComStat	CIA405.DEVICE_STATE	Communication state of the device. For information on the enumeration, refer to the CIA405 Library Guide (see SoMachine Online Help under <i>CoDeSys Libraries/CAA Libraries/CAA_CiA405.library</i>).

Program - Prg_<name device module>

Program Contained in the Encoder_AbsMlt_CANopen Device Module

The program is created in programming language CFC (Continuous Function Chart) and calls an action on each program execution.

Action - A01_GetNodeState

The program code in this action provides information on the communication state of the device on the CANopen fieldbus. Based on the communication parameter the communication state is assigned to the corresponding variables which have been declared in the GVL_<module name>. If the state is equal to OPERATIONAL, the variable for the state indicates TRUE and other cases are indicated by FALSE.

Adding Device Module to the Project

Instantiation of the Device Module

The instantiation of this Device Module requires that a CANopen manager be added to the CAN interface of your controller.

Using the instantiation, you can:

- select the CANopen manager which shall manage the device
- assign the CANopen node address for the device
- adjust initial values for selected variables which are part of the template

Variables selected for parameterization (constant):

Variable	Data Type	Default Value	Description
<pre>Prg_<modul name="">.c_udiTmotGetStat</modul></pre>	UDINT	1000	Parameter for timeout monitoring on FB instance GET_STATE.
Prg_ <modul name="">.c_uiNodeId</modul>	UINT	1	Node address of the CANopen device.
Prg_ <modul name="">.c_uiNetworkNo</modul>	UINT	1	Network number on which the device is linked.

Section 2.7 Encoder_AbsMlt_ModbusTCP Device Module

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	67
Required Libraries	68
Global Variable List - GVL_ <name device="" module=""></name>	
Program - Prg_ <name device="" module=""></name>	
Adding Device Module to the Project	

Device Module Description

Graphical Representation

Encoder_AbsMlt_ModbusTCP Device Module Description

The Device Module provides a ready-to-use coding template as a pattern to monitor an absolute multiturn encoder via Modbus TCP through a SoMachine controller.

The Device Module Encoder_AbsMlt_ModbusTCP is represented by a function template and consists of a global variable list (GVL), a program, and a preconfigured generic Modbus TCP slave under the **Modbus TCP IOScanner**. After instantiation of the Device Module, these objects are added to your project. They appear with the name which has been assigned using **Add Function From Template** *(see SoMachine, Programming Guide)*.

The GVL provides the variables which are used to monitor the encoder.

In the program, which is part of the Device Module, the read registers of type WORD are mapped into variables of type DWORD.

Required Libraries

Required Libraries Used in the Encoder_AbsMlt_ModbusTCP Device Module

The following function block is used in the program organization unit (POU) of the template. The corresponding library is added automatically to the project when the Device Module is added.

Function Block	Library	Namespace	Vendor
WORD_AS_DWORD	Toolbox	SE_TBX	Schneider Electric

Global Variable List - GVL_<name device module>

Global Variables Provided by the Encoder_AbsMlt_ModbusTCP Device Module

The table presents the variables provided with the global variable list:

Variable	Data Type	Description
dwPosition	WORD	Actual encoder position.
wPosLow	WORD	Least significant WORD of the present encoder position (DWORD).
wPosHigh	WORD	Most significant WORD of the present encoder position (DWORD).
diVelocity	DINT	Actual encoder velocity (in points per second (pts/s).
wVelLow	WORD	Least significant WORD of the present encoder velocity (DWORD).
wVelHigh	WORD	Most significant WORD of the present encoder velocity (DWORD).

Program - Prg_<name device module>

Program Contained in the Encoder_AbsMlt_ModbusTCP Device Module

The program is created in programming language ST (Structured Text).

The program implements the following features:

- Processing of the present position value of the encoder.
- Processing of the present velocity value of the encoder.

Adding Device Module to the Project

Instantiation of the Device Module

The instantiation of this Device Module requires that a **Modbus TCP IOScanner** be added to the Ethernet device network of your controller.

Using Add Function From Template (see SoMachine, Programming Guide), you can:

- select the Modbus TCP IOScanner which manages the device
- assign the IP address for the device

Section 2.8 Harmony_Wireless_ModbusSL Device Module

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	73
Required Libraries	74
Global Variable List - GVL_ <name device="" module=""></name>	75
Program - Prg_ <name device="" module=""></name>	76
Adding Device Module to the Project	77
Device Module Description

Graphical Representation

Harmony_Wireless_ModbusSL Device Module Description

The Device Module provides a ready-to-use coding template as a pattern to read the signals from a Harmony ZBRN2 wireless receiver. Communication between the SoMachine controller and the receiver is via Modbus SL.

The Device Module Harmony_Wireless_ModbusSL is represented by a function template and consists of a global variable list (GVL), a program, and a preconfigured generic Modbus slave under the **Modbus_IOScanner**. After instantiation of the Device Module, these objects are added to your project. They appear with the name which has been assigned using **Add Function From Template** (see SoMachine, Programming Guide).

The GVL provides the variables which are used to apply the wireless receiver in your application. For each channel, a variable of type BOOL is declared and mapped in the I/O mapping of the device. In the program only the monitoring of the communication is processed.

Required Libraries

Required Libraries Used in the Harmony_Wireless_ModbusSL Device Module

The following object is used in the program organization units (POU) of the Device Module. The corresponding library is added automatically to the project when the **Modbus_IOScanner** is added.

Object	Data Type	Library	Namespace	Vendor
MB_CommCode_M238	ENUM of BYTE	loDrvModbusSerial	IoDrvModbusSerial	Schneider Electric

Global Variable List - GVL_<name device module>

Global Variables Provided by the Harmony_Wireless_ModbusSL Device Module

The table presents the variables provided with the global variable list:

Variable	Data Type	Description
xChannel0xChannel59	BOOL	Indicate the state of the channels read from the device. The variables are mapped directly to the inputs in the I/O mapping dialog in the device editor.
xComOk	BOOL	Indicates the communication state of the device. TRUE = communication state operational FALSE = communication state <> CommunikationOK
eComStat	MB_CommCode_M238	Communication state of the device.

Program - Prg_<name device module>

Program Contained in the Harmony_Wireless_ModbusSL Device Module

The program is created in programming language CFC (Continuous Function Chart). It provides information on the communication state of the device under the **Modbus_IOScanner**.

Adding Device Module to the Project

Instantiation of the Device Module

The instantiation of this Device Module requires that a **Modbus IOScanner** be added to the serial interface of your controller. Using **Add Function from Template** *(see SoMachine, Programming Guide)*, you can:

- select the Modbus IOScanner which manages the device.
- assign the Modbus slave address for the device.

Section 2.9 Harmony_Wireless_ModbusTCP_• Device Modules

Overview

This section provides a generic description for the following Device Modules:

- Harmony_Wireless_ModbusTCP_1
- Harmony_Wireless_ModbusTCP_2

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	79
Required Libraries	80
Functional Description	81
Adding Device Module to the Project	

Device Module Description

Graphical Representation

Harmony_Wireless_ModbusTCP_• Device Module Description

The Device Modules Harmony_Wireless_ModbusTCP_• provide a ready-to-use coding template as pattern to read the signals from the Harmony ZBRN1 wireless receiver via Modbus TCP through a SoMachine controller.

With the Device Module Harmony_Wireless_ModbusTCP_1, the communication with the wireless receiver is realized in the program code using the corresponding function block. No device is added to your application, but nevertheless the controller must provide an Ethernet interface and the Modbus TCP protocol must be supported.

With the Device Module Harmony_Wireless_ModbusTCP_2, the communication with the wireless receiver is managed by the Modbus TCP IOScanner. The device Harmony ZBRN1 is added to your application; therefore the **Industrial Ethernet manager** is required under the Ethernet interface of the controller.

Required Libraries

Required Libraries Used in the Harmony_Wireless_ModbusTCP_• Device Module

The Device Modules implement objects from one or more libraries. The objects and the associated libraries used by these Device Modules are listed in the following table.

Function/Function block	Library	Namespace	Vendor
WRITE_VAR	PLCCommunication	SEN	Schneider Electric
READ_VAR			
ADDM			
IOS_GetHealth	ModbusTCPIOScanner	SEN_IOS	

Enumeration	Library	Namespace	Vendor
OperationErrorCodes	PLCCommunication	SEN	Schneider Electric
CommunicationErrorCodes			

Functional Description

Device - <name device module>

The Device Module Harmony_Wireless_ModbusTCP_1 does not implement a separate device.

The Device Module Harmony_Wireless_ModbusTCP_2 implements the device Harmony ZBRN1. This device is added under the **Industrial Ethernet manager** with the name selected within the **Add Function From Template** *(see SoMachine, Programming Guide)* dialog box. The device is preconfigured.

The configuration includes the channel for the cyclic data exchange with the device. The repetition rate for the channel is selected with 50 ms.

Global Variable List - GVL_<name device module>

The Device Module implements a GVL. This GVL is added under the **Application** node within a folder with the name selected within the **Add Function From Template** dialog box. The GVL gets the same name as the folder and the device but with the prefix GVL_.

The GVL contains the variables which build the interface from the implemented program code to the application. The clear name of the GVL and the uniform naming of the variables facilitate a simple and structured implementation into the application.

Program - Prg_<name device module>

The Device Module implements a program. This program is added under the **Application** node within a folder with the name selected within the **Add Function From Template** dialog box. The program gets the same name as the folder and the device but with the prefix Prg_. Besides, the program-call is added automatically to the associated task.

The program provided with the Device Module Harmony_Wireless_ModbusTCP_1 contains the program code for the communication with the wireless receiver and the evaluation of the obtained data.

The program provided by the Device Module Harmony_Wireless_ModbusTCP_2 contains only the evaluation of the received data from the wireless receiver because the communication is managed by the **Modbus TCP IOScanner**.

Further information about the program code is available inside the program in terms of comments.

Adding Device Module to the Project

Instantiation of the Harmony_Wireless_ModbusTCP_1

The instantiation of this Device Module requires a controller with an Ethernet interface and the Modbus TCP protocol supported. The IP address of the wireless receiver must be provided to the corresponding variable which is used in the program code. This variable is of type **Constant** and its value can be set within the **Add Function From Template** (see SoMachine, Programming Guide) dialog box. A later modification of this value is possible too.

Variable Default value Description Data type Prg_<module name>.c_sAddr STRING 3{0.0.0.0} IP Address (RFID smart antenna) configuration used by the communication function blocks in the program. Format: '<communication link>{<IP address A.B.C.D>:<port>}<U nit.ID>' **NOTE:** If the <port> is not included in the string, the default '502' is used.

Variables selected for IP address parameter:

Instantiation of the Harmony_Wireless_ModbusTCP_2

The instantiation of this Device Module requires the **Industrial Ethernet manager** under the Ethernet interface of your controller.

Using Add Function From Template, you can:

- · Select the fieldbus master which manages the device
- Assign the IP address for the device

Section 2.10 IO_ETB_ModbusTCP Device Module

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	84
Global Variable List - GVL_ <name device="" module=""></name>	
Adding Device Module to the Project	

Device Module Description

Graphical Representation

IO_ETB_ModbusTCP Device Module Description

The Device Module provides a ready-to-use coding template as a pattern to monitor and control an Advantys ETB I/O block via Modbus TCP through a SoMachine controller.

The Device Module IO_ETB_ModbusTCP is represented by a function template and consists of a global variable list (GVL) and a preconfigured generic Modbus TCP slave under the **Modbus TCP IOScanner**. After instantiation of the Device Module, these objects are added to your project. They appear with the name which has been assigned using **Add Function From Template** *(see SoMachine, Programming Guide)*.

Global Variable List - GVL_<name device module>

Global Variables Provided by the IO_ETB_ModbusTCP Device Module

The table presents the variables provided with the global variable list:

Variable	Data Type	Description
xWritePoint1A	BOOL	Set output signal of pin 1. A.
xWritePoint1B	BOOL	Set output signal of pin 1.B.
xWritePoint8A	BOOL	Set output signal of pin 8. A.
xWritePoint8B	BOOL	Set output signal of pin 8.B.
xReadPoint1A	BOOL	Read status of pin 1. A.
xReadPoint1B	BOOL	Read status of pin 1.B.
xReadPoint8A	BOOL	Read status of pin 8. A.
xReadPoint8B	BOOL	Read status of pin 8.B.
wWatchdogValue	WORD	Watchdog value This value is multiplied by a factor of 100 to produce the watchdog timeout setting. Applied to points with fallback set to ON.
wWatchdogState	WORD	Watchdog state 0 = not active 1 = active
wWatchdogBehavior	WORD	0 = apply output fallback 1 = hold output
wFirmwareState	WORD	0 = OK 1 = error detected on firmware
wFallbackForPoint1A	WORD	Pin 1. A 0 = OFF Value unequal to 0 = ON (used when I/O pin is an output)
wFallbackForPoint1B	WORD	Pin 1.B 0 = OFF Value unequal to 0 = ON (used when I/O pin is an output)
wFallbackForPoint8A	WORD	Pin 8. A 0 = OFF Value unequal to 0 = ON (used when I/O pin is an output)
wFallbackForPoint8B	WORD	Pin 8.B 0 = OFF Value unequal to 0 = ON (used when I/O pin is an output)

Variable	Data Type	Description
wIOconfigPoint1A	WORD	I/O configuration for pin 1.A: 0 = input pin 1 = output pin 2 = universal I/O
wIOconfigPoint1B	WORD	I/O configuration for pin 1.B: 0 = input pin 1 = output pin 2 = universal I/O
wIOconfigPoint8A	WORD	I/O configuration for pin 8.A: 0 = input pin 1 = output pin 2 = universal I/O
wIOconfigPoint8B	WORD	I/O configuration for pin 8.B: 0 = input pin 1 = output pin 2 = universal I/O

Adding Device Module to the Project

Instantiation of the Device Module

The instantiation of this Device Module requires that a serial line interface configured as **Modbus TCP IOScanner** be added to the Ethernet device network of your controller. Using **Add Function From Template** *(see SoMachine, Programming Guide)*, you can assign the Modbus TCP address for the device.

Section 2.11 Lexium_28_CANopen Device Module

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	89
Required Libraries	91
Global Variable List - GVL_ <name device="" module=""></name>	
Program - Prg_ <module name=""></module>	
Adding Device Module to the Project	

Device Module Description

Graphical Representation

Lexium_28_CANopen Device Module Description

The Device Module provides a ready-to-use coding template as a pattern to monitor and control a Lexium 28 servo drive via CANopen through a SoMachine controller.

The Device Module Lexium_28_CANopen is represented by a function template and consists of a global variable list (GVL), a program, and the device Lexium 28 under the CANopen manager. After instantiation of the Device Module, these objects are added to your project. They appear with the name which has been assigned using **Add Function From Template** (see SoMachine, *Programming Guide*).

The GVL provides the variables which are used to monitor and control the Lexium 28 via CANopen.

The program provides the following features:

- monitor the communication state of the device
- monitor the state of the device
- control the device in jog mode
- control the device in velocity mode
- · control the device in relative positioning mode
- control the device in absolute positioning mode
- control the device in homing mode
- · reset the drive in case of an error state

With the Lexium 28 as part of this Device Module, the second and the third transmit PDOs (Process Data Object) are activated to monitor the values for speed and position of the drive.

In addition, for the transmit PDOs the inhibit time is set to 10 ms and the event time is set to 100 ms. Therefore, there is a transmission between 10 ms (inhibit time) given data in the PDO has changed, and 100 ms (event time) given no data has changed.

NOTE: If you do not need this feature for your application, unselect the second and third transmit PDO (Process Data Object) on the tab **PDO mapping** in the device editor of the drive to optimize your data transmission rate.

Required Libraries

Required Libraries Used in the Lexium_28_CANopen Device Module

The following function blocks are used in the program organization units (POUs) of the template. The corresponding libraries are added to the project when the Device Module for the drive is added.

Function Block	Library	Namespace	Vendor
MC_Power_LXM28	Lexium 28 Library	SEM_LXM28	Schneider Electric
MC_Reset_LXM28			
MC_Stop_LXM28			
MC_Jog_LXM28			
MC_MoveVelocity_LXM28			
MC_MoveRelative_LXM28			
MC_MoveAbsolute_LXM28			
MC_ReadAxisError_LXM28			
MC_Home_LXM28			
GET_STATE	CAA CiA 405	CIA405	CAA Technical Workgroup

Global Variable List - GVL_<name device module>

Global Variables Provided by the Lexium_28_CANopen Device Module

The table presents the variables provided with the global variable list:

Variable	Data type	Description
xMcbRdy	BOOL	Indicates the state of Motor Circuit Breaker (MCB). Mapped to the physical input where the corresponding auxiliary contact of the MCB is connected.
diActlVelo	DINT	Indicates the velocity of the drive in rpm. This variable is already mapped to the object Velocity actual value in the tab CANopen I/O mapping of the device editor.
diActPos	DINT	Indicates the position of the drive. This variable is already mapped to the object Positon actual value in the tab CANopen I/O mapping of the device editor.
xCmdEnPwr	BOOL	Enables the power stage of the drive.
xCmdRst	BOOL	Resets the drive in case of an error state.
xCmdStop	BOOL	Stops the drive.
xCmdJogFwd	BOOL	Jogs the drive in a forward direction.
xCmdJogRev	BOOL	Jogs the drive in a reverse direction.
xCmdJogFast	BOOL	Defines the velocity setpoint (fast or slow) for jog operation.
diSetJogDist	DINT	Defines the distance to move for one interval on jog operation. If the value is set to 0, continuous motion is used.
iWaitTimeJog	INT	Defines the time delay in ms for change to continuous motion during jog operation via distance.
diSetVeloJogSlow	DINT	Velocity setpoint for jog operation at slow speed.
diSetVeloJogFast	DINT	Velocity setpoint for jog operation at fast speed.
xCmdMovVelo	BOOL	Starts the drive with continuous velocity
xCmdMovRel	BOOL	Starts the drive for relative positioning
xCmdMovAbs	BOOL	Starts the drive for absolute positioning
diSetVeloMovVelo	DINT	Velocity setpoint for velocity mode in rpm.
diSetVeloMovRel	DINT	Velocity setpoint for relative positioning in rpm.
diSetVeloMovAbs	DINT	Velocity setpoint for absolute positioning in rpm.
diSetDistMovRel	DINT	Distance for relative positioning in increments.
diSetPosMovAbs	DINT	Target position for absolute positioning in increments.
xCmdHoming	BOOL	Starts homing operation.
diSetHomePos	DINT	Position to set if homing is finished.
uiSetHomeMod	UINT	Defines the method for homing operation.

Variable	Data type	Description
diSetVeloHome	DINT	Velocity setpoint for search of the reference switch in rpm.
diSetVeloOutHome	DINT	Velocity setpoint for movement back to edge of reference switch in rpm.
xStatEnbl	BOOL	Indicates the state of the power stage.
wErrID	WORD	Indicates the error ID of the detected error. Refer to the Lexium 28 Library Function Blocks Software Manual.
xErr	BOOL	Indicates that an error state exists.
xVeloActv	BOOL	Indicates that the continuous velocity operation is active.
xRelActv	BOOL	Indicates that the relative positioning operation is active.
xAbsActv	BOOL	Indicates that the absolute positioning operation is active.
xHomeActv	BOOL	Indicates that the homing operation is active.
xJogActv	BOOL	Indicates that the jog operation is active.
xComOk	BOOL	Indicates the communication state of the device. TRUE = communication state operational FALSE = communication state not operational
eComSta	CIA405.DEVICE_ STATE	Communication state of the device. For information on the enumeration, refer to the CIA405 Library Guide (see SoMachine Online Help under <i>CoDeSys Libraries/CAA</i> <i>Libraries/CAA_CiA405.library</i>).

Program - Prg_<module name>

Program Contained in the Lexium_28_CANopen Device Module

The program is divided into two actions and is created in programming language CFC (Continuous Function Chart). Both actions will be called on each program execution.

- Action A01_GetNodeState
- Action A02_Ctrl_Lexium

Action - A01_GetNodeState

The program code in this action provides information on the communication state of the device on the CANopen fieldbus. Based on the communication parameter, the communication state is assigned to the corresponding variables which have been declared in the GVL_<module name>. If the state is equal to Operational, the variable for the state indicates TRUE and other cases are indicated by FALSE.

Action - A02_Ctrl_Lexium

The program code in this action processes the basic monitor and control functions of the device:

- with the function block MC_Power_LXM28, enable/disable the power stage of the drive
- with the function block MC_Reset_LXM28, reset the drive after an error
- with the function block MC_Stop_LXM28, stop operation on the drive
- with the function block MC_Jog_LXM28, operate the drive in jog mode
- with the function block MC_MoveVelocity_LXM28, operate the drive with continuous velocity
- with the function block MC_MoveRelative_LXM28, operate the drive with relative positioning
- with the function block MC_MoveAbsolute_LXM28, operate the drive with absolute positioning
- with the function block MC_ReadAxisError_LXM28, obtain the error state of the drive
- with the function block MC_Home_LXM28, initiate the homing mode

Adding Device Module to the Project

Instantiation of the Device Module

The instantiation of this Device Module is equivalent to the Device Module ATV•••_CANopen. For more information, refer to Adding Device Module to the Project *(see page 47)*.

Section 2.12 Lexium_32A_CANmotion Device Module

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	97
Required Libraries	98
Global Variable List - GVL_ <name device="" module=""></name>	99
Program - Prg_ <name device="" module=""></name>	
Adding Device Module to the Project	

Device Module Description

Graphical Representation

Lexium_32A_CANmotion Device Module Description

The Device Module provides a ready-to-use coding template as a pattern to monitor and control a Lexium 32A via CANmotion through a SoMachine controller.

The Device Module Lexium_32A_CANmotion is represented by a function template and consists of a global variable list, a program, and the device Lexium 32A under the CANmotion manager. After instantiation of the Device Module, these objects are added to your project. They appear with the name which has been assigned using **Add Function From Template** (see SoMachine, *Programming Guide*).

The GVL provides the variables which are used to monitor and control the Lexium 32A via CANmotion.

The program provides the following features:

- monitor the communication state of the device
- monitor the state of the device
- control the device in velocity mode
- control the device in relative positioning mode
- control the device in absolute positioning mode
- · control the device in homing mode
- reset the drive in case of an error state

Required Libraries

Required Libraries Used in the Lexium_32A_CANmotion Device Module

The following function blocks are used in the program organization units (POUs) of the template. The corresponding libraries are added to the project when the Device Module for the drive is added.

Function Block	Library	Namespace	Vendor
MC_Power	SM3_Basic	SM3_Basic	3S - Smart Software Solutions GmbH
MC_Reset			
MC_Stop			
MC_MoveVelocity			
MC_MoveRelative			
MC_MoveAbsolute			
MC_ReadActualVelocity			
MC_ReadActualPosition			
MC_ReadAxisError			
MC_ReadParameter			
SMC3_ReinitDrive			

Global Variable List - GVL_<name device module>

Global Variables Provided in the Lexium_32A_CANmotion Device Module

The table presents the variables provided with the global variable list:

Variable	Data Type	Description
xMcbRdy	BOOL	Indicates the state of Motor Circuit Breaker (MCB). Mapped to the physical input where the corresponding auxiliary contact of the MCB is connected.
xCmdEnPwr	BOOL	Enables power to the drive.
xQuickStop	BOOL	Disables the quick stop mechanism.
xCmdRst	BOOL	Resets an error state on the axis.
xCmdReinitDrive	BOOL	Reinitializes the axis (start-up phase is reactivated).
xCmdStop	BOOL	Stops the axis.
xCmdHoming	BOOL	Starts homing operation.
xCmdMovVelo	BOOL	Starts the axis with continuous velocity.
xCmdMovAbs	BOOL	Starts the axis with absolute positioning.
xCmdMovRel	BOOL	Starts the axis with relative positioning.
lrSetHomePos	LREAL	Position to set if homing is finished.
lrSetVeloMovVelo	LREAL	Velocity setpoint for velocity mode in u/s.
lrSetVeloMovAbs	LREAL	Velocity setpoint for absolute positioning u/s.
lrSetPosMovAbs	LREAL	Target position for absolute positioning in technical units.
lrSetVeloMovRel	LREAL	Velocity setpoint for relative positioning u/s.
lrSetDistMovRel	LREAL	Distance for relative positioning in technical units.
lrSetAcc	LREAL	Value of the acceleration [u/s ²].
lrSetDec	LREAL	Value of the deceleration [u/s ²].
eDirMovVelo	SM3_Basic.MC_DIREC TION	Direction for continuous velocity operation: -1 = negative 1 = positive 2 = the active direction
xStatEnbl	BOOL	Indicates whether the drive is powered and quick stop mechanism is disabled.
xHomeActv	BOOL	Indicates that the homing operation is active.
xAbsActv	BOOL	Indicates that the absolute positioning operation is active.
xVeloActv	BOOL	Indicates that the continuous velocity operation is active.

Variable	Data Type	Description
xRelActv	BOOL	Indicates that the relative positioning operation is active.
xErr	BOOL	Indicates that an error state exists.
xActlPosVld	BOOL	Indicates whether the value lrActlPos is valid.
lrActlPos	LREAL	Position of the axis unit [u].
xActlVeloVld	BOOL	Indicates whether the value lrActlVelo is valid.
lrActlVelo	LREAL	Velocity of axis unit [u/s].
xErrIdVld	BOOL	Indicates whether the value dwErrId is valid.
dwErrId	DWORD	Vendor-specific value of the axis error.
xAxisStatVld	BOOL	Indicates whether the value eAxisStat is valid.
eAxisStat	SM3_Basic.SMC_AXIS _STATE	State of the axis according to PLCopen state diagram.
xComOk	BOOL	Indicates the CANmotion communication state. TRUE = communication state operational FALSE = communication state not operational
diHmiSetHomePos	DINT	Position to set if homing is finished.
diHmiSetVeloMovVelo	DINT	Velocity setpoint for velocity mode in u/s.
diHmiSetVeloMovAbs	DINT	Velocity setpoint for absolute positioning u/s.
diHmiSetPosMovAbs	DINT	Target position for absolute positioning in technical units.
diHmiSetVeloMovRel	DINT	Velocity setpoint for relative positioning u/s.
diHmiSetDistMovRel	DINT	Distance for relative positioning in technical. units.
diHmiActlPos	DINT	Position of axis unit [u].
diHmiActlVelo	DINT	Velocity of axis unit [u/s].
diHmiAcc	DINT	Value of the acceleration [u/s ²].
diHmiDec	DINT	Value of the deceleration [u/s ²].

Program - Prg_<name device module>

Program Contained in the Lexium_32A_CANmotion Device Module

The program is divided into 3 actions and is created in programming language CFC (Continuous Function Chart). These actions will be called on each program execution.

- Action A01_GetNodeState
- Action A02_Ctrl_Lexium
- Action A03_HmiVarConversion

Action - A01_GetNodeState

The program code in this action provides information on the communication state of the device on the CANmotion bus. The communication state is provided by an element of the axis structure and is assigned to the corresponding variable which have been declared in the GVL_<module name>. If the CANmotion communication is OK, the variable for the general state will indicate TRUE, otherwise the state of the variable is FALSE.

Action - A02_Ctrl_Lexium

The program code in this action processes the basic monitor and control functions of the device:

- with the function block MC_Power, enable/disable the power stage of the drive
- with the function block MC_Reset, reset the drive after an error
- with the function block SMC3_ReinitDrive, reinitialize the axis
- with the function block MC_Stop, stop operation on the drive
- with the function block MC_Home, initiate the homing mode
- with the function block MC_MoveVelocity, operate the drive with continuous velocity
- with the function block MC_MoveAbsolute, operate the drive with absolute positioning
- with the function block MC_MoveRelative, operate the drive with relative positioning
- with the function block MC_ReadActualVelocity, read the velocity
- with the function block MC_ReadActualPosition, read the position
- with the function block MC_ReadAxisError, obtain the error state of the drive
- with the function block MC_ReadParameter, obtain the status of the drive

Action - A03_HmiVarConversion

Not all HMI devices support the datatype LREAL, therefore variables of the datatype DINT have been declared with the same meaning. In this action the HMI variables of type DINT will be converted and assigned to the process variables of type LREAL.

Adding Device Module to the Project

Instantiation of the Device Module

The instantiation of this Device Module requires that a CANmotion manager be added to the CAN interface of your controller.

Using the instantiation, you can:

- select the CANmotion manager which shall manage the device
- assign the CAN node address for the device
- map variables to physical inputs and outputs of your configuration

Variable selected for I/O mapping (input/output)

Variable	Data Type	Default Value	Description
GVL_ <modul name="">.xMcbRdy</modul>	BOOL	-	Indicates the state of Motor Circuit Breaker

NOTE: When the Device Module has been added to your application, you must configure correctly the **SoftMotion** drive (SM_<module name>). The drive settings have to be adapted according to your hardware and the application.

WARNING

UNINTENDED EQUIPMENT OPERATION

Configure the **SoftMotion** drive by editing the default parameters to those that conform to both your hardware and application needs.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Double-click the SM drive (SM_<module name>) to open the appropriate tab.

The tab SM drive includes the following tabs:

SoftMotion Drive: Basic

Here you can make the settings for axis type, limits, and velocity ramp type.

• SoftMotion Drive: Scaling/Mapping Here you can define the scaling between motor encoder increments and units in application.

Section 2.13 Lexium_32A_CANopen Device Module

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	104
Required Libraries	106
Global Variable List - GVL_ <name device="" module=""></name>	107
Program - Prg_ <name device="" module=""></name>	
Adding Device Module to the Project	

Device Module Description

Graphical Representation

Lexium_32A_CANopen Device Module Description

The Device Module provides a ready-to-use coding template as a pattern to monitor and control a Lexium 32A via CANopen through a SoMachine controller.

The Device Module Lexium_32A_CANopen is represented by a function template and consists of a global variable list (GVL), a program, and the device Lexium 32A under the CANopen manager. After instantiation of the Device Module, these objects are added to your project. They appear with the name which has been assigned using **Add Function From Template** (see SoMachine, *Programming Guide*).

The GVL provides the variables which are used to monitor and control the Lexium 32A via CANopen.

The program provides the following features:

- monitor the communication state of the device
- monitor the state of the device
- control the device in jog mode
- control the device in velocity mode
- control the device in relative positioning mode
- control the device in absolute positioning mode
- control the device in homing mode
- reset the drive in case of an error state

With the Lexium 32A as part of this Device Module, the second and the third transmit PDO (Process Data Object) are activated to monitor the values for speed and position of the drive.

In addition, for the transmit PDOs, the inhibit time is set to 10 ms. Therefore, given data in the PDO is constantly changing, there is a transmission every 10 ms.

NOTE: If you do not need this feature for your application, unselect the second and third transmit PDO (Process Data Object) on the tab **PDO mapping** of the drive to optimize your data transmission rate.

Required Libraries

Required Libraries Used in the Lexium_32A_CANopen Device Module

The following function blocks are used in the program organization units (POUs) of the template. The corresponding libraries are added to the project when the Device Module for the drive is added.

Function Block	Library	Namespace	Vendor
MC_Power_LXM	Lexium Library	SEM_LXM	Schneider Electric
MC_Reset_LXM			
MC_Stop_LXM			
MC_Jog_LXM			
MC_MoveVelocity_LXM			
MC_MoveRelative LXM			
MC_MoveAbsolute_LXM			
MC_ReadAxisError_LXM			
MC_Home_LXM			
GET_STATE	CAA CiA 405	CIA405	CAA Technical Workgroup

Global Variable List - GVL_<name device module>

Global Variables Provided by the Lexium_32A_CANopen Device Module

The table presents the variables provided with the global variable list:

Variable	Data Type	Description
xMcbRdy	BOOL	Indicates the state of Motor Circuit Breaker (MCB). Mapped to the physical input where the corresponding auxiliary contact of the MCB is connected.
diActlVelo	DINT	Indicates the velocity of the drive in rpm. This variable is already mapped to the object Velocity actual value in the device dialog CANopen I/O mapping .
diActPos	DINT	Indicates the position of the drive. This variable is already mapped to the object Positon actual value in the device dialog CANopen I/O mapping .
xCmdEnPwr	BOOL	Enables the power stage of the drive.
xCmdRst	BOOL	Resets the drive in case of an error state.
xCmdStop	BOOL	Stops the drive.
xCmdJogFwd	BOOL	Jogs the drive in a forward direction.
xCmdJogRev	BOOL	Jogs the drive in a reverse direction.
xCmdJogFast	BOOL	Defines the velocity setpoint (fast or slow) for jog operation.
diSetJogDist	DINT	Defines the distance to move for one interval on jog operation. If the value is set to 0, continuous motion is used.
iWaitTimeJog	INT	Defines the time delay in ms for change to continuous motion.
diSetVeloJogSlow	DINT	Velocity setpoint for jog operation at slow speed.
diSetVeloJogFast	DINT	Velocity setpoint for jog operation at fast speed.
xCmdMovVelo	BOOL	Starts the drive with continuous velocity
xCmdMovRel	BOOL	Starts the drive for relative positioning
xCmdMovAbs	BOOL	Starts the drive for absolute positioning
diSetVeloMovVelo	DINT	Velocity setpoint for velocity mode in rpm.
diSetVeloMovRel	DINT	Velocity setpoint for relative positioning in rpm.
diSetVeloMovAbs	DINT	Velocity setpoint for absolute positioning in rpm.
diSetDistMovRel	DINT	Distance for relative positioning in increments.
diSetPosMovAbs	DINT	Target position for absolute positioning in increments.
xCmdHoming	BOOL	Starts homing operation.
diSetHomePos	DINT	Position to set if homing is finished.
uiSetHomeMod	UINT	Defines the method for homing operation.
diSetVeloHome	DINT	Velocity setpoint for search of the reference switch.

Variable	Data Type	Description
diSetVeloOutHome	DINT	Velocity setpoint for movement back to edge of reference switch.
diSetPosOutHome	DINT	Maximum distance for movement back to edge of reference switch.
diSetPosDisHome	DINT	Distance for positioning starting from edge of reference switch.
xStatEnbl	BOOL	Indicates the state of the power stage.
wErrID	WORD	Indicates the error ID of the detected error. Refer to the <i>Lexium Library Function Blocks Software Manual</i> .
xErr	BOOL	Indicates that an error state exists.
xVeloActv	BOOL	Indicates that the continuous velocity operation is active.
xRelActv	BOOL	Indicates that the relative positioning operation is active.
xAbsActv	BOOL	Indicates that the absolute positioning operation is active.
xHomeActv	BOOL	Indicates that the homing operation is active.
xJogActv	BOOL	Indicates that the jogging operation is active.
xComOk	BOOL	Indicates the CANmotion communication state. TRUE = communication state operational FALSE = communication state not operational
eComStat	CIA405.DEVICE_STATE	Communication state of the device. For information on the enumeration, refer to the CIA405 Library Guide (see SoMachine Online Help under <i>CoDeSys Libraries/CAA Libraries/CAA_CiA405.library</i>).
Program - Prg_<name device module>

Program Contained in the Lexium_32A_CANopen Device Module

The program is divided into 2 actions and is created in programming language CFC (Continuous Function Chart). Both actions will be called on each program execution.

- Action A01_GetNodeState
- Action A02_Ctrl_Lexium

Action - A01_GetNodeState

The program code in this action provides information on the communication state of the device on the CANopen fieldbus. Based on the communication parameter the communication state is assigned to the corresponding variables which have been declared in the GVL_<module name>. If the state is equal to OPERATIONAL, the variable for the state indicates TRUE and other cases are indicated by FALSE.

Action - A02_Ctrl_Lexium

The program code in this action processes the basic monitor and control functions of the device:

- with the function block MC_Power_LXM, enable/disable the power stage of the drive
- with the function block <code>MC_Reset_LXM</code>, reset the drive after an error
- with the function block ${\tt MC_Stop_LXM},$ stop operation on the drive
- with the function block MC_Jog_LXM, operate the drive in jog mode
- with the function block MC_MoveVelocity_LXM, operate the drive with continuous velocity
- with the function block MC_MoveRelative_LXM, operate the drive with relative positioning
- with the function block MC_MoveAbsolute_LXM, operate the drive with absolute positioning
- with the function block MC_ReadAxisError_LXM, obtain the error state of the drive
- with the function block MC_Home_LXM, initiate the homing mode

Adding Device Module to the Project

Instantiation of the Device Module

The instantiation of this Device Module is equivalent to the Device Module ATV---_CANopen. For more information, refer to Adding Device Module to the Project *(see page 47)*.

Section 2.14 Lexium_32i_CANopen Device Module

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	112
Required Libraries	114
Global Variable List - GVL_ <name device="" module=""></name>	115
Program - Prg_ <name device="" module=""></name>	
Adding Device Module to the Project	118

Device Module Description

Graphical Representation

Lexium_32i_CANopen Device Module Description

The Device Module provides a ready-to-use coding template as a pattern to monitor and control a Lexium 32i via CANopen through a SoMachine controller.

The Device Module Lexium_32i_CANopen is represented by a function template and consists of a global variable list (GVL), a program, and the device Lexium 32i under the CANopen manager. After instantiation of the Device Module, these objects are added to your project. They appear with the name which has been assigned using **Add Function From Template** (see SoMachine, *Programming Guide*).

The GVL provides the variables which are used to monitor and control the Lexium 32i via CANopen.

The program provides the following features:

- monitor the communication state of the device
- monitor the state of the device
- control the device in jog mode
- control the device in velocity mode
- control the device in relative positioning mode
- control the device in absolute positioning mode
- control the device in homing mode
- reset the drive in case of an error state

With the Lexium 32i as part of this Device Module, the second and the third transmit PDOs (Process Data Object) are activated to monitor the values for speed and position of the drive.

In addition, for the transmit PDOs, the inhibit time is set to 10 ms. Therefore, given data in the PDO is constantly changing, there is a transmission every 10 ms.

NOTE: If you do not need this feature for your application, unselect the second and third transmit PDO on the tab **PDO mapping** of the drive to optimize your data transmission rate.

Required Libraries

Required Libraries Used in the Lexium_32i_CANopen Device Module

The following function blocks are used in the program organization units (POUs) of the template. The corresponding libraries are added to the project when the Device Module for the drive is added.

Function Block	Library	Namespace	Vendor
MC_Power_LXM32i	Lexium 32i Library	SEM_LXM32i	Schneider Electric
MC_Reset_LXM32i			
MC_Stop_LXM32i			
MC_Jog_LXM32i			
MC_MoveVelocity_LXM32i			
MC_MoveRelative LXM32i			
MC_MoveAbsolute_LXM32i			
MC_ReadAxisError_LXM32 i			
MC_Home_LXM32i			
GET_STATE	CAA CiA 405	CIA405	CAA Technical Workgroup

Global Variable List - GVL_<name device module>

Global Variables Provided by the Lexium_32i_CANopen Device Module

The table presents the variables provided with the global variable list:

Variable	Data Type	Description
xMcbRdy	BOOL	Indicates the state of Motor Circuit Breaker (MCB). Mapped to the physical input where the corresponding auxiliary contact of the MCB is connected.
diActlVelo	DINT	Indicates the velocity of the drive in rpm. This variable is already mapped to the object Velocity actual value in the device dialog CANopen I/O mapping .
diActPos	DINT	Indicates the position of the drive in rpm. This variable is already mapped to the object Positon actual value in the device dialog CANopen I/O mapping .
xCmdEnPwr	BOOL	Enables the power stage of the drive.
xCmdRst	BOOL	Resets the drive in case of an error state.
xCmdStop	BOOL	Stops the drive.
xCmdJogFwd	BOOL	Jogs the drive in a forward direction.
xCmdJogRev	BOOL	Jogs the drive in a reverse direction.
xCmdJogFast	BOOL	Defines the velocity setpoint (fast or slow) for jog operation.
diSetJogDist	DINT	Defines the distance to move for one interval on jog operation. If the value is set to 0, continuous motion is used.
iWaitTimeJog	INT	Defines the time delay in ms for change to continuous motion.
diSetVeloJogSlow	DINT	Velocity setpoint for jog operation at slow speed.
diSetVeloJogFast	DINT	Velocity setpoint for jog operation at fast speed.
xCmdMovVelo	BOOL	Starts the drive with continuous velocity
xCmdMovRel	BOOL	Starts the drive for relative positioning
xCmdMovAbs	BOOL	Starts the drive for absolute positioning
diSetVeloMovVelo	DINT	Velocity setpoint for velocity mode in rpm.
diSetVeloMovRel	DINT	Velocity setpoint for relative positioning in rpm.
diSetVeloMovAbs	DINT	Velocity setpoint for absolute positioning in rpm.
diSetDistMovRel	DINT	Distance for relative positioning in increments.
diSetPosMovAbs	DINT	Target position for absolute positioning in increments.
xCmdHoming	BOOL	Starts homing operation.
diSetHomePos	DINT	Position to set if homing is finished.

Variable	Data Type	Description
uiSetHomeMod	UINT	Defines the method for homing operation.
diSetVeloHome	DINT	Velocity setpoint for search of the reference switch.
diSetVeloOutHome	DINT	Velocity setpoint for movement back to edge of reference switch.
diSetPosOutHome	DINT	Maximum distance for movement back to edge of reference switch.
diSetPosDisHome	DINT	Distance for positioning starting from edge of reference switch.
diSetDecStop	DINT	Deceleration setpoint for stopping an operation.
xStatEnbl	BOOL	Indicates the state of the power stage.
wErrID	WORD	Indicates the error ID of the detected error. Refer to the <i>Lexium Library Function Blocks Software Manual</i> .
xErr	BOOL	Indicates that an error state exists.
xVeloActv	BOOL	Indicates that the continuous velocity operation is active.
xRelActv	BOOL	Indicates that the relative positioning operation is active.
xAbsActv	BOOL	Indicates that the absolute positioning operation is active.
xHomeActv	BOOL	Indicates that the homing operation is active.
xJogActv	BOOL	Indicates that the jogging operation is active.
xComOk	BOOL	Indicates the communication state of the device. TRUE = communication state operational FALSE = communication state not operational
eComStat	CIA405.DEVICE_STATE	Communication state of the device. Enumeration, refer to the CIA405 Library Guide (see SoMachine Online Help under <i>CoDeSys Libraries/CAA</i> <i>Libraries/CAA_CiA405.library</i>).

Program - Prg_<name device module>

Program Contained in the Lexium_32i_CANopen Device Module

The program is divided into 2 actions and is created in programming language CFC (Continuous Function Chart). Both actions will be called on each program execution.

- Action A01_GetNodeState
- Action A02_Ctrl_Lexium

Action - A01_GetNodeState

The program code in this action provides information on the communication state of the device on the CANopen fieldbus. Based on the communication parameter the communication state is assigned to the corresponding variables which have been declared in the GVL_<module name>. If the state is equal to OPERATIONAL, the variable for the state indicates TRUE and other cases are indicated by FALSE.

Action - A02_Ctrl_Lexium

The program code in this action processes the basic monitor and control functions of the device:

- with the function block MC_Power_LXM32i, enable/disable the power stage of the drive
- with the function block MC_Reset_LXM32i, reset the drive after an error
- with the function block $\texttt{MC_Stop_LXM32i}$, stop operation on the drive
- with the function block MC_Jog_LXM32i, operate the drive in jog mode
- $\bullet \ \ \text{with the function block} \ \ \text{MC}_\texttt{MOveVelocity}_\texttt{LXM32i}, \ \text{operate the drive with continuous velocity} \\$
- with the function block MC_MoveRelative_LXM32i, operate the drive with relative positioning
- with the function block MC_MoveAbsolute_LXM32i, operate the drive with absolute positioning
- with the function block MC_ReadAxisError_LXM32i, obtain the error state of the drive
- with the function block MC_Home_LXM32i, initiate the homing mode

Adding Device Module to the Project

Instantiation of the Device Module

The instantiation of this Device Module is equivalent to the Device Module ATV---_CANopen. For more information, refer to Adding Device Module to the Project *(see page 47)*.

Section 2.15 Lexium_32M_EtherNetIP Device Module

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	120
Required Libraries	121
Functional Description	123
Adding Device Module to the Project	124

Device Module Description

Graphical Representation

Lexium_32M_EtherNetIP Device Module Description

The Device Module Lexium_32M_EtherNetIP provides the application objects and the device which are required to monitor and control a Lexium 32M via EtherNet/IP with a Schneider Electric SoMachine controller. The device Lexium 32M requires the **Industrial Ethernet manager** under the Ethernet interface of the controller.

Required Libraries

Required Libraries Used in the Lexium_32M_EtherNetIP Device Module

The Device Module implements objects from one or more libraries. The objects and the associated libraries used by this Device Module are listed in the following tables.

Function/Function block	Library	Namespace	Vendor
MC_Power	GMC Independent PLCopen MC	GIPLC	Schneider Electric
MC_Reset			
MC_MoveVelocity			
MC_MoveRelative			
MC_MoveAbsolute			
MC_ReadActualVelocity			
MC_ReadActualPosition			
MC_ReadStatus			
MC_ReadAxisInfo			
MC_ReadAxisError			
Stop_LXM32	GMC Independent Lexium	GILXM	
Halt_LXM32			
Home_LXM32			
Jog_LXM32			
SetLimitSwitch_LXM32			
SetDriveRamp_LXM32			
SetStopRamp_LXM32			
StoreParameters_LXM32			
EIPGetHealthBit	EtherNetIP Scanner	EIPSC	
EIPStartConnection			
EIPStopConnection			
FB_RemoteAdapter	EtherNetIP Remote Adapter	EIPRA	

Enumeration	Library	Namespace	Vendor
OperationErrorCodes	EtherNetIP Scanner	EIPSC	Schneider Electric
CIPOperationErrorCodes			
CommunicationErrorCodes			
eStatus	EtherNetIP Remote Adapter	EIPRA	
eAdapterErrorInfo			

NOTE: The library EtherNetIP Scanner is not supported by the motion controller LMC078.

Functional Description

Device - <name device module>

The Device Module implements the device Lexium 32M for EtherNet/IP. This device is added under the **Industrial Ethernet manager** with the name selected within the **Add Function From Template** dialog box.

The device is preconfigured. The configuration includes the connection for the drive profile Lexium 32M with the assemblies 103 (output) and 113 (input). The Request Packet Interval (RPI) is selected with 10 ms.

Global Variable List - GVL_<name device module>

The Device Module implements a GVL. This GVL is added under the **Application** node within a folder with the name selected within the **Add Function From Template** dialog box. The GVL gets the same name as the folder and the device but with the prefix GVL_.

The GVL contains the variables which build the interface from the implemented program code to the application. The clear name of the GVL and the uniform naming of the variables facilitate a simple and structured implementation into the application.

Program - Prg_<name device module>

The Device Module implements a program. This program is added under the **Application** node within a folder with the name selected within the **Add Function From Template** dialog box. The program gets the same name as the folder and the device but with the prefix Prg_. Besides, the program-call is added automatically to the associated task.

For basic control functions, the program code does not need to be modified, all required signals and parameter are linked to the associated variables in the GVL.

The program is divided into several actions. These are described in the following table.

NOTE: The program logic of the action A01_ComCtrl is not supported in an application of a motion controller LMC078.

Name of the action	Description
A01_ComCtrl	Processes the functions to monitoring and control of the EtherNet/IP communication with the device.
A02_Ctrl_LXM	Contains a selection of function block calls to control the Lexium. Each function block is called in each program cycle.
A03_Stat_LXM	Contains a selection of function block calls to gather status information from the Lexium. Each function block is called in each program cycle.
A04_Config_LXM	Contains a selection of function block calls to write a set of parameters to the Lexium.

Further information about the control logic is available inside the program in terms of comments.

Adding Device Module to the Project

Instantiation of the Device Module

The instantiation of this Device Module is equivalent to the Device Module ATV•••_EtherNetIP. For more information, refer to Adding Device Module to the Project *(see page 33)*.

Section 2.16 Lexium_32M_ModbusTCP Device Module

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	126
Required Libraries	127
Functional Description	128
Adding Device Module to the Project	130

Device Module Description

Graphical Representation

Controller State

Lexium_32M_ModbusTCP Device Module Description

The Device Module Lexium_32M_ModbusTCP provides the application objects and the device which are required to monitor and control a Lexium 32M via Modbus TCP with a Schneider Electric SoMachine controller. The device Lexium 32M requires the **Industrial Ethernet manager** under the Ethernet interface of the controller.

Required Libraries

Required Libraries Used in the Lexium_32M_ModbusTCP Device Module

The Device Module implements objects from one or more libraries. The objects and the associated libraries used by this Device Module are listed in the following table.

Function/Function block	Library	Namespace	Vendor
MC_Power	GMC Independent PLCopen MC	GIPLC	Schneider Electric
MC_Reset			
MC_MoveVelocity			
MC_MoveRelative			
MC_MoveAbsolute			
MC_ReadActualVelocity			
MC_ReadActualPosition			
MC_ReadStatus			
MC_ReadAxisInfo			
MC_ReadAxisError			
Stop_LXM32	GMC Independent Lexium	GILXM	
HALT_LXM32			
Home_LXM32			
Jog_LXM32			
SetLimitSwitch_LXM32			
SetDriveRamp_LXM32			
SetStopRamp_LXM32			
StoreParameters_LXM32			
IOS_GetHealth	ModbusTCPIOScanner	SE_IOS	

Functional Description

Device - <name device module>

The Device Module implements the device Lexium 32M for Modbus TCP. This device is added under the **Industrial Ethernet manager** with the name selected within the **Add Function From Template** *(see SoMachine, Programming Guide)* dialog box.

The device is preconfigured. The configuration includes the Lexium 32M channel for the cyclic data exchange with the device. The repetition rate for the channel is selected with 10 ms.

Global Variable List - GVL_<name device module>

The Device Module implements a GVL. This GVL is added under the **Application** node within a folder with the name selected within the **Add Function From Template** dialog box. The GVL gets the same name as the folder and the device but with the prefix GVL_.

The GVL contains the variables which build the interface from the implemented program code to the application. The clear name of the GVL and the uniform naming of the variables facilitate a simple and structured implementation into the application.

Program - Prg_<name device module>

The Device Module implements a program. This program is added under the **Application** node within a folder with the name selected within the **Add Function From Template** dialog box. The program gets the same name as the folder and the device but with the prefix Prg_. Besides, the program-call is added automatically to the associated task.

For basic control functions, the program code does not need to be modified, all required signals and parameter are linked to the associated variables in the GVL.

Name of the action	Description
A01_ComStat	Processes the functions to monitoring and control of the Modbus TCP communication with the device.
A02_Ctrl_LXM	Contains a selection of function block calls to control the Lexium. Each function block is called in each program cycle.
A03_Stat_LXM	Contains a selection of function block calls to gather status information from the Lexium. Each function block is called in each program cycle.
A04_Config_LXM	Contains a selection of function block calls to write a set of parameters to the Lexium.

The program is divided into several actions. These are described in the following table.

NOTE: For monitoring the communication state of the device the channel ID of the configured Modbus TCP channel must be set as value for the variable GVL_<name device module>.c_uiChannelId. The channel ID is automatically generated when the device is added to the project and can be obtained through the **Device Editor** in the tab **Modbus TCP Channel configuration**.

Further information about the control logic is available inside the program in terms of comments.

Adding Device Module to the Project

Instantiation of the Device Module

The instantiation of this Device Module is equivalent to the Device Module ATV•••_ModbusTCP. For more information, refer to Adding Device Module to the Project *(see page 33)*.

Section 2.17 Lexium_32S_Sercos Device Module

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	132
Required Libraries	134
Global Variable List - GVL_ <name device="" module=""></name>	
Program - Prg_ <name device="" module=""></name>	
Adding Device Module to the Project	139

Device Module Description

Graphical Representation

Lexium_32S_Sercos Device Module Description

The Device Module provides a ready-to-use coding template as a pattern to monitor and control a Lexium 32S via Sercos motion bus through a SoMachine controller.

The Device Module Lexium_32S_Sercos is represented by a function template and consists of a global variable list (GVL), a program, and the device Lexium 32S under the Sercos interface of the controller. After instantiation of the Device Module, these objects are added to your project. They appear with the name which has been assigned using **Add Function From Template** *(see SoMachine, Programming Guide).*

The GVL provides the variables which are used to monitor and control the servo drive Lexium 32S via Sercos motion bus.

The program provides the following features:

- monitor the communication state of the device
- monitor the state of the device
- control the device in velocity mode
- control the device in relative positioning mode
- control the device in absolute positioning mode
- control the device in homing mode
- reset the drive in case of an error state

Required Libraries

Required Libraries Used in the Lexium_32S_Sercos Device Module

The following function blocks are used in the program organization units (POUs) of the template. The corresponding libraries are added to the project when the Device Module for the drive is added.

Function block	Library	Namespace	Vendor
MC_Power	SM3_Basic	SM3_Basic	3S - Smart Software Solutions
MC_Reset			GmbH
MC_Stop			
MC_Home			
MC_MoveVelocity			
MC_MoveRelative			
MC_MoveAbsolute			
MC_ReadActualVelocity			
MC_ReadActualPosition			
MC_ReadAxisError			
MC_ReadParameter			
SMC3_ReinitAxis			

Global Variable List - GVL_<name device module>

Global Variables Provided by the Lexium_32S_Sercos Device Module

The table presents the variables provided with the global variable list:

Variable	Data type	Description
xEnable	BOOL	Signal enables the execution of the POU which belongs to this Device Module.
xMcbRdy	BOOL	Indicates the state of Motor Circuit Breaker. Mapped to the physical input where the corresponding auxiliary contact of the MCB is connected.
xCmdEnPwr	BOOL	Enables the power stage of the drive.
xQuickStop	BOOL	Signal disables the quick stop mechanism.
xCmdRst	BOOL	Resets an error state on the axis.
xCmdReinitDrive	BOOL	Reinitializes the axis (start-up phase is reactivated).
xCmdStop	BOOL	Stops the axis.
xCmdHoming	BOOL	Starts homing operation.
xCmdMovVelo	BOOL	Starts the axis with continuous velocity.
xCmdMovAbs	BOOL	Starts the axis with absolute positioning.
xCmdMovRel	BOOL	Starts the axis with relative positioning.
lrSetHomePos	LREAL	Position to set if homing is finished.
lrSetVeloMovVelo	LREAL	Velocity setpoint for velocity mode in u/s.
lrSetVeloMovAbs	LREAL	Velocity setpoint for absolute positioning u/s.
lrSetPosMovAbs	LREAL	Target position for absolute positioning in technical units.
lrSetVeloMovRel	LREAL	Velocity setpoint for relative positioning u/s.
lrSetDistMovRel	LREAL	Distance for relative positioning in technical units.
lrSetAcc	LREAL	Value of the acceleration (increasing energy of the motor) [u/s ²]. Only a positive value is allowed.
lrSetDec	LREAL	Value of the deceleration (decreasing energy of the motor) [u/s ²]. Only a positive value is allowed.
eDirMovVelo	SM3_Basic.MC_DIRECTIO	Direction for continuous velocity operation: • -1 = negative • 1 = positive • 2 = the active direction
xStatEnbl	BOOL	Indicates whether the drive is powered and the quick stop mechanism is disabled.
xHomeActv	BOOL	Indicates that the homing operation is active.
xAbsActv	BOOL	Indicates that the absolute positioning operation is active.

Variable	Data type	Description
xVeloActv	BOOL	Indicates that the continuous velocity operation is active.
xRelActv	BOOL	Indicates that the relative positioning operation is active.
xErr	BOOL	Indicates that an error state exists.
xActlPosVld	BOOL	Indicates whether the value of lrActlPos is valid.
lrActlPos	LREAL	Position in technical units.
xActlVeloVld	BOOL	Indicates whether the value of lrActlVelo is valid.
lrActlVelo	LREAL	Velocity u/s
xErrIdVld	BOOL	Indicates whether the value of dwErrId is valid.
dwErrId	DWORD	Vendor-specific value of the axis error.
xAxisStatVld	BOOL	Indicates whether the value of eAxisStat is valid.
eAxisStat	SM3_Basic.SMC_AXIS_ST ATE	State of the axis according to PLCopen state diagram.
diSercosStat	DINT	Indicates the state of the Sercos interface. This variable is assigned to the System variable ([Sercos interface name].State) which provides the state of the interface.
xComOk	BOOL	Indicates that the Sercos communication is OK.
diHmiSetHomePos	DINT	Position to set if homing is finished.
diHmiSetVeloMovVelo	DINT	Velocity setpoint for velocity mode in u/s.
diHmiSetVeloMovAbs	DINT	Velocity setpoint for absolute positioning u/s.
diHmiSetPosMovAbs	DINT	Target position for absolute positioning in technical units.
diHmiSetVeloMovRel	DINT	Velocity setpoint for relative positioning u/s.
diHmiSetDistMovRel	DINT	Distance for relative positioning in technical units.
diHmiActlPos	DINT	Position in technical units.
diHmiActlVelo	DINT	Velocity in u/s.
diHmiAcc	DINT	Value of the deceleration (increasing energy of the motor) [u/s ²]. Only a positive value is allowed.
diHmiDec	DINT	Value of the deceleration (decreasing energy of the motor) [u/s ²]. Only a positive value is allowed.
diDiagCode	DINT	Contains the diagnostic code of the device.
sDiagMsg	STRING(39)	Contains the diagnostic message of the device.
sDiagExtMsg	STRING(14)	Contains the extended diagnostic message of the device.

Program - Prg_<name device module>

Program Contained in the Lexium_32S_Sercos Device Module

The program is divided into three actions and is created in programming languages CFC (Continuous Function Chart) and ST (Structured Text). All actions are called on each program execution if the variable GVL_<name device module>.xEnable is set to TRUE.

- Action A01_DiagDevice
- Action A02_Ctrl_Lexium
- Action A03_HMIVarConversion

Action - A01_DiagDevice

The program code in this action provides information about the state of the device on the Sercos motion bus. Based on the configured working mode and the present working state of the axis, in conjunction with the DiagCode of the device and the state of the Sercos interface, the communication state is assigned to the corresponding variable which has been declared in the GVL_<name device module>. The state of the Sercos interface is indicated by the variable disercosState and must be assigned to the corresponding variable of the application after the Device Module has been added.

If the Sercos state is 4 (cyclic operation), and the DiagCode does not indicate a communication error while the detected working state of the Lexium 32S is Real or equal to the configured working mode, the variable for the general communication state (xComOk) indicates TRUE.

For the extended diagnostics of the Sercos device, the parameters DiagMsg, DiagExtMsg and the DiagCode are assigned to the associated variables in the GVL of this Device Module.

Action - A02_Ctrl_Lexium

The program code in this action processes the basic monitor and control functions of the device:

- with the function block MC_Power, enable/disable the power stage of the drive
- with the function block MC_Reset, reset the drive on an error detected
- with the function block SMC3_ReinitDrive, reinitialize the axis
- with the function block MC_Stop, stop operation on the drive
- with the function block MC_Home, initiate the homing mode
- with the function block MC_MoveVelocity, operate the drive with continuous velocity
- with the function block MC_MoveAbsolute, operate the drive with absolute positioning
- with the function block MC_MoveRelative, operate the drive with relative positioning
- with the function block MC_ReadActualVelocity, read the velocity
- with the function block MC_ReadActualPosition, read the position
- with the function block MC_ReadAxisError, obtain the error state of the drive
- with the function block MC_ReadParameter, obtain the status of the drive

Action - A03_HMIVarConversion

Not all HMI devices support the datatype LREAL, therefore variables of datatype DINT have been declared with the same meaning. In this action, the HMI variables of type DINT are converted and assigned to the process variables of type LREAL and vice versa.

Adding Device Module to the Project

Instantiation of the Device Module

The instantiation of this device module requires a SoMachine controller with a Sercos III interface.

Using Add Function From Template (see SoMachine, Programming Guide), you can:

- · select the Sercos master which manages the device
- map variables to physical inputs and outputs of your configuration

Variable selected for I/O mapping (input):

Variable	Data type	Default value	Description
GVL_ <modul name="">.xMcbRdy</modul>	BOOL	_	Indicates the state of Motor Circuit Breaker.

NOTE: When the Device Module has been added to your application, configure carefully the **LXM32S** drive (<module name>) and the **SoftMotion** drive (SM_<module name>). The drive settings have to be adapted according to your hardware and application.

A WARNING

UNINTENDED EQUIPMENT OPERATION

Configure the **LXM32S** drive and the associated **SoftMotion** drive by editing the default parameters to those that conform to both your hardware and application needs.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Double-click the LXM32S drive (<module name>) in the Devices Tree to open the appropriate device editor. In the tab Sercos Cyclic Data Exchange, configure the Sercos address and the operation mode.

Double-click the associated **SM_Drive** (SM_<module name>) in the **Devices Tree** to open the appropriate device editor.

Edit the default parameter in the following tabs of the **SM_Drive** device editor in accordance with your hardware and application:

- SoftMotion Drive: Basic Allows you to make the settings for axis type, limits, and velocity ramp type.
- SoftMotion Drive: Scaling/Mapping Allows you to define the scaling between motor encoder increments and units in application.

Section 2.18 Lexium_IL•2K_EtherNetIP Device Modules

Overview

This section provides a generic description for the following Device Modules:

- Lexium_ILA2K_EtherNetIP
- Lexium_ILE2K_EtherNetIP
- Lexium_ILS2K_EtherNetIP

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	141
Required Libraries	142
Functional Description	144
Adding Device Module to the Project	145

Device Module Description

Graphical Representation

Lexium_IL•2K_EtherNetIP Device Module Description

The Device Module Lexium_IL•2K_EtherNetIP provides the application objects and the device which are required to monitor and control an integrated Lexium IL• via EtherNet/IP with a Schneider Electric SoMachine controller. The device Lexium IL• requires the **Industrial Ethernet manager** under the Ethernet interface of the controller.

Required Libraries

Required Libraries Used in the Lexium_IL•2K_EtherNetIP Device Module

The Device Module implements objects from one or more libraries. The objects and the associated libraries used by this Device Module are listed in the following tables.

Function/Function block	Library	Namespace	Vendor
MC_Power	GMC Independent PLCopen MC	GIPLC	Schneider Electric
MC_Reset			
MC_Stop			
MC_MoveVelocity			
MC_MoveRelative			
MC_MoveAbsolute			
MC_ReadActualVelocity			
MC_ReadActualPosition			
MC_ReadStatus			
MC_ReadAxisInfo			
MC_ReadAxisError			
Home_ILX	GMC Independent Lexium	GILXM	
Jog_ILX			
SetLimitSwitch_ILX			
SetDriveRamp_ILX			
SetStopRamp_ILX			
StoreParameters_ILX			
EIPGetHealthBit	EtherNetIP Scanner	EIPSC	
EIPStartConnection			
EIPStopConnection			
FB_RemoteAdapter	EtherNetIP Remote Adapter	EIPRA	

Enumeration	Library	Namespace	Vendor
OperationErrorCodes	EtherNetIP Scanner	EIPSC	Schneider Electric
CIPOperationErrorCodes			
CommunicationErrorCodes			
eStatus	EtherNetIP Remote Adapter	EIPRA	
eAdapterErrorInfo			

NOTE: The library EtherNetIP Scanner is not supported by the motion controller LMC078.

Functional Description

Device - <name device module>

The Device Module implements the device Lexium IL• for EtherNet/IP. This device is added under the **Industrial Ethernet manager** with the name selected within the **Add Function From Template** dialog box.

The device is preconfigured. The configuration includes the connection for the drive profile Lexium with the assemblies 103 (output) and 113 (input). The Request Packet Interval (RPI) is selected with 10 ms.

Global Variable List - GVL_<name device module>

The Device Module implements a GVL. This GVL is added under the **Application** node within a folder with the name selected within the **Add Function From Template** dialog box. The GVL gets the same name as the folder and the device but with the prefix GVL_.

The GVL contains the variables which build the interface from the implemented program code to the application. The clear name of the GVL and the uniform naming of the variables facilitate a simple and structured implementation into the application.

Program - Prg_<name device module>

The Device Module implements a program. This program is added under the **Application** node within a folder with the name selected within the **Add Function From Template** dialog box. The program gets the same name as the folder and the device but with the prefix Prg_. Besides, the program-call is added automatically to the associated task.

For basic control functions, the program code does not need to be modified, all required signals and parameter are linked to the associated variables in the GVL.

The program is divided into several actions. These are described in the following table.

NOTE: The program logic of the action A01_ComCtrl is not supported in an application of a motion controller LMC078.

Name of the action	Description
A01_ComCtrl	Processes the functions to monitoring and control of the EtherNet/IP communication with the device.
A02_Ctrl_LXM	Contains a selection of function block calls to control the Lexium. Each function block is called in each program cycle.
A03_Stat_LXM	Contains a selection of function block calls to gather status information from the Lexium. Each function block is called in each program cycle.
A04_Config_LXM	Contains a selection of function block calls to write a set of parameters to the Lexium.

Further information about the control logic is available inside the program in terms of comments.
Adding Device Module to the Project

Instantiation of the Device Module

The instantiation of this Device Module is equivalent to the Device Module ATV•••_EtherNetIP. For more information, refer to Adding Device Module to the Project *(see page 33)*.

Section 2.19 Lexium_ILA_CANopen Device Module

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	147
Required Libraries	148
Global Variable List - GVL_ <name device="" module=""></name>	149
Program - Prg_ <name device="" module=""></name>	151
Adding Device Module to the Project	152

Device Module Description

Graphical Representation

Lexium_ILA_CANopen Device Module Description

The Device Module provides a ready-to-use coding template as a pattern to monitor and control a Lexium ILA via CANopen through a SoMachine controller.

The Device Module Lexium_ILA_CANopen is represented by a function template and consists of a global variable list, a program, and the device Lexium ILA under the CANopen manager. After instantiation of the Device Module, these objects are added to your project. They appear with the name which has been assigned using **Add Function From Template** (see SoMachine, *Programming Guide*).

The GVL provides the variables which are used to monitor and control the Lexium ILA via CANopen.

The program provides the following features:

- monitor the communication state of the device
- monitor the state of the device
- control the device in jog mode
- · control the device in velocity mode
- control the device in absolute positioning mode
- control the device in homing mode
- reset the drive in case of an error state

Required Libraries

Required Libraries Used in the Lexium_ILA_CANopen Device Module

The following function blocks are used in the program organization units (POUs) of the template. The corresponding libraries are added to the project when the Device Module for the drive is added.

Function Block	Library	Namespace	Vendor
MC_Power_ILX	Integrated Lexium	SEM_ILX	Schneider Electric
MC_Reset_ILX	library		
MC_Stop_ILX			
MC_Jog_ILX			
MC_MoveVelocity_ILX			
MC_MoveAbsolute_ILX			
MC_ReadActualVelocity_ILX			
MC_ReadActualPosition_ILX			
MC_ReadAxisError_ILX			
MC_Home_ILX			
GET_STATE	CAA CiA 405	CIA405	CAA Technical Workgroup

Global Variable List - GVL_<name device module>

Gobal Variables Provided by the Lexium_ILA_CANopen Device Module

The table presents the variables provided with the global variable list:

Variable	Data Type	Description	
xMcbRdy	BOOL	Indicates the state of Motor Circuit Breaker (MCB). Mapped to the physical input where the corresponding auxiliary contact of the MCB is connected.	
iActlVelo	INT	Indicates the velocity of the drive.	
diActlPos	DINT	Indicates the position of the drive.	
xCmdEnPwr	BOOL	Enables the power stage of the drive.	
xCmdRst	BOOL	Resets the drive in case of an error state.	
xCmdStop	BOOL	Stops the drive.	
xCmdJogFwd	BOOL	Jogs the drive in a forward direction.	
xCmdJogRev	BOOL	Jogs the drive in a reverse direction.	
xCmdJogFast	BOOL	Defines the velocity setpoint for jog operation.	
uJogDist	UINT	Defines the distance to move for one interval on jog operation. If the value is set to 0, continuous motion is used.	
uiWaitTimeJog	UINT	Defines the time delay in ms for change to continuous motion.	
iSetVeloJogSlow	INT	Velocity setpoint for jog operation at slow speed.	
iSetVeloJogFast	INT	Velocity setpoint for jog operation at fast speed.	
xCmdMovVelo	BOOL	Starts the drive with continuous velocity	
xCmdMovAbs	BOOL	Starts the drive for absolute positioning	
iSetVeloMovVelo	INT	Velocity setpoint for velocity mode in rpm.	
iSetVeloMovAbs	INT	Velocity setpoint for absolute positioning in rpm.	
iVeloType	INT	Specification of the source of the velocity.	
diSetPosMovAbs	DINT	Target position for absolute positioning in increments.	
xCmdHoming	BOOL	Starts homing operation.	
diSetHomePos	DINT	Position to set if homing is finished.	
uiSetHomeMod	UINT	Defines the method for homing operation.	
uiSetVeloHome	UINT	Velocity setpoint for search of the reference switch.	
uiSetVeloOutHome	UINT	Velocity setpoint for movement back to edge of reference switch.	
diSetPosOutHome	DINT	Maximum distance for movement back to edge of reference switch.	
diSetPosDisHome	DINT	Distance for positioning starting from edge of reference switch.	
iPosType	INT	Specification of the source of the position.	

Variable	Data Type	Description
xStatEnbl	BOOL	Indicates the state of the power stage.
wErrID	WORD	Indicates the error ID of the detected error. Refer to the <i>Lexium Library Function Blocks Software Manual</i> .
xErr	BOOL	Indicates that an error state exists.
xVeloActv	BOOL	Indicates the continuous velocity operation is active.
xAbsActv	BOOL	Indicates the absolute positioning operation is active.
xHomeActv	BOOL	Indicates the homing operation is active.
xJogActv	BOOL	Indicates the jogging operation is active.
xComOk	BOOL	Indicates the communication state of the device. TRUE = communication state operational FALSE = communication state not operational
eComStat	CIA405.DEVICE_ STATE	Communication state of the device. Enumeration, refer to the CIA405 Library Guide (see SoMachine Online Help under <i>CoDeSys Libraries/CAA Libraries/CAA_CiA405.library</i>).

Program - Prg_<name device module>

Program Contained in the Lexium_ILA_CANopen Device Module

The program is divided into 2 actions and is created in programming language CFC (Continuous Function Chart). Both actions will be called on each program execution.

- Action A01_GetNodeState
- Action A02_Ctrl_Lexium

Action - A01_GetNodeState

The program code in this action provides information on the communication state of the device on the CANopen fieldbus. Based on the communication parameter the communication state is assigned to the corresponding variables which have been declared in the GVL_<module name>. If the state is equal to OPERATIONAL, the variable for the state indicates TRUE and other cases are indicated by FALSE.

Action - A02_Ctrl_Lexium

The program code in this action processes the basic monitor and control functions of the device:

- with the function block MC_Power_ILX, enable/disable the power stage of the drive
- with the function block $\, {\tt MC_Reset_ILX},$ reset the drive after an error
- with the function block ${\tt MC_Stop_ILX},$ stop operation on the drive
- with the function block MC_Jog_ILX, operate the drive in jog mode
- with the function block MC_MoveVelocity_ILX, operate the drive with continuous velocity
- with the function block MC_MoveAbsolute_ILX, operate the drive with absolute positioning
- with the function block MC_ReadActualVelocity_ILX, read the velocity of the drive
- with the function block MC_ReadActualPosition_ILX, read the position of the drive
- with the function block MC_ReadAxisError_ILX, obtain the error state of the drive
- with the function block MC_Home_ILX, initiate the homing mode

Adding Device Module to the Project

Instantiation of the Device Module

The instantiation of this Device Module is equivalent to the Device Module ATV---_CANopen. For more information, refer to Adding Device Module to the Project *(see page 47)*.

Section 2.20 Lexium_ILE_CANopen Device Module

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	154
Required Libraries	155
Global Variable List - GVL_ <name device="" module=""></name>	156
Program - Prg_ <name device="" module=""></name>	158
Adding Device Module to the Project	159

Device Module Description

Graphical Representation

Lexium_ILE_CANopen Device Module Description

The Device Module provides a ready-to-use coding template as a pattern to monitor and control a Lexium ILE via CANopen through a SoMachine controller.

The Device Module Lexium_ILE_CANopen is represented by a function template and consists of a global variable list, a program, and the device Lexium ILE under the CANopen manager. After instantiation of the Device Module, these objects are added to your project. They appear with the name which has been assigned using **Add Function From Template** (see SoMachine, *Programming Guide*).

The GVL provides the variables which are used to monitor and control the Lexium ILE via CANopen.

The program provides the following features:

- · monitor the communication state of the device
- monitor the state of the device
- control the device in jog mode
- control the device in velocity mode
- · control the device in absolute positioning mode
- control the device in homing mode
- reset the drive in case of an error state

Required Libraries

Required Libraries Used in the Lexium_ILE_CANopen Device Module

The following function blocks are used in the program organization units (POUs) of the template. The corresponding libraries are added to the project when the Device Module for the drive is added.

Function Block	Library	Namespace	Vendor
MC_Power_ILX	Integrated Lexium	SEM_ILX	Schneider Electric
MC_Reset_ILX	Library		
MC_Stop_ILX			
MC_Jog_ILX			
MC_MoveVelocity_ILX			
MC_MoveAbsolute_ILX			
MC_ReadAxisError_ILX			
MC_ReadActualVelocity_ILX			
MC_ReadActualPosition_ILX			
MC_Home_ILX			
GET_STATE	CAA CiA 405	CIA405	CAA Technical Workgroup

Global Variable List - GVL_<name device module>

Global Variables Provided by the Lexium_ILE_CANopen Device Module

The table presents the variables provided with the global variable list:

Variable	Data Type	Description	
xMcbRdy	BOOL	Indicates the state of Motor Circuit Breaker (MCB). Mapped to the physical input where the corresponding auxiliary contact of the MCB is connected.	
iActlVelo	INT	Indicates the velocity of the drive.	
diActlPos	DINT	Indicates the position of the drive.	
xCmdEnPwr	BOOL	Enables the power stage of the drive.	
xCmdRst	BOOL	Resets the drive in case of an error state.	
xCmdStop	BOOL	Stops the drive.	
xCmdJogFwd	BOOL	Jogs the drive in a forward direction.	
xCmdJogRev	BOOL	Jogs the drive in a reverse direction.	
xCmdJogFast	BOOL	Defines the velocity setpoint for jog operation.	
uiSetJogDist	UINT	Defines the distance to move for one interval on jog operation. If the value is set to 0, continuous motion is used.	
uiWaitTimeJog	UINT	Defines the time delay in ms for change to continuous motion.	
iSetVeloJogSlow	INT	Velocity setpoint for jog operation at slow speed.	
iSetVeloJogFast	INT	Velocity setpoint for jog operation velocity at fast speed.	
xCmdMovVelo	BOOL	Starts the drive with continuous velocity	
xCmdMovAbs	BOOL	Starts the drive for absolute positioning	
iSetVeloMovVelo	INT	Velocity setpoint for velocity mode in rpm.	
iSetVeloMovAbs	INT	Velocity setpoint for absolute positioning in rpm.	
iVeloType	INT	Specification of the source of the velocity.	
diSetPosMovAbs	DINT	Target position for absolute positioning in increments.	
xCmdHoming	BOOL	Starts homing operation.	
diSetHomePos	DINT	Position to set if homing is finished.	
uiSetHomeMod	UINT	Defines the method for homing operation.	
uiSetVeloHome	UINT	Velocity setpoint for search of the reference switch.	
uiSetVeloOutHome	UINT	Velocity setpoint for movement back to edge of reference switch.	
diSetPosOutHome	DINT	Maximum distance for movement back to edge of reference switch.	
diSetPosDisHome	DINT	Distance for positioning starting from edge of reference switch.	
iPosType	INT	Specification of the source of the position.	

Variable	Data Type	Description
xStatEnbl	BOOL	Indicates the state of the power stage.
wErrID	WORD	Indicates the error ID of the detected error. Refer to the <i>Lexium Library Function Blocks Software Manual</i> .
xErr	BOOL	Indicates that an error state exists.
xVeloActv	BOOL	Indicates the continuous velocity operation is active.
xAbsActv	BOOL	Indicates the absolute positioning operation is active.
xHomeActv	BOOL	Indicates the homing operation is active.
xJogActv	BOOL	Indicates the jogging operation is active.
xComOk	BOOL	Indicates the communication state of the device. TRUE = communication state operational FALSE = communication state not operational
eComStat	CIA405.DEVICE_S TATE	Communication state of the device. Enumeration, refer to the CIA405 Library Guide (see SoMachine Online Help under <i>CoDeSys Libraries/CAA Libraries/CAA_CiA405.library</i>).

Program - Prg_<name device module>

Program Contained in the Lexium_ILE_CANopen Device Module

The program is divided into 2 actions and is created in programming language CFC (Continuous Function Chart). Both actions will be called on each program execution.

- Action A01_GetNodeState
- Action A02_Ctrl_Lexium

Action - A01_GetNodeState

The program code in this action provides information on the communication state of the device on the CANopen fieldbus. Based on the communication parameter the communication state is assigned to the corresponding variables which have been declared in the GVL_<module name>. If the state is equal to OPERATIONAL, the variable for the state indicates TRUE and other cases are indicated by FALSE.

Action - A02_Ctrl_Lexium

The program code in this action processes the basic monitor and control functions of the device:

- with the function block MC_Power_ILX, enable/disable the power stage of the drive
- with the function block MC_Reset_ILX, reset the drive after an error
- with the function block ${\tt MC_Stop_ILX},$ stop operation on the drive
- with the function block MC_Jog_ILX, operate the drive in jog mode
- with the function block MC_MoveVelocity_ILX, operate the drive with continuous velocity
- with the function block MC_MoveAbsolute_ILX, operate the drive with absolute positioning
- with the function block MC_ReadActualVelocity_ILX, read the velocity of the drive
- with the function block MC_ReadActualPosition_ILX, read the position of the drive
- with the function block MC_ReadAxisError_ILX, obtain the error state of the drive
- with the function block MC_Home_ILX, initiate the homing mode

Adding Device Module to the Project

Instantiation of the Device Module

The instantiation of this Device Module is equivalent to the Device Module ATV•••_CANopen. For more information, refer to Adding Device Module to the Project *(see page 47)*.

Section 2.21 Lexium_SD3_CANmotion Device Module

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	161
Required Libraries	162
Global Variable List - GVL_ <name device="" module=""></name>	163
Program - Prg_ <name device="" module=""></name>	165
Adding Device Module to the Project	166

Device Module Description

Graphical Representation

Lexium_SD3_CANmotion Device Module Description

The Device Module provides a ready-to-use coding template as a pattern to monitor and control a Lexium SD3 via CANmotion through a SoMachine controller.

The Device Module Lexium_SD3_CANmotion is represented by a function template and consists of a global variable list, a program, and the device Lexium SD3 under the CANmotion manager. After instantiation of the Device Module, these objects are added to your project. They appear with the name which has been assigned using **Add Function From Template** (see SoMachine, *Programming Guide*).

The GVL provides the variables which are used to monitor and control the Lexium SD3 via CANmotion.

The program provides the following features:

- monitor the communication state of the device
- monitor the state of the device
- control the device in velocity mode
- control the device in relative positioning mode
- control the device in absolute positioning mode
- control the device in homing mode
- reset the drive in case of an error state

Required Libraries

Required Libraries Used in the Lexium_SD3_CANmotion Device Module

The following function blocks are used in the program organization units (POUs) of the template. The corresponding libraries are added to the project when the Device Module for the drive is added.

Function Block	Library	Namespace	Vendor
MC_Power	SM3_Basic	SM3_Basic	3S - Smart Software Solutions GmbH
MC_Reset			
MC_Stop			
MC_Jog			
MC_MoveVelocity			
MC_MoveRelative			
MC_MoveAbsolute			
MC_ReadActualVelocit			
У			
MC_ReadActualPositio			
n			
MC_ReadAxisError			
MC_ReadStatus]		
SMC3_ReinitDrive			

Global Variable List - GVL_<name device module>

Global Variables Provided by the Lexium_SD3_CANmotion Device Module

The table presents the variables provided with the global variable list:

Variable	Data Type	Description
xMcbRdy	BOOL	Indicates the state of Motor Circuit Breaker (MCB). Mapped to the physical input where the corresponding auxiliary contact of the MCB is connected.
xCmdEnPwr	BOOL	Enables power to the drive.
xQuickStop	BOOL	Disables the quick stop mechanism.
xCmdRst	BOOL	Resets an error state on the axis.
xCmdReinitDrive	BOOL	Reinitializes the axis (start-up phase is reactivated)
xCmdStop	BOOL	Stops the axis
xCmdHoming	BOOL	Starts homing operation
xCmdMovVelo	BOOL	Starts the axis with continuous velocity
xCmdMovAbs	BOOL	Starts the axis with absolute positioning
xCmdMovRel	BOOL	Starts the axis with relative positioning
lrSetHomePos	LREAL	Position to set if homing is finished.
lrSetVeloMovVelo	LREAL	Velocity setpoint for velocity mode in u/s.
lrSetVeloMovAbs	LREAL	Velocity setpoint for absolute positioning u/s.
lrSetPosMovAbs	LREAL	Target position for absolute positioning in technical units.
lrSetVeloMovRel	LREAL	Velocity setpoint for relative positioning u/s.
lrSetDistMovRel	LREAL	Distance for relative positioning in technical units.
lrSetAcc	LREAL	Value of the acceleration [u/s ²]
lrSetDec	LREAL	Value of the deceleration [u/s ²]
eDirMovVelo	SM3_Basic.MC_DIREC TION	Direction for continuous velocity operation -1 = negative 1 = positive 2 = the active direction
xStatEnbl	BOOL	Indicates whether the drive is powered and quick stop mechanism is disabled
xHomeActv	BOOL	Indicates the homing operation is active.
xAbsActv	BOOL	Indicates the absolute positioning operation is active.
xVeloActv	BOOL	Indicates the continuous velocity operation is active.
xRelActv	BOOL	Indicates the relative positioning operation is active.

Variable	Data Type	Description
xErr	BOOL	Indicates that an error state exists.
xActlPosVld	BOOL	Indicates whether the value lrActlPos is valid.
lrActlPos	LREAL	Position of axis unit [u]
xActlVeloVld	BOOL	Indicates whether the value lrActlVelo is valid.
lrActlVelo	LREAL	Velocity of axis unit [u/s]
xErrIdVld	BOOL	Indicates whether the value dwErrId is valid.
dwErrId	DWORD	Vendor-specific value of the axis error
xAxisStatVld	BOOL	Indicates whether the value eAxisStat is valid.
eAxisStat	SM3_Basic.SMC_AXIS_ STATE	State of the axis according to PLCopen state diagram
xComOk	BOOL	Indicates the CANmotion communication state. TRUE = communication state operational FALSE = communication state not operational
diHmiSetHomePos	DINT	Position to set if homing is finished.
diHmiSetVeloMovVelo	DINT	Velocity setpoint for velocity mode in u/s.
diHmiSetVeloMovAbs	DINT	Velocity setpoint for absolute positioning u/s.
diHmiSetPosMovAbs	DINT	Target position for absolute positioning in technical units.
diHmiSetVeloMovRel	DINT	Velocity setpoint for relative positioning u/s.
diHmiSetDistMovRel	DINT	Distance for relative positioning in technical. units.
diHmiActlPos	DINT	Position of axis unit [u]
diHmiActlVelo	DINT	Velocity of axis unit [u/s]
diHmiAcc	DINT	Value of the acceleration [u/s ²]
diHmiDec	DINT	Value of the deceleration [u/s ²]

Program - Prg_<name device module>

Program Contained in the Lexium_SD3_CANmotion Device Module

The program is divided into three actions and is created in programming language CFC (Continuous Function Chart). These actions will be called on each program execution.

- Action A01_GetNodeState
- Action A02_Ctrl_Lexium
- Action A03_HmiVarConversion

Action - A01_GetNodeState

The program code in this action provides information on the communication state of the device on the CANmotion bus. The communication state is provided by an element of the axis structure and is assigned to the corresponding variable which has been declared in the GVL_<module name>. If the CANmotion communication is OK, the variable for the general state indicates TRUE, otherwise the state of the variable is FALSE.

Action - A02_Ctrl_Lexium

The program code in this action processes the basic monitor and control functions of the device:

- with the function block MC_Power, enable/disable the power stage of the drive
- with the function block MC_Reset, reset the drive after an error
- with the function block SMC3_ReinitDrive, reinitialize the axis
- with the function block MC_Stop, stop operation on the drive
- with the function block MC_Home, initiate the homing mode
- with the function block MC_MoveVelocity, operate the drive with continuous velocity
- with the function block MC_MoveAbsolute, operate the drive with absolute positioning
- with the function block MC_MoveRelative, operate the drive with relative positioning
- with the function block MC_ReadActualVelocity, read the velocity
- with the function block MC_ReadActualPosition, read the position
- with the function block MC_ReadAxisError, obtain the error state of the drive
- with the function block MC_ReadParameter, obtain the status of the drive

Action - A03_HmiVarConversion

Not all HMI devices support the datatype LREAL, therefore variables of datatype DINT have been declared with the same meaning. In this action, the HMI variables of type DINT will be converted and assigned to the process variables of type LREAL.

Adding Device Module to the Project

Instantiation of the Device Module

The instantiation of this Device Module is equivalent to the Device Module Lexium_32A_CANmotion. For more information, refer to Adding Device Module to the Project *(see page 102)*.

Section 2.22 MED_iEM3150_ModbusSL Device Module

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	168
Required Libraries	170
Global Variable List - GVL_ <name device="" module=""></name>	171
Program - Prg_ <name device="" module=""></name>	
Adding Device Module to the Project	175

Device Module Description

Graphical Representation

MED_iEM3150_ModbusSL Device Module Description

The Device Module provides a ready-to-use coding template as a pattern to monitor energy data, such as current, voltage and power. The SoMachine controller retrieves the energy data from the Device Module via Modbus SL.

The Device Module MED_iEM3150_ModbusSL is represented by a function template and consists of a global variable list (GVL), and a program. After instantiation of the Device Module, these objects are added to your project. They appear with the name which has been assigned using Add Function From Template (see SoMachine, Programming Guide).

The GVL provides the variables which contain the energy data and additional information. These variables can be directly connected to the associated Machine Energy Dashboard widgets on the Magelis HMI. These widgets are provided within the Toolchest of Vijeo Designer.

After instantiation, a variable wModbusToken is added to the global variable list with the name GVL. This variable is used by the FB_PowerMeter. The FB checks this variable for value 0 to start the communication. During active communication the used slave address is written to the variable. When the communication is finished, the FB writes 0 to the variable. This variable is used to interlock other Modbus SL communication function blocks in the application.

The program provides the following features:

- read the energy data from the Energy Meter
- monitor the current
- monitor the voltage
- monitor the power
- monitor the power factor
- monitor the frequency
- monitor the total energy consumption
- monitor the energy consumption per mode
- monitor the Modbus communication

Required Libraries

Required Libraries Used in the MED_iEM3150_ModbusSL Device Module

The following function blocks and structures are used in the POUs of the template. The corresponding libraries are added to the project if the Device Module is added.

Function Block	Library	Namespace	Vendor
FB_PowerMeter	SE_ModbusEnergyEfficiencyToolbox	MEET	Schneider Electric
FB_EE_EnergyQuality	SE_MachineEnergyDashboard	MED	
FB_EE_PowerAndEnergy			
FB_EE_Frequency			
FB_EE_EnergyPerMode			
FB_EE_InstantPower			
FB_EE_TotalEnergy			

Structure	Library	Namespace	Vendor
ST_MdbCommParaGeneric	SE_ModbusEnergyEfficiencyToolbox	MEET	Schneider Electric
EqPhasVal	SE_MachineEnergyDashboard	MED	
EqWdgtConf			
FrVal			
EEEnrgy			
PAEVal			
PAEWdgtConf			
EpmWdgtConf			
IpPower			
IpWdgtConf			
IpScalPara			
ST_GenericDeviceDatasetLong	SE_EnergyEfficiencyToolbox	EET	

Global Variable List - GVL_<name device module>

Global Variables Provided by the MED_iEM3150_ModbusSL Device Module

The table presents the variables provided with the global variable list (GVL):

Variable	Data Type	Description
xCmdRestart	BOOL	Restarts FB which reads data from power meter, for example, during a communication interruption.
xCmdRst	BOOL	Reset FB which reads data from power meter.
xCmdRstFbMedCurr	BOOL	Reset the FB which processes the current values.
xCmdRstFbMedVltPP	BOOL	Reset the FB which processes the voltage (phase to phase) values.
xCmdRstFbMedVltgPN	BOOL	Reset the FB which processes the voltage (phase to neutral) values.
xCmdRstFbMedPwrTotal	BOOL	Reset the FB which processes the total power values.
xCmdRstFbMedPwrFact	BOOL	Reset the FB which processes the power factor values.
xCmdRstFbMedFreq	BOOL	Reset the FB which processes the frequency values.
xCmdRstFbMedTotalEnergy	BOOL	Reset the FB which processes the total energy values.
xCmdRstFbMedEnergyPerMode	BOOL	Reset the function blocks which process the energy per mode values.
xCmdRstFbMedInstantPwr	BOOL	Reset the FB which processes the instant power values.
xWdgtModeInstantPwr	BOOL	Switch the display between operator mode and maintenance mode.
xWdgtModeEnergyPerMode	BOOL	Switch the display between operator mode and maintenance mode.
xMachRun	BOOL	Indicates, the machine is in RUN mode for the monitoring of energy per mode.
stHmiWdgtValCurr	MED.EqWdgtVal	Current values to be displayed on the widget on the HMI.
stHmiWdgtParaCurr	MED.EqWdgtPara	Parameters determining the appearance of the associated widget.
xAlarmCurr	BOOL	Indicates an alarm, occurred in the associated FB.
stHmiWdgtValVltgPP	MED.EqWdgtVal	Voltage values (phase to phase) to be displayed on the widget on the HMI.
stHmiWdgtParaVltgPP	MED.EqWdgtPara	Parameters determining the appearance of the associated widget.
xAlarmVltgPP	BOOL	Indicates an alarm, occurred in the associated FB.
stHmiWdgtValVltgPN	MED.EqWdgtVal	Voltage values (phase to neutral) to be displayed on the widget on the HMI.
stHmiWdgtParaVltgPN	MED.EqWdgtPara	Parameters determining the appearance of the associated widget.

Variable	Data Type	Description
xAlarmVltgPN	BOOL	Indicates an alarm, occurred in the associated FB.
stHmiWdgtValPwrTotal	MED.PAEWdgtVal	Power values (total) to be displayed on the widget on the HMI.
stHmiWdgtParaPwrTotal	MED.PAEWdgtPara	Parameters determining the appearance of the associated widget.
stHmiWdgtValFreq	MED.FrWdgtVal	Frequency value to be displayed on the widget on the HMI.
xAlarmFreq	BOOL	Indicates that an alarm occurred in the associated FB.
stHmiWdgtValPwrFact	MED.EqWdgtVal	Power factor to be displayed on the widget on the HMI.
stHmiWdgtParaPwrFact	MED.EqWdgtPara	Parameters determining the appearance of the associated widget.
xAlarmPwrFact	BOOL	Indicates an alarm, occurred in the associated FB.
stHmiWdgtValTotalEnergy	MED.TEWdgtVal	Energy value consumed since the last reset of the FB to be displayed on the widget on the HMI.
stHmiWdgtConfTotalEnergy	MED.TEWdgtConf	Parameters determining the appearance of the associated widget.
xAlarmTotalEnergy	BOOL	Indicates that an alarm occurred in the associated FB.
stHmiWdgtValRunEnergy	MED.EpmWdgtVal	Energy value consumed in Run mode to be displayed on the widget on the HMI.
stHmiWdgtParaRunEnergy	MED.EpmWdgtPara	Parameters determining the appearance of the associated widget.
xAlarmRunEnergy	BOOL	Indicates an alarm, occurred in the associated FB.
stHmiWdgtValIdleEnergy	MED.EpmWdgtVal	Energy value consumed in Idle mode to be displayed on the widget on the HMI.
stHmiWdgtParaIdleEnergy	MED.EpmWdgtPara	Parameters determining the appearance of the associated widget.
xAlarmIdleEnergy	BOOL	Indicates an alarm, occurred in the associated FB.
stHmiWdgtValInstantPwr	MED.lpWdgtVal	Instant power value to be displayed on the widget on the HMI.
stHmiWdgtParaInstantPwr	MED.IPWdgtPara	Parameters determining the appearance of the associated widget.
xAlarmInstantPwr	BOOL	Indicates that an alarm occurred in the associated FB.
xComErr	BOOL	Indicates a Modbus communication interruption. Restart command for FB Power Meter is required.

Program - Prg_<name device module>

Program Contained in the MED_iEM3150_ModbusSL Device Module

The program is created in programming language CFC (Continuous Function Chart) and includes 2 steps. One is the reading of energy data from the Energy Meter and the other one is the processing of the energy data for displaying on widgets on the HMI.

The program code for reading the energy data is executed in the program with the use of the FB FB_PowerMeter. The FB uses system functions internally to get the data via Modbus SL communication from the device. The communication state is monitored and indicated by an output of the FB.

The program code to process the energy values is divided into 8 actions. These actions will be called on each program execution.

Action - A01_MED_Current

In this action, the current values are processed with the use of the FB FB_EE_EnergyQuality. This FB provides the current values and the configuration parameter for the widget on the HMI.

Action - A02_MED_Voltage

In this action, the voltage values are processed with the use of the FB FB_EE_EnergyQuality. This FB provides the voltage values and the configuration parameter for the widget on the HMI.

Action - A03_MED_Power

In this action, the power values are processed with the use of the FB FB_EE_PowerAndEnergy. This FB provides the power values and the configuration parameter for the widget on the HMI.

Action - A04_MED_PowerFactor

In this action, the power factor is processed with the use of the FB FB_EE_EnergyQuality. This FB provides the power factor and the configuration parameter for the widget on the HMI.

Action - A05_MED_Frequency

In this action, the frequency value is processed with the use of the FB FB_EE_Frequency. This FB provides the frequency value and the configuration parameter for the widget on the HMI.

Action - A06_MED_Energy

In this action, the energy values are processed with the use of the function blocks FB_EE_TotalEnergy and FB_EE_PowerAndEnergy. Each FB provides the energy values and the configuration parameter for the widget on the HMI. The FB FB_EE_PowerAndEnergy provides the energy evaluated by the Energy Meter and the FB FB_EE_TotalEnergy provides the consumed energy since the last reset on the FB.

Action - A07_MED_EnergyPerMode

In this action, the energy values of the respective machine modes are processed with the use of the FB FB_EE_EnergyPerMode. This FB provides the energy value and the configuration parameter for the widget on the HMI. 2 machine modes are defined within this Device Module: the run mode and the idle mode. The variable GVL_<name device module>.xMachRun determines the mode as follows.

- TRUE = Run mode
- FALSE = Idle mode

Action - A08_MED_InstantPower

In this action, the power value is processed with the use of the FB FB_EE_InstantPower. This FB provides the power value, the monitoring state, and the configuration parameter for the widget on the HMI.

Adding Device Module to the Project

Instantiation of the Device Module

The instantiation of this Device Module requires a Modbus manager be added to the serial line interface of your controller. Using **Add Function From Template** *(see SoMachine, Programming Guide)*, you can adjust the initial values for selected variables which are part of the template.

Variables selected for parameterization (constant):

Variable	Data Type	Default Value	Description
Prg_ <module name="">.c_byAddr</module>	BYTE	1	Modbus slave address of the Energy Meter
Prg_ <module name="">.c_byChanNb</module>	BYTE	1	Communication port of the controller
<pre>Prg_<module name="">.c_iMinPower</module></pre>	INT	0	Absolute value in Watt that defines the minimum value in the meter graph of the instant power object.
Prg_ <module name="">.c_iMaxPower</module>	INT	2000	Absolute value in Watt that defines the maximum value in the meter graph of the instant power object.

Section 2.23 MED_PM3250_ModbusSL Device Module

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	177
Required Libraries	179
Global Variable List - GVL_ <name device="" module=""></name>	180
Program - Prg_ <name device="" module=""></name>	183
Adding Device Module to the Project	185

Device Module Description

Graphical Representation

MED_PM3250_ModbusSL Device Module Description

The Device Module provides a ready-to-use coding template as a pattern to monitor energy data, such as current, voltage, and power. The SoMachine controller retrieves the energy data from the Device Module via Modbus SL.

The Device Module MED_PM3250_ModbusSL is represented by a function template and consists of a global variable list GVL, and a program. After instantiation of the Device Module, these objects are added to your project. They appear with the name which has been assigned using **Add Function From Template** (see SoMachine, Programming Guide).

The GVL provides the variables which contain the energy data and additional information. These variables can be directly connected to the associated Machine Energy Dashboard widgets on the Magelis HMI. These widgets are provided within the Toolchest of Vijeo Designer.

After instantiation, a variable wModbusToken is added to the global variable list with the name GVL. This variable is used by the FB_PowerMeter. The FB checks this variable for value 0 to start the communication. During active communication the used slave address is written to the variable. When the communication is finished, the FB writes 0 to the variable. This variable is used to interlock other Modbus SL communication function blocks in the application.

The program provides the following features:

- read the energy data from the Power Meter
- monitor the current
- monitor the voltage
- monitor the power
- monitor the power factor
- monitor the frequency
- monitor the total energy consumption
- monitor the energy consumption per mode
- monitor the harmonic content (THDI and THDU values)
- monitor the Modbus communication

Required Libraries

Required Libraries Used in the MED_PM3250_ModbusSL Device Module

The following function blocks and structures are used in the POUs of the template. The corresponding libraries are added to the project if the Device Module is added.

Function Block	Library	Namespace	Vendor
FB_PowerMeter	SE_ModbusEnergyEfficiencyToolbox	MEET	Schneider Electric
FB_EE_EnergyQuality	SE_MachineEnergyDashboard	MED	
FB_EE_PowerAndEnergy			
FB_EE_Frequency			
FB_EE_EnergyPerMode			
FB_EE_InstantPower			
FB_EE_TotalEnergy			

Structure	Library	Namespace	Vendor
ST_MdbCommParaGeneric	SE_ModbusEnergyEfficiencyToolbox	MEET	Schneider Electric
EqPhasVal	SE_MachineEnergyDashboard	MED	
EqWdgtConf			
FrVal			
EEEnrgy			
PAEVal			
PAEWdgtConf			
EpmWdgtConf			
IpPower			
IpWdgtConf			
IpScalPara			
ST_GenericDeviceDatasetLong	SE_EnergyEfficiencyToolbox	EET	

Global Variable List - GVL_<name device module>

Global Variables Provided by the MED_PM3250_ModbusSL Device Module

The table presents the variables provided with the global variable list (GVL):

Variable	Data Type	Description
xCmdRestart	BOOL	Restarts FB which reads data from power meter for example during a blocked communication.
xCmdRst	BOOL	Reset FB which reads data from power meter.
xCmdRstFbMedCurr	BOOL	Reset the FB which processes the current values.
xCmdRstFbMedVltPP	BOOL	Reset the FB which processes the voltage (phase to phase) values.
xCmdRstFbMedVltgPN	BOOL	Reset the FB which processes the voltage (phase to neutral) values.
xCmdRstFbMedPwrTotal	BOOL	Reset the FB which processes the total power values.
xCmdRstFbMedPwrL1	BOOL	Reset the FB which processes reset the FB which processes the L1 power values.
xCmdRstFbMedPwrL2	BOOL	Reset the FB which processes the L2 power values.
xCmdRstFbMedPwrL3	BOOL	Reset the FB which processes the L3 power values.
xCmdRstFbMedPwrFact	BOOL	Reset the FB which processes the power factor values.
xCmdRstFbMedFreq	BOOL	Reset the FB which processes the frequency values.
xCmdRstFbMedEnergy	BOOL	Reset the FB which processes the detailed energy values.
xCmdRstFbMedTotalEnergy	BOOL	Reset the FB which processes the total energy values.
xCmdRstFbMedEnergyPerMode	BOOL	Reset the function blocks which processes the energy per mode values.
xCmdRstFbMedThdi	USINT	Reset the FB which processes the THDI values.
xCmdRstFbMedThdu	USINT	Reset the FB which processes the THDU values.
xCmdRstFbMedInstantPwr	BOOL	Reset the FB which processes the instant power values.
xWdgtModeInstantPwr	BOOL	Switch the display between operator mode and maintenance mode.
xWdgtModeEnergyPerMode	BOOL	Switch the display between operator mode and maintenance mode.
xMachRun	BOOL	Indicates, the machine is in RUN mode for the monitoring of energy per mode.
stHmiWdgtValCurr	MED.EqWdgtVal	Current values to be displayed on the widget on the HMI.
stHmiWdgtParaCurr	MED.EqWdgtPara	Parameters determining the appearance of the associated widget.
xAlarmCurr	BOOL	Indicates an alarm, occurred in the associated FB.
Variable	Data Type	Description
--------------------------	-----------------	--
stHmiWdgtValVltgPP	MED.EqWdgtVal	Voltage values (phase to phase) to be displayed on the widget on the HMI.
stHmiWdgtParaVltgPP	MED.EqWdgtPara	Parameters determining the appearance of the associated widget.
xAlarmVltgPP	BOOL	Indicates an alarm, occurred in the associated FB.
stHmiWdgtValVltgPN	MED.EqWdgtVal	Voltage values (phase to neutral) to be displayed on the widget on the HMI.
stHmiWdgtParaVltgPN	MED.EqWdgtPara	Parameters determining the appearance of the associated widget.
xAlarmVltgPN	BOOL	Indicates an alarm, occurred in the associated FB.
stHmiWdgtValPwrTotal	MED.PAEWdgtVal	Power values (total) to be displayed on the widget on the HMI.
stHmiWdgtParaPwrTotal	MED.PAEWdgtPara	Parameters determining the appearance of the associated widget.
stHmiWdgtValPwrL1	MED.PAEWdgtVal	Power values (L1) to be displayed on the widget on the HMI.
stHmiWdgtParaPwrLl	MED.PAEWdgtPara	Parameters determining the appearance of the associated widget.
stHmiWdgtValPwrL2	MED.PAEWdgtVal	Power values (L2) to be displayed on the widget on the HMI.
stHmiWdgtParaPwrL2	MED.PAEWdgtPara	Parameters determining the appearance of the associated widget.
stHmiWdgtValPwrL3	MED.PAEWdgtVal	Power values (L3) to be displayed on the widget on the HMI.
stHmiWdgtParaPwrL3	MED.PAEWdgtPara	Parameters determining the appearance of the associated widget.
stHmiWdgtValFreq	MED.FrWdgtVal	Frequency value to be displayed on the widget on the HMI.
xAlarmFreq	BOOL	Indicates that an alarm occurred in the associated FB.
stHmiWdgtValPwrFact	MED.EqWdgtVal	Power factor to be displayed on the widget on the HMI.
stHmiWdgtParaPwrFact	MED.EqWdgtPara	Parameters determining the appearance of the associated widget.
xAlarmPwrFact	BOOL	Indicates an alarm, occurred in the associated FB.
stHmiWdgtValEnergy	MED.PAEWdgtVal	Energy values to be displayed on the widget on the HMI.
stHmiWdgtParaEnerg	MED.PAEWdgtPara	Parameters determining the appearance of the associated widget.
stHmiWdgtValTotalEnergy	MED.TEWdgtVal	Energy value consumed since the last reset of the FB to be displayed on the widget on the HMI.
stHmiWdgtConfTotalEnergy	MED.TEWdgtConf	Parameters determining the appearance of the associated widget.

Variable	Data Type	Description	
xAlarmTotalEnergy	BOOL	Indicates that an alarm occurred in the associated FB.	
stHmiWdgtValRunEnergy	MED.EpmWdgtVal	Energy value consumed in Run mode to be displayed on the widget on the HMI.	
stHmiWdgtParaRunEnergy	MED.EpmWdgtPara	Parameters determining the appearance of the associated widget.	
xAlarmRunEnergy	BOOL	Indicates an alarm, occurred in the associated FB.	
stHmiWdgtValIdleEnergy	MED.EpmWdgtVal	Energy value consumed in Idle mode to be displayed on the widget on the HMI.	
stHmiWdgtParaIdleEnergy	MED.EpmWdgtPara	Parameters determining the appearance of the associated widget.	
xAlarmIdleEnergy	BOOL	Indicates an alarm, occurred in the associated FB.	
stHmiWdgtValThdu	MED.EqWdgtVal	THDU value to be displayed on the widget on the HMI.	
stHmiWdgtParaThdu	MED.EqWdgtPara	Parameters determining the appearance of the associated widget.	
xAlarmThdu	BOOL	Indicates that an alarm occurred in the associated FB.	
stHmiWdgtValThdi	MED.EqWdgtVal	THDI value to be displayed on the widget on the HMI.	
stHmiWdgtParaThdi	MED.EqWdgtPara	Parameters determining the appearance of the associated widget.	
xAlarmThdi	BOOL	Indicates an alarm, occurred in the associated FB.	
stHmiWdgtValInstantPwr	MED.lpWdgtVal	Instant power value to be displayed on the widget on the HMI.	
stHmiWdgtParaInstantPwr	MED.IPWdgtPara	Parameters determining the appearance of the associated widget.	
xAlarmInstantPwr	BOOL	Indicates that an alarm occurred in the associated FB.	
xComErr	BOOL	Indicates that the Modbus connection is blocked. Restar command for FB Power Meter is required.	

Program - Prg_<name device module>

Program Contained in the MED_PM3250_ModbusSL Device Module

The program is created in programming language CFC (Continuous Function Chart) and includes 2 steps. One is the reading of energy data from the Power Meter and the other one is the processing of the energy data for displaying on widgets on the HMI.

The program code for reading the energy data is executed in the program with the use of the FB FB_PowerMeter. The FB uses system functions internally to get the data via Modbus SL communication from the device. The communication state is monitored and indicated by an output of the FB.

The program code to process the energy values is divided into 9 actions. These actions will be called on each program execution.

Action - A01_MED_Current

In this action, the current values are processed with the use of the FB FB_EE_EnergyQuality. This FB provides the current values and the configuration parameter for the widget on the HMI.

Action - A02_MED_Voltage

In this action, the voltage values are processed with the use of the FB FB_EE_EnergyQuality. This FB provides the voltage values and the configuration parameter for the widget on the HMI.

Action - A03_MED_Power

In this action, the power values are processed with the use of the FB FB_EE_EnergyQuality. This FB provides the power values and the configuration parameter for the widget on the HMI.

Action - A04_MED_PowerFactor

In this action, the power factor is processed with the use of the FB FB_EE_EnergyQuality. This FB provides the power factor and the configuration parameter for the widget on the HMI.

Action - A05_MED_Frequency

In this action, the frequency value is processed with the use of the FB FB_EE_Frequency. This FB provides the frequency value and the configuration parameter for the widget on the HMI.

Action - A06_MED_Energy

In this action, the energy values are processed with the use of the function blocks FB_EE_TotalEnergy and FB_EE_PowerAndEnergy. Each FB provides the energy values and the configuration parameter for the widget on the HMI. The FB FB_EE_PowerAndEnergy provides the energy evaluated by the Power Meter and the FB FB_EE_TotalEnergy provides the consumed energy since the last reset on the FB.

Action - A07_MED_EnergyPerMode

In this action, the energy values of the respective machine modes are processed with the use of the FB FB_EE_EnergyPerMode. This FB provides the energy value and the configuration parameter for the widget on the HMI. 2 machine modes are defined within this Device Module: the run mode and the idle mode. The variable GVL_<name device module>.xMachRun determines the mode as follows.

- TRUE = Run mode
- FALSE = Idle mode

Action - A08_MED_TotalHarmonicDistortion

In this action, the total harmonic distortion values are processed with the use of the FB FB_EE_EnergyQuality. This FB provides the THDU respectively the THDI value and the configuration parameter for the widget on the HMI.

Action - A09_MED_InstantPower

In this action, the power value is processed with the use of the FB FB_EE_InstantPower. This FB provides the power value, the monitoring state, and the configuration parameter for the widget on the HMI.

Adding Device Module to the Project

Instantiation of the Device Module

The instantiation of this Device Module requires that a Modbus manager be added to the serial line interface of your controller. Using **Add Function From Template** *(see SoMachine, Programming Guide)*, you can adjust the initial values for selected variables which are part of the template.

Variables selected for parameterization (constant):

Variable	Data Type	Default Value	Description
Prg_ <module name="">.c_byAddr</module>	BYTE	1	Modbus slave address of the Power Meter
Prg_ <module name="">.c_byChanNb</module>	BYTE	1	Communication port of the controller
<pre>Prg_<module name="">.c_iMinPower</module></pre>	INT	0	Absolute value in Watt that defines the minimum value in the meter graph of the instant power object.
<pre>Prg_<module name="">.c_iMaxPower</module></pre>	INT	2000	Absolute value in Watt that defines the maximum value in the meter graph of the instant power object.

Section 2.24 Motor_Ctrl_1D1S Device Module

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	187
Required Libraries	188
Global Variable List - GVL_ <name device="" module=""></name>	
Program - Prg_ <name device="" module=""></name>	
Adding Device Module to the Project	

Device Module Description

Graphical Representation

Motor_Ctrl_1D1S Device Module Description

The Device Module provides a ready-to-use coding template as a pattern to monitor and control a hardwired direct online motor starter through a SoMachine controller.

The Device Module Motor_Ctrl_1D1S is represented by a function template and consists of a global variable list (GVL), and a program. After instantiation of the Device Module, these objects are added to your project. They appear with the name which has been assigned using **Add Function From Template** (see SoMachine, Programming Guide).

The GVL provides the variables which are used to monitor and control a motor via hardwired I/Os in one direction with one speed.

The program provides the following features:

- monitor the state of the motor starter
- control the motor in manual mode (latch mode)
- control the motor in local mode (latch mode)
- control the motor in auto mode (jog mode)

Required Libraries

Required Libraries Used in the Motor_Ctrl_1D1S Device Module

The following function block is used in the program organization units (POU) of the template. The corresponding library is added automatically to the project when the Device Module is added.

Function Block	Library	Namespace	Vendor
Mot2D1S	TeSys Library	SE_TESYS	Schneider Electric

Global Variable List - GVL_<name device module>

Global Variables Provided by the Motor_Ctrl_1D1S Device Module

The table presents the variables provided with the global variable list:

Variable	Data Type	Description
xSelAutMode	BOOL	Selects auto mode for the FB.
xSelManMode	BOOL	Selects manual mode for the FB.
xCmdAutFwd	BOOL	Starts (jog mode) the motor during auto mode.
xCmdLocFwd	BOOL	Local start (latch mode) of the motor in a forward direction during manual mode.
xCmdLocStop	BOOL	Local stop of the motor during manual mode.
xCmdManFwd	BOOL	Starts (latch mode) the motor in a forward direction during manual mode.
xCmdManStop	BOOL	Stops the motor during manual mode.
xCmdErrRst	BOOL	Resets the FB in case of alarm state.
xExtLock	BOOL	External signal to lock the FB (for example, state of the emergency stop).
xExtErr	BOOL	External signal to set the FB into error state (reset required).
xStatAutMode	BOOL	FB is selected for auto mode.
xStatManMode	BOOL	FB is selected for manual mode.
xStatLocMode	BOOL	FB is selected for manual and local mode.
xStatErr	BOOL	FB is in error state, reset required.
xAlertLock	BOOL	FB is blocked by i_xLock.
xAlarmOpMode	BOOL	Invalid operation mode selection has been done.
xAlarmExt	BOOL	FB is in alarm state due to detected i_xErr.
xAlarmFbckTmout	BOOL	FB is in alarm state due to undetected i_xFbckRun during the monitoring time (only if feedback signal supervision is activated).
xMcbRdy	BOOL	Signal associated with the motor circuit breaker contact indicating that the device is under power.
xFwdFbck	BOOL	Feedback signal indicating motor runs in a forward direction.
xDriveMotFwd	BOOL	Activates the contactor in a forward direction.

Program - Prg_<name device module>

Program Contained in the Motor_Ctrl_1D1S Device Module

The program is created in programming language CFC (Continuous Function Chart).

Implemented features are:

- Mapping the manual commands into the control word.
- FB instance (MOT2D1S) call with assigned parameters.
- Extracting of the status word (detailed alarm and alert information) to boolean variables.

Adding Device Module to the Project

Instantiation of the Device Module

Using Add Function From Template (see SoMachine, Programming Guide) for this Device Module, you can:

- map variables to physical inputs and outputs of your configuration
- adjust initial values for selected variables which are part of the template

Variables selected for I/O mapping (input):

Variable	Data Type	Default Value	Description
GVL_ <modul name="">.xMcbRdy</modul>	BOOL	-	Signal associated with the motor circuit breaker contact indicating that the device is under power.
GVL_ <modul name="">.xFwdFbck</modul>	BOOL	-	Feedback signal indicating motor runs in a forward direction.

Variable selected for I/O mapping (output):

Variable	Data Type	Default Value	Description
GVL_ <modul name="">.xDriveMotFwd</modul>	BOOL	_	Activates the drive in a forward direction.

Variables selected for parameterization (constant):

Variable	Data Type	Default Value	Description
Prg_ <modul name="">.c_xEnFbckCtrl</modul>	BOOL	FALSE	Enables the monitoring of the feedback signals of the motor run state.
Prg_ <modul name="">.c_ iDlyTimeFbckCtrl</modul>	INT	2	Delay time in seconds to determine that the feedback signal is inoperable and to activate an alarm.

Section 2.25 Motor_Ctrl_2D1S Device Module

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	193
Required Libraries	194
Global Variable List - GVL_ <name device="" module=""></name>	
Program - Prg_ <name device="" module=""></name>	
Adding Device Module to the Project	

Device Module Description

Graphical Representation

Motor_Ctrl_2D1S Device Module Description

The Device Module provides a ready-to-use coding template as a pattern to monitor and control a hardwired direct online motor starter in two directions through a SoMachine controller.

The Device Module Motor_Ctrl_2D1S is represented by a function template and consists of a global variable list (GVL), and a program. After instantiation of the Device Module, these objects are added to your project. They appear with the name which has been assigned using **Add Function From Template** (see SoMachine, Programming Guide).

The GVL provides the variables which are used to monitor and control a motor via hardwired I/Os in 2 directions with one speed.

The program provides the following features:

- monitor the state of the motor starter
- control the motor in manual mode (latch mode)
- control the motor in local mode (latch mode)
- control the motor in auto mode (jog mode)

Required Libraries

Required Libraries Used in the Motor_Ctrl_2D1S Device Module

The following function block is used in the program organization units (POU) of the template. The corresponding library is added automatically to the project when the Device Module is added.

Function Block	Library	Namespace	Vendor
MOT2D1S	TeSys library	SE_TESYS	Schneider Electric

Global Variable List - GVL_<name device module>

Global Variables Provided by the Motor_Ctrl_2D1S Device Module

The table presents the variables provided with the global variable list:

Variable	Data Type	Description
xSelAutMode	BOOL	Selects auto mode for the FB.
xSelManMode	BOOL	Selects manual mode for the FB.
xCmdAutFwd	BOOL	Starts (jog mode) the motor in a forward direction during auto mode.
xCmdAutRev	BOOL	Starts (jog mode) the motor in a reverse direction during auto mode.
xCmdLocFwd	BOOL	Local start (latch mode) of the motor in a forward direction during manual mode.
xCmdLocRev	BOOL	Local start (latch mode) of the motor in a reverse direction during manual mode.
xCmdLocStop	BOOL	Local stop of the motor during manual mode.
xCmdManFwd	BOOL	Starts (latch mode) the motor in a forward direction during manual mode.
xCmdManRev	BOOL	Starts (latch mode) the motor in a reverse direction during manual mode.
xCmdManStop	BOOL	Stops the motor during manual mode.
xCmdErrRst	BOOL	Resets the FB in case of alarm state.
xExtLock	BOOL	External signal to lock the FB (for example state of the emergency stop).
xExtErr	BOOL	External signal to set the FB into error state (reset required).
xStatAutMode	BOOL	FB is selected for auto mode.
xStatManMode	BOOL	FB is selected for manual mode.
xStatLocMode	BOOL	FB is selected for manual & local mode.
xStatErr	BOOL	FB is in error state, reset required.
xAlertLock	BOOL	FB is blocked by i_xLock.
xAlarmOpMode	BOOL	Invalid operation mode selection has been done.
xAlarmExt	BOOL	FB is in alarm state due to detected i_xErr.
xAlarmFbckTmout	BOOL	FB is in alarm state due to undetected i_xFwdFbck or i_xRevFbck during the monitoring time (only if feedback signal supervision is activated).
xMcbRdy	BOOL	Signal associated with the motor circuit breaker contact indicating that the device is under power.
xFwdFbck	BOOL	Feedback signal indicating motor runs in a forward direction.
xRevFbck	BOOL	Feedback signal indicating motor runs in a reverse direction.
xDriveMotFwd	BOOL	Activates the contactor for the forward direction.
xDriveMotRev	BOOL	Activates the contactor for the reverse direction.

Program - Prg_<name device module>

Program Contained in the Motor_Ctrl_2D1S Device Module

The program is created in programming language CFC (Continuous Function Chart).

Implemented features are:

- 1. Mapping the manual command to the control word.
- 2. FB instance (MOT2D1S) call with assigned parameters.
- 3. Extracting of the status word (detailed alarm and alert information) to boolean variables.

Adding Device Module to the Project

Instantiation of the Device Module

Using **Add Function from Template** *(see SoMachine, Programming Guide)* for this Device Module, you can:

- map variables to physical inputs and outputs of your configuration
- adjust initial values for selected variables which are part of the template

Variables selected for I/O mapping (input):

Variable	Data Type	Default Value	Description
GVL_ <modul name="">.xMcbRdy</modul>	BOOL	-	Signal associated with the motor circuit breaker contact indicating that the device is under power.
GVL_ <modul name="">.xFwdFbck</modul>	BOOL	-	Feedback signal indicating motor runs in a forward direction.
GVL_ <modul name="">.xRevFbck</modul>	BOOL	-	Feedback signal indicating motor runs in a reverse direction.

Variables selected for I/O mapping (output):

Variable	Data Type	Default Value	Description
GVL_ <modul name="">.xDriveMotFwd</modul>	BOOL	-	Activates the contactor for the forward direction.
GVL_ <modul name="">.xDriveMotRev</modul>	BOOL	-	Activates the contactor for the reverse direction.

Variables selected for parameterization (constant):

Variable	Data Type	Default Value	Description
Prg_ <modul name="">.c_xEnFbckCtrl</modul>	BOOL	FALSE	Enables the monitoring of the feedback signals of the motor run state.
Prg_ <modul name="">.iDlyTimeFbckCtrl</modul>	INT	2	Delay time in seconds to determine that the feedback signal is inoperable and to activate an alarm.

Section 2.26 OsiSense_RFID_EtherNetIP Device Module

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	199
Required Libraries	200
Functional Description	201
Adding Device Module to the Project	203

Device Module Description

Graphical Representation

OsiSense_RFID_EtherNetIP Device Module Description

The Device Module OsiSense_RFID_EtherNetIP provides the application objects and the device which are required to monitor and control an OsiSense XGCS smart antenna via EtherNet/IP with a Schneider Electric SoMachine controller. The device OsiSense XGCS requires the **Industrial Ethernet manager** under the Ethernet interface of the controller.

Required Libraries

Required Libraries Used in the OsiSense_RFID_EtherNetIP Device Module

The Device Module implements objects from one or more libraries. The objects and the associated libraries used by this Device Module are listed in the following tables.

Function/Function block	Library	Namespace	Vendor
EIPGetHealthBit	EtherNetIP Scanner	EIPSC	Schneider Electric
EIPStartConnection			
EIPStopConnection			
EipDataExch			
FB_RemoteAdapter	EtherNetIP Remote Adapter	EIPRA	

Enumeration	Library	Namespace	Vendor
OperationErrorCodes	EtherNetIP Scanner	EIPSC	Schneider Electric
CIPOperationErrorCodes			
CommunicationErrorCodes			
eStatus	EtherNetIP Remote Adapter	EIPRA	
eAdapterErrorInfo			

NOTE: The library EtherNetIP Scanner is not supported by the motion controller LMC078.

Functional Description

Device - <name device module>

The Device Module implements the device OsiSense XGCS for EtherNet/IP. This device is added under the **Industrial Ethernet manager** with the name selected within the **Add Function From Template** dialog box.

The device is preconfigured. The configuration includes the connection Read Status with the assembly 102 (input). The Request Packet Interval (RPI) is selected with 50 ms.

Global Variable List - GVL_<name device module>

The Device Module implements a GVL. This GVL is added under the **Application** node within a folder with the name selected within the **Add Function From Template** dialog box. The GVL gets the same name as the folder and the device but with the prefix GVL_.

The GVL contains the variables which build the interface from the implemented program code to the application. The clear name of the GVL and the uniform naming of the variables facilitate a simple and structured implementation into the application.

Program - Prg_<name device module>

The Device Module implements a program. This program is added under the **Application** node within a folder with the name selected within the **Add Function From Template** dialog box. The program gets the same name as the folder and the device but with the prefix Prg_. Besides, the program-call is added automatically to the associated task.

NOTE: The program logic is not supported in an application of a motion controller LMC078.

There are several possibilities to operate an OsiSense XGCS smart antenna. One of these is the dynamic read/write operation which is realized with this Device Module. Dynamic read/write means that the smart antenna executes automatically read or write commands each time a new tag is detected in front of the antenna. The automatically executed read/write commands are defined in instruction blocks which are previously sent from the controller application to the smart antenna using the explicit messaging.

By monitoring the tag counter which is cyclically updated via the implicit messaging, it is detected if a tag has passed the smart antenna. If the tag counter is increased, the data block ReadTable is read from the antenna using the explicit messaging. These data include the result of the execution of the instruction block and in case of read operation mode the read data from the tag.

In addition to the control of the read or write operation the following functions are provided by the program code:

- · Monitoring and control of the EtherNet/IP communication with the smart antenna
- Reinitialization on demand or after restart the CIP connection
- Activation of the sleep mode
- Select between read or write operation mode
- Send data to the smart antenna which shall be written on the tag by the instruction block

Name of the action	Description
A01_ComCtrl	Processes the functions to monitoring and control of the EtherNet/IP communication with the device.
A02_InputMapping	In this action the single bits of the TagSystemFlag of type WORD are assigned to boolean variables with a meaningful name to be used in the application.
A03_Operation	This action contains the program code to select the operation mode and to control and monitor the read and write operation executed by the smart antenna.

The program is divided into several actions. These are described in the following table.

Further information about the control logic is available inside the program in terms of comments.

Adding Device Module to the Project

Instantiation of the Device Module

The instantiation of this Device Module requires the **Industrial Ethernet manager** under the Ethernet interface of your controller.

Using Add Function From Template you can:

- Select the fieldbus master which manages the device
- Assign the IP address for the device
- Map variables to physical inputs and outputs of your configuration
- Adjust initial values for selected variables which are part of the template

Variable selected for parameterization:

Variable	Data type	Default value	Description
GVL_ <name device<br="">module>.usiDefaultOpMode</name>	USINT (02)	1	Default operation mode which will be selected automatically after initialization • 0 = sleep mode
			 1 = read operation mode
			• 2 = write operation mode
GVL_ <name device<br="">module>.c_usiDataSizeToReadWrit eInst1</name>	USINT (156)	56	Size of the data in WORDs which shall be read from or written to the tag by the instruction block; range: 1 to 56 (56 is the limit per write instruction block)

Section 2.27 OsiSense_RFID_ModbusTCP Device Module

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	205
Required Libraries	206
Functional Description	207
Adding Device Module to the Project	209

Device Module Description

Graphical Representation

OsiSense_RFID_ModbusTCP Device Module Description

The Device Module OsiSense_RFID_ModbusTCP provides the application objects and the device which are required to monitor and control an OsiSense XGCS smart antenna via Modbus TCP with a Schneider Electric SoMachine controller. The device OsiSense XGCS requires the **Industrial Ethernet manager** under the Ethernet interface of the controller.

Required Libraries

Required Libraries Used in the OsiSense_RFID_ModbusTCP Device Module

The Device Module implements objects from one or more libraries. The objects and the associated libraries used by this Device Module are listed in the following table.

Function/Function block	Library	Namespace	Vendor
WRITE_VAR	PLCCommunication	SEN	Schneider Electric
READ_VAR			
ADDM			
IOS_GetHealth	ModbusTCPIOScanner	SE_IOS	

Enumeration	Library	Namespace	Vendor
OperationErrorCodes	PLCCommunication	SEN	Schneider Electric
CommunicationErrorCodes			

Functional Description

Device - <name device module>

The Device Module implements the device OsiSense XGCS for Modbus TCP. This device is added under the **Industrial Ethernet manager** with the name selected within the **Add Function From Template** *(see SoMachine, Programming Guide)* dialog box.

The device is preconfigured. The configuration includes the Read Status channel for the cyclic data exchange with the device. The repetition rate for the channel is selected with 50 ms.

Global Variable List - GVL_<name device module>

The Device Module implements a GVL. This GVL is added under the **Application** node within a folder with the name selected within the **Add Function From Template** dialog box. The GVL gets the same name as the folder and the device but with the prefix GVL_.

The GVL contains the variables which build the interface from the implemented program code to the application. The clear name of the GVL and the uniform naming of the variables facilitate a simple and structured implementation into the application.

Program - Prg_<name device module>

The Device Module implements a program. This program is added under the **Application** node within a folder with the name selected within the **Add Function From Template** dialog box. The program gets the same name as the folder and the device but with the prefix Prg_. Besides, the program-call is added automatically to the associated task.

There are several possibilities to operate an OsiSense XGCS smart antenna. One of these is the dynamic read/write operation which is realized with this Device Module. Dynamic read/write means that the smart antenna executes automatically read or write commands each time a new tag is detected in front of the antenna. The automatically executed read/write commands are defined in instruction blocks which are previously sent from the controller application to the smart antenna using the explicit messaging.

By monitoring the tag counter which is cyclically updated via the **Modbus TCP IOScanner**, it is detected if a tag has passed the smart antenna. If the tag counter is increased, the data block Read Table is read from the antenna using the explicit messaging. These data include the result of the execution of the instruction block and in case of read operation mode the read data from the tag.

In addition to the control of the read or write operation the following functions are provided by the program code:

- Monitoring and control of the Modbus TCP communication with the smart antenna
- Reinitialization on demand or after reconnection of the Modbus TCP channel
- Activation of the sleep mode
- Select between read or write operation mode
- Send data to the smart antenna which shall be written on the tag by the instruction block

Name of the action	Description
A01_ComStat	Processes the functions to monitoring and control of the Modbus TCP communication with the device.
A02_Operation	This action contains the program code to select the operation mode and to control and monitor the read and write operation executed by the smart antenna.

The program is divided into several actions. These are described in the following table.

NOTE: For monitoring the communication state of the device the channel ID of the configured Modbus TCP channel must be set as value for the variable GVL_<name device

module>.c_uiChannelId. The channel ID is automatically generated when the device is added to the project and can be obtained through the **Device Editor** in the tab **Modbus TCP Channel configuration**.

Further information about the control logic is available inside the program in terms of comments.

Adding Device Module to the Project

Instantiation of the Device Module

The instantiation of this Device Module requires the **Industrial Ethernet manager** under the Ethernet interface of your controller.

Using Add Function From Template (see SoMachine, Programming Guide), you can:

- Select the fieldbus master which manages the device
- Assign the IP address for the device
- Map variables to physical inputs and outputs of your configuration
- · Adjust initial values for selected variables which are part of the template

Variable selected for parameterization:

Variable	Data type	Initial value	Description
GVL_ <name device<br="">module>.usiDefaultOpMode</name>	USINT	1	Default operation mode which will be selected automatically after initialization • 0 = sleep mode • 1 = read operation mode • 2 = write operation mode
GVL_ <name device<br="">module>.c_usiDataSizeToReadWrit eInst1</name>		56	Size of the data in WORDs which shall be read from or written to the tag by the instruction block; range: 1 to 56 (56 is the limit per write instruction block)
GVL_ <name device="" module="">.c_sAddr</name>	STRING	'3{0.0.0.0}1'	IP address (RFID smart antenna) configuration used by the communication function blocks in the program. Format: ' <communication link>{<ip address<br="">A.B.C.D>:<port>}<u nitID>'</u </port></ip></communication
			NOTE: If the <port> is not included in the string, the default '502' is used.</port>

Section 2.28 OsiSense_XUW_EtherNetIP Device Module

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	211
Required Libraries	212
Functional Description	213
Adding Device Module to the Project	215

Device Module Description

Graphical Representation

OsiSense_XUW_EtherNetIP Device Module Description

The Device Module OsiSense_XUW_EtherNetIP provides the application objects and the device which are required to monitor and control an OsiSense XUW vision sensor via EtherNet/IP with a Schneider Electric SoMachine controller. The device OsiSense XUW requires the **Industrial Ethernet manager** under the Ethernet interface of the controller.

Required Libraries

Required Libraries Used in the OsiSense_XUW_EtherNetIP Device Module

The Device Module implements objects from one or more libraries. The objects and the associated libraries used by this Device Module are listed in the following tables.

Function/Function block	Library	Namespace	Vendor
EIPGetHealthBit	EtherNetIP Scanner	EIPSC	Schneider Electric
EIPStartConnection			
EIPStopConnection			
FB_RemoteAdapter	EtherNetIP Remote Adapter	EIPRA	

Enumeration	Library	Namespace	Vendor
OperationErrorCodes	EtherNetIP Scanner	EIPSC	Schneider Electric
CIPOperationErrorCodes			
CommunicationErrorCodes			
eStatus	EtherNetIP Remote Adapter	EIPRA	
eAdapterErrorInfo			

NOTE: The library EtherNetIP Scanner is not supported by the motion controller LMC078.

Functional Description

Device - <name device module>

The Device Module implements the device OsiSense XUW for EtherNet/IP. This device is added under the **Industrial Ethernet manager** with the name selected within the **Add Function From Template** dialog box.

The device is preconfigured. The configuration includes the connection Exclusive Owner with the assemblies 100 (output) and 101 (input). The Request Packet Interval (RPI) is selected with 50 ms.

Global Variable List - GVL_<name device module>

The Device Module implements a GVL. This GVL is added under the **Application** node within a folder with the name selected within the **Add Function From Template** dialog box. The GVL gets the same name as the folder and the device but with the prefix GVL_.

The GVL contains several groups of variables, some of which are universal, others are especially defined for purposes of this Device Module. The variables are grouped in:

- Variables which are linked to the program code for monitoring and control EtherNet/IP communication with the device.
- Variables which are mapped directly to the inputs and outputs of the device.
- Variables which present the data received from the sensor in the correct format and data-type.
- Variables which are used to control and monitor the processing of images over the fieldbus.

The variable definition in this Device Module is just an example and must be adjusted according to your own application. Despite the required modifications, the clear name of the GVL and the uniform naming of the variables facilitate a simple and structured implementation into the application.

Program - Prg_<name device module>

The Device Module implements a program. This program is added under the **Application** node within a folder with the name selected within the **Add Function From Template** dialog box. The program gets the same name as the folder and the device but with the prefix Prg_. Besides, the program-call is added automatically to the associated task.

The implementation of the OsiSense XUW vision sensor in your controller application is dependent from the configuration of the sensor and its utilization in your system. Especially the variables which represent the results of image processing are individual. The use case realized with this Device Module is just an example and must be adjusted according to your own application. This example application implements the following functions:

- Monitoring and control of the EtherNet/IP communication with the sensor
- Conversion of the received data and mapping to the corresponding variables from the GVL
- Monitoring of the image counter and signaling if a new image has been processed by the sensor and new results are available
- Trigger the processing of a new image

The program is divided into several actions. These are described in the following table.

NOTE: The program logic of the action A01_ComCtrl is not supported in an application of a motion controller LMC078.

Name of the action	Description
A01_ComCtrl	Processes the functions to monitoring and control of the EtherNet/IP communication with the device.
A02_ConvertResults	In this action the input data which are provided in bytes are converted to the corresponding variables with the appropriated datatype.
A03_SensorCtrl	This action contains the program code to control the sensor over the fieldbus.

Further information about the control logic is available inside the program in terms of comments.

Adding Device Module to the Project

Instantiation of the Device Module

The instantiation of this Device Module requires the **Industrial Ethernet manager** under the Ethernet interface of your controller.

Using Add Function From Template you can:

- Select the fieldbus master which manages the device
- Assign the IP address for the device
- Map variables to physical inputs and outputs of your configuration
- Adjust initial values for selected variables which are part of the template

Section 2.29 Preventa_XPSMCM_EtherNetIP Device Module

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	217
Required Libraries	218
Functional Description	219
Adding Device Module to the Project	220
Device Module Description

Graphical Representation

Preventa_XPSMCM_EtherNetIP Device Module Description

The Device Module Preventa_XPSMCM_EtherNetIP provides the application objects and the device which are required for the non-safe data exchange with a Preventa XPSMCM Modular Safety Controller via EtherNet/IP with a Schneider Electric SoMachine controller. The data which are exchanged between the safety controller (Target) and the SoMachine controller (Originator) comprise from the view of the originator:

- Inputs (T->O): status information about the safety-related inputs and outputs, 16 discrete signals which can be freely assigned in the SoSafe application on the safety controller to provide additional information to the non-safe application
- Outputs (**O->T**): 8 discrete signals to provide information from the non-safe application to the SoSafe application on the safety controller.

The device Preventa XPSMCM requires the **Industrial Ethernet manager** under the Ethernet interface of the controller.

Required Libraries

Required Libraries Used in the Preventa_XPSMCM_EtherNetIP Device Module

The Device Module implements objects from one or more libraries. The objects and the associated libraries used by this Device Module are listed in the following tables.

Function/Function block	Library	Namespace	Vendor
EIPGetHealthBit	EtherNetIP Scanner	EIPSC	Schneider Electric
EIPStartConnection			
EIPStopConnection			
FB_RemoteAdapter	EtherNetIP Remote Adapter	EIPRA	

Enumeration	Library	Namespace	Vendor
OperationErrorCodes	EtherNetIP Scanner	EIPSC	Schneider Electric
CIPOperationErrorCodes			
CommunicationErrorCodes			
eStatus	EtherNetIP Remote Adapter	EIPRA	
eAdapterErrorInfo			

NOTE: The library EtherNetIP Scanner is not supported by the motion controller LMC078.

Functional Description

Device - <name device module>

The Device Module implements the device Preventa XPSMCM for EtherNet/IP. This device is added under the **Industrial Ethernet manager** with the name selected within the **Add Function From Template** dialog box.

The device is preconfigured. The configuration includes the connection with the assemblies 150 (output) and 100 (input). The Request Packet Interval (RPI) is selected with 20 ms.

Global Variable List - GVL_<name device module>

The Device Module implements a GVL. This GVL is added under the **Application** node within a folder with the name selected within the **Add Function From Template** dialog box. The GVL gets the same name as the folder and the device but with the prefix GVL_.

The GVL contains two groups of variables.

- One group is linked to the program code and builds the interface to the application for monitoring and control EtherNet/IP communication with the device.
- The other group of variables is directly mapped to the inputs and outputs of the device and can be used in the application according to their meaning.

The clear name of the GVL and the uniform naming of the variables facilitate a simple and structured implementation into the application.

Program - Prg_<name device module>

The Device Module implements a program. This program is added under the **Application** node within a folder with the name selected within the **Add Function From Template** dialog box. The program gets the same name as the folder and the device but with the prefix Prg_. Besides, the program-call is added automatically to the associated task.

The program is divided into several actions. These are described in the following table.

NOTE: The program logic of the action A01_ComCtrl is not supported in an application of a motion controller LMC078.

Name of the action	Description
A01_ComCtrl	Processes the functions to monitoring and control of the EtherNet/IP communication with the device.
A02_IOMapping	In this action the single bits from the input and output bytes are assigned to boolean variables with a meaningful name to be used in the application. For this Device Module, only the bits with a unique meaning are assigned to the corresponding variables from GVL.

Further information about the control logic is available inside the program in terms of comments.

Adding Device Module to the Project

Instantiation of the Device Module

The instantiation of this Device Module requires the **Industrial Ethernet manager** under the Ethernet interface of your controller.

Using Add Function From Template you can:

- Select the fieldbus master which manages the device
- Assign the IP address for the device
- Map variables to physical inputs and outputs of your configuration
- Adjust initial values for selected variables which are part of the template

Section 2.30 TeSysU_CANopen_Standard Device Module

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	222
Required Libraries	223
Global Variable List - GVL_ <name device="" module=""></name>	224
Program - Prg_ <name device="" module=""></name>	
Adding Device Module to the Project	226

Device Module Description

Graphical Representation

TeSysU_CANopen_Standard Device Module Description

The Device Module provides a ready-to-use coding template as a pattern to monitor and control a TeSys U via CANopen through a SoMachine controller.

The Device Module TeSysU_CANopen_Standard is represented by a function template and consists of a global variable list GVL, a program, and the device TeSysU_Sc_St under the CANopen manager. After instantiation of the Device Module, these objects are added to your project. They appear with the name which has been assigned using **Add Function From Template** *(see SoMachine, Programming Guide)*.

The GVL provides the variables which are used to monitor and control the TeSys U via CANopen.

The program provides the following features:

- monitor the communication state of the device
- monitor the state of the device
- control the device
- · reset the drive in case of an error state

Required Libraries

Required Libraries Used in the TeSysU_CANopen_Standard Device Module

The following function blocks are used in the POU of the template. The corresponding libraries are added to the project when the Device Module for the drive is added.

Function Block	Library	Namespace	Vendor
TeSysU_CtrlCmdCyc_CANopen	TeSys library	SE_TESYS	Schneider Electric
GET_STATE	CAA CiA 405	CIA405	CAA Technical Workgroup

Global Variable List - GVL_<name device module>

Global Variables Provided by the TeSysU_CANopen_Standard Device Module

The table presents the variables provided with the global variable list:

Variable	Data Type	Description
uiStat	UINT	This variable is already associated to the channel Status register which is part of the cyclic data exchange via PDO.
xCmdFwd	BOOL	Forward command controls the TeSysU.
xCmdRev	BOOL	Reverse command controls the TeSysU.
xCmdRst	BOOL	Resets both detected error and communication interruption alerts on TeSysU.
xCmdStop	BOOL	Stops the TeSysU.
xRdy	BOOL	Indicates the TeSysU rotary handle is turned to ON-position and there is no error detected.
xCls	BOOL	Indicates whether the pole status is closed.
xTrip	BOOL	Indicates whether the TeSysU rotary handle is turned to trip position.
xFlt	BOOL	Indicates whether an error has been detected. (reset required).
xAlarm	BOOL	Indicates whether an alarm has been detected (auto reset).
uiCtrl	UINT	This variable is already associated to the channel Control of the system which is part of the cyclic data exchange via PDO.
uiCtrlCom	UINT	This variable is already associated to the channel Control of comm. module which is part of the cyclic data exchange via PDO.
xComOk	BOOL	Indicates the communication state of the device. TRUE = communication state operational FALSE = communication state not operational
eComStat	CIA405.DEVICE_ST ATE	Communication state of the device. For information on the enumeration, refer to the CIA405 Library Guide (see SoMachine Online Help under <i>CoDeSys Libraries/CAA Libraries/CAA_CiA405.library</i>).
xNotRdy	BOOL	Indicates that the TeSysU rotary handle is turned to OFF-position.
xErr	BOOL	Indicates that an error state or an alarm exists.

Program - Prg_<name device module>

Program Contained in the TeSysU_CANopen_Standard Device Module

The program is divided into 2 actions and is created in programming language CFC (Continuous Function Chart). Both actions will be called on each program execution.

- Action A01_GetNodeState
- Action A02_Ctrl_TeSysU

Action - A01_GetNodeState

The program code in this action provides information on the communication state of the device on the CANopen fieldbus. Based on the communication parameter the communication state is assigned to the corresponding variables which have been declared in the GVL_<module name>. If the state is equal to OPERATIONAL, the variable for the state indicates TRUE and other cases are indicated by FALSE.

Action - A02_Ctrl_TeSysU

By the program code in this action the basically monitor and control functions of the device are processed with the use of the function block TeSys_CtrlCmdCyc_CANopen.

Implemented features are:

- 1. Control the TeSysU device for motor forward and reverse run.
- 2. Reset the TeSysU device.
- **3.** Monitor the TeSysU device.
- 4. Additional handling of commands reset if invalid state.
- 5. Filter the state of the device for simplified monitoring.

Adding Device Module to the Project

Instantiation of the Device Module

The instantiation of this Device Module requires that a CANopen manager be added to the CAN interface of your controller.

Using the instantiation dialog, you can:

- select the CANopen manager which shall manage the device
- assign the CANopen node address for the device
- map variables to physical inputs and outputs of your configuration
- adjust initial values for selected variables which are part of the template

Variables selected for parameterization (constant):

Variable	Data Type	Default Value	Description
Prg_ <modul name="">.c_usiNodeId</modul>	USINT	1	CAN node address of the device.
Prg_ <modul name="">.c_usiNetworkNb</modul>	USINT	1	Network number of the CAN interface.
Prg_ <modul name>.c_udiTmotGetStat</modul 	UDINT	1000	Parameter for timeout monitoring on FB instance GET_STATE.

Section 2.31 TeSysU_HW_1D Device Module

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	228
Required Libraries	229
Global Variable List - GVL_ <name device="" module=""></name>	230
Program - Prg_ <name device="" module=""></name>	231
Adding Device Module to the Project	232

Device Module Description

Graphical Representation

TeSysU_HW_1D Device Module Description

The Device Module provides a ready-to-use coding template as a pattern to monitor and control a hardwired TeSysU non-reversing motor starter controller through a SoMachine controller.

The Device Module TeSysU_HW_1D is represented by a function template and consists of a global variable list (GVL), and a program. After instantiation of the Device Module, these objects are added to your project. They appear with the name which has been assigned using **Add Function From Template** *(see SoMachine, Programming Guide).*

The GVL provides the variables which are used to monitor and control the TeSysU via hardwired I/O signals.

The program provides the following features:

- monitor the state of the device
- control the device in manual mode (latch mode)
- control the device in local mode (latch mode)
- control the device in auto mode (jog mode)

Required Libraries

Required Libraries Used in the TeSysU_HW_1D Device Module

The following function block is used in the program organization units (POU) of the template. The corresponding library is added automatically to the project when the Device Module is added.

Function Block	Library	Namespace	Vendor
TeSysU_IO	TeSys Library	SE_TESYS	Schneider Electric

Global Variable List - GVL_<name device module>

Global Variables Provided by the TeSysU_HW_1D Device Module

The table presents the variables provided with the global variable list:

Variable	Data Type	Description
xSelAutMode	BOOL	Selects auto mode for the FB.
xSelManMode	BOOL	Selects manual mode for the FB.
xCmdAutFwd	BOOL	Starts (jog mode) the motor in a forward direction during auto mode.
xCmdLocFwd	BOOL	Local start (latch mode) of the motor in a forward direction during manual mode.
xCmdLocStop	BOOL	Local stop of the motor during manual mode.
xCmdManFwd	BOOL	Starts (latch mode) the motor in a forward direction during manual mode.
xCmdManStop	BOOL	Stops the motor during manual mode.
xCmdErrRst	BOOL	Resets the FB in case of alarm state.
xExtLock	BOOL	External signal to lock the FB (for example state of the emergency stop).
xExtErr	BOOL	External signal to set the FB into error detected state (reset required).
xStatAutMode	BOOL	FB is selected for auto mode.
xStatManMode	BOOL	FB is selected for manual mode.
xStatLocMode	BOOL	FB is selected for manual and local mode.
xStatErr	BOOL	FB is in error state, reset required.
xAlertLock	BOOL	FB is blocked by i_xLock.
xAlarmOpMode	BOOL	Invalid operation mode selection has been done.
xAlarmExt	BOOL	FB is in alarm state due to detected i_xErr.
xAlarmFbckTmout	BOOL	FB is in alarm state due to undetected xTeSysU_Actv (i_xFbckRun) during the monitoring time (only if feedback signal supervision is activated).
xAlarmNotRdy	BOOL	FB is in alarm state due to undetected $xTeSysU_Rdy$ (not ready).
xAlarmTrip	BOOL	FB is in alarm state due to detected <code>xTeSysU_Trip</code> (tripped).
xTeSysU_Rdy	BOOL	Signal associated with the TeSysU contact indicating that the device is under power.
xTeSysU_Trip	BOOL	Signal associated with the TeSysU contact indicating whether an error has been detected.
xTeSysU_Actv	BOOL	Signal associated with the TeSysU contact indicating the contactor is activated.
xTeSysU_MotFwd	BOOL	Activates the contactor for the forward direction.

Program - Prg_<name device module>

Program Contained in the TeSysU_HW_1D Device Module

The program is created in programming language CFC (Continuous Function Chart).

Implemented features are:

- 1. Mapping the manual command to the control word.
- **2.** FB instance (TeSysU_IO) call with assigned parameters.
- 3. Extracting of the status word (detailed alarm and alert information) to boolean variables.

Adding Device Module to the Project

Instantiation of the Device Module

Using Add Function From Template (see SoMachine, Programming Guide) for this Device Module, you can:

- map variables to physical inputs and outputs of your configuration
- adjust initial values for selected variables which are part of the template

Variables selected for I/O mapping (input):

Variable	Data Type	Default Value	Description
GVL_ <modul name="">.xTeSysU_Rdy</modul>	BOOL	_	Signal associated with the TeSysU contact indicating that the device is under power.
GVL_ <modul name="">.xTeSysU_Trip</modul>	BOOL	-	Signal associated with the TeSysU contact indicating whether an error has been detected.
GVL_ <modul name="">.xTeSysU_Actv</modul>	BOOL	-	Signal associated with the TeSysU contact indicating the contactor is activated.

Variable selected for I/O mapping (output):

Variable	Data Type	Default Value	Description
GVL_ <modul name="">.xTeSysU_MotFwd</modul>	BOOL	-	Activates the contactor in a forward direction.

Variables selected for parameterization (constant):

Variable	Data Type	Default Value	Description
Prg_ <modul name="">.c_xEnFbckCtrl</modul>	BOOL	FALSE	Enables the monitoring of the feedback signals of the motor run state.
Prg_ <modul name="">.iDlyTimeFbckCtrl</modul>	INT	2	Delay time in seconds to determine that the feedback signal is inoperable and to activate an alarm.

Section 2.32 TeSysU_HW_2D Device Module

What Is in This Section?

This section contains the following topics:

Торіс	Page	
Device Module Description	234	
Required Libraries	235	
Global Variable List - GVL_ <name device="" module=""></name>	236	
Program - Prg_ <name device="" module=""></name>		
Adding Device Module to the Project		

Device Module Description

Graphical Representation

TeSysU_HW_2D Device Module Description

The Device Module provides a ready-to-use coding template as a pattern to monitor and control a hardwired TeSys U (reversible type) through a SoMachine controller.

The Device Module TeSysU_HW_2D is represented by a function template and consists of a global variable list (GVL), a program. After instantiation of the Device Module, these objects are added to your project. They appear with the name which has been assigned using **Add Function From Template** *(see SoMachine, Programming Guide)*.

The GVL provides the variables which are used to monitor and control the TeSys U via hardwired I/Os.

The program provides the following features:

- monitor the state of the device
- control the device in manual mode (latch mode)
- control the device in local mode (latch mode)
- control the device in auto mode (jog mode)

Required Libraries

Required Libraries Used in the TeSysU_HW_2D Device Module

The following function block is used in the POU of the template. The corresponding library is added automatically to the project when the Device Module is added.

Function Block	Library	Namespace	Vendor
TeSysU_IO	TeSys library	SE_TESYS	Schneider Electric

Global Variable List - GVL_<name device module>

Global Variables Provided by the TeSysU_HW_2D Device Module

The table presents the variables provided with the global variable list:

Variable	Data Type	Description
xSelAutMode	BOOL	Selects auto mode for the FB.
xSelManMode	BOOL	Selects manual mode for the FB.
xCmdAutFwd	BOOL	Starts (jog mode) the motor in a forward direction during auto mode.
xCmdAutRev	BOOL	Starts (jog mode) the motor in a reverse direction during auto mode.
xCmdLocFwd	BOOL	Local start (latch mode) of the motor in a forward direction during manual mode.
xCmdLocRev	BOOL	Local start (latch mode) of the motor in a reverse direction during manual mode.
xCmdLocStop	BOOL	Local stop of the motor during manual mode.
xCmdManFwd	BOOL	Starts (latch mode) the motor in a reverse direction during manual mode.
xCmdManRev	BOOL	Starts (latch mode) the motor in a reverse direction during manual mode.
xCmdManStop	BOOL	Stops the motor during manual mode.
xCmdErrRst	BOOL	Resets the FB in case of an alarm state.
xExtLock	BOOL	External signal to lock the FB (for example state of the emergency stop).
xExtErr	BOOL	External signal to set the FB into error state (reset required).
xStatAutMode	BOOL	FB is selected for auto mode.
xStatManMode	BOOL	FB is selected for manual mode.
xStatErr	BOOL	FB is in error state, reset required.
xAlertLock	BOOL	FB is blocked by i_xLock.
xAlarmOpMode	BOOL	Invalid operation mode selection has been done.
xAlarmExt	BOOL	FB is in alarm state due to detected i_xErr.
xAlarmFbckTmout	BOOL	FB is in alarm state due to non-detected xTeSysU_Actv (i_xFbckRun) during the monitoring time.
xAlarmNotRdy	BOOL	FB is in alarm state due to non-detected xTeSysU_Rdy (not ready).
xAlarmTrip	BOOL	FB is in alarm state due to detected xTeSysU_Trip (tripped).
xTeSysU_Rdy	BOOL	Signal associated with the TeSysU contact indicating that the device is under power.
xTeSysU_Trip	BOOL	Signal associated with the TeSysU contact indicating whether an error has been detected.
xTeSysU_Actv	BOOL	Signal associated with the TeSysU contact indicating that the contactor is activated.
xTeSysU_MotFwd	BOOL	Activates the contactor in a forward direction.
xTeSysU_MotRev	BOOL	Activates the contactor in a reverse direction.

Program - Prg_<name device module>

Program Contained in the TeSysU_HW_2D Device Module

The program is created in programming language CFC (Continuous Function Chart).

Implemented features are:

- 1. Mapping the manual command into the control word.
- **2.** FB instance (TeSysU_IO) call with assigned parameters.
- 3. Extracting of the status word (detailed alarm and alert information) to boolean variables.

Adding Device Module to the Project

Instantiation of the Device Module

Using the instantiation of this Device Module, you can:

- map variables to physical inputs and outputs of your configuration
- adjust initial values for selected variables which are part of the template

Variables selected for I/O mapping (input):

Variable	Data Type	Default Value	Description
GVL_ <modul name="">.xTeSysU_Rdy</modul>	BOOL	_	Signal associated with the TeSysU contact indicating that the device is under power.
GVL_ <modul name="">.xTeSysU_Trip</modul>	BOOL	_	Signal associated with the TeSysU contact indicating whether an error has been detected.
GVL_ <modul name="">.xTeSysU_Actv</modul>	BOOL	-	Signal associated with the TeSysU contact indicating that the contactor is activated.

Variables selected for I/O mapping (output):

Variable	Data Type	Default Value	Description
GVL_ <modul name="">.xTeSysU_MotFwd</modul>	BOOL	_	Activates the contactor in a forward direction.
GVL_ <modul name="">.xTeSysU_MotRev</modul>	BOOL	-	Activates the contactor in a reverse direction.

Variables selected for parameterization (constant):

Variable	Data Type	Default Value	Description
Prg_ <modul name="">.c_xEnFbckCtrl</modul>	BOOL	FALSE	Enables the monitoring of the feedback signals of the motor run state.
Prg_ <modul name="">.c_iDlyTimeFbckCtrl</modul>	INT	2	Delay time in seconds to determine that the feedback signal is inoperable and to activate an alarm.
Prg_ <modul name="">.c_iDlyTimeRevs</modul>	INT	2	Delay time in seconds for changing direction.

Section 2.33 VSD_HW_1Motor_2DVS Device Module

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	240
Required Libraries	241
Global Variable List - GVL_ <name device="" module=""></name>	242
Program - Prg_ <name device="" module=""></name>	
Adding Device Module to the Project	245

Device Module Description

Graphical Representation

VSD_HW_1Motor_2DVS Device Module Description

The Device Module provides a ready-to-use coding template as a pattern to monitor and control a hardwired variable speed drive connected to one motor through a SoMachine controller.

The Device Module VSD_HW_1Motor_2DVS is represented by a function template and consists of a global variable list GVL, and a program. After instantiation of the Device Module, these objects are added to your project. They appear with the name which has been assigned using **Add Function From Template** (see SoMachine, Programming Guide).

The GVL provides the variables which are used to monitor and control the variable speed drive via hardwired I/Os.

The program provides the following features:

- monitor the state of the device
- control the device in manual mode (latch mode)
- control the device in local mode (latch mode)
- control the device in auto mode (jog mode)

Required Libraries

Required Libraries Used in the VSD_HW_1Motor_2DVS Device Module

The following function blocks are used in the POU of the template. The corresponding library is added automatically to the project when the Device Module is added.

Function Block	Library	Namespace	Vendor
Mot2D1S	TeSys library	SE_TESYS	Schneider Electric
FB_Scaling	Toolbox	SE_TBX	Schneider Electric

Global Variable List - GVL_<name device module>

Global Variables Provided by the VSD_HW_1Motor_2DVS Device Module

The table presents the variables provided with the global variable list:

Variable	Data Type	Description
xSelAutMode	BOOL	Selects auto mode for the FB.
xSelManMode	BOOL	Selects manual mode for the FB.
xCmdAutFwd	BOOL	Starts (jog mode) the motor in a forward direction during auto mode.
xCmdAutRev	BOOL	Starts (jog mode) the motor in a reverse direction during auto mode.
xCmdLocFwd	BOOL	Starts (latch mode) the motor in a forward direction during manual and local mode.
xCmdLocRev	BOOL	Starts (latch mode) the motor in a reverse direction during manual and local mode.
xCmdLocStop	BOOL	Stops the motor during manual and local mode.
xCmdManFwd	BOOL	Starts (latch mode) the motor in a reverse direction during manual mode.
xCmdManRev	BOOL	Starts (latch mode) the motor in a reverse direction during manual mode.
xCmdManStop	BOOL	Stops the motor during manual mode.
xCmdErrRst	BOOL	Resets the FB in case of an alarm state.
xExtLock	BOOL	External signal to lock the FB (for example state of the emergency stop).
xExtErr	BOOL	External signal to set the FB into error state (reset required).
usiSpeedRefAut	USINT	Speed reference for the FBs automatic mode in 0 to 100% based on the configured speed limits on the drive.
usiSpeedRefMan	USINT	Speed reference for the FBs manual and local mode in 0 to 100% based on the configured speed limits on the drive.
xStatAutMode	BOOL	FB is selected for auto mode.
xStatManMode	BOOL	FB is selected for manual mode.
xStatErr	BOOL	FB is in error state, reset required.
xAlertLock	BOOL	FB is blocked by i_xLock.
xAlarmOpMode	BOOL	Invalid operation mode selection has been done.
xAlarmExt	BOOL	FB is in alarm state due to detected i_xErr.
xAlarmFbckTmout	BOOL	FB is in alarm state due to non-detected feedback signal (i_xFwdFbck/i_xRevFbck) during the monitoring time.
xMcbRdy	BOOL	Signal associated with the motor circuit breaker contact indicating that the device is under power.
xDriveNoFlt	BOOL	Signal associated with the drive contact which indicates that the drive is operational (no error detected).

Variable	Data Type	Description
xDriveRun	BOOL	Signal associated with the drive contact which indicates that the drive is running.
xDriveCmdMotFwd	BOOL	Operates the drive in a forward direction. Associated to a connected input on the drive.
xDriveCmdMotRev	BOOL	Operates the drive in a reverse direction. Associated to a connected input on the drive.
xDriveRst	BOOL	Resets the drive in case an error is detected. Associated to a connected input on the drive.
iDriveSpeedRef	INT	Speed reference associated with the drive via analog output. Connected to an analog input of the drive.

Program - Prg_<name device module>

Program Contained in the VSD_HW_1Motor_2DVS Device Module

The program is divided into 2 actions and is created in programming language CFC. (Continuous Function Chart).

Both actions will be called on each program execution

- Action A01_MotorControl
- Action A02_SpeedReference

Action - A01_MotorControl

By the program code in this action the motor control FB is called.

Implemented features are:

- 1. Mapping the manual command to the control word
- 2. FB instance (Mot2D1S) call with assigned parameters
- 3. Extracting of the status word (detailed alarm and alert information) to boolean variables.

Action - A02_SpeedReference

By the program code in this action the speed reference value will be assigned to the variable which is mapped to the analog output of your configuration. The assignment is dependent on the present operation mode. The speed reference value of the program is scaled according to the parameter of the FB instance FB_Scaling. These parameters (CONSTANTS) can be adapted in the declaration part of the POU.

Adding Device Module to the Project

Instantiation of the Device Module

Using the instantiation of this Device Module, you can:

- map variables to physical inputs and outputs of your configuration
- adjust initial values for selected variables which are part of the template

Variables selected for I/O mapping (input):

Variable	Data Type	Default Value	Description
GVL_ <modul name="">.xMcbRdy</modul>	BOOL	_	Signal associated with the motor circuit breaker contact indicating that the device is under power
GVL_ <modul name="">.xDriveNoFlt</modul>	BOOL	-	Signal associated with the drive contact indicating that the drive is operational (no error detected).
GVL_ <modul name="">.xDriveRun</modul>	BOOL	-	Signal associated with the drive contact indicating that the drive is running.

Variables selected for I/O mapping (output):

Variable	Data Type	Default Value	Description
GVL_ <modul name="">.xDriveCmdMotFwd</modul>	BOOL	-	Operates the drive in a forward direction. Associated to a connected input on the drive.
GVL_ <modul name="">.xDriveCmdMotRev</modul>	BOOL	-	Operates the drive in a reverse direction. Associated to a connected input on the drive.
GVL_ <modul name="">.xDriveRst</modul>	BOOL	-	Resets the drive in case an error is detected. Associated to a connected input on the drive.
GVL_ <modul name="">.iDriveSpeedRef</modul>	INT	-	Speed reference associated with the drive via analog output. Connected to an analog input on the drive.

Variables selected for p	parameterization ((constant):
--------------------------	--------------------	-------------

Variable	Data Type	Default Value	Description
Prg_ <modul name="">.c_xEnFbckCtrl</modul>	BOOL	FALSE	Enables the monitoring of the feedback signals of the motor run state.
Prg_ <modul name>.c_iDlyTimeFbckCtrl</modul 	INT	2	Delay time in seconds to determine that the feedback signal is inoperable and to activate an alarm.
Prg_ <modul name="">.c_iDlyTimeRevs</modul>	INT	2	Delay time in seconds for changing direction.
Prg_ <modul name="">.c_rScaleMinIput</modul>	REAL	0	Minimum value for the input of FB_Scaling (speed reference), user-defined for example, 0%.
Prg_ <modul name="">.c_rScaleMaxIput</modul>	REAL	100	Maximum value for the input of FB_Scaling (speed reference), user-defined for example 100%.
Prg_ <modul name="">.c_rScaleMinOput</modul>	REAL	0	Minimum value for the output of FB_Scaling (speed reference), defined by the analog output.
Prg_ <modul name="">.c_rScaleMaxOput</modul>	REAL	32767	Maximum value for the output of FB_Scaling (speed reference), defined by the analog output.

Section 2.34 VSD_HW_2Motors_2D2S Device Module

What Is in This Section?

This section contains the following topics:

Торіс	Page
Device Module Description	248
Required Libraries	249
Global Variable List - GVL_ <name device="" module=""></name>	
Program - Prg_ <name device="" module=""></name>	
Adding Device Module to the Project	

Device Module Description

Graphical Representation

VSD_HW_2Motors_2D2S Device Module Description

The Device Module provides a ready-to-use coding template as a pattern for a motor control function comprised of two motors and one variable speed drive (VSD). The motor control function is realized via hardwired I/O signals. Each motor can be controlled by the VSD in forward or reverse direction with two switchable preset speeds.

The Device Module VSD_HW_2Motors_2D2S is represented by a function template and consists of a global variable list (GVL), and a program. After instantiation of the Device Module, these objects are added to your project. They appear with the name which has been assigned using **Add Function From Template** (see SoMachine, Programming Guide).

The GVL provides the variables which are used to monitor and control the variable speed drive and the switching between the motors via hardwired I/O signals.

The program provides the following features:

- monitor the state of the device
- switch between the two motors
- control of one motor in manual mode (latch mode)
- control of one motor in local mode (latch mode)
- control of one motor in auto mode (jog mode)

Required Libraries

Required Libraries Used in the VSD_HW_2Motors_2D2S Device Module

The following function block is used in the program organization units (POU) of the template. The corresponding library is added automatically to the project when the Device Module is added.

Function Block	Library	Namespace	Vendor
Mot2D2S	TeSys library	SE_TESYS	Schneider Electric

Global Variable List - GVL_<name device module>

Global Variables Provided by the VSD_HW_2Motors_2D2S Device Module

The table presents the variables provided with the global variable list:

Variable	Data Type	Description	
xSelAutMode	BOOL	Selects auto mode for the FB.	
xSelManMode	BOOL	Selects manual mode for the FB.	
xCmdAutFwd	BOOL	Starts (jog mode) the motor in a forward direction during auto mode.	
xCmdAutRev	BOOL	Starts (jog mode) the motor in a reverse direction during auto mode.	
xCmdLocFwd	BOOL	Local start (latch mode) of the motor in a forward direction during manual mode.	
xCmdLocRev	BOOL	Local start (latch mode) of the motor in a reverse direction during manual mode.	
xCmdLocStop	BOOL	Local stop of the motor during manual mode.	
xCmdManFwd	BOOL	Starts (latch mode) the motor in a forward direction during manual mode.	
xCmdManRev	BOOL	Starts (latch mode) the motor in a reverse direction during manual mode.	
xCmdManStop	BOOL	Stops the motor during manual mode.	
xCmdAutFast	BOOL	Selects the second speed (fast speed) in auto mode.	
xCmdLocFast	BOOL	Selects the second speed (fast speed) in local mode.	
xCmdManFast	BOOL	Selects the second speed (fast speed) in manual mode.	
xCmdSelMotor1	BOOL	Selects motor 1.	
xCmdSelMotor2	BOOL	Selects motor 2.	
xCmdErrRst	BOOL	Resets the FB in case of alarm state.	
xExtLock	BOOL	External signal to lock the FB (for example state of the emergency stop).	
xExtErr	BOOL	External signal to set the FB into error state (reset required).	
xStatAutMode	BOOL	FB is selected for auto mode.	
xStatManMode	BOOL	FB is selected for manual mode.	
xStatLocMode	BOOL	FB is selected for local mode.	
xStatErr	BOOL	FB is in error state, reset required.	
xAlertLock	BOOL	FB is blocked by i_xLock.	
xAlarmOpMode	BOOL	Invalid operation mode selection has been done.	
xAlarmExt	BOOL	FB is in alarm state due to detected i_xErr.	
xAlarmFbckTmout	BOOL	FB is in alarm state due to undetected feedback signal (i_xFwdFbck/i_xRevFbck) during the monitoring time.	

Variable	Data Type	Description
xAlarmMotor1Sel	BOOL	Selection of motor 1 not possible, because motor 2 is selected.
xAlarmMotor2Sel	BOOL	Selection of motor 2 not possible, because motor 1 is selected.
xMcbRdy	BOOL	Signal associated with the motor circuit breaker contact indicating that the device is under power.
xDriveNoFlt	BOOL	Signal associated with the drive contact indicating the drive is operational (no error detected).
xDriveRun	BOOL	Signal associated with the drive contact indicating the drive is running.
xMotor1StatSel	BOOL	Signal associated with the contactor indicating motor 1 is linked to the drive.
xMotor2StatSel	BOOL	Signal associated with the contactor indicating motor 2 is linked to the drive.
xDriveCmdMotFwd	BOOL	Operates the drive in a forward direction. Associated to a connected input on the drive.
xDriveCmdMotRev	BOOL	Operates the drive in a reverse direction. Associated to a connected input on the drive.
xDriveRst	BOOL	Resets the drive in case an error is detected. Associated to a connected input on the drive.
xDriveCmdFast	BOOL	Selects the second preset speed for the drive. Associated to a connected input on the drive.
xMotor1CmdSel	BOOL	Activates the contactor which links the motor 1 to the drive.
xMotor2CmdSel	BOOL	Activates the contactor which links the motor 2 to the drive.

Program - Prg_<name device module>

Program Contained in the VSD_HW_2Motors_2D2S Device Module

The program is divided into 2 actions and is created in programming language CFC (Continuous Function Chart).

Both actions will be called on each program execution

- Action A01_MotorSelect
- Action A02_MotorControl

Action - A01_MotorSelect

By the program code in this action the switching between motor 1 and motor 2 is realized. The logic in this Device Module allows only one motor being controlled by the variable speed drive at the same time. For switching between the motors, the momentary selected motor is deselected automatically, if the motor is not running.

Action - A02_MotorControl

By the program code in this action motor control FB is called.

Implemented features are:

- 1. Mapping the manual commands into the control word.
- 2. FB instance (MOT2D2S) call with assigned parameters.
- 3. Extracting of the status word (detailed alarm and alert information) to boolean variable.
Adding Device Module to the Project

Instantiation of the Device Module

Using the instantiation of this Device Module, you can:

- map variables to physical inputs and outputs of your configuration
- adjust initial values for selected variables which are part of the template

Variables selected for I/O mapping (input):

Variable	Data Type	Default Value	Description
GVL_ <modul name="">.xMcbRdy</modul>	BOOL	-	Signal associated with the motor circuit breaker contact indicating that the device is under power.
GVL_ <modul name="">.xDriveNoFlt</modul>	BOOL	-	Signal associated with the drive contact indicating that the drive is operational (no error detected).
GVL_ <modul name="">.xDriveRun</modul>	BOOL	-	Signal associated with the drive contact indicating that the drive is running.
GVL_ <modul name="">.xMotorlStatSel</modul>	BOOL	-	Signal associated with the contactor indicating motor 1 is linked to the drive.
GVL_ <modul name="">.xMotor2StatSel</modul>	BOOL	-	Signal associated with the contactor indicating motor 2 is linked to the drive.

Variables selected for I/O mapping (output):

Variable	Data Type	Default Value	Description
GVL_ <modul name="">.xDriveCmdMotFwd</modul>	BOOL	-	Operates the drive in a forward direction. Associated to a connected input on the drive.
GVL_ <modul name="">.xDriveCmdMotRev</modul>	BOOL	-	Operates the drive in a reverse direction. Associated to a connected input on the drive.
GVL_ <modul name="">.xDriveRst</modul>	BOOL	-	Resets the drive in case an error is detected. Associated to a connected input on the drive.
GVL_ <modul name="">.xDriveCmdFast</modul>	BOOL	-	Selects the second preset speed for the drive. Associated to a connected input on the drive.
GVL_ <modul name="">.xMotor1CmdSel</modul>	BOOL	-	Activates the contactor which links the motor 1 to the drive.
GVL_ <modul name="">.xMotor2CmdSel</modul>	BOOL	-	Activates the contactor which links the motor 2 to the drive.

Variables selected for parameterization (constant):

Variable	Data Type	Default Value	Description
Prg_ <modul name="">.c_xEnFbckCtrl</modul>	BOOL	FALSE	Enables the monitoring of the feedback signals of the motor run state.
Prg_ <modul name>.c_iDlyTimeFbckCtrl</modul 	INT	2	Delay time in seconds to determine that the feedback signal is inoperable and to activate an alarm.
Prg_ <modul name="">.c_iDlyTimeRevs</modul>	INT	2	Delay time in seconds for changing direction.

Glossary

Α

application

A program including configuration data, symbols, and documentation.

С

CAN

(*controller area network*) A protocol (ISO 11898) for serial bus networks, designed for the interconnection of smart devices (from multiple manufacturers) in smart systems and for real-time industrial applications. Originally developed for use in automobiles, CAN is now used in a variety of industrial automation control environments.

CANmotion

A CANopen-based motion bus with an additional mechanism that provides synchronization between the motion controller and the drives.

CANopen

An open industry-standard communication protocol and device profile specification (EN 50325-4).

CFC

(*continuous function chart*) A graphical programming language (an extension of the IEC 61131-3 standard) based on the function block diagram language that works like a flowchart. However, no networks are used and free positioning of graphic elements is possible, which allows feedback loops. For each block, the inputs are on the left and the outputs on the right. You can link the block outputs to the inputs of other blocks to create complex expressions.

CiA405

The CANopen interface and device profile for IEC 61131-3 programmable controllers.

CIP

(*common industrial protocol*) When a CIP is implemented in a network application layer, it can communicate seamlessly with other CIP-based networks without regard to the protocol. For example, the implementation of CIP in the application layer of an Ethernet TCP/IP network creates an EtherNet/IP environment. Similarly, CIP in the application layer of a CAN network creates a DeviceNet environment. In that case, devices on the EtherNet/IP network can communicate with devices on the DeviceNet network through CIP bridges or routers.

configuration

The arrangement and interconnection of hardware components within a system and the hardware and software parameters that determine the operating characteristics of the system.

control network

A network containing logic controllers, SCADA systems, PCs, HMI, switches, ...

Two kinds of topologies are supported:

- flat: all modules and devices in this network belong to same subnet.
- 2 levels: the network is split into an operation network and an inter-controller network.

These two networks can be physically independent, but are generally linked by a routing device.

controller

Automates industrial processes (also known as programmable logic controller or programmable controller).

D

DINT

(double integer type) Encoded in 32-bit format.

DWORD

(double word) Encoded in 32-bit format.

Ε

expansion bus

An electronic communication bus between expansion I/O modules and a controller.

F

FΒ

(*function block*) A convenient programming mechanism that consolidates a group of programming instructions to perform a specific and normalized action, such as speed control, interval control, or counting. A function block may comprise configuration data, a set of internal or external operating parameters and usually 1 or more data inputs and outputs.

G

GVL

(global variable list) Manages global variables within a SoMachine project.

Н

HMI

(*human machine interface*) An operator interface (usually graphical) for human control over industrial equipment.

I

I/O

(input/output)

INT

(integer) A whole number encoded in 16 bits.

L

LREAL

(long real) A floating-point number encoded in a 64-bit format.

Μ

Modbus

The protocol that allows communications between many devices connected to the same network.

Modbus SL

(Modbus serial line The implementation of the protocol over a RS-232 or RS-485 serial connection.

Ρ

PDO

(*process data object*) An unconfirmed broadcast message or sent from a producer device to a consumer device in a CAN-based network. The transmit PDO from the producer device has a specific identifier that corresponds to the receive PDO of the consumer devices.

POU

(*program organization unit*) A variable declaration in source code and a corresponding instruction set. POUs facilitate the modular re-use of software programs, functions, and function blocks. Once declared, POUs are available to one another.

program

The component of an application that consists of compiled source code capable of being installed in the memory of a logic controller.

R

RPM

(revolutions per minute)

S

ST

(*structured text*) A language that includes complex statements and nested instructions (such as iteration loops, conditional executions, or functions). ST is compliant with IEC 61131-3.

string

A variable that is a series of ASCII characters.

Т

TCP

(*transmission control protocol*) A connection-based transport layer protocol that provides a simultaneous bi-directional transmission of data. TCP is part of the TCP/IP protocol suite.

TVDA

(*tested validated documented architectures*) Control system proposals based on Schneider Electric components.TVDAs cover a wide range of machine types and consider machine performance requirements, installation constraints, and target costs. To optimize the implementation effort, each TVDA comes with a detailed component list, wiring diagrams, and commissioning guide, as well as controller and HMI applications to control components of the system.

V

variable

A memory unit that is addressed and modified by a program.

VSD

(*variable speed drive*) An equipment that makes a variable and regulates the speed and rotational force, or torque output, of an electric motor.

Index

Α

ATS22 ModbusSL device module. 21 ATV ••• ModbusTCP device modules. 34 ATV212 ModbusSL 2Motors Bypass device module, 48 ATV312 CANopen device module, 40 ATV32_CANopen device module. 40 ATV32_EtherNetIP, 28 ATV32_ModbusTCP. 34 ATV320 CANopen device module, 40 ATV320_EtherNetIP, 28 ATV320_ModbusTCP, 34 ATV340_CANopen device module, 40 ATV340 EtherNetIP. 28 ATV340 ModbusTCP, 34 ATV6xx_CANopen device module. 40 ATV6xx EtherNetIP, 28 ATV6xx_ModbusTCP, 34 ATV71_CANopen device module, 40 ATV71_CANopen_Enc device module, 40 ATV71 EtherNetIP, 28 ATV9xx_CANopen device module, 40 ATV9xx EtherNetIP. 28 ATV9xx ModbusTCP. 34 ATVxxx EtherNet/IP device modules, 28

D

device module ATS22 ModbusSL, 21 ATV212 ModbusSL 2Motors Bypass, 48 Encoder AbsMlt CANopen, 60 Encoder_AbsMlt_ModbusTCP, 66 Harmony_Wireless_ModbusSL, 72 Harmony Wireless ModbusTCP •, 78 ILA2K_EtherNetIP, 140 ILE2K_EtherNetIP, 140 ILS2K EtherNetIP, 140 ILx2K_EtherNetIP, 140 IO_ETB_ModbusTCP, 83 Lexium 28 CANopen, 88 Lexium 32A_CANmotion, 96 Lexium 32A CANopen, 103 Lexium_32i_CANopen, 111 Lexium_32M_EtherNetIP, 119 Lexium_32M_ModbusTCP, 125 Lexium_32S_Sercos, 131 Lexium_ILA_CANopen, 146 Lexium_ILE_CANopen, 153 Lexium SD3 CANmotion, 160 MED_iEM3150_ModbusSL, 167 MED PM3250 ModbusSL, 176 Motor Ctrl 1D1S, 186 Motor_Ctrl_2D1S, 192 OsiSense_RFID_EtherNetIP, 198 OsiSense RFID ModbusTCP, 204 OsiSense_XUW_EtherNetIP, 210 Preventa_XPSMCM_EtherNetIP, 216 TeSysU CANopen, 221 TeSysU_HW_1D, 227 TeSysU HW 2D, 233 VSD HW 1Motor 2DVS, 239 VSD_HW_2Motors_2D2S, 247 device modules, 17 ATV ... EtherNet/IP, 28 ATV ... ModbusTCP, 34

Device Modules ATV71_CANopen, 40

E

Encoder_AbsMlt_CANopen device module, *60* Encoder_AbsMlt_ModbusTCP device module, *66*

Η

Harmony_Wireless_ModbusSL device module, *72* Harmony_Wireless_ModbusTCP_• device module, *78*

ILA2K_EtherNetIP device module, 140 ILE2K_EtherNetIP device module, 140 ILS2K_EtherNetIP device module, 140 ILx2K_EtherNetIP device module, 140 IO_ETB_ModbusTCP device module, 83

L

Lexium_28_CANopen device module, *88* Lexium_32A_CANmotion device module, *96* Lexium_32A_CANopen device module, *103* Lexium_32i_CANopen device module, *111* Lexium_32M_EtherNetIP device module, *119* Lexium_32M_ModbusTCP device module, *125* Lexium_32S_Sercos device module, 131 Lexium_ILA_CANopen device module, 146 Lexium_ILE_CANopen device module, 153 Lexium_SD3_CANmotion device module, 160

Μ

MED_iEM3150_ModbusSL device module, *167* MED_PM3250_ModbusSL device module, *176* Motor_Ctrl_1D1S device module, *186* Motor_Ctrl_2D1S device module, *192*

0

OsiSense_RFID_EtherNetIP device module, *198* OsiSense_RFID_ModbusTCP device module, *204* OsiSense_XUW_EtherNetIP device module, *210*

Ρ

Preventa_XPSMCM_EtherNetIP device module, *216*

Т

templates device modules, *17* TeSysU_CANopen device module, *221* TeSysU_HW_1D device module, *227* TeSysU_HW_2D device module, *233*

Index

V

VSD_HW_1Motor_2DVS device module, *239* VSD_HW_2Motors_2D2S device module, *247*