
www.pro-face.com

BLUE Open Studio
Technical Reference Manual

BOS-TECH_09
03/2021

Contents

Page 2

Contents

INTRODUCTION.. 18
Conventions used in this documentation..20
About this software..22
Internal structure and data flow.. 25
Executing and switching modules...28
Executing and switching the Background Task.. 32

INSTALLATION GUIDE... 34
About the BLUE Open Studio 2020 software components.. 35
Install the full BLUE Open Studio 2020 software...36
Install the Thin Client software... 40

Install the Custom Widget Framework on a client station...41

LICENSING.. 43
License Settings.. 44

Product Versions.. 45
Execution Modes..45

About hardkey licenses... 47
Install a new hardkey license.. 47
Upgrade an existing hardkey license.. 47

About softkey licenses.. 49
Install or upgrade a softkey license for the full BLUE Open Studio 2020 software.. 49

THE DEVELOPMENT ENVIRONMENT.. 51
Title bar..52
Quick Access Toolbar..53
File menu...55

New...55
Open Project...57
Open... 58
Save..58
Save As.. 58
Save All.. 58
Save All as HTML..58
Save as HTML... 59
Save Screen Group as HMTL... 59
Close...59
Close All... 59
Recent Projects.. 59
Print...59
Exit.. 59

Contents

Page 3

Ribbon..60
Home tab..60
View tab..60
Insert tab...61
Project tab.. 61
Draw tab... 61
Format tab.. 62
Help tab.. 63

Project Explorer... 64
Global tab... 64
Graphics tab... 65
Tasks tab.. 66
Comm tab...68

Screen/Worksheet Editor...69
Watch window..70
Output window...71
Status bar.. 72
Standard Interfaces... 73

Object Properties dialog box..73
Color Interface..73
Fonts... 77
ASCII Character Table... 79

Performing Common Tasks...81
Accessing Projects and Files...81
Using Common Dialog Buttons..82
Convert your project's display resolution...82
Using Shortcut Menus..84
Using Select All..84
Cutting, Copying, Pasting Objects... 84
Find text in the current document or entire project...84
Replace text in the current document... 86
Using the Tag Properties Toolbar.. 88
Replacing project tags in a document or screen object..90
Testing Displays..91
Verify the project.. 91
Running Projects.. 93
Restoring Defaults..93
Saving Your Work.. 93
Printing Screens and Worksheets... 93
Focusing the Object Properties Window... 93

CREATING A NEW PROJECT... 95
Creating a new project..96

About target platforms, product types, and target systems...98
Changing the target system of an existing project..99

Configuring additional project settings.. 100
Information tab..101
Options tab... 102
Viewer tab...115
Communication tab...120
Preferences tab.. 127

Configuring your project's default email settings.. 130
Configuring your project's default FTP settings..132
Runtime Tasks... 134
Run a project as a Windows service..136

Contents

Page 4

TAGS AND THE PROJECT DATABASE..141
About Tags and the Project Database..142

Project Tags Folder.. 143
About classes... 147
Shared Database folder... 149
System Tags Folder... 149

Designing a Tag.. 152
Naming the Tag..152
Choosing the Tag Type..152
Choosing the Tag Data Type...154
Choosing the Tag Scope... 154

Creating Database Tags..155
Adding Tags to the Datasheet... 155
Creating Tags "On-the-Fly".. 156
Editing Tags..157

About classes.. 159
Tag Properties..162

Set tag properties using the Project Tags datasheet.. 163
Set tag properties using the Properties command..165
Reference a tag property instead of a project tag.. 167
Using TagsDB functions to edit the tags database during run time..167
Properties of Integer and Real tags.. 169
Properties of Boolean tags.. 174
Properties of String tags.. 178
Complete list of tag properties...179
Change how out-of-range tag values are handled..185

Using Tags in Your Project... 187
Deleting a tag from the project database... 188
Sort or filter the rows in a worksheet... 189
Using the Tags tools... 193

Global Replace Tool...193
Replacing project tags in a document or screen object..194
Removing unused tags from the project database... 195
Reset Tags Database...196
Tagname Text Box... 197
Object Finder Tool..197
Cross Reference Tool.. 198
Set tag properties using the Properties command..198

Import Wizard.. 201
Import tags and files from a BLUE Open Studio 2020 project database..204
Importing from OPC Server Databases...208
Import tags from a CSV database...209
Importing from ODBC Databases.. 213
Importing from PanelBuilder32 Databases.. 214
Importing PanelMate programs..215
Import from a FactoryTalk application... 217
Import a Studio XML Screen... 220

Tag Integration...223
Using TagsDB functions to edit the tags database during run time... 224

SCREENS AND GRAPHICS...227

Contents

Page 5

Graphics tab.. 228
Screens folder.. 229
Screen Group Folder... 234
Lay out project screens in a simulation of the client's display.. 235

Screen Objects and Animations..237
Editing... 237
Shapes..240
Active Objects...248
Libraries.. 275
Applying animations to screen objects.. 313
Use custom properties to set property values when screens are opened.. 328

Format tab... 331
Change the properties of multiple screen objects...331
Set the tab order of screen objects...333
Bring to front / Send to back... 334
Group and ungroup screen objects... 335
Align, Center and Distribute Tools... 337
Rotate Tool... 339
Resize Tools... 340
Fill Color Tool... 340
Line Color Tool... 341
Fonts Tool...341

Data Input.. 342
Data input in screens on Thin Clients... 342
Data input in screens on Mobile Access...346

Multi-Touch...348
About the Multi-Touch settings for project screens... 349
About the different types of multi-touch gestures..355
About Touch Events... 361

Import a Studio XML Screen.. 370

ALARMS, EVENTS, AND TRENDS... 373
Alarm worksheet..374

Alarm Worksheet Header...375
Alarm Worksheet Body.. 379
Saving your alarm history / event log to an external database...384
Format of the alarm history... 386

Events.. 391
Enable the event logger...391
Saving your alarm history / event log to an external database...393
Format of the event history..395

Alarm/Event Control object..398
Customize the audible alarm... 408

Trend worksheet.. 410
Sort or filter the rows in a worksheet.. 413
Creating Batch History... 416
Converting Trend History Files from Binary to Text.. 418
Converting Trend History Files from Text to Binary.. 419
Make trend history accessible through OPC HDA.. 420

Trend Control object..421
About the trend control runtime interface.. 421
Object Properties: Trend Control dialog.. 424
Using the Data Source Text File... 446
Using the Data Source Database..449
Display text- and image-based trend annotations in a trend control...456

Contents

Page 6

Grid object... 460
Data dialog... 461
Columns dialog...464
Advanced dialog...468

INDUSTRIAL GRAPHICS..472
Create a new Industrial Graphics screen... 473
Create a new Industrial Graphics symbol...475
Create a new Industrial Graphics toolset... 476
Embed an Industrial Graphics symbol in a screen...477
Using project tags in Industrial Graphics screens.. 479
Working with Element Styles.. 481

Understanding Element Styles...481
Managing Element Styles.. 483
Applying Element Styles to Elements..488
Applying Element Styles to Groups of Elements.. 491
Configuring an Animation Using Element Styles...491

Import an Industrial Graphics symbol library.. 494
Export an Industrial Graphics symbol library..495
Known limitations of Industrial Graphics...497

BACKGROUND TASKS.. 499
Alarm worksheet..500
Trend worksheet.. 502
Recipes.. 505
Report worksheet...507
Create a new Math worksheet..509

About the Built-in Language interface... 510
Using the Goto…Label structure in a Math worksheet... 513
Using the For…Next loop in a Math worksheet.. 515

Script worksheet.. 517
Startup Script worksheet..518

Scheduler worksheet... 519
Database/ERP worksheet..521
Sort or filter the rows in a worksheet... 526

COMMUNICATION...530
Configuring direct communication with a remote device..531

Main Driver Sheet.. 538
Standard Driver Sheets..540
Read/write status codes for direct communication drivers..543

Contents

Page 7

Tag Integration...547
Integrate tags from TwinCAT... 547
Integrate tags from CoDeSys.. 550
Integrate tags from RSLogix 5000 Family...558
Integrate tags from Allen-Bradley PLC5, SLC500...560
Integrate tags from AutomationDirect Do-more H2 Series..563
Add a Koyo DirectLOGIC PLC as a tag integration source..565
Integrate tags from AutomationDirect P Series...568
Integrate tags from AutomationDirect PAC 3000.. 571
Add a GE PACSystems or GE Fanuc device as a tag integration source..574
Integrate tags from Schneider Unity Modbus..577
Integrate tags from Siemens S7-1200/S7-1500.. 580
Integrate tags from OMRON Sysmac Gateway.. 582
Add an OPC DA server as a tag integration source...584
Add an OPC UA server as a tag integration source...586
Use the Object Finder to select integrated tags... 588
How integrated tags may be renamed in your project.. 590

OPC Clients and Servers..591
OPC UA Client... 591
OPC XML/DA Client...619
OPC DA 2.05 Client...630
Tag Expansion for OPC Clients...633
Array Distribution for OPC Clients...636
OPC UA Server..637
OPC DA 2.05 Server... 648
Array Distribution for OPC Clients...648

Communicate with another project runtime server...650

PROJECT SECURITY... 652
About security modes..653
About security access levels...654
Using the Security System Configuration Wizard...656
Configuring server settings for security modes.. 662

Extending the LDAP schema to allow saving of security rights..669
Group Account dialog..677
Creating and configuring users...684
Security System dialog..686
Backing up the security system configuration.. 688
Logging on/off.. 690
Blocking or unblocking a user...691
Password-protecting screens, symbols, and worksheets... 692

PROJECT LOCALIZATION...694
Add a target language to the Translation Table... 695
Configure fonts for a target language...697

Examples of font configuration.. 698
Set the project's language at startup..700
Set the project's language during run time...701
Disable translation of selected screen objects... 703
Configure the advanced translation settings...704
Import a legacy translation file into the Translation Table.. 706
About the date format and how to change it..707

Contents

Page 8

DEBUGGING TOOLS..709
Watch window..710

Using the Watch tool..710
Opening the Watch page for Mobile Access...712

Output window...716
Configure the log settings for the Output window...716
Save log messages from the Output window to a file.. 722

About the LogWin tool.. 725
Open the LogWin tool..725
Configure the log settings for the LogWin module..727
Save log messages from the LogWin tool to a file... 731

REMOTE MANAGEMENT...732
Enable security in Remote Agent and add users...733

Customize Remote Agent's encryption key...734
Download your project to the target device..736
Run or stop your project on the target device... 738
Configure Remote Agent to autorun a project..739

THIN CLIENTS AND MOBILE ACCESS.. 740
Thin Clients..742

The Underlying Technology... 742
Examples of Client/Server Architecture... 743
Configuring the Data Server.. 747
Configuring a web server to host your project pages... 749
Install the Thin Client software.. 753
Configure and run Secure Viewer... 755
Implementing Security for Web-based Applications.. 759
List of network ports used by this software...764
View or disconnect client sessions..766

Mobile Access..769
Supported features in Mobile Access..769
Tips for Mobile Access development and run time... 779
Mobile Access web server add-on.. 781
Configuring the Mobile Access web interface... 790
Navigating the Mobile Access web interface...804
Troubleshooting project screens in Mobile Access... 816
View or disconnect client sessions..825

DATABASE INTERFACE...828
SQL Relational Databases..829
Studio Database Gateway...831
Manually install Studio Database Gateway.. 839
Manually running Studio Database Gateway..841
Database Configuration...844
Configuring a Default Database for All Task History.. 848
Support for AVEVA Insight and Historian... 849

Connect to AVEVA Insight using AVEVA Insight Publisher...849
Connect to a Historian database located on-premises... 852

Contents

Page 9

Database Troubleshooting...855
Appendices.. 858

Using ODBC Databases.. 858
Using Microsoft SQL Server.. 859
Using Oracle Databases.. 862
Using Microsoft Access or Microsoft Excel... 863
Using Sybase... 865
Using MySQL... 865

TROUBLESHOOTING... 867
General Troubleshooting... 868
Frequently Asked Questions... 870
Proxy Settings..876

Configure the proxy settings on a Windows computer or device..876
Help tab... 878

Help...878
Communication Drivers.. 879
License Agreement.. 879
Product Web Site... 879
Release Notes..879
Support... 879
About...880

TUTORIAL: BUILDING A SIMPLE PROJECT... 881
Creating a new project..882
Specifying the startup screen..884
Creating tags... 885
Creating the main screen..887

Drawing the main screen's title... 889
Drawing a button to open another screen...891
Saving and closing the main screen... 892

Creating the synoptic screen.. 893
Drawing the synoptic screen's title.. 893
Drawing "Date" and "Time" displays..893
Placing an "Exit" icon...895
Testing the project..896
Placing an animated tank.. 897
Placing a level slider..899
Drawing a tank selector... 900
Testing the project..901

Configuring the communication driver.. 902
Monitoring device I/O during run time... 905

APPENDIX: SECURITY GUIDELINES... 906
Securing the Host..907

General Guidelines for Securing the Host...907
Windows Updates...907
ICS Software Updates... 907
Scanning the Host..908
Protecting the Applications and Content on the Host... 908

Contents

Page 10

Securing the Network..909
ICS Networks..909
Managing Network Services and Ports... 909
Securing Communication between the Client and Server...910

Cloud-based Systems..911
Securing Systems through Authentication and Authorization...912

Managing Users and Groups Through Windows.. 912
Managing Users and Groups Through ICS Software..913

Contingency Planning..914
Auditing and Logging... 914
Business Continuity Planning...914
Disaster Recovery Planning...914

Conclusion... 916

APPENDIX: BUILT-IN LANGUAGE..917
Logic and arithmetic operators..918
String expressions... 920
How to read function descriptions.. 923
List of available functions..925
ActiveX and .NET Control functions... 937

XGet..937
XRun... 937
XSet.. 938

Arithmetic functions... 940
Abs..940
Div...940
Format...941
GetBit.. 944
Mod... 945
Pow... 945
ResetBit.. 946
Round... 947
SetBit.. 947
Sqrt... 948
Swap16... 948
Swap32... 949
Trunc...949

Contents

Page 11

Database/ERP functions..951
DBCursorClose... 951
DBCursorColumnCount.. 952
DBCursorColumnInfo..954
DBCursorCurrentRow...956
DBCursorGetValue... 957
DBCursorMoveTo..958
DBCursorNext...960
DBCursorOpen... 961
DBCursorOpenSQL.. 964
DBCursorPrevious.. 967
DBCursorRowCount... 968
DBDelete...970
DBExecute.. 972
DBInsert.. 974
DBSelect... 976
DBUpdate... 979
SyncAlarm...980
SyncAlarmStatus.. 981
SyncEvent...982
SyncEventStatus...983
SyncTrend...983
SyncTrendStatus.. 984

Date & Time functions...986
ClockGetDate..986
ClockGetDayOfWeek..987
ClockGetTime... 988
DateTime2Clock... 989
DateTime2UTC... 990
GetClock... 992
GetTimeZone.. 992
GetTimeZoneCount.. 994
GetUTC...994
Hour2Clock... 994
SetSystemDate... 995
SetSystemTime...995
SetTimeZone...996
UTC2DateTime... 997

Email functions.. 999
CnfEmail... 999
GetStatusSendEmailExt... 1001
SendEmail...1001
SendEmailExt... 1002

Event Logger functions..1005
SendEvent.. 1005

Contents

Page 12

File functions..1007
DeleteOlderFiles... 1007
DirCreate...1008
DirDelete... 1008
DirLength.. 1009
DirRename..1010
FileCopy..1011
FileDelete..1012
FileLength... 1013
FileReadFields..1013
FileReadMessage...1015
FileRename...1016
FileWrite..1017
FileWriteFields.. 1018
FileWriteMessage... 1019
FindFile... 1021
FindPath..1022
GetFileAttributes... 1023
GetFileTime...1024
GetHSTInfo... 1025
GetLine... 1026
HST2TXT.. 1028
HST2TXTIsRunning..1031
ImportXML.. 1031
LookupContains..1033
LookupGet.. 1034
LookupLoad.. 1034
PDFCreate.. 1035
Print...1036
RDFileN.. 1037
WebGetFile... 1038

FTP functions...1040
CnfFTP..1040
FTPGet... 1041
FTPPut..1042
FTPStatus... 1043

Graphic functions...1046
AutoFormat... 1046
GetScrInfo...1046
GetURLParams...1048
PrintSetup... 1048
PrintWindow..1049
ResetDecimalPointsTable...1050
RGBColor..1051
RGBComponent..1051
SaveScreenShot...1052
SetDecimalPoints..1054
SetDisplayUnit.. 1054
SetTagDisplayUnit...1055

Log Message functions... 1057
Trace...1057

Logarithmic functions...1058
Exp..1058
Log.. 1058
Log10.. 1059

Logical functions..1060
False... 1060
If.. 1060
Toggle... 1061
True...1062

Contents

Page 13

Loop functions... 1063
For…Next..1063

Module Activity functions...1065
AppActivate...1065
AppIsRunning... 1066
AppPostMessage..1067
AppSendKeys... 1068
CleanReadQueue... 1068
CloseSplashWindow...1069
DisableMath.. 1069
EnableMath...1070
EndTask.. 1070
Exec.. 1071
ExecIsRunning..1073
ExitWindows... 1074
IsScreenOpen...1074
IsTaskRunning.. 1075
IsViewerInFocus... 1076
KeyPad... 1077
LogOff... 1079
LogOn... 1079
Math.. 1080
PostKey...1080
Recipe...1082
Report... 1083
RunGlobalProcedureAsync.. 1085
RunGlobalProcedureAsyncGetCurrent...1086
RunGlobalProcedureAsyncGetStatus.. 1087
RunGlobalProcedureOnFalse...1088
RunGlobalProcedureOnServer...1090
RunGlobalProcedureOnTrigger.. 1091
RunGlobalProcedureOnTrue.. 1092
RunVBScript... 1093
SecureViewerReload.. 1094
SendKeyObject...1095
SetAppPath...1097
SetViewerInFocus...1097
SetViewerPos... 1098
ShutDown... 1099
StartTask... 1099
TaskUpdateConfig...1100
ViewerPostMessage... 1102

Multimedia functions..1103
Play... 1103

Screen functions..1104
Close...1104
Open... 1105
OpenPrevious... 1108
ShowInplaceInput... 1109
ShowMessageBox.. 1111

Contents

Page 14

Security functions.. 1113
BlockUser..1113
CheckESign.. 1114
CheckSecurityLevel.. 1115
CreateUser..1116
ExportSecuritySystem...1118
GetLastESignUser.. 1119
GetSecuritySystemStatus...1120
GetUserFullName... 1121
GetUserNames... 1122
GetUserPwdAging.. 1123
GetUserState.. 1124
ImportSecuritySystem...1124
RemoveUser... 1126
SetPassword...1127
SetUserGroup... 1130
UnblockUser... 1132

Statistical functions..1134
Avg..1134
Max... 1135
Min.. 1135
Rand... 1136

String functions..1137
Asc2Str... 1137
CharToValue... 1137
CharToValueW.. 1138
ClassMembersToStrVector... 1139
DecryptData.. 1140
EncryptData.. 1141
NCopy... 1142
Num.. 1142
Str... 1143
Str2Asc... 1144
StrCompare...1144
StrCompareNoCase..1145
StrFromInt... 1146
StrFromReal..1146
StrFromTime... 1147
StrGetElement.. 1148
StrLeft... 1149
StrLen... 1149
StrLower..1150
StrRChr... 1150
StrRight... 1151
StrSetElement...1151
StrStr...1152
StrStrPos...1152
StrTrim.. 1153
StrTrimAll.. 1154
StrUpper..1154
ValueToChar... 1155
ValueWToChar.. 1156

Contents

Page 15

System Info functions..1158
DBVersion... 1158
GetAppHorizontalResolution.. 1158
GetAppPath.. 1159
GetAppVerticalResolution...1159
GetComputerIP... 1159
GetComputerName...1160
GetCursorX... 1160
GetCursorY... 1161
GetDisplayHorizontalResolution... 1161
GetDisplayVerticalResolution... 1161
GetHardKeyModel.. 1162
GetHardKeySN... 1162
GetIPAll... 1163
GetNetMACID... 1163
GetOS... 1164
GetPerformanceMetric..1164
GetPrivateProfileString... 1167
GetProductPath.. 1168
GetRegValue...1168
GetRegValueType...1169
GetServerHostName...1170
GetTickCount.. 1170
InfoAppAlrDir...1171
InfoAppHstDir..1171
InfoDiskFree..1171
InfoResources...1172
IsActiveXReg.. 1172
IsAppChangedOnServer...1173
NoInputTime... 1174
ProductVersion..1175
ReloadAppFromServer... 1175
SaveAlarmFile...1176
SetAppAlarmPath... 1176
SetAppHstPath... 1177
SetDateFormat..1177
SetKeyboardLanguage... 1178
SetRegValue... 1179
SNMPGet..1181
SNMPSet.. 1181
WritePrivateProfileString...1183

Contents

Page 16

Tags Database functions...1184
ExecuteAlarmAck..1184
ForceTagChange.. 1185
GetAlarmCount... 1185
GetAlarmInfo...1186
GetTagValue... 1188
SetTagValue..1189
TagsDBAddClass..1190
TagsDBAddClassMember...1190
TagsDBAddTag... 1191
TagsDBBeginEdit..1193
TagsDBEndEdit...1193
TagsDBGetAlarm.. 1194
TagsDBGetClassMember... 1196
TagsDBGetClassMemberCount..1197
TagsDBGetFirstClass..1197
TagsDBGetFirstClassMember.. 1198
TagsDBGetFirstTag...1199
TagsDBGetLoadStatus... 1200
TagsDBGetNextClass... 1201
TagsDBGetNextClassMember..1202
TagsDBGetNextTag.. 1203
TagsDBGetPreloadCount..1203
TagsDBGetTagCount.. 1205
TagsDBGetTagProperty.. 1205
TagsDBGetTrend.. 1207
TagsDBPreload...1207
TagsDBPreloadWait..1209
TagsDBRemoveAlarm...1211
TagsDBRemoveClass...1212
TagsDBRemoveClassMember..1212
TagsDBRemoveTag.. 1213
TagsDBRemoveTrend...1214
TagsDBSetAlarm...1215
TagsDBSetTagProperty...1217
TagsDBSetTrend...1219
TagsDBSync... 1220

Translation functions..1222
Ext...1222
SetLanguage...1222
TranslationLoad.. 1223
TranslationLookupClose... 1224
TranslationLookupGet...1225
TranslationLookupLoad.. 1226

Trigonometric functions... 1228
ACos... 1228
ASin.. 1228
ATan.. 1229
Cos..1229
Cot.. 1229
Pi...1230
Sin...1231
Tan.. 1231

OVERVIEW OF VBSCRIPT...1233

Contents

Page 17

VBScript Interfaces in the Software..1234
Global Procedures..1235
Graphic Module.. 1239
Background Task..1248

Language Reference... 1251
Operators.. 1251
Constants..1252
Objects and Collections... 1254
Properties..1255
Statements..1255
Methods.. 1257
Functions.. 1257
Keywords.. 1258
Errors.. 1258

Tips & Tricks..1261
VBScript Editor IntelliSense... 1261
VBScript Compared to VBA...1263
Screen Events.. 1264
MsgBox and InputBox Functions... 1265
VBScript Procedures.. 1265
Creating Constants...1266
Declaring Variables...1267
Scope and Lifetime of Variables..1267
How Boolean tags are handled in VBScript..1267
Writing Real Values to Integer Tags.. 1268
Precedence of VBScript Operators..1268
Logical Operator NOT..1269
Using Conditional Statements..1270
Looping Through Code.. 1272
Support for ActiveX Controls... 1274

Debugging VBScript.. 1275
About the Debug tab..1275
Set break points in your VBScript code.. 1276
Run your project in Debug mode.. 1277
Observe the current state in the Watch window... 1279
Step through your VBScript code.. 1281

Introduction

Page 18

Introduction

This User Guide and Technical Reference was designed to help you get the best results from your BLUE Open
Studio 2020 software. This document provides technical information and step-by-step instructions for all the
tasks you need to create web-enabled HMI/SCADA programs.

Who should read this
This User Guide and Technical Reference is a comprehensive document designed to provide useful information
for both novice and advanced users of BOS.

• New Users: This publication uses a step-by-step, hands-on approach to the project development process.
Be sure to read the introductory chapters describing the product's features and development environment.

• Experienced Users: This publication offers advanced instructions, tips, and troubleshooting information
to help you get the most out of your projects.

Note: We assume you are familiar with working in a Windows environment, and we do not attempt
to explain Windows navigation, file management, and so forth. If you are unfamiliar with any of
these procedures, we recommend using the Windows Help feature (Start > Get Help) or consulting your
Microsoft Windows documentation.

Contents
The information in this document is organized into the following sections:
Introduction

This section, which provides an overview of the features and architecture of BLUE Open Studio
2020.

Installation
Step-by-step instructions for installing and uninstalling the full BLUE Open Studio 2020
software, the thin client software, and the project runtime software for a variety of platforms.

Licensing
Describes the licensing scheme for BLUE Open Studio 2020, as well as how to install and
upgrade licenses on different platforms.

The Development Environment
A tour of the BOS development environment. Also, some basic skills and techniques you should
understand before you create a new project.

Creating a New Project
Provides step-by-step instructions for creating and configuring a new project.

Tags and the Project Database
Explains basic concepts about the product database, tag types (arrays, classes, and pointers),
tag values and parameters. Following the concepts discussion, this chapter provides
instructions for creating and editing tags for your projects.

Screens and Graphics
Explains how to use the different BOS development tools to create your project screens and
graphics.

Alarms, Events, and Trends
Explains how to create and configure task worksheets and screen objects to save and display
historical data.

Background Tasks
Explains how to create and configure task worksheets for the other major background tasks.

Communication with Other Devices
Describes how to configure your project to read from and write to a device's registers, using a
variety of communication drivers and protocols.

Project Security

Introduction

Page 19

Explains how to set-up and manage a security system for your projects.
Project Localization

Explains how to use the Translation Tool to translate the text in your projects from one
language to another.

Testing and Debugging
Discusses how to test and debug projects using tools such as the Watch and Output windows.
This chapter includes a list of possible error messages and methods for correcting those errors.

Remote Management
Explains how to download, monitor, and debug projects from a remote runtime workstation.

Thin Clients and Mobile Access
Explains how configure and run your projects on the Web.

Database Interface
Explains how to connect BOS to compatible databases.

Troubleshooting
Provides instructions for verifying projects, describes some common development errors, and
explains what to do if you need to contact a support representative.

Scripting Languages
Describes BOS's built-in scripting language, as well as the support for VBScript in BOS.

Related documentation
You may want to review the following manuals in addition to this Technical Reference:

• Quickstart Guide: Provides basic information about BLUE Open Studio 2020, including a systematic
tutorial that allows you to develop a single project and become familiar with the product in a short time.

• Tutorial Manual: Describes how to build a project, step-by-step, with the main product features. You can
use this document as a self-training manual.

• Drivers User Guides: Explain how to configure individual direct communication drivers, according to their
unique protocol characteristics. One customized user guide is included with each driver.

Note: All manuals are located in the Documentation folder on the BOS installation CD. BOS installs
the Drivers User Guides in the\Drv folder in the program directory. You also can access technical
information from the Help menu.

Introduction

Page 20

Conventions used in this documentation
This documentation uses standardized formatting and terminology to make it easier for all users to
understand.

Text conventions
This documentation uses special text formatting to help you quickly identify certain items:

• Titles, labels, new terms, and messages are indicated using italic text (for example, Object Properties).

• File names, screen text, and text you must enter are indicated using monospace text (for example, D:
\Setup.exe).

• Buttons, menu options, and keyboard keys are indicated using a bold typeface (for example, File menu).

In addition, this documentation segregates some text into Tip, Note, and Caution boxes:

• Tips provide useful information to save development time or to improve the project performance.

• Notes provide extra information that may make it easier to understand the nearby text, usually the text
just before the note.

• Cautions provide information necessary to prevent errors that can cause problems when running the
project, and may result in damage.

Mouse and selection conventions
Because most PCs used for project development run a version of Microsoft Windows with a mouse, this
documentation assumes you are using a mouse. Generally, a PC mouse is configured for right-handed use, so
that the left mouse button is the primary button and the right mouse button is the secondary button.

This documentation uses the following mouse and selection conventions:

• Click and Select both mean to click once on an item with the left mouse button. In general, you click
buttons and you select from menus and lists.

• Double-click means to quickly click twice on an item with the left mouse button.

• Right-click means to click once on an item with the right mouse button.

• Select also means you should use your pointing device to highlight or specify an item on the computer
screen. Selecting an item with a touchscreen is usually the same as selecting with a mouse, except that
you use your finger to touch (select) a screen object or section. To select items with your keyboard, you
typically use the Tab key to move around options, the Enter key to open menus, and the Alt key with a
letter key to select an object that has an underlined letter.

• Drag means to press down the appropriate mouse button and move the mouse before releasing the button.
Usually an outline of the item will move with the mouse cursor.

Windows conventions
This documentation uses the following Windows conventions:

• Dialogs are windows that allow you to configure settings and enter information.

• Text boxes are areas in dialogs where you can type text.

• Radio buttons are white circles in which a black dot appears or disappears when you click on the button.
Typically, the dot indicates the option is selected or enabled. No dot indicates the option is cleared or
disabled.

• Check boxes are white squares in which a check () appears or disappears when you click on it with
the cursor. Typically, a check indicates the option is selected or enabled. No check indicates the option
is cleared or disabled.

• Buttons are icons in boxes appear "pressed" when you click on them.

• Lists are panes (white boxes) in windows or dialogs containing two or more selectable options.

• Combo boxes have arrows that, when clicked, show part or all of an otherwise concealed list.

Introduction

Page 21

• Dockable windows are windows that you can drag to an edge of the interface and merge with that edge.

Introduction

Page 22

About this software
BLUE Open Studio 2020 is powerful software for developing HMI, SCADA, and OEE/Dashboard projects that
can be deployed anywhere.

Each project consists of:

• A project tags database to manage all run-time data, including both internal variables and I/O data;

• Configurable drivers to communicate in real-time with programmable logic controllers (PLCs), remote I/O
devices, and other data-acquisition equipment;

• Animated human-machine interface (HMI) screens and overall equipment effectiveness (OEE) dashboards;
and

• Optional modules such as alarms, events, trends, recipes, reports, scriptable logic, schedulers, a project
security system, and a complete database interface.

After you develop your project, you can either run it locally on your development workstation or download it
to a remote computer and run it there. The project runtime server processes I/O data from connected devices
according to your project parameters and then reacts to, displays, and/or saves the data.

Product features
ActiveX and .NET

Use third-party controls to enhance your project. This software is a container for ActiveX
and .NET controls. Add functionality such as browsers, media players, charting, and other tools
that support the ActiveX and .NET interface standards.

Alarms
In addition to all of the alarm functions you would expect, this software also sends alarms using
multi-media formats like PDF. Use remote notification to have alarms sent right to your email
inbox, a printer, or a smartphone! Alarms are real-time and historical, log data in binary format
or to any database.

Animation
This software gives you great command over graphics. Paste images, and even rotate
them dynamically. Fill bar graphs with color, or adjust the scale of objects with easy-to-
use configuration. Other animations include "command" (for touch, keyboard and mouse
interaction), hyperlink, text data link, color, resize (independent height and width), position, and
rotation (with custom rotation point).

Database
Connect to SQL databases (MS SQL, MySQL, Sybase, Oracle), MS Access and Excel, and ERP/
MES systems (including SAP). Flexible enough to have a built-in interface without the need to
know SQL (for trends, alarms/events, grid and other objects), or use any SQL statement you
need anywhere you need it.

Drivers
This software includes over 240 built-in communication drivers for most PLCs, temperature
controllers, motion controllers, barcode/RFID readers, and other devices. Use these built-in
drivers without the need for OPC servers (but are an optional connection method).

Email
Send email via SMTP to any desktop or mobile device. Get real-time information on alarms,
process values, and other events. This software supports SSL encryption allowing the use of
third-party providers such as Gmail.

Events
This software offers traceability for operator initiated actions or internal system activity. Log
events such as security system changes (user logon or off), screen open/close, recipe/report

Introduction

Page 23

operations, custom messages and system warnings. Also any tag value changes including
custom messages.

FDA Traceability
Take advantage of built-in traceability and e-signature features to create projects that fully
comply with U.S. Food and Drug Administration regulations (Title 21 CFR Part 11). These
features are often used in food and pharmaceutical applications, but they can be used in any
application where traceability is required.

FTP
Automatically upload or download files during run time to/from remote storage locations using
FTP and flexible scripting functions. Configure FTP via scripting or the included configuration
interface.

Graphics and Design Tools
Create powerful screens to meet any application need using the improved tools in our graphic
interface. Combine built-in objects to create any functionality required. Store graphics in the
symbol library for future use. Easily make projects across a product line share a consistent
"look and feel".

Historical Performance
We have optimized the trend history module and designed it to load millions of values from SQL
relational databases with high performance, with built-in data decimation in the Trend Control.
Easy-to-use tools provide quick access to Statistical Process Control (SPC) values without any
need for programming.

Intellectual Property Protection
Screens, documents, scripts and even math worksheets can be individually password protected.
This prevents unauthorized viewing or editing of your corporate custom functionality. Protect
the entire project with just a few mouse clicks.

Multi-Language
Develop your project in one of many development languages, including English, Portuguese,
German, and French.

OPC
As an alternative to the built-in drivers for direct communication with PLCs, you can also use
any of several different versions of OLE for Process Control (OPC) to manage your devices. This
software includes support for "classic" OPC DA (client or server), OPC UA (client or server), OPC
XML-DA (client only), and OPC HDA (server only).

PDF Export
Send Alarms, Reports, or any file (including .doc or .txt) to a production supervisor, quality
manager, or maintenance staff using the included PDF writer.

Recipes
Save time and maintain consistency by automating part parameters or productions quantities
with any triggering event.

Redundancy
For critical applications where data is vital, this software supports web server, database and
overall system redundancy.

Reports
Create clear, concise reports in text format, graphical RTF, XML, PDF, HTML, and CSV, or
integrate with Microsoft Office. Get the data you need, in the format you need it, to make
informed decisions, fast.

Scalable

Introduction

Page 24

Develop once and deploy anywhere, on any currently supported version of Microsoft Windows.

Scheduler
Schedule custom tag changes on date/time, frequency, or any trigger. Use this for simulation,
to trigger reports or other functionality at a particular time of day, or even to trigger driver
worksheets to read/write at a scan rate you choose.

Scripting
Two powerful scripting languages are supported. Use built-in functions or use standard
VBScript to take advantage of widely available resources. Both can be used simultaneously to
give you the functionality you need.

Security
This software provides support for group and user accounts, e-signatures, and traceability, as
well as support for Lightweight Directory Access Protocol (LDAP). Integrate your project with
your Active Directory, including Active Directory Application Mode (ADAM).

SSL Support for Emails
Native support for Secure Socket Layer (SSL), which makes it easy and secure to send emails
from this software using third-party tools such as Gmail!

Standards
Take advantage of common industry standards to develop projects that are compatible with any
format. TCP/IP, ActiveX/.NET, OPC (client and server), COM/DCOM, OLE, XML, SOAP, and
HTML are all supported.

SNMP
Easily configure managed networked devices on IP networks (such as switches and routers)
using incorporated SNMP configuration commands and an easy-to-use configuration interface.

Symbols
An extensive library of pre-made symbols features push buttons, pilot lights, tanks, sliders,
meters, motors, pipes, valves and other common objects. Use the included symbols in your
project, modify existing symbols to suit your needs, or create your own from scratch. Plus
support for third-party symbol libraries and graphic tools.

Tags Database
This software features an object-oriented tags database with boolean, integer, real, strings,
arrays, classes (structures), indirect tags, and included system tags.

Thin Clients
Remotely view project screens on several different types of thin clients. Use the standalone
Secure Viewer to acheive the greatest security on plant-floor stations. Or use the HTML5-
enabled Mobile Access to access your project from almost any other browser or mobile device.

Trends
Real-time and Historical trends are supported. Log data in binary format or to any database
locally and remotely. Color or fill trends with graphic elements to enhance clarity of data. Date/
Time based or numeric (X/Y plot) trends give you the flexibility to display information that best
suits your project.

Troubleshooting
Quickly debug and verify a project using local and remote tools for troubleshooting, including
status fields, Watch and LogWin. Capture screen open and close times, see communications
in real-time, and messages related to OPC, recipes/reports, security, database errors and even
custom messages. Quickly get your project finished using these powerful tools.

Introduction

Page 25

Internal structure and data flow

The BLUE Open Studio 2020 project runtime runs on a variety of platforms and consists of the following
modules or threads (program elements that can execute independently of other program elements):
Background Task

A supervisory task that executes other internal tasks (BOS worksheets). For example, the
Background task executes scripts configured in the Math and Scheduler worksheets and
manages parameters configured in the Alarm, Recipe, Report, and Trend worksheets.

Watch
A debugging tool that…

• Executes functions and/or expressions for testing purposes

• Reads data (such as tag values) from the tags database

• Writes data (such as tag values) to the Tagsdatabase

LogWin
A debugging tool that traces messages generated from other modules/tasks.

Mobile Access Runtime
Manages communication between your project runtime server and the web server that hosts the
Mobile Access web interface.

Driver Runtime
Manages the read/write commands configured in the Driver worksheets.

OPC Client
Manages OPC communication with an OPC Server (local or remote), according to parameters
configured in the OPC Client worksheets.

OPC Server
Manages OPC communication with an OPC Client (local or remote).

TCP/IP Client
A "thick client" that manages TCP/IP communication with the TCP/IP Server module in another
BOS project, according to parameters configured in the TCP/IP Client worksheets.

TCP/IP Server
Manages TCP/IP communication messages with both thick clients (i.e., the TCP/IP Client
module in other BOS projects) and thin clients (i.e., the Viewer module).

Viewer
Executes all scripts (On Open, On While, On Close, Command, Hyperlink, and so forth)
configured for project screens and updates the screen objects.

Introduction

Page 26

None of the preceding runtime modules exchange data directly with another module or task. Instead, runtime
modules send data to and receive data from the tags database, which is the "heart" of BLUE Open Studio
2020.

Architecture of the project runtime on Windows

Introduction

Page 27

The tags database manages the flow of data between modules. In addition, the tags database stores all tag
values and the status of all properties associated with each tag (such as alarm conditioning, timestamp,
quality, and so on).

Tags are variables (such as communication points in field equipment, calculation results, alarm points,
and so on) that are used in screens and worksheets. For more information, see About Tags and the Project
Database on page 142.

Each runtime module contains a virtual table of the tags that are relevant for that module at the current
time. The tags database uses this table to determine which information must be updated in each module. For
example, the Viewer contains a virtual table that lists all tags configured for all of the open project screens. If
a tag value changes, the tags database sends a message to the Viewer, and then the Viewer updates the value
in all objects where the tag is configured.

For example, if a driver reads a new value from the PLC, the driver updates the tag associated with this value
in the tags database. Then, if this new information must display on the project screen, the tags database
sends the new tag value to the Viewer task, and the Viewer updates the screen.

An example of data flow

Note that the driver does not send new tag values directly to the Viewer. In addition, there is no pooling
between tasks — the tags database receives the updated information and immediately forwards it to all
runtime tasks requiring that information.

Note: The Viewer module will update an object only when (at least) one of the object's tag values
change.

If you configure an object animation (e.g., Text Data Link) with a function that does not require
a tag (e.g., NoInputTime), then the Viewer will not update the object because there is are no tags
associated with that object.

The architecture of BLUE Open Studio 2020 significantly improves the internal data flow performance and
makes it easy for you to add new internal tasks. Even though each task works independently, it can access
information from any other task through the tags database.

Introduction

Page 28

Executing and switching modules

BLUE Open Studio 2020 is a SCADA system composed of modules that must be executed simultaneously.
Based on the multi-tasking concept, each runtime module (Viewer, Driver, and so forth) is a thread and the
operating system switches from one thread to other automatically. It is a common misconception that you
execute a SCADA system when you execute a PLC program. A PLC program contains a simple loop:

PLC Program Loop

However, in a SCADA system, there are several modules running simultaneously, and most of them can read
and write data. Because a SCADA system modifies data (tag values) continuously during task execution, the
preceding diagram is not applicable.

BLUE Open Studio 2020 only has one run-time process. On Windows and Windows Server, it is Studio
Manager.exe. When you run a project, this process starts the tags database and all of the runtime modules
configured for the project. You can specify which modules (such as Viewer and Driver) will start during run
time.

Each process keeps a list of active threads for the operating system. Actually, each process activates and
deactivates each thread during the runtime, according to the algorithm of each process. Also, when you create
a thread you specify a priority value. The operating system continuously scans all currently active threads,
and executes the threads according to their priority value — executing the higher-priority threads first. When
threads with higher-priority values are active, the threads with lower-priority values are not executed at all.
If there is more than one thread with the same priority value, and there are no other threads with higher-
priority values, the operating system keeps switching between the threads with the same priority.

Note: All BLUE Open Studio 2020 threads are set to priority 7, which is THREAD_PRIORITY_NORMAL.
(Most programs contain this priority value.)

Real-time program (such as SoftPLCs and Device Drivers) threads are assigned a higher-priority
value (THREAD_PRIORITY_HIGHEST); however, these programs must provide a mechanism to keep
them inactive for some period of time or the threads with normal priority would never be executed.

BLUE Open Studio 2020 uses the UNICOMM.DLL library for serial drivers. This library creates
a THREAD_PRIORITY_HIGHEST thread that "sleeps" (remains inactive) until data arrives in the
serial channel. When BLUE Open Studio 2020 detects new data in the serial channel, the
THREAD_PRIORITY_HIGHEST thread "wakes up" (becomes active) and transfers the data from the
operating system buffer to the thread buffer, where it can be read by the Driver. This thread is the
only highest-priority thread created by BLUE Open Studio 2020.

If you allowed threads to remain active all the time, the CPU usage would be 100% all the time, which must
be avoided for performance reasons. Every program provides a mechanism to prevent threads from staying
active all the time.

BLUE Open Studio 2020 uses the following parameters to prevent threads from staying active continuously:

Introduction

Page 29

• TimeSlice (from operating system): Causes the operating system to switch automatically between active
threads with the same priority value.

By default, the operating system executes each active thread for approximately 20ms and then switches
to the next active thread. In other words, if there are multiple active threads with the same priority value
waiting to be executed, the operating system will not execute any one active thread for more than 20ms.

• TimeSlice (from BLUE Open Studio 2020): Specifies how long each BOS thread can remain continuously
active.

You use this parameter in addition to the operating system's TimeSlice parameter. You configure a
TimeSlice value for each BOS thread (except the Background Task) and specify how long each thread can
remain continuously active. As long as a thread is active, the operating system can switch to that thread.

• Period (from BLUE Open Studio 2020): Specifies the maximum amount of time each BOS thread (except
the Background Task) can remain inactive.

Note: We strongly recommend that you do not change these default values unless it is absolutely
necessary. Configuring these parameters incorrectly can cause the entire system to malfunction (for
example, CPU usage will go to 100%) and/or cause some tasks to perform poorly.

If you must change the parameter defaults, note the values before making your changes so if a
malfunction occurs you can return to the original settings.

To change the BOS TimeSlice and Period parameter default values:

1. From the BLUE Open Studio 2020 installation directory (for example, C:\Program Files\installation
folder\Bin), double-click \BIN to open the folder.

2. Double-click the Program Settings.INI file to open the file in Microsoft® Notepad.

The following is a list of all parameters contained in this .ini file and their default values (in milliseconds).

[Period]
DBSpy=1000
Driver=20
LogWin=100
OPCClient=20
OPCServer=20
TCPClient=100
TCPServer=100
Viewer=50

[TimeSlice]
Driver=10
OPCClient=10
OPCServer=10
TCPClient=200
TCPServer=200
Viewer=200

Note: You may not see all of these parameters listed when you open your Program Settings.INI
file. However, even if a parameter is not visible in your list, BOS still uses that parameter and its
default value.

• To change the default value of a displayed parameter: In Notepad, delete the default value and type the
new value in its place.

• To change the default value of a parameter that is not displayed in your list: In Notepad, type the
parameter name exactly as shown in the following list, the equal sign, and then the new value.

3. Save the file (File > Save) and close Notepad (File > Exit).

Introduction

Page 30

The following figure illustrates how BOS executes a generic thread (such as the Viewer).

Executing a Generic Thread

Where:

• Signal 1 is the Period time period (set to 50ms for this example).

• Signal 2 shows when the thread is active for the operating system.

• Signal 3 is the TimeSlice time period (set to 30ms for this example).

• Signal 4 shows the execution of the thread itself.

In this example, BOS generates a Period message every 50ms (signal 1). When BOS generates this message,
its thread becomes active and remains active until the specified TimeSlice time period (from BOS) expires. The
thread then remains inactive until BOS generates the next Period message (signal 1).

While the thread is active, the operating system is responsible for executing that thread. However, just
because a thread is active does not mean the operating system will execute it immediately — the operating
system may be executing other threads, for example.

When the operating system executes the thread, the TimeSlice timer starts counting and the thread is
executed for 20ms (TimeSlice from the operating system). After the 20ms period, the operating system
automatically switches to the next active thread (such as the Driver), and so on.

In the above example, the TimeSlice time was set to 30ms, which means the operating system is not supposed
to execute the thread more than once in each TimeSlice of BOS. However, if you specify higher values for the
BOS TimeSlice time period, it is likely that the operating system will execute the same thread more than once
in the same TimeSlice time period.

In the next example, the Period and the TimeSlice values were changed as follows, but the default operating
system TimeSlice period (20 ms) was not changed.

Setting a Higher TimeSlice

Where:

• Signal 1 is the Period time period (set to 100ms).

• Signal 2 shows when the thread is active for the operating system.

Introduction

Page 31

• Signal 3 is the BOS TimeSlice time period (set to 80ms).

• Signal 4 shows the execution of the thread itself.

Notice that the thread can be executed more than once in the same TimeSlice time period. When the BOS
TimeSlice time period expires, the operating system interrupts the thread execution; however, even though the
BOS Period and TimeSlice parameters are set to 100ms and 80ms respectively, the operating system will not
execute this thread continuously for more than 20ms, because the operating system TimeSlice time period is
set to 20ms.

When the operating system is not executing the Viewer thread, the CPU can execute any other thread or
remain idle (if there are no other active threads to execute). Remember, the BOS Period and TimeSlice
parameters were created to prevent all threads from being active at the same time to prevent 100% CPU
usage.

During thread execution, the thread must handle its pending messages. For example, the Viewer module
must update any related screen objects. If there are no messages pending, the thread deactivates itself and
gives control back to the operating system. The operating system immediately switches to the next active
thread. In other words, a thread can interrupt its own execution — even if the operating system TimeSlice
time period has not yet expired (which occurs frequently in real-world applications).

Note: The Watch and LogWin tasks do not have a TimeSlice parameter. Consequently, after each
thread handles all of its pending messages, the threads become inactive until the next Period
message for each one of the threads occurs.

The Background Task is the exception to the execution/switching process just discussed. The mechanism for
executing/switching the Background Task is described in the next section.

Introduction

Page 32

Executing and switching the Background Task

The Background Task executes scripts from the Math and Scheduler worksheets (for example, messages from
Alarm and Trend worksheets). In addition, the Background Task executes all Recipe and Report commands
when the Recipe or Report functions are executed during the runtime.

Although the Alarm, Math, Scheduler, and Trend tasks are not threads, you can specify or change their
Period time in the Program Settings.ini file located in the BOS program directory.

The Period default values (in milliseconds) are as follows:

[Period]
Math=100
Sched=50
Alarm=100
Trend=1000

These values mean that every 100ms, BOS generates a Period message to the Math task. Every 50ms, BOS
generates a Period message to the Scheduler task, and so on.

Note: We strongly recommend that you do not modify the Background Task default values unless
it is absolutely necessary. Configuring any of these parameters incorrectly can cause your entire
system to malfunction (for example, CPU usage will go to 100%) and/or cause some tasks to perform
poorly.

If you must change the parameter defaults, note the values before making your changes so if a
malfunction occurs you can return to the original settings.

Keep in mind that the Background Task thread has the same priority as other threads in BOS (Drivers,
Viewer, and so forth), which means that the operating system will not execute this task continuously for more
than 20ms.

The Background Task executes the Recipe and Report worksheets when the Recipe and Report functions are
called, respectively. Because the Recipe and Report functions are synchronous, once the Background Task
starts executing the functions, it will not switch to another task (Alarm, Math, Scheduler, or Trend) until it
completely executes the functions. Executing a Recipe or Report function usually takes a few milliseconds.

The Background Task must switch between the Alarm, Math, Scheduler, and Trend tasks. When Background
Task switches to the Scheduler task, it will not switch to another task (Alarm, Math, or Trend) until all
Scheduler worksheets are executed. After executing all Scheduler worksheets, the Background Task will not
execute the Scheduler again until it receives the next Period message for the Scheduler task.

The Background Task applies the same behavior when executing the Alarm and Trend tasks — when the
Background Task switches to the Alarm or Trend task, it will not switch to another task until it handles
all pending messages. So, the Background Task will not execute the Alarm or Trend task again, until BOS
generates the next Period message for each of these tasks.

The Background Task typically executes the Alarm, Scheduler, and Trend tasks in a few milliseconds.
However, it can take longer to execute the Math task because it usually contains loops and complex scripts.
Consequently, the mechanism used to execute the Alarm, Scheduler, and Trend tasks cannot be applied to
the Math task.

The Background Task executes the Math task for no more than 10ms continuously before switching to other
task (such as the Scheduler). The Background Task cannot execute the Math task again for the next 50ms;
however, the Background Task can execute other tasks (Alarm, Recipe, Report, Scheduler, or Trend) during
this 50ms period. After the Background Task executes all of the Math worksheets, it will not begin a new scan
of the Math worksheets until BOS generates a new Period message for the Math task.

It is important to re-emphasize that this process was created to prevent 100% CPU usage all the time.

Note: We recommend caution when using the Math function in a Scheduler worksheet or for a
screen object (such as the Command animation).

When the Scheduler task executes a Math function, no other task can be executed by the
Background Task until the Scheduler executes the entire Math worksheet called by the Math

Introduction

Page 33

function. This process can take several milliseconds or even seconds, depending on how you
configured the script in the Math worksheet (especially for loops).

If you configure a Math function for a screen object, the Viewer stops updating the screen until the
Viewer executes the entire Math worksheet called by the Math function.

If you must use the Math function for the Scheduler task or a screen object, we recommend using
the following procedure to prevent process delays:

1. Specify one auxiliary tag with the value 1 and the Scheduler or Viewer task will send a message
to the Tags database to update this tag value.

2. Configure the tag in the Execution field of the Math worksheet to be executed. When the
Background Task scans the Math worksheet, BOS will execute the worksheet.

3. Reset the tag in the last line of the Math worksheet (write the value 0 to the auxiliary tag).

As a result, the Background Task will not execute the Math worksheet in the next scan unless the
auxiliary tag is set to the value 1 again.

Installation Guide

Page 34

Installation Guide
This is a brief guide to installing the full BLUE Open Studio 2020 software.

Installation Guide

Page 35

About the BLUE Open Studio 2020 software components
The BLUE Open Studio 2020 software suite comprises several individual components that can be installed on
different platforms to perform different functions. The architecture of your finished project depends on which
components you install, where you install them, and how you connect them to each other.

The following table lists all of the available components.

Component Description Platform

Studio The full BLUE Open Studio 2020 software for
Windows, licensed for and running in "Engineering"
mode. Includes the following:

• Project development environment

• Tag integration

• Project viewer, for testing screens

• Remote management of project runtimes

• Windows

• Windows Server

SCADA The full BLUE Open Studio 2020 software for
Windows, licensed for and running in "Runtime"
mode. Includes the following:

• Project runtime

• Remote agent, to allow remote management

• Project viewer

• Windows

• Windows Server

Database Gateway (StADOSvr) Enables communication between the project
runtime and external databases, including Historian
and most ADO.NET-compatible databases.

• Windows

• Windows Server

Mobile Access Runtime Enables the project runtime to serve HTML5-
enhanced project screens to web browsers and
mobile devices.

• Internet Information Services (IIS) for Windows

• any CGI-enabled web server (e.g., Apache)

Secure Viewer Project viewer / thin client, installed as a standalone
program. (See note below.)

• Windows

• Windows Server

Note: Although the term "Windows Embedded" appears in the communication driver manuals,
BLUE Open Studio 2020 is not supported on the Windows Embedded operating system.

It is important to distinguish between the project development environment and the project runtime. You can
use the project development environment to design, develop, troubleshoot, deploy, and monitor projects. In
contrast, the project runtime actually runs your project, communicates with external databases and devices,
and serves screens to project viewers.

The full BLUE Open Studio 2020 software for Windows includes both the project development environment
and the project runtime. Your software license determines which parts of the software you can use on any
given computer or device. For more information, see Execution Modes on page 45.

In most cases, the first thing you should do is install the full BLUE Open Studio 2020 software on your
primary workstation, because it not only sets up the project development environment for you, it also
unpacks the rest of the components so that they can be installed on other computers and devices.

Note: We recommend that you use Mobile Access instead of our traditional Thin Client software
whenever possible. Thin Client depends on legacy, Windows-only technologies, while Mobile Access
allows you to use any HTML5-compatible browser running on any platform as a project viewer.
Mobile Access does not yet support all of the features that Thin Client does, but we are continuing to
improve Mobile Access with every new release.

Installation Guide

Page 36

Install the full BLUE Open Studio 2020 software
Install the full BLUE Open Studio 2020 software on your Windows computer in order to develop projects, or to
use the computer as a project runtime server and/or thin client.

To install and run the full BLUE Open Studio 2020 software, you must have the following:

• A Windows-compatible computer with a standard keyboard, a pointer input (i.e., a mouse, trackpad, or
touchscreen), and an SVGA-minimum display;

• One of the following Windows operating systems:

• Windows:

• Windows 10, version 1803 or later (including LTSC/LTSB versions)

• Windows 8.1

• Windows Server:

• Windows Server 2019

• Windows Server 2016

• Windows Server 2012 R2

• .NET Framework 3.5 and .NET Framework 4.8 (see note below);

• Internet Explorer 11 (not Microsoft Edge);

• Minimum 2 GB available storage (hard drive or non-volatile);

• Minimum 1 GB available memory (RAM); and

• An Ethernet or Wi-Fi network adapter.

We recommend the "Pro" and "Enterprise" editions of Windows, because they include Internet Information
Services (IIS) as a pre-installed feature that can be turned on. You can use IIS to make your projects
accessible to thin clients and mobile devices. We do not recommend the "Home" and "Education" editions of
Windows, because they hide or disable many important features.

Only Windows 10, Windows Server 2016, and Windows Server 2019 are under what Microsoft calls
"mainstream support", which means they are actively maintained and additional service packs might be
released for them in the future. Windows 8.1 and Windows Server 2012 R2 are under what Microsoft calls
"extended support", which means they are no longer actively maintained. For more information, go to:
https://support.microsoft.com/en-us/help/13853/windows-lifecycle-fact-sheet

Regardless of which version or edition of Windows you are using, you should make sure it is fully updated
before you install BLUE Open Studio 2020. Updating Windows ensures that it has all of the latest security
fixes and system components.

The operating system, storage, and memory requirements will necessarily increase for larger projects; the
minimum requirements listed above are only for projects of up to 4,000 tags. The following table shows the
complete requirements:

Project Size Operating System Storage Memory

up to 4,000 tags Windows, Windows Server 2 GB available 1 GB available

up to 64,000 tags Windows, Windows Server 4 GB available 2 GB available

Your computer needs to meet only the minimum requirements when you first install the software and begin to
develop your project, but the requirements will increase as your project grows. Furthermore, every computer
or device that you plan to use as a runtime station must meet the same requirements.

The following items are optional but recommended:

• A USB port or memory card slot, to be used for hardkey licensing of the software.

This is optional because softkey licensing is also available.

• Serial COM ports and adapters, to be used for direct communication with PLCs and other devices.

https://support.microsoft.com/en-us/help/13853/windows-lifecycle-fact-sheet

Installation Guide

Page 37

This is optional because many newer device protocols use Ethernet communication (i.e., TCP/IP or UDP/
IP) instead of serial communication.

• Internet Information Services (IIS) installed and turned on; for more information, see the description of the
Mobile Access Runtime option below.

This is optional because you may choose not to install the Mobile Access Runtime feature at this time, as
part of the full BLUE Open Studio 2020 software. You can install it at a later time, for either IIS or CGI.

Finally, you must have Administrator privileges on the computer in order to install any software.

Note:

You must have both .NET Framework 3.5 and .NET Framework 4.8 (or later) turned on in order to
install and run BLUE Open Studio 2020.

If Windows is fully updated on your computer then the latest versions of .NET Framework should
be installed already, but they might not be turned on. In fact, in recent versions of Windows and
Windows Server, .NET Framework 3.5 is turned off by default. Use either the Windows Features
control panel in Windows, or the Server Manager console in Windows Server, to confirm that both
versions of .NET Framework are turned on before you install the software.

In some cases, it might not be possible to keep Windows fully updated through normal means. For
example, if your computer is on a private network without access to the Internet, it might not be
able to contact the Windows Update service. You can use another computer to download an offline
installer for .NET Framework 3.5 and then copy it to your computer.

For more information about how to install and/or turn on .NET Framework 3.5, go to: https://
docs.microsoft.com/en-us/dotnet/framework/install/dotnet-35-windows-10

For more information about .NET Framework in general, go to: https://docs.microsoft.com/en-us/
dotnet/framework/index

To install the full BLUE Open Studio 2020 software:

1. Close all other running programs, if possible.
We recommend you do this because those programs can use a significant amount of system resources
and therefore cause this installation to take longer to finish. Windows services (e.g., Windows Defender,
Windows Update) can have the same effect, but we do not recommend you stop or disable those services.

2. Do one of the following:

• Download the zipped installer to your computer, either from our website (www.pro-face.com/trans/
en/software/1090.html) or from another location on your network where you have previously saved it.
Extract the files, open the resulting folder, and then locate and run the setup program (setup.exe).

The installation wizard runs and asks you to select a language for the installation.

3. Select a language from the list, and then click OK.
This selection determines the language of the user interface for both the installation wizard and the project
development environment. You can change the language for the project development environment later,
after the software has been installed.
The wizard prepares for installation. During this step, it automatically installs SafeNet's Sentinel drivers (a
part of the software licensing mechanism), .NET Framework 3.5, and .NET Framework 4.8, if necessary.

4. On the Welcome page of the wizard, click Next to proceed with the installation.

5. On the License Agreement page, click Yes to accept the agreement and proceed, or click No to refuse the
agreement and exit the wizard.

6. On the Customer Information page, type your user name and company name, and then click Next.
7. On the Choose Destination Location page, select the folder where the software should be installed, and then

click Next.
By default, the software will be installed at the following location:

C:\Program Files (x86)\Pro-face\BLUE Open Studio 2020\

https://docs.microsoft.com/en-us/dotnet/framework/install/dotnet-35-windows-10
https://docs.microsoft.com/en-us/dotnet/framework/install/dotnet-35-windows-10
https://docs.microsoft.com/en-us/dotnet/framework/index
https://docs.microsoft.com/en-us/dotnet/framework/index
http://www.pro-face.com/trans/en/software/1090.html
http://www.pro-face.com/trans/en/software/1090.html

Installation Guide

Page 38

8. On the Select Features page, select the specific features and components that you want to install, and then
click Next.

Feature Description

Program Files The main program files for the project development environment, the project runtime software for Windows and
Windows Server, and the thin client software for viewing project screens.

You cannot deselect this feature.

BDE for PanelMate™ Import
Wizard

Borland Database Engine (BDE), which is required to import a PanelMate Plus or PanelMate Power Pro program into
a new project.

This feature is not selected by default, because it is used only in some cases.

Custom Widget Framework Additional software that is required to develop HTML5-based widgets and then use them in project screens.

You cannot deselect this feature.

Demo Projects Premade projects that demonstrate the capabilities of the BLUE Open Studio 2020 software.

Hardkey Support Additional drivers that support the use of hardkey licenses.

Industrial Graphics The Industrial Graphics editor and symbol library, which works as a companion to our native graphics tools.

Mobile Access Runtime Add-on software for Internet Information Services (IIS) that lets you use any HTML5-compatible browser to view your
project screens. If you select this feature, the installer will try to confirm that IIS is turned on in Windows, and if it is, the
add-on software will be installed.

Regardless of whether you select this feature for installation, a separate Mobile Access Runtime software installer
(MobileAccessSetup.exe) will be copied to your BLUE Open Studio 2020 program folder. You can run
that installer at a later time.

OPC Components Additional components that are required for communication with other OPC-compatible devices. This includes OPC
DA (a.k.a. OPC Classic), OPC XML-DA, and OPC UA.

PDF Printing Additional software that lets projects save run-time reports as PDF files.

Security System Device Driver An additional keyboard driver that helps to enforce security during project run time.

Symbol Library A large library of premade but customizable screen objects such as pushbuttons, toggle switches, gauges, dials,
indicator lights, and so on.

Historian Additional software that is required to save historical data (e.g., from Trend worksheets) to AVEVA Historian or AVEVA
Insight.

If you want to use this feature in your project, you must have .NET Framework 4.8 (or later) installed and turned on.

9. On the Ready To Install page, click Install.

Note: You might receive the following error message during installation: "Error 1628: Failed to
complete script based install." For more information about this error and how to resolve it, go to:
https://flexeracommunity.force.com/customer/articles/en_US/ERRDOC/Error-1628-Failed-To-
Complete-Script-Based-Install

Note: If you try to install an earlier version of this software on a computer that already has a
later version installed, you might receive the following message during installation: "Version
x.x.x.x of CodeMeter Development Kit is already installed. Downgrading to Version x.x.x.x is not
possible, installation will be aborted." CodeMeter is supplemental software used by BLUE Open
Studio 2020 to manage hardkey licenses. To resolve this issue, you must use Task Manager
in Windows to stop CodeMeter Runtime Server (CodeMeter.exe) before you install the earlier
version of the software.

The software is installed, and then when the installation is finished, the last page of the wizard is
displayed.

https://flexeracommunity.force.com/customer/articles/en_US/ERRDOC/Error-1628-Failed-To-Complete-Script-Based-Install
https://flexeracommunity.force.com/customer/articles/en_US/ERRDOC/Error-1628-Failed-To-Complete-Script-Based-Install

Installation Guide

Page 39

10.Click Finish to close the installation wizard.

When you have finished the installation, you can find the software in your Windows Start menu at: Start > Pro-
face > BLUE Open Studio 2020
The software includes the following "apps" (applications):

BLUE Open Studio 2020 Studio
The project development environment and/or the project runtime for Windows. Its capabilities
are determined by your software license.

BLUE Open Studio 2020 Help Manual
A complete technical reference and user guide for all of the BLUE Open Studio 2020 software.

BLUE Open Studio 2020 Quick Start Guide
A brief guide to installing and using the project development environment, including a tutorial
for developing a simple project.

BLUE Open Studio 2020 Register
A utility program that manages your BLUE Open Studio 2020 software license.

BLUE Open Studio 2020 Release Notes
A list of changes in the BLUE Open Studio 2020 software.

BLUE Open Studio 2020 Remote Agent
A utility program that allows other stations to remotely manage BLUE Open Studio 2020 as a
project runtime.

BLUE Open Studio 2020 StartUp
A shortcut that automatically starts the project runtime and then runs the most recent project.

There should also be a shortcut icon on your desktop.

To run the software, do one of the following:

• Double-click the shortcut icon on your desktop; or

• Click Start > Pro-face > BLUE Open Studio 2020 > BLUE Open Studio 2020 Studio.

If the installation failed for any reason, you can use System Restore to restore the computer to the restore
point that was created at the beginning of the installation. For more information about System Restore, go to:
https://support.microsoft.com/help/17127/windows-back-up-restore

https://support.microsoft.com/help/17127/windows-back-up-restore

Installation Guide

Page 40

Install the Thin Client software
Install the Thin Client software on a client station in order to let users view your project.

Note: We recommend that you use Mobile Access instead of our traditional Thin Client software
whenever possible. Thin Client depends on legacy, Windows-only technologies, while Mobile Access
allows you to use any HTML5-compatible browser running on any platform as a project viewer.
Mobile Access does not yet support all of the features that Thin Client does, but we are continuing to
improve Mobile Access with every new release.

If you have already installed either the full BLUE Open Studio 2020 software or one of the runtime editions on
the computer or device that you want to use as a client station, you may skip this procedure because you do
not need to install the Thin Client software on the same computer or device. The full software and the runtime
editions include the same components as the Thin Client software, except that they are preconfigured to view
the project that is running locally.

Before you begin this procedure, you should install the full BLUE Open Studio 2020 software on at least one
Windows computer — typically, on your project development workstation — because doing so also unpacks
the Thin Client software installer.

To run the Thin Client software installer, you must have a computer or device with a network connection and
one of the following operating systems:

• Windows:

• Windows 10, version 1803 or later (including LTSC/LTSB versions)

• Windows 8.1

• Windows Server:

• Windows Server 2019

• Windows Server 2016

• Windows Server 2012 R2

You must also have Administrator privileges on the computer or device in order to install any software.

The Thin Client software is based on ISSymbol, which is an ActiveX control that we developed to open project
screens and exchange data (e.g., tag values) with the project runtime. It acts as a control layer between the
client and the server, similar to the Java Virtual Machine for Java-based applications, and it provides a high
level of security because it does not allow the project to access the operating system on the client station.

To install the Thin Client software:

1. Locate the Thin Client software installer in your BLUE Open Studio 2020 program folder.

If BLUE Open Studio 2020 was installed at its default location on your computer, the Thin Client software
installer should be located at:

C:\Program Files (x86)\Pro-face\BLUE Open Studio 2020\Redist\WebAddOn\ThinClient
\ThinClientSetup.exe

2. Copy the Thin Client software installer to the computer or device on which you want to install the software.
Assuming the computer or device has a network connection — which it should, if you plan to use it as a
project viewer — you can simply copy the installer across the network. Otherwise, copy the installer to
removable media (e.g., a USB flash drive) and then carry it to the computer or device.

3. On that computer or device, run the Thin Client software installer (ThinClientSetup.exe).
The first page of the installation wizard is displayed.

4. Click Next.
The next page of the wizard is displayed.

5. On the Customer Information page, type your name and your company name, and then click Next.
The next page of the wizard is displayed.

Installation Guide

Page 41

6. On the Choose Destination Location page, select the folder where the software should be installed, and then
click Next.
By default, the software will be installed at:

C:\Program Files (x86)\Pro-face\Thin Client\<ID string>\

The next page of the wizard is displayed.

7. On the Select Features page, select the specific features and components that you want to install, and then
click Next.
Feature Description

Program Files The main program files for the thin clients. This
feature cannot be deselected.

Secure Viewer Creates shortcuts in the Start menu and on the
desktop. If you deselect this feature, the program
files will still be installed but the shortcuts will
not be created. You will need to locate the Secure
Viewer program (Viewer.exe) and then manually
run it.

PDF Printing Additional software that allows the project to save
run-time reports as PDF files.

Security System Device Driver An additional keyboard driver that enforces project
security during run time by controlling user input.

The next page of the wizard is displayed.

8. On the Ready to Install the Program page, click Install.
The software is installed, and then when the installation is finished, the last page of the wizard is
displayed.

9. Click Finish to close the installation wizard.

Once the Thin Client software is installed, you may choose which type of thin client to use:

• If you choose to use Secure Viewer as a standalone program, you must configure it before you can run it.
For more information, see Configure and run Secure Viewer on page 755.

The Thin Client software itself does not need to be licensed on any computer or device. The license for the
project runtime determines the number of thin clients that are allowed to connect to it at the same time. For
more information, see License Settings on page 44.

Install the Custom Widget Framework on a client station
If your project screens include custom widgets, you might need to install Custom Widget Framework on some
client stations to enable them to properly display the widgets.

This task applies only to stations on which you have already installed the Thin Client software — in other
words, stations that are using the Thin Client software to view your project screens.

Stations that are viewing your project through Mobile Access do not need to have Custom Widget Framework
installed, because custom widgets are HTML5-based screen objects that can be displayed normally in the web
browser.

Before you begin this task, you must have installed the full Studio software on at least one Windows
computer — typically, on your project development workstation — because doing so also unpacks the Custom
Widget Framework installer. (Custom Widget Framework is not included in the Thin Client installer because it
would greatly increase the file size of that installer, for a feature that not all projects use.)

You must have Administrator privileges on a computer or device in order to install any software.

To install the Custom Widget Framework on a client station:

1. Locate the Custom Widget Framework installer (CustomWidgetFrameworkSetup.exe) in your Studio
program folder.

Installation Guide

Page 42

If Studio was installed in its default location, the Custom Widget Framework installer should be located at:

C:\Program Files (x86)\Pro-face\BLUE Open Studio 2020\Redist\CustomWidgetFramework
\CustomWidgetFrameworkSetup.exe

2. Copy the installer to the client station, either over the network or on a portable hard drive.

3. Run the installer. You might need to do this as a user with Administrator privileges: right-click the
installer, and then on the shortcut menu, click Run as Administrator.

4. Follow the installer's instructions. On the Choose Destination Location page of the installer, make sure the
Bin sub-folder in the Thin Client program folder is selected. If it is not, click Browse and then use the file
browser to locate and select the Bin sub-folder.

Licensing

Page 43

Licensing

Licensing

Page 44

License Settings
Every BLUE Open Studio 2020 software license has the following settings:

Example of license settings

Serial Number
The unique serial number of the hardkey, if you are using hardkey licensing. For more
information, see About hardkey licenses on page 47.

Version
The version of the software for which the license is valid. Please note this is the major version
only; updates, patches, and hot fixes are minor versions included in the major version. For more
information, see Product Versions on page 45.

Product Type
The maximum product type that can be run by the project runtime, if the execution mode
includes Runtime. The product type determines the maximum number of project tags that can
be used in a single project. For more information, see About target platforms, product types, and
target systems on page 98.

Execution Mode

Specifies one of the following options:

Engineering Only
You can develop a project and then run it for a limited period, for testing purposes only.

Runtime Only
You can run a project for an unlimited period, but you cannot develop or modify the project.

For more information, see Execution Modes on page 45.

Thin Clients
The maximum number of thin clients that can connect simultaneously to the project runtime.
For more information, see Thin Clients and Mobile Access on page 740. One connection
is included with every license; contact your software distributor to purchase additional
connections.

Options
Additional options and features, including a list of the third-party programs that can be
imported by the Import Wizard.

Licensing

Page 45

Product Versions
All editions of the project development and runtime software should have the same version number, which
uses the X.Y+SPWW syntax (e.g., BLUE Open Studio 2020 v20.0), where:

• X represents the Family version. The Family version changes only when major enhancements are added
to the product technologies and concepts.

• Y represents the Sub-version: The Sub-version changes when minor enhancements and/or new features
are added to the product.

• WW represents the Service Pack. The Service Pack version changes when you must install add-on packages
to accomplish the following:

• Upgrade files for the version previously installed

• Fix bugs in the product (showstoppers and no-workarounds)

• Provide minor enhancements before releasing the next version of the product

Each Service Pack release supersedes the previous Service Pack release. For example, SP2 includes all the
contents of SP1 and all newly upgraded files, bug fixes, and enhancements. SP3 includes all the contents
of SP2 and all new upgraded files, bug fixes, enhancements and so on.

Later versions of this software can run projects that were developed in earlier versions, but earlier versions
cannot run projects that were developed or modified in later versions. Opening and modifying a project in a
later version will upgrade the project to that version.

Note: We issue each license for a specific Family version and Sub-version (X.Y), and the license
is only valid for that version (including Service Packs). The license is not valid for a newer Family
version or Sub-version of the product. Therefore, if you install a new version, you must also upgrade
your license to the version being installed. If you install a Service Pack only, you do not need to
upgrade your license.

Execution Modes
SCADA support the following execution modes:

Execution Mode SCADA

Evaluation Mode Supported

Demo Mode Supported

Licensed for Engineering Only Supported

Licensed for Runtime Only Supported

Evaluation Mode
Enables all of the product's engineering and runtime features.

The first time you install BLUE Open Studio 2020 on a computer, the product runs for forty
(40) hours in Evaluation Mode. This evaluation period includes any time you run a product
module (engineering or runtime). You can use this evaluation period continuously or not; for
example, 10 hours a day for 4 days, or 5 hours a day for 8 days, or 10 hours a day for 3 days
plus 5 hours a day for 2 days, and so on.

After running for 40 hours in the Evaluation Mode, the evaluation period ends and the program
automatically converts to Demo Mode until you apply a valid license. You cannot reactivate
Evaluation Mode, even if you reinstall the software on your computer.

Note: Each version of BLUE Open Studio 2020 has an evaluation period that is
independent of every other version. For example, if an earlier version is running
in Demo Mode because its evaluation period has expired, and then you install the
latest version on the same computer, the latest version will begin its own 40-hour
evaluation period and the earlier version will continue to run in Demo Mode.

Licensing

Page 46

Demo Mode
Allows you to download projects to remote stations and to run projects for testing or
demonstration purposes. You can execute runtime tasks and use the debugging tools (Watch
and LogWin), but they shut down automatically after running for two hours continuously. You
can restart the Demo Mode again and run for another two hours, and so on.

You cannot create or modify screens, worksheets, or project settings in Demo Mode.

Licensed for Engineering Only
Enables all development options for an unlimited time.

This mode also allows you to continuously run the runtime tasks and debugging tools (Watch
window, Output window, and LogWin module) for 72 hours. After that period, these tasks shut
down, but you can restart them and run for another 72 hours, and so on. You can use this
license for development and testing only.

Licensed for Runtime Only
Enables all runtime tasks and debugging tools (Watch window, Output window, and LogWin
module) for unlimited time, but you cannot create or modify screens and/or worksheets.

The menu options available in Runtime Only mode are the same as the options listed for Demo
Mode (see previous table).

Note: The Remote Management tool is always available, regardless of the execution mode, so that
you can upload files from or download files to remote stations.

To see which execution mode you are currently running, click About on the Help tab of the ribbon; the About
dialog shows the execution mode, including the time remaining if you are in Evaluation Mode.

Licensing

Page 47

About hardkey licenses

An encapsulated chip that must be physically connected to the computer's parallel port (LPT1) or USB
interface.

The software license resides in the hardkey, and you cannot share this license simultaneously with more
than one other copy of software in the network. If you connect the hardkey to another computer, then you
effectively transfer the license to that computer.

Using the parallel port hardkey does not prevent you from connecting another device — such as a printer —
to the port. The hardkey should be electronically transparent to other devices connected to the parallel port.
You simply connect the hardkey to the computer and then connect the printer cable to the hardkey. However,
you may encounter problems if you install more than one hardkey (for different products) on the same parallel
port.

Note: Be careful when installing or removing a hardkey from the computer's parallel port. We
strongly recommend that you turn off the computer and disconnect it from the power supply before
installing or removing a hardkey.

On the other hand, while using the USB hardkey, the USB port cannot be shared with any other device.

Install a new hardkey license
Install a new hardkey license for the full BLUE Open Studio 2020 software or the project runtime software.

Before you begin this task, make sure the appropriate software has been installed on your computer or
device. For more information, see Installation Guide on page 34.

To install a new hardkey license:

1. On the computer or device where you have installed the software, connect the hardkey to the appropriate
port (e.g., USB, SD or microSD).

2. Run the software.

If the software recognizes the hardkey, it will run normally without any alert messages.

If the software does not recognize the hardkey, try the following:

• For the full BLUE Open Studio 2020 software, use the Protection Manager utility program (a.k.a. Register)
to make sure the software is set to check for a hardkey.

Upgrade an existing hardkey license
Upgrade an existing hardkey license for the full BLUE Open Studio 2020 software or the project runtime
software.

Before you begin this task, make sure you have access to the full BLUE Open Studio 2020 software installed
on either your project development workstation or one of your project runtime stations. You need to use the
Protection Manager utility program (a.k.a. Register) included with that software in order to perform this task.

Also, you should have already puchased a valid license or license upgrade. You may purchase it when you
send in the site code (see below), but doing so might increase your downtime. For more information, contact
your BLUE Open Studio 2020 software distributor. You can update any license setting (e.g., product type,
options), or you can upgrade the software to a new version. The cost of the update/upgrade depends on the
difference between the current and new license settings.

Finally, you must have Administrator privileges on the computer in order to run Protection Manager.

To upgrade an existing hardkey license:

1. Exit BLUE Open Studio 2020 if it is running.

BLUE Open Studio 2020 and Protection Manager cannot run at the same time.

If you have a project running in BLUE Open Studio 2020, stop it before you exit the program.

2. Run Protection Manager: click Start > Pro-face > BLUE Open Studio 2020 > BLUE Open Studio 2020 Register.

Licensing

Page 48

The Protection Manager program window is displayed.

3. Select Hardkey if it is not already selected, and then click Check.

If you have a valid hardkey license installed — that is, if a valid hardkey is connected to the computer —
the Hardkey Settings dialog box is displayed with the settings on that hardkey.

Otherwise, if you do not have a valid hardkey license installed, an alert message is displayed.

4. Click Change License.

The Change License dialog box is displayed with a unique site code that is generated from the hardkey
itself.

5. Send the site code to your software distributor.

Typically, you will copy the site code to your clipboard and then paste it into an email to your software
distributor. To copy it to your clipboard, click the Copy button to the right of the Site Code box.

6. When you receive the corresponding site key from your software distributor, type or paste it in the Site Key
box, and then click Authorize. (You will be prompted to confirm.)
The new license settings are written to the hardkey, and then a confirmation message is displayed.

If the new site key is not validated, an error message is displayed. If that happens, confirm that you entered
the site key correctly. If you entered it correctly and still get an error message, contact your software
distributor for further assistance.

Licensing

Page 49

About softkey licenses

When you install the project development or runtime software, the program generates a unique site code. You
can send this site code to your software distributor, who will then generate a site key to match your site code.
You can then use the site key to install the license on your computer or target device, as opposed to having
the license stored on a hardkey.

Note: When you use a softkey, the license is recorded in the computer or device's permanent
memory. If the computer is damaged or lost, you will lose the license.

Install or upgrade a softkey license for the full BLUE Open Studio 2020 software
Install or upgrade a softkey license for the full BLUE Open Studio 2020 software running on a Windows
computer.

Before you begin this task, make sure the full BLUE Open Studio 2020 software has been installed on the
computer. For more information, see #unique_30.

Also, you should have already puchased a valid license or license upgrade. You may purchase it when you
send in the site code (see below), but doing so might increase your downtime. For more information, contact
your BLUE Open Studio 2020 software distributor. You can update any license setting (e.g., product type,
number of thin clients), or you can upgrade the software to a new version. The cost of the update/upgrade
depends on the difference between the current and new license settings.

Finally, you must have administrator privileges on the computer in order to run the Protection Manager
utility.

These instructions apply both to installing a new softkey license and to upgrading an existing softkey license;
whatever license you apply will overwrite the existing settings.

To install or upgrade a softkey license for BLUE Open Studio 2020:

1. In BLUE Open Studio 2020, stop the project if it is running, and then exit the program.

2. Run the Protection Manager utility program: in Windows, click Start > Pro-face > BLUE Open Studio 2020 > BLUE
Open Studio 2020 Register.
The program window is displayed.

3. Select Softkey if it is not already selected, and then click Check.
The Softkey Settings dialog box is displayed. If you have a valid softkey license installed, the dialog box will
show those settings. Otherwise, if you do not have a softkey, the status will be "License not found."

Checking the softkey settings
4. Click Change License.

Licensing

Page 50

The Change License dialog box is displayed.

Changing the license
5. In the Network Adapter list, select the network adapter (a.k.a. NIC) that Protection Manager should use to

generate the unique site code.
This option is provided because the site code is generated from the network adapter's MAC address, and
in some cases — for example, if the computer is running in a virtual machine or if it is connected to a VPN
— the computer might have two or more network adapters that it can use. You should select the network
adapter that the computer will use under normal operating conditions. If you select another network
adapter and then it becomes unavailable for any reason, your softkey license will become invalid. For more
information about the listed network adapters, consult the documentation for the computer itself and the
other software installed. Of course, if only one network adapter is listed, you should select that one.
When the network adapter is selected, the site code is generated and displayed.

6. Send the site code to your software distributor.

Typically, you will copy the site code to your clipboard and then paste it into an email to your software
distributor. To copy it to your clipboard, click the Copy button to the right of the Site Code box.

7. When you receive the corresponding site key from your software distributor, type or paste it in the Site Key
box, and then click Authorize. (You will be prompted to confirm.)
The new license settings are saved on the computer, and then a confirmation message is displayed.

If the new site key is not validated, an error message is displayed. If that happens, confirm that you entered
the site key correctly. If you entered it correctly and still get an error message, contact your software
distributor for further assistance.

The Development Environment

Page 51

The Development Environment
BLUE Open Studio 2020 incorporates a modern, Ribbon-based Windows interface to provide an integrated
and user-friendly project development environment.

The Development Environment

Page 52

Title bar
The Title Bar located along the top of the project development environment displays the full name of the
Studio application (e.g., BLUE Open Studio 2020), followed by the name of the active screen or worksheet (if
any).

Example of Title Bar

The Title Bar also provides the following buttons (from left to right):

• Minimize button: Click to minimize the development environment window to the Taskbar.

• Restore Down / Maximize: Click to toggle the development environment window between two sizes:

• Restore Down button reduces the window to its original (default) size.

• Maximize button enlarges the window to fill your computer screen.

• Close button: Click to save the database and then close the development environment. If you modified any
screens or worksheets, the application prompts you to save your work. This button's function is similar to
clicking Exit Application on the File menu.

Note: Closing the project development environment does not close either the project runtime or
the project viewer, if they are running.

The Development Environment

Page 53

Quick Access Toolbar
The Quick Access Toolbar is a customizable toolbar that contains a set of commands that are independent of
the ribbon tab that is currently displayed.

Move the Quick Access Toolbar
The Quick Access Toolbar can be located in one of two places:

• Upper-left corner, above the menu bar (default location); or

• Below the ribbon, where it can run the full length of the application window.

If you don't want the Quick Access Toolbar to be displayed in its current location, you can move it to the other
location:

1.
Click Customize Quick Access Toolbar .

2. In the list, click Show Below Ribbon or Show Above Ribbon.

Add a command to the Quick Access Toolbar
You can add a command to the Quick Access Toolbar directly from commands that are displayed on the
ribbon:

1. On the ribbon, click the appropriate tab or group to display the command that you want to add to the
Quick Access Toolbar.

2. Right-click the command, and then click Add to Quick Access Toolbar on the shortcut menu.

You can also add and remove commands — as well as reset the toolbar to its default — using the Customize
dialog:

1.
Click Customize Quick Access Toolbar .

2. In the list, click More Commands. The Customize dialog is displayed.

The Development Environment

Page 54

3. In the Choose commands from menu, select the appropriate Ribbon tab. The commands from that tab are
displayed in the Commands list.

4. In the Commands list, select the command that you want to add to the Quick Access Toolbar.

5. Click Add.

Only commands can be added to the Quick Access Toolbar. The contents of most lists, such as indent and
spacing values and individual styles, which also appear on the ribbon, cannot be added to the Quick Access
Toolbar.

The Development Environment

Page 55

File menu
When you click the File tab of the ribbon, it opens a menu of standard Windows application commands like
New, Open, Save, Print, and Close.

New
The New command on the File menu is used to create a new worksheet file or project.

The New dialog (see the following figures) contains two tabs:

• File tab: Select this tab to create new worksheets or screens for an open project.

• Project tab: Select this tab to create a new project.

Instructions for creating new files and projects follow.

Creating a New File
To create a new worksheet or screen:

1. Click the File tab.

New File tab

The Development Environment

Page 56

2. Select Display or a Worksheet type from the list.

3. Click OK.

The New dialog is closed and your selection is opened in the worksheet editor.

Note: When you add an I/O driver to the project, an associated option allows you to open a new
driver worksheet. You also can create new screens or worksheets by right-clicking on the folder in
the Project Explorer and selecting the Insert option from the shortcut menu.

Creating a New Project
To create a new project:

1. Click the Project tab.

New Project tab
2. In the Project name box, type a name for your project.

3. By default, BOS stores all projects in the location specified by the Default Project Path preference
(Preferences on the Project tab of the ribbon), so that path will be automatically displayed in the Location box.
To save your project in another location, click Browse and then select a folder.

4. Select a Target platform.

The Development Environment

Page 57

5. Click OK to continue to the Project Wizard dialog.

Project Wizard
6. In the Resolution box, select a screen resolution. If you select Custom, then also type the width and height in

pixels.

7. To share tags with another PC-based control application, select the application type from the list and click
the Configure button. (Each type has its own configuration options; please consult the application vendor.)
Otherwise, leave it set to <None>.

8. Click OK when you're done.

For a more detailed walkthrough, see Creating a new project.

Open Project
The Open Project command on the File menu is used to open a saved project.

Selecting the command opens a standard Windows Open dialog, which you can use to locate and open the
project file (*.app).

Open dialog

The Development Environment

Page 58

Open
The Open command on the File menu is used to open a saved worksheet file.

Selecting the command opens a standard Windows Open dialog, which you can use to locate and open the
worksheet file. The application can open many different file types, so use the File type combo-box to filter the
files.

Available worksheet file types in the Open dialog

Save
The Save command on the File menu is used to save the active screen or worksheet.

The command becomes available only after you modify the worksheet in some way.

Save As
The Save As command on the File menu is used to open a save the active screen or worksheet at another
location.

Save All
The Save All command on the File menu is used to save all open worksheet files.

The command becomes available only after you modify the a worksheet in some way.

Save All as HTML
The Save All as HTML command on the File menu is used to save all of your project's screens and screen groups
in HTML format.

After saving, the files can be found in the Web folder in the Project Explorer. For more information, see Thin
Clients and Mobile Access on page 740.

Note: You must close all worksheets before you execute this command.

The Development Environment

Page 59

Save as HTML
The Save as HTML command on the File menu is used to save the active screen in HTML format.

After saving, the file can be found in the Web folder in the Project Explorer. For more information, see Thin
Clients and Mobile Access on page 740.

Save Screen Group as HMTL
The Save Screen Group as HTML command on the File menu is used to save a selected screen group in HTML
format.

After saving, the files can be found in the Web folder in the Project Explorer. For more information, see Thin
Clients and Mobile Access on page 740.

Close
The Close command on the File menu is used to close the active screen or worksheet.

When you select this command, you will be prompted to save your changes before closing.

Close All
The Close All command on the File menu is used to close all open screens and worksheets.

When you select this command, you will be prompted to save your changes before closing.

Recent Projects
The Recent Projects area of the File menu lists the most recently opened projects.

To open one of the listed projects, simply click it.

Print
The Print command on the File menu is used to print the active screen or worksheet.

Selecting the command opens a standard Windows Print dialog, which you can use to adjust the print range
and the number of copies.

Exit
The Exit command on the File menu is used to close all open screens and worksheets, save the project
database, and then exit the application.

When you select this command, you will be prompted to save your changes before closing.

Note: Selecting this command is the same as clicking the Close button on the title bar.

The Development Environment

Page 60

Ribbon
The new ribbon combines the numerous menus and toolbars from the previous versions of this software into
a single, user-friendly interface. Almost all application commands are now on the ribbon, organized into tabs
and groups according to general usage.

Home tab
The Home tab of the ribbon is used to manage your project within the development environment.

The tools are organized into the following groups:

• Clipboard: Cut, copy, paste, and find items in project screens and task worksheets.

• Local Management: Run and stop the project on the local station (i.e., where the development application is
installed), as well as manage the execution tasks. You can also run a project in Debug mode, for debugging
VBScript.

• Remote Management: Connect to a remote station so that you can download the project to it, and then run,
stop, and troubleshoot the project on that station.

• Tools: Miscellaneous tools to verify the project, import tags from other projects, convert screen resolutions,
and register ActiveX and .NET controls.

• Tags: Manipulate tags and tag properties in the project database.

View tab
The View tab of the ribbon is used to customize the look of the development environment itself.

The tools are organized into the following groups:

• Show/Hide: Show and hide the different parts of the development environment, as well as restore the default
layout.

The Development Environment

Page 61

• Zoom: Zoom in and out of the screen editor.

• Options: Change the language and font used in the development environment.

• Window: Arrange the windows in the development environment.

Insert tab
The Insert tab of the ribbon is used to insert new tags, screens, worksheets, and other components into your
project.

The tools are organized into the following groups:

• Global: Insert tags, classes, translations, and procedures into the Global tab of the Project Explorer.

• Graphics: Insert screens and screen groups into the Graphics tab of the Project Explorer.

• Task Worksheets: Insert task worksheets into the Tasks tab of the Project Explorer.

• Communication: Insert server configurations and communication worksheets into the Comm tab of the
Project Explorer.

Project tab
The Project tab of the ribbon is used to configure your project settings.

The tools are organized into the following groups:

• Settings: Configure the general project settings or set the project to run as a Windows service.

• Security System: Enable and configure the project security system.

• Web: Configure the project to accept connections from a variety of thin clients.

Draw tab
The Draw tab of the ribbon is used to draw objects in project screens.

The Development Environment

Page 62

Note: This tab is available only when you have a project screen open for editing.

The tools are organized into the following groups:

• Screen: Configure settings for the project screen itself, such as its attributes, script, and background color
or image.

• Editing: Select and edit objects in the project screen.

• Shapes: Draw static lines and shapes.

• Active Objects: Draw active objects, like buttons and check boxes.

• Data Objects: Draw objects that display historical data, like alarms, events, and trends.

• Libraries: Select from libraries of premade objects, such as symbols, ActiveX and .NET controls , external
image files, and HTML5-based custom widgets.

• Animations: Apply animations to other screen objects.

Format tab
The Format tab of the ribbon is used to format and arrange objects in a project screen.

Note: This tab is available only when you've selected one or more objects in a project screen.

The tools are organized into the following groups:

• Arrange: Arrange objects in a project screen, including bring to front and send to back, group, align, and
rotate.

• Position: Precisely adjust the position of a screen object in a project screen.

• Size: Precisely adjust the size of a screen object.

• Style: Change the fill and line color of a screen object.

• Fonts: Change the caption font of a screen object.

The Development Environment

Page 63

Help tab
The Help tab of the ribbon provides additional help with using the software.

The tools are organized into the following groups:

• Documentation: Access the documentation for the development application, including this help file / technical
reference and notes for the individual communication drivers.

• Information: Access other information about BLUE Open Studio 2020, including the license agreement,
product website, and release notes, as well as support details that make it easier for us to assist you.

The Development Environment

Page 64

Project Explorer
The Project Explorer organizes all of the screens, worksheets, and other items that comprise your project and
presents them in an expandable tree-view.

To open a folder and view its contents, either click the Expand icon to the left of the folder or double-click
the folder itself.

To close a folder, click the Collapse icon to the left of the folder.

If you right-click any item in the Project Explorer, then a shortcut menu will appear with contextual
commands for that item.

There are four main sections, or tabs, in the Project Explorer: Global, Graphics, Tasks, and Comm.

Global tab
The Global tab of the Project Explorer contains the project tags database, as well as other features that apply
to the entire project such as the security system, VBScript procedures, and UI translation.

Global tab of the Project Explorer

The folders on the Global tab are described in the following sections:
Project Tags

The project tags database contains all of the data tags that you create during project
development, such as screen tags (e.g., button1_state) or tags that read from / write to
connected devices.

Classes
Classes are compound tags that you can create to associate a set of values, rather than a single
value, with an object. For example, where you may normally create separate tags for a tank's
pressure, its temperature, and its fill level, you can instead create a "tank" class that includes
all three.

Shared Database
The shared database contains tags that were created in another program and then imported into
or integrated with your project.

System Tags

The Development Environment

Page 65

System tags are predefined values such as the date, the time, the name of the current user, and
so on. You can use these values to develop supervisory functions and housekeeping routines.

All system tags are read-only, which means you cannot add, edit, or remove these tags from the
database.

Security
If you choose to enable it, you can use the project security system to control who may log on to
your project and what they may do during runtime.

Procedures
Procedures are VBScript functions and sub-routines that can be called by any other script in
your project.

Event Logger
The event logger saves important runtime messages and task results to an external database.

Translation
You can use the translation table to develop a multilingual user interface (MUI) for your project.

Graphics tab
The Graphics tab of the Project Explorer contains all of the screens, screen groups, and symbols in your
project.

Graphics tab of the Project Explorer

The folders on the Graphics tab are described in the following sections:

Screens
You create screens to provide a graphical interface for your project. Each screen can contain
many buttons, sliders, dials, indicators, graphs, and so on.

Screen Groups
You can combine individual screens into screen groups, so that they all open together at the
same time.

Thin Clients

The Development Environment

Page 66

You can deploy your project as a web application to be accessed by thin clients such as desktop
web browsers, tablets, and smartphones. You can even deploy different versions of your project
with different levels of functionality for each type of client.

Project Symbols
This folder contains all of the custom symbols that you create for your project. A symbol is a
group of interconnected screen objects that work together to perform a single function — for
example, lines, rectangles, and text fragments that have been arranged to make a slider control.

Graphics Script
You can use this worksheet to define VBScript sub-routines that are called only when the
graphics module starts (i.e., when a client station connects to the server and displays the
graphical interface), while it is running, and when it ends.

Native Symbols
This folder is a library of the symbols that are created with the native graphics tools in Studio.
It contains not only the custom symbols that you create (see Project Symbols above), but also a
large selection of premade symbols that are installed with Studio.

Industrial Graphics Symbols
This folder is a library of the symbols that are created with the Industrial Graphics editor, which
works as a companion to the native graphics tools in Studio.

Layout
The layout editor displays all of the screens the are currently open for editing. You can use it
to visualize how the screens are arranged together and reuse screens in multiple layouts — for
example, to create a common navigation bar across your entire project.

Tasks tab
The Tasks tab of the Project Explorer organizes the worksheets that are processed as background tasks (i.e.,
server-based maintenance tasks that are not directly related to screen operations or device I/O) during project
runtime.

Tasks tab of the Project Explorer

The folders on the Tasks tab are described in the following sections:

The Development Environment

Page 67

Alarms

You can use Alarm worksheets to define when alarms are trigged, how they must be handled,
and what messages they generate.

(You can then use the Alarm/Event Control screen object to display your alarms on screen, but
that is a separate procedure.)

Trend Logger

You can use Trend worksheets to select project tags that should be displayed as data trends
and/or saved as historical data.

(You can then use the Trend Control screen object to actually display your trends on screen, but
that is a separate procedure.)

Recipes

You can use Recipe worksheets to select project tags that will load values from and/or save
values to an external file. These worksheets are typically used to execute process recipes, but
you can store any type of information such as passwords, operation logs, and so on.

(You can then call the Recipe function to actually run a configured Recipe worksheet, but that
is a separate procedure.)

Reports

You can use Report worksheets to design runtime reports that are either sent to a printer or
saved to disk.

(You can then call the Report function to actually run a configured Report worksheet, but that
is a separate procedure.)

Math

You can use Math worksheets to develop complex runtime logic using the built-in scripting
language.

Script

You can use Script worksheets to develop complex runtime logic using VBScript.

Scheduler

You can use Scheduler worksheets to run commands at specified times, dates, or trigger events.

Database/ERP

You can use Database worksheets to set up connections and exchange data with external
databases using the standard ADO.NET interface.

The Development Environment

Page 68

Comm tab
The Comm tab of the Project Explorer organizes the worksheets that control communication with remote
devices, using either direct communication drivers or other common protocols.

Comm tab of the Project Explorer

The folders on the Comm tab are described in the following sections:
Drivers

You can use Driver worksheets to communicate with PLCs and other hardware, using any of the
hundreds of direct communication drivers that are installed with the development application.

OPC DA 2.05
You can use OPC worksheets to communicate with OPC servers via the OPC Classic protocol.

OPC UA
You can use OPC UA worksheets to communicate with OPC servers via the new OPC Unified
Architecture protocol.

OPC XML/DA
You can use OPC XML/DA worksheets to communicate with OPC servers via the new OPC XML-
DA protocol.

TCP/IP
You can use TCP/IP worksheets to configure communication between your own project and
other projects. The TCP/IP Client and TCP/IP Server modules enable two or more projects to
keep their databases synchronized using the TCP/IP protocol.

The Development Environment

Page 69

Screen/Worksheet Editor
Use the powerful, object-oriented screen editor to create and edit a variety of screens and worksheets for your
projects. You can input information using your mouse and keyboard, output control data to your processes,
and automatically update screens based on data input from your processes.

Screen/Worksheet Editor

Other screen editor features include:

• Simple point-and-click, drag-and-drop interface

• Grouping objects to preserve the construction steps of individual objects

• Editing objects without having to ungroup internal object components or groups

• Handling bitmap objects and background bitmaps

• Status line support in project windows and dialogs

The Development Environment

Page 70

Watch window
The Watch window is a debugging tool that lets you: watch and force values to project tags; execute and test
functions; and execute and test math expressions.

Example of the Watch window

The Watch window contains the following elements:

• For each item that you want to watch during project run time:

• Tag/Expression: Specify a project tag, system tag, or expression that you want to watch.

• Value: Displays the value returned by the tag/expression.

• Quality: Displays the quality (GOOD or BAD) of the value returned by the tag/expression.

• Continuous: Select this option to have the project continuously evaluate the tag/expression.

• DB tabs: You can use these tabs to organize the items you are watching, so that you do not need to scroll
through one long list of items.

• Locals, Stack Frame, and Tasks Frame tabs: These tabs are used to debug VBScript.

• Scroll bars: Use to view areas of the Watch window that are obscured from view because of the window size
or the size of the current sheet.

Tip: The Watch window is dockable, which means you can move it to another location in the project
development environment. Click on the titlebar and drag it to a new location. Release the mouse
button to attach or dock the window to its new location.

The Development Environment

Page 71

Output window
Use the Output window to view additional information about your project. By default, the window is located in
the bottom-right corner of the project development environment.

Output window

The Output window has three tabs:

• The LogWin tab displays the log messages that are generated by your project. You can select exactly which
types of messages are displayed, but generally speaking, the log includes run-time messages from the tags
database, the communication drivers, the background tasks, the project security system, and so on, as
well as certain "housekeeping" messages generated by the project development environment itself. You can
use these messages to test and debug your project.

Note: The Output window cannot display the log for a project running on a remote computer. It
also cannot print or save log messages. If you want to do either of those things, use the LogWin
command instead.

• The XRef tab displays the results of using the Cross Reference command to find where a specific tag is used in
your project. The results include the file path and name of the worksheet in which the tag is used, as well
as the column and row in the worksheet. So, if something changes in the tag and produces unexpected or
unsuccessful results, you can locate all instances of the tag for debugging purposes.

• The Find Results tab displays the results of using the Global Find command.

The Output window is dockable, which means you can drag it to another location in the project development
environment.

The Development Environment

Page 72

Status bar
The Status Bar located along the bottom of the development environment provides information about the
active screen (if any) and the state of the application.

Example of Status Bar

The Status Bar fields (from left to right) are described in the following table:

Field Description

Execution Mode The current execution mode of the application.

CAP Indicates whether the keyboard Caps Lock is on (black) or off (grey).

NUM Indicates whether the keyboard Num Lock is on (black) or off (grey).

SCRL Indicates whether the keyboard Scroll Lock is on (black) or off (grey).

Object ID The ID number of a selected screen object.

Cursor Position The location of the cursor on the active screen or worksheet. If it's a screen,
then the position of the mouse cursor is given as X,Y coordinates, where X is
the number of pixels from the left edge of the screen and Y is the number of
pixels from the top edge of the screen. If it's a worksheet, then the position of
the text cursor is given as Line and Column.

Object Size The size (in pixels) of a selected screen object, where W is the width and H is
the height.

No DRAG Indicates whether dragging is disabled (No DRAG) or enabled (empty) in the
active screen.

Tag Count The total number of tags used so far in the project.

The Development Environment

Page 73

Standard Interfaces

Object Properties dialog box
The Object Properties dialog box shows the configurable properties of a screen object or animation. Each type
of object has its own object-specific properties, but all types have a few properties in common.

Accessing the dialog box
To access the Object Properties dialog box for a screen object, do one of the following:

• Select the screen object, and then on the Draw tab of the ribbon, in the Editing group, click Properties;

• Right-click the screen object, and then click Properties on the shortcut menu; or

• Double-click the screen object.

The dialog box in detail
All Object Properties dialog boxes contain the following elements:

 (Pin)
Click this button to "pin" the dialog box, so that it remains open and active when you select
other objects in the screen editor. For more information, see Focusing the Object Properties
Window on page 93.

Replace
Click this button to open the Replace dialog box, which you can use to replace strings, tags, or
properties in the selected object. For more information, see Replacing project tags in a document
or screen object on page 90.

Hint
Type a hint or tooltip that will be displayed during run time, when the user hovers the mouse
cursor over the object. This can be used to provide quick-help to the user.

The text in the Hint box is also temporarily written to the system tag Hint, so that you can trigger
actions based on the value of this tag when the mouse cursor is moved over a specific object.

To show hints/tooltips during run time, the Enable Tooltip option must be selected in the project
settings. You can enable/disable this feature separately for full project viewers (on the Project
tab of the ribbon, in the Settings group, click Viewer) and for thin clients (on the Project tab of the
ribbon, in the Web group, click Web).

 (Object Selector)
Use this list at the top-right corner of the dialog box to select the specific object or animation in
a group of objects that you want to configure. When you select another object, the dialog box
immediately changes to show the properties of that object.

Color Interface
You can edit the color of a component with the Color interface.

1.
Click the icon in the toolbar.

The Development Environment

Page 74

2. Click the desired color from the twenty that display when the pop-up box opens:

The selected color will be applied to the component that you are editing.

3. Click More Colors… if you want to apply a different color. The Colors dialog will open, displaying the 143
standard colors from your operating system.

The Development Environment

Page 75

4. Click the Custom tab to edit the HSL (Hue, Sat, Lum) or RGB (Red, Green, Blue) codes of any of the 143
standard colors, creating a custom color.

5. Click OK to apply the selected color to the component that is being edited.

6. Depending on the component that you are editing, the Fill Effects option is available from the pop-up
interface (see step 2 above). Click this option to apply gradient colors with different styles and variants.
The Fill Effects dialog will open.

7. Select two colors in the Start and End fields, select the Style, and click on the chosen Variant. Finally, click
OK to apply the fill effect to the component which is being edited.

Although Fill Effects is a useful tool for enhancing the look and feel of your screens, the operating system takes
a longer time to fill an object with fill effects than with plain colors. You should develop criteria for using the
feature without decreasing the performance of the system.

The Development Environment

Page 76

Using the Color animation, you can modify the color of a static object during runtime. When configuring this
animation with Type = By Color, you can set the color that will be applied in the object during runtime, by
the color code. The following table provides the code values as well as the RGB values for the most commonly
used colors:

RGB CodeName

R (Red) G (Green) B (Blue)

Code Value

Black 0 0 0 0

Dark Red 128 0 0 128

Red 255 0 0 255

Pink 255 0 255 16711935

Rose 255 153 204 13408767

Brown 153 51 0 13209

Orange 255 102 0 26367

Light Orange 255 153 0 39423

Gold 255 204 0 52479

Tan 255 204 153 10079487

Olive Green 51 51 0 13107

Dark Yellow 128 128 0 32896

Lime 153 204 0 52377

Yellow 255 255 0 65535

Light Yellow 255 255 153 10092543

Dark Green 0 51 0 13056

Green 0 128 0 32768

Sea Green 51 153 102 6723891

Bright Green 0 255 0 65280

Light Green 204 255 204 13434828

Dark Teal 0 51 102 7877376

Teal 0 128 128 8421376

Aqua 51 204 204 13421619

Turquoise 0 255 255 16776960

Light Turquoise 204 255 255 16777164

Dark Blue 0 0 128 8388608

Blue 0 0 255 16711680

Light Blue 51 102 255 16737843

Sky Blue 0 204 255 16737843

Pale Blue 153 204 255 16764057

Indigo 51 51 153 10040115

Blue-Gray 102 102 153 10053222

Violet 128 0 128 8388736

Plum 153 51 102 6697881

Lavender 204 153 255 16751052

The Development Environment

Page 77

RGB CodeName

R (Red) G (Green) B (Blue)

Code Value

Gray-80% 51 51 51 3355443

Gray-50% 128 128 128 8421504

Gray-40% 150 150 150 9868950

Gray-25% 192 192 192 12632256

White 255 255 255 16777215

Tip: The RGBColor and RGBComponent functions can be used to manipulate color codes during
runtime.

Note: The number of colors available when developing the project depends on the color settings
configured on the operating system of the development station. The number of colors available when
running the project depends on the color settings configured on the operating system of the runtime
station.

Fonts
BOS supports any UNICODE font available on the operating system where BOS is running. Therefore, it
is possible to configure interfaces using characters for languages that do not use the standard western
characters, such as Japases, Chinese, Arabic, Cyrillic, etc.

The font used on the development environment (Worksheets, Dialogs, etc.) is the default font installed by
the operating system and dependent on the language of the operating system. To select a different font for
development, click Font on the View tab of the ribbon.

Tip: You can change the font style of several objects simultaneously by selecting them all (press the
Shift key down as you click each one) and then using the Fonts tool on the Format tab of the ribbon.

The Development Environment

Page 78

When editing the objects that display text during runtime, you can set the font that will display the text by
clicking on the Fonts button in the Object Properties window. The Font button launches the standard Fonts
dialog:

You can set the font name, style, size, effects and script.

The icon displayed to the left of the font name indicates the font technology.

Icon Technology Remarks

TrueType

OpenType

Outline TrueType and OpenType fonts are outline fonts that are rendered from line and curve commands.
OpenType is an extension of TrueType. Both can be scaled and rotated. Both look good in all sizes
and on all output devices supported by Windows.

Windows provides a selection of OpenType fonts, including Arial, Courier New, Lucida Console,
Times New Roman, Symbol, and Wingdings.

Type 1, by Adobe Systems, Inc., is an outline font that is designed to work with PostScript printers.
The outlines can be scaled and rotated. With OpenType technology, Windows fully supports Type 1
fonts.

N/A Vector Vector fonts are supported because a number of programs still depend on them.

Vector fonts are rendered from a mathematical model. They are used primarily with plotters.
Windows supports three vector fonts: Modern, Roman and Script.

N/A Raster Raster fonts are supported because a number of programs still depend on them.

Raster fonts are stored in files as bitmap images and are composed of a series of dots whether
they are displayed on the screen and on paper.

The Development Environment

Page 79

It is strongly recommended that you use only TrueType or OpenType fonts. Fonts designed with other
technologies (e.g., Courier) cannot be scaled properly and could cause issues during runtime.

Note: When you design screens, the fonts you use are the ones available in the operating system
of your development station. The fonts on the runtime station, however, may look different (e.g.,
different size in pixels), even if all settings are the same on both stations. Therefore, it is important
to test the graphic interfaces (screens) on the actual runtime platform during the development of
the project. You should not wait until after the whole project has been developed, or it may become
necessary to re-design the screens so the text objects display properly on the runtime platform.

ASCII Character Table

The Development Environment

Page 80

Note:

• Values 8, 9, 10, and 13 convert to backspace, tab, linefeed, and carriage return characters,
respectively. They have no graphical representation, but depending on the project, they may
affect the visual display of text.

• means it is not supported on the current platform.

The Development Environment

Page 81

Performing Common Tasks

Accessing Projects and Files
These instructions assume you have already created a new project.

Opening Projects
To open a project, go to File and then select Open Project. This displays the Open dialog, which lists all existing
folders. You can use the Open dialog to locate and open a BOS project.

Open dialog

Opening Files
To open a specific screen or worksheet file, go to File and then select Open. This displays the Open dialog (as
shown in the preceding section), which lists all existing folders. To locate and open a screen or worksheet file
from this dialog, click the Files of type combo-box button, and then click on a file name to select it from the list.

Closing Projects
• From the Standard toolbar, choose File > Save to save any active screens or worksheets. The Save option

becomes enabled (active) only after you modify the active file.

Note: You can also use the Save button on the Standard toolbar or type Ctrl+S to save the
open, active screen/worksheet.

• From the Standard toolbar, choose File > Save As to save active screens or worksheets, and to specify a (new)
name and location for the file.

• Select the Save As HTML option to save the active display in HTML format.

• You can also click Save All on the File menu to save all open screens or worksheets. The Save All option
becomes enabled (active) only after you modify the active file.

Note: Using File > Save All is the same as using the Save All button on the Standard toolbar.

• Select the File > Save All As HTML option to save all project screens in HTML format. You have to close all
documents before executing this command.

The Development Environment

Page 82

• Choose File > Save Screen Group As HTML to save the screen group in HTML format, making them available to
the remote Thin Client through a Web browser.

Closing Files
• On the File menu, click Close to close the active screen or worksheet. BOS prompts you to save all unsaved

changes before it closes the screen/worksheet.

Note: Using File > Close is the same as clicking the Close button on the title bar.

• You can also choose File > Close All. Selecting the Close All option closes all open screens or worksheets. BOS
prompts you to save all unsaved changes before it closes the screens/worksheets.

Using Common Dialog Buttons
The following table describes buttons that frequently appear in BOS dialogs and windows:

Common Dialog Buttons

Button Purpose

OK Click this button to execute and save all changes, and close the dialog or window.

Apply Click this button to execute and save all changes, but leave the dialog or window open. This button enables you to see the effects
of your changes before closing the dialog/window.

Cancel Click this button to close the dialog or window immediately (discarding any changes).

Open Click this button to open a file. Generally, this button is associated with a combo-box or list pane. You use the combo-box or list
pane to specify a file and then click the Open button to open the file.

Close Click this button to close the open file, screen, dialog, and so forth.

Browse Click this button to open a Browse dialog to search for a file or folder to open.

Back Click this button to progress to the previous screen in a sequence of screens.

Next Click this button to progress to the next screen in a sequence of screens.

Replace Click to open a Replace dialog, which enables you to change tags or strings associated with a selected screen object.

Remove Click to remove a selected (highlighted) object from a list or a screen.

Convert your project's display resolution
Use the Convert Resolution tool to convert your project's display resolution to a different size. All of the
existing project screens will be resized proportionally.

Before you begin this task, you should manually back up your entire project. It is not absolutely necessary to
do so, because the existing project screens will be automatically backed up before they are resized, but if you
are not satisfied with the results of the conversion, it might be easier to start over from your backup than it
would be to restore the screens.

You selected your project's display resolution when you created the project. The display resolution is used as
the default size for new project screens. For more information, see Creating a new project on page 96.

You can also check your project's display resolution in the project settings. For more information, see Options
tab on page 102.

Note: If you want to change your project's display resolution but not resize the existing project
screens, you should not use this feature. Instead, you should manually edit your project file in
order to change the setting itself: close your project, exit Studio, open your project file (<project
name>.app) in a text editor, and then edit the following property:

[Info]
AppResolution=<width in pixels> <height in pixels>

The Development Environment

Page 83

When you convert your project's display resolution, all of the existing project screens will also be resized
proportionally. For example, if you convert from 1280x800 to 640x480, all of the screens — not just those
that are 1280x800 — will be resized to 50% of their original height and 60% of their original width.

By default, the screen objects in those screens will also be resized and repositioned according to the same
proportions, but that means the resized objects might be distorted somewhat. For example, squares might
become rectangles and circles might become ellipses, depending on what the new proportions are. As such,
you have the option to keep the original aspect ratio for each object; it will still be resized, but not necessarily
by the same proportions as the entire screen.

The screen objects are repositioned according to their center points, rather than according to any of their
corners. This can affect how the objects are distributed in the resized screen. For example, if you have several
objects that are top-aligned (i.e., aligned so that their top edges all have the same Y position) but of different
heights, they will be vertically distributed in the resized screen.

Keep in mind that you can group several screen objects together so that the entire group is resized/
repositioned as a single object. Symbols are considered groups for this purpose.

To convert your project's display resolution and resize the existing project screens:

1. Close all open screens and worksheets.

2. On the Home tab of the ribbon, in the Tools group, click Convert Resolution.
The Convert Resolution dialog box is displayed.

Convert Resolution dialog box
3. In the From area, specify the display resolution that you want to convert from: either select the resolution

from the list, or type the width and height (in pixels).
By default, the From resolution is your project's current display resolution, but you can specify another
resolution if you want a different proportion for resizing screens.

4. In the To area, specify the display resolution that you want to convert to: either select the resolution from
the list, or type the width and height (in pixels).
By default, the To resolution is the same as the display resolution of the computer on which you are
running Studio and editing your project.

5. If you do not want to resize the screen objects in the existing project screens, select Keep original aspect ratio for
each object.

6. Click Convert.
The display resolution is converted and the project screens are resized. The progress is displayed at the
bottom of the dialog box.

7. Click Close to exit the dialog box.

Be aware that using this feature might disrupt the layout of some screens but not others, depending on how
those screens are designed, so you should review all of the resized screens when you are done.

The Development Environment

Page 84

The existing project screens were automatically backed up before they were resized. You can find the backups
in your project folder at <project name>\Screen\Backup. To restore them, exit Studio and then copy the
backups to <project name>\Screen, so that they replace the resized screens.

Using Shortcut Menus
If you right-click on any component in the Project Explorer, a menu displays with options related to that
component. For example, the following shortcut menu enables you to Open the Project Tags database, Insert
(create) a new tag, or Refresh the current view of the database:

Right-Click to Open a Shortcut Menu

Using Select All
To select all objects on the active screen, or press CTRL+A.

Cutting, Copying, Pasting Objects
To delete a selected item from a screen and store it on the Windows clipboard (replacing any previously
selected objects stored on the clipboard), either click Cut on the Home tab of the ribbon or press CTRL+X.

To copy a selected item without deleting it and store it on the Windows clipboard, either click Copy on the
Home tab of the ribbon or press CTRL+C.

To paste the contents of the Windows clipboard (cut or copied objects) onto the active screen, either click Paste
on the Home tab of the ribbon or press CTRL+V. You can paste a cut or copied object multiple times.

To undo the last action performed (and up to 20 actions taken prior to the last action), either click the Undo
tool on the Quick Access Toolbar or press CTRL+Z.

Find text in the current document or entire project
Use the Find & Replace command to find some specified text either in the current document or in your entire
project.

For this task, a document is any one of the several screens and worksheets that make up your project.
If you want to search the tags database, use the filter tools in the Project Tags Datasheet View. For more
information, see Sort or filter the rows in a worksheet on page 189.

When you create a new project, a search database is also created for it. This database contains an index
of every document in your project — that is, every project screen, script worksheet, task worksheet, tags
datasheet, and so on — and it allows you to quickly find all occurrences of the specified text. Each time you
edit and save a document, the search database is also updated.

To find text in documents:

The Development Environment

Page 85

1. If you want to find text in a single document, make sure that document is open in the Screen/Worksheet
Editor. If more than one document is open, click the tab of the document you want in order to bring it to
the front.
It is now the "current document".

2. On the Home tab of the ribbon, in the Clipboard group, click Find & Replace.
The Find/Replace dialog box is displayed.

3. In the Find/Replace dialog box, click the Find tab.
The Find tab of the dialog box is displayed.

The Find tab of the Find/Replace dialog box

Whenever you use the Find & Replace command, it synchronizes the search database with the current state
of the project. That synchronization is shown as a progress bar in the dialog box, immediately after the
dialog box is displayed. The synchronization should be finished quickly, but in some cases — for example,
if you are using the command for the first time in a large, existing project — it will take more time. You
can proceed with finding text before the synchronization is finished, but if you do, the results might be
inaccurate or incomplete.

4. In the Find What box, type or select the text that you want to find.
Previous texts are saved in the list. To see the list, click the down arrow on the right.

5. In the Look In box, select either Current Document or Entire Project.
If there is no current document (as determined in Step 1), Entire Project will be selected by default.

6. To find the first occurence of the specified text in the current document, click Find Next.
(This works only for script and task worksheets, not for project screens.)

If the text is found, it is highlighted in the document. Click Find Next again to find the next occurence, if
there is one. When it reaches the end of the document, it starts over from the beginning.

If the text is not found, a message is displayed to notify you of that.

7. To find all occurences of the specified text, either in the current document or in your entire project, click
Find All.

The Development Environment

Page 86

If the text is found, the results are displayed in the Find Results tab of the Output window, in the
development environment.

Example of results for Find All

Each line of the results represents a separate occurrence of the specified text, and it comprises the
following information:

• The location of the document, in the Project Explorer, that contains the specified text;

• The location of the specified text in that document (e.g., the screen object and object property, the
column and row in a worksheet); and

• The specified text itself, given in context (e.g., how the specified text is used as a variable in a line of
VBScript).

Note: If the specified text is found in a document that is password-protected, only the location of
the document is displayed in the results. The other information is not available. The specified text
can be found even in a password-protected document because the document was indexed when it
was saved.

8. To go to an occurrence of the specified text, do one of the following:

• Double-click that line in the results; or

• Right-click that line in the results, and then click Open file on the shortcut menu.

The corresponding document is opened in the Screen/Worksheet Editor, in the development environment,
and the occurrence is highlighted.

Replace text in the current document
Use the Find & Replace command to find and replace some specified text in the current document.

For this task, a document is any one of the several screens and worksheets that make up your project.
If you want to search the tags database, use the filter tools in the Project Tags Datasheet View. For more
information, see Sort or filter the rows in a worksheet on page 189.

There is no option to replace all occurences of the specified text in your entire project, because it cannot be
undone.

When you create a new project, a search database is also created for it. This database contains an index
of every document in your project — that is, every project screen, script worksheet, task worksheet, tags
datasheet, and so on — and it allows you to quickly find all occurrences of the specified text. Each time you
edit and save a document, the search database is also updated.

To replace text in the current document:

1. Make sure the document that you want to search is open in the Screen/Worksheet Editor. If more than
one document is open, click the tab of the document you want in order to bring it to the front.
It is now the "current document".

2. On the Home tab of the ribbon, in the Clipboard group, click Find & Replace.
The Find/Replace dialog box is displayed.

The Development Environment

Page 87

3. In the Find/Replace dialog box, click the Document Replace tab.
The Document Replace tab of the dialog box is displayed.

The Document Replace tab of the Find/Replace dialog box

Whenever you use the Find & Replace command, it synchronizes the search database with the current state
of the project. That synchronization is shown as a progress bar in the dialog box, immediately after the
dialog box is displayed. The synchronization should be finished quickly, but in some cases — for example,
if you are using the command for the first time in a large, existing project — it will take more time. You
can proceed with finding text before the synchronization is finished, but if you do, the results might be
inaccurate or incomplete.

4. In the Find What box, type or select the text that you want to find.
Previous texts are saved in the list. To see the list, click the down arrow on the right.

5. In the Replace With box, type or select the text that will replace the found text.
Previous texts are saved in the list. To see the list, click the down arrow on the right.

6. To find and replace the specified text one occurence at a time, do the following.
(This works only for script and task worksheets, not for project screens.)
a) Click Find Next.

If the text is found, it is highlighted in the document. If the text is not found, a message is displayed to
notify you of that.

b) To replace the highlighted text, click Replace.
The text is replaced, and then the next occurence (if any) is highlighted.

c) To skip the highlighted text and find the next, click Find Next.
When it reaches the end of the document, it starts over from the beginning.

7. To find and replace all occurences of the specified text, click Replace All.
If the text is found, it is replaced and then the results are displayed in the Find Results tab of the Output
window, in the development environment. If the text is not found, a message is displayed to notify you of
that.

To save your changes, you still need to save and close the document as you normally would.

The Development Environment

Page 88

Using the Tag Properties Toolbar
The Tag Properties toolbar provides a text box and several buttons (shortcuts) that enable you to create,
locate, and access different tags, functions, and tag properties.

Tag Properties Toolbar

Using the Object Finder

Click the Object Finder button to open the Object Finder dialog, which lists all Tags and Functions currently
configured for the project.

Object Finder Dialog

• To select an existing tag/function, double-click on the tag/function name, and then click OK to close the
dialog. The selected name displays in the Tagname text box.

• To select a specific array index, click the Index button after specifying the array tag name.

• To select a specific member name, click the Member button after specifying the class tag name.

• To create a new tag, click the New button.

When the New Tag dialog displays, enter the following information, then click OK to close the dialog:

• Name
• Array Size

The Development Environment

Page 89

• Type (Boolean, Integer, Real, String, Class:Control, Class:msgonline, or Class:Alr)

• Description
• Scope (local or server)

Using the X-ref Option

Click the Cross Reference button to search all project screens and worksheets for the tag
noted in the Tagname text box. This function writes a log, detailing all the occurrences of the tag, to the XRef tab
in the Output window. For example, the results of searching for a BlinkFast tag are as follows:

XRef Results

Using the Global Tags Replace Option
When you select the Global Tags Replace button from the Tag Properties toolbar, the Global Replace dialog
displays:

Global Replace Dialog

From the Global Replace dialog, you can replace any tag(s) from all documents (screens and worksheets) of the
whole project. You can edit both the From and the To column.

When replacing composed tags (array size > 0 and/or Type = Class), you can configure a specific
array position (for example, TagA[1]) or class member (for example, TagB.MemberX) or both (for example,
TagC[3].MemberY). If you configure only the Main Tag Name (for example, TagC) in the From column, all tags
from this main tag will be modified for the tag configured in the To column.

The Development Environment

Page 90

If an invalid replacement is configured (for example, replace the Main Tag tag from a class type tag for a
simple tag (not a class tag), the OK button will be disabled. When the OK button is pressed, the tags configured
on the Global Replace dialog will be replaced in the order that they were configured on the dialog interface.

Note: You must close all documents (screens and worksheets) before executing this command.

When changing the tag name on the Tags Database worksheet, BOS will ask you if you intend to replace this
tag through the whole project.

The Replace option will be created in the Edit menu. By using this option, the Global Replace dialog is prompted,
however, the changes are applied only to the current screen or worksheet in focus.

Replacing project tags in a document or screen object

To replace all occurences of a tag in the current document, do one of the following:

• On the Home tab of the ribbon, in the Tags group, click Replace; or

• On the Graphics tab of the ribbon, in the Editing group, click Replace.

To replace all occurences of a tag in a screen object, double-click the object to open its Object Properties dialog
and then click Replace.

All of these methods will open the Replace dialog, which is descibed below.

You can replace one or more tags by clicking the Whole Tag Name tab. Current tags used are displayed. The
original tag names are shown in the From column on the left, and you can enter your new tag names in the To
column on the right.

Whole Tag Name tab

Note that this does not rename or delete any tag — it only replaces the tags used in the object with other tags
from the database.

The Development Environment

Page 91

You can also replace one or more strings (e.g., button captions, descriptive text) by clicking the String Value tab.

String Value tab

When you are done, click OK.

Testing Displays
From the menu bar, select Project > Test Display to activate the test display mode, which allows you to configure
the application while viewing graphical animations online in the development environment.

The Test Display mode does not enable you to use the Command or Text Data Link animations nor execute
worksheets.

Note: Using the Test Display menu option is the same as using the Test Display button on the
Execution Control toolbar.

To stop the Test Display mode, select Project > Stop display test.

Note: Using the Stop display test menu option is the same as using the Stop display test button on the
Execution Control toolbar.

Verify the project
Verify your project in order to perform various housekeeping tasks on the project database.

More specifically, verifying your project validates all screens and worksheets, recompiles expressions and
scripts, checks for missing tags and broken tag references, updates screens that have been saved as HTML,
and trashes unnecessary files.

To avoid doing these tasks during project run time, which can decrease runtime performance and possibly
even cause the project to freeze, we recommend that you verify your project whenever you have done one of
the following:

• Update or upgrade a project from a previous version of Studio;

• Make major changes to the project, such as adding or removing several screens or worksheets; or

• Prepare to download the project to a target station.

The Development Environment

Page 92

Note: Verifying a project does not also download it to the target station. To download the project,
you must use the Remote Management commands.

To verify your project:

1. On the Home tab of the ribbon, in the Tools group, click Verify.
The Verify Project dialog box is displayed.

Verifying a project
2. To trash any temporary files that were created during project development — for example, .txt, .mac,

and .tag files — and decrease the size of your project folder, select Remove temporary project files.

3. To remove all blank lines (rows) that were manually inserted into worksheets, select Remove blank lines in
project database.
In previous versions of Studio, some project developers organized the contents of their worksheets by
grouping related lines together and then inserting blank lines between the groups. It is not useful to do
that anymore, however, since you can now sort and filter the rows of a worksheet.

4. To re-import integrated tags that are used screens and worksheets but have not been added to the Shared
Database folder, select Automatically add tag integration used tags.
This is sometimes necessary when you have copied screens from another project, or if refreshing the tag
integration sources has broken some tag references. Make sure the prefixes on the used tags match the
names of their respective sources.

Note: This option might not work if the used tags are multi-dimensional arrays or other complex
data structures that had to be renamed to comply with Studio's tag syntax. If that is the case,
you should manually add the tags.

5. To remove tag integration sources that can no longer be found, select Remove device configurations for nonexistent
devices.
Similar to Automatically add tag integration used tags above, this is sometimes necessary if refreshing the tag
integration source(s) has caused a source to become lost.

6. To implement password protection on all of your project files at the same time, click Set password for all files
and then type your desired password.
For more information, see Password-protecting screens, symbols, and worksheets on page 692.

7. Click Verify.

The project is verified and the results are displayed in the Output window, in the development environment.
If a tag is used in a screen or worksheet but is not defined in the tags database, that will be included in the
verification results.

The Development Environment

Page 93

Running Projects
To run your project -- specifically, to start the runtime modules specified as Automatic in the Runtime Tasks
dialog -- click Run on the Home tab of the ribbon.

• When you start the Viewer module, it opens the screen(s) currently being edited.

• If you do not specify any Automatictasks, BOS will launch the Viewer and BGTask tasks automatically
when you click Run.

• If you are not currently editing screens in the development environment, the Viewer module opens the
screen specified in the Startup screen field on the Runtime Desktop tab (Project Settings dialog).

To stop your project -- specifically, to stop all runtime modules -- click Stop on the Home tab of the ribbon.

Note: Be sure you know which target system (local or remote) is configured before you run your
project.

Restoring Defaults
To restore the development environment to its default layout (after resizing or moving windows), click Restore
Default on the View tab of the ribbon. You will need to close and reopen the development application for the
changes to stick.

Saving Your Work

Click the Save button to save any active screens or worksheets.

Note:

• Using the Save button is the same as selecting File > Save from the menu bar or typing the Ctrl+S
key combination.

• The Save function becomes available only when you modify the active file.

Click the Save All button to save all open screens or worksheets.

Note:

• Using the Save All button is the same as selecting File > Save All from the menu bar.

• The Save All function becomes available only when you modify a screen or worksheet.

Printing Screens and Worksheets
The screens and worksheets that make up your project are essentially documents like those you have worked
with in other office applications, and they can be printed in the same way.

This task assumes that you have set up at least one printer for your computer, and that you know how to use
the standard Print dialog in Windows.

To print a screen or worksheet:

1. Open the screen or worksheet for editing, and then make sure it is the active tab in the Screen/Worksheet
Editor.

2. Go to File, and the select Print.
3. Use the Print dialog to configure the settings and then print the document.

Focusing the Object Properties Window
When you double-click any object (or group of objects) in the Screen Editor, the Object Properties window is
launched, allowing you to configure the selected object's settings. The content of this dialog window varies

The Development Environment

Page 94

according to the specific object/animation that is being edited. However, there is always a pin button in the
left upper corner of this dialog window:

Object Properties Dialog

The pin button looks like this, , when it is released, and like this, , when it is pressed.

When the pin button is released, the focus is passed to the object on the screen as soon as that object is
selected. Therefore, we recommend you keep this button released when you want to manipulate (copy, paste,
cut or delete) the objects. Although the Object Properties window is on the top, the keyboard commands (Ctrl
+C, Ctrl+V, Ctrl+X or Del) are sent directly to the objects.

When the pin button is pressed the focus is kept on the Object Properties window, even when you click the
objects on the screen. We recommend you keep this button pressed when you want to modify the settings of
the objects. You can click an object and type the new property value directly in the Object Properties window
(it is not necessary to click on the window to bring focus to it). Also, when the pin button is pressed, the
Object Properties window does not automatically close when you click on the screen.

Creating a New Project

Page 95

Creating a New Project

Creating a New Project

Page 96

Creating a new project
This task describes how to create a new BOS project, including how to select the product type and default
screen resolution.

1. Go to File, and then select New.
The New dialog is displayed.

2. Click the Project tab if it is not already selected.

Project tab of the New dialog
3. In the Project name box, type the name of your project.

Keep the following guidelines in mind:

• You must follow the usual Windows naming conventions, particularly regarding the use of special
characters; and

• Do not use spaces in the name if you want to access your project from a Thin Client, because URLs
cannot include spaces.

4. Click Browse to the right of the Location box, and then navigate to the folder where you want to save your
project.

Creating a New Project

Page 97

Tip: By default, projects are saved in your Documents folder at C:\Users\<user
name>\Documents\BLUE Open Studio 2020 Projects\. To change this default location for
future projects, edit the Default project path setting in the project settings. For more information, see
Preferences tab.

5. In the Target platform list, select the type of platform — either Windows or Embedded — that will host your
project runtime.
Selecting a platform will filter the list of available product types to show only those types that work on the
selected platform. It is not absolutely necessary to select a target platform — if you leave the selection as
(All), then all product types are shown — but it helps you to make the decision.

6. In the Product type list, select the product type for your project.

The product type determines the number of tags your project will support, among other things:

Target systems for BOS projects

Target Platform Runtime Edition(s) Product Type Number of Tags

BLUE Open Studio Supervision 64,000

BLUE Open Studio Line Management Plus 32,000

BLUE Open Studio Line Management 4,000

Windows SCADA

BLUE Open Studio Machine Control 1,500

Embedded none available n/a

For more information, see About target platforms, product types, and target systems on page 98.

Tip: You can change the product type later, after you have created the project, by using the
Target System command on the Project tab of the ribbon.

7. Click OK.
The New dialog is closed, and the Project Wizard dialog is displayed.

Project Wizard dialog
8. In the Resolution list, select the default resolution for your project screens. If you select Custom, then also

specify the width and height (in pixels).

In most cases, the default resolution should match the display size of the computer or device that will host
the project runtime. Alternatively, if you plan to run your project on a "headless" station (i.e., a computer
or device without an attached display) and then use thin clients to access the project screens, the default
resolution should match the display size of those clients.

Tip: You can change the resolution of individual project screens later, after you have created the
project, by editing the screen attributes. You can also change the resolution of all project screens
— effectively selecting a new default resolution — by using the Convert Resolution command on the
Home tab of the ribbon.

9. Click OK.

Creating a New Project

Page 98

The Project Wizard dialog is closed, the project is created in the development environment, and the Security
System Configuration Wizard is displayed.

Security System Configuration Wizard
10.Use the Security System Configuration Wizard to set a Main Password for your project.

The security system is enabled by default for all new projects. You can disable it later, but we recommend
that you do not; even if you do not create any users or groups beyond the default Guest user, simply
having it enabled and a Main Password set will prevent other people from making their own changes to it.
For more information, see Using the Security System Configuration Wizard on page 656.

When you finish the Security System Configuration Wizard, your new project is ready for development.

About target platforms, product types, and target systems
A project's target platform, product type, and target system determine important things about the project,
such as how many tags the project will support and which features can be used during run time.

Target platform
The target platform is the computer and operating system on which the project will run. It is generally either
"Windows" or "Embedded":

Windows

A computer that runs one of the following operating systems:

• Windows:

• Windows 10, version 1803 or later (including LTSC/LTSB versions)

• Windows 8.1

• Windows Server:

• Windows Server 2019

• Windows Server 2016

Creating a New Project

Page 99

• Windows Server 2012 R2

The computer must have the full BLUE Open Studio 2020 software installed, even if it will not
be used to develop projects, because the full software includes the project runtime edition for
Windows. The computer must also have an appropriate runtime license key.

All project features are available when Windows is selected as the target platform.

Product type
The product type determines how many tags you can use in the project (including tags shared or imported
from other systems). Given the available system resources, Windows computers can typically support far more
tags than embedded devices.

The computer or device that will host your project runtime must have a license key that matches or exceeds
the selected product type. To verify the license key, run Protection Manager (Start > Pro-face > BLUE Open Studio
2020 > BLUE Open Studio 2020 Register) on that computer or device. Although you can change both the product type
and license key later, we recommend that you verify the license key and then select the correct product type
now so that you do not waste time developing a project that uses more tags than you are licensed for. For
more information, see Licensing on page 43.

Target system
The target platform and product type together determine the target system. You select the target system when
you create a new project, and you can also change it later by using the Target System command (on the Project
tab of the ribbon).

Target systems for BOS projects

Target Platform Runtime Edition(s) Product Type Number of Tags

BLUE Open Studio Supervision 64,000

BLUE Open Studio Line Management Plus 32,000

BLUE Open Studio Line Management 4,000

Windows SCADA

BLUE Open Studio Machine Control 1,500

Embedded none available n/a

Keep in mind that selecting a target system in the project development environment only serves as a guide
during development. It automatically limits the number of project tags and hides unsupported features, so
that you do not inadvertently develop a project you will not be able to run. The real limits are determined by
the runtime license key that is installed on each computer or device.

Also, if you plan to run your project on multiple computers and devices with different license keys, we
recommend that you develop for the lowest common target system.

Changing the target system of an existing project
Use the Target System command to change the target system of an existing project.

1. On the Project tab of the ribbon, in the Settings group, click Target System.
A list of available target systems is displayed, grouped under the Windows and Embedded target platforms.

2. In the list, select the new target system for the project.
The target system determines how many tags you can use in your project, among other things. For more
information, see About target platforms, product types, and target systems on page 98.

Your project is converted to the selected target system.

If you changed from the Windows target platform to the Embedded target platform, some project features will no
longer be available. Those features are automatically hidden in the project development environment in order
to prevent you from developing a project that you cannot run on the selected target system.

Creating a New Project

Page 100

Configuring additional project settings

Select Project Settings to open the Project Settings dialog, which controls settings that affect the overall project.

Project Settings dialog

Creating a New Project

Page 101

Information tab

Project Settings: Identification tab

Use the following parameters to identify the project (for documentation purposes only).

• Description
• Revision
• Company
• Author
• Field Equipment
• Notes

Creating a New Project

Page 102

Options tab
Use this tab to specify parameters relating to your project in general.

Project Settings: Options tab

A description of these parameters follows:

• Target system: Use the combo box to specify the target system for the current project. The target system sets
the project restrictions (such as number of tags supported) and must match your license. The description
of the main license restrictions for each target system is displayed below the combo-box where you chose
it.

Note: If you specify a Target System level that does not match the actual license level on the target
system, then your project might not run properly.

• Resolution: Displays your project's screen resolution.

Creating a New Project

Page 103

• Alarm History and Events: Type a value into the History Life Time (days) field to specify how long to keep alarm
and event history files. After the specified number of days, the project automatically deletes existing
alarm/event history files that are older than the period specified. If you type zero in this field, the project
does not delete any history files automatically. In such a case, you should create an external procedure to
clean the old history files; otherwise, the free memory in the computer will eventually be depleted.

• History Format: Select the format of the Alarm/History event, as follows:

Format Description

Proprietary Saves the history data in the Alarm sub-folder of your project folder (by default) in text files using the proprietary format.

Database Saves the history data in the SQL Relational Database specified by the user, using the built-in ADO interface.

Binary Saves the history data in the Alarm sub-folder of your project folder (by default) in binary files using the proprietary
format.

For more information, see Saving your alarm history / event log to an external database on page 103.

• Custom Fields: Specify up to 10 custom fields for alarms and events, respectively, that will be saved in
the history. For alarms, the custom fields are automatically added to the Alarm worksheet body. For
events, the custom fields are available as parameters of the function SendEvent.

If your project is running when you change these settings, you must stop the project and then run it
again for the changes to take effect.

• Default Database: Allows you to configure a Default Database, which can be shared by different tasks and
objects. For more information, see Configuring a Default Database for All Task History on page 105.

• Performance Control: Allows you to configure how memory is allocated for screen graphics during runtime. For
more information, see Configure the performance control settings on page 110.

SAVING YOUR ALARM HISTORY / EVENT LOG TO AN EXTERNAL DATABASE
By default, your project's alarm history and event log are saved to proprietary-format text files in your
project's Alarms folder. However, you can change your project settings to save them to an external SQL
database instead.

Note: If your project was created with an earlier version of this software and then upgraded to the
latest version, you should consider starting over with new database tables.

In the latest version of this software, new database tables are automatically indexed by event time in
order to improve run-time performance. Existing database tables cannot be indexed in this way, so
if you can afford to discard that data, you should update your database configuration to create new
tables.

If you do this, you must also manually edit your project file (<project name>.APP) to correct the
following setting:

[Alarm]
AddEventTimeColumn=1

This setting exists in order to maintain backward compatibility, and it defaults to 0 for projects that
were upgraded.

1. On the Project tab of the ribbon, in the Settings group, click Options.

Creating a New Project

Page 104

The Project Settings dialog is displayed.

Project Settings: Options
2. In the Alarm History and Events area, in the History Life Time box, type the number of days of history that you

want to save.
As the history exceeds the specified number of days, it will be automatically deleted in a first-in, first-
out manner. If no number is specified — that is, if it is left blank or set to 0 — then history will never be
deleted. There is no limit to how much history you can save, but the more you save, the more disk space it
will take.

3. From the History Format list, select Database.

4. To configure a single, default database to be used for both the alarm history and the event log (as well as
all other runtime tasks), in the Default Database area, click Configure.
The Default Database Configuration dialog is displayed. Use the dialog to configure the database
connection. For more information, see Configuring a default database for all task history.

Creating a New Project

Page 105

5. To configure a separate database for either your event log or your alarm history, click Event Database or Alarm
Database, respectively.
In either case, a Database Configuration dialog is displayed. Use the dialog to configure the database
connection. For more information, see Database Configuration.

6. Click OK.

CONFIGURING A DEFAULT DATABASE FOR ALL TASK HISTORY
You can configure a Default Database that will save the historical data from all Tasks in a project. After you
do, when you create a new Task worksheet, you can choose either to use the Default Database or to configure
a new database for that specific worksheet.

To configure the connection settings for the Default Database:

1. On the Project tab of the ribbon, in the Settings group, click Options. The Project Settings dialog is displayed.

2. Click Configure. The Default Database Configuration dialog is displayed.

Default Database Configuration dialog
Please refer to Database Configuration dialog for help completing the fields in this window.

Creating a New Project

Page 106

DATABASE CONFIGURATION
The Database Configuration dialog allows you to configure the necessary settings to link BOS to an external
database file.

Database Configuration dialog

• Database combo-box: Allows you to select either Primary or Secondary. With Primary, all settings displayed
in the Database Configuration window apply to the Primary Database interface. Otherwise, they apply to
the Secondary Database interface. You can configure the Secondary database in the following modes:

• Disabled: In this mode, BOS saves data in the Primary Database only. If the Primary Database is
unavailable for any reason, the data is not saved anywhere else. This option may cause loss of data if
the Primary Database is not available.

• Redundant: In this mode, BOS saves data in both Primary and Secondary Databases. If one of these
databases is unavailable, BOS keeps saving data only in the database that is available. When
the database that was unavailable becomes available again, BOS synchronizes both databases
automatically.

• Store and Forward: In this mode, BOS saves data in the Primary Database only. If the Primary Database
becomes unavailable, BOS saves the data in the Secondary Database. When the Primary Database
becomes available again, BOS moves the data from the Secondary Database into the Primary Database.

Note: The Primary and Secondary can be different types of databases. However, they must have
the same fields.

Using the Secondary Database, you can increase the reliability of the system and use the Secondary
Database as a backup when the Primary Database is not available. This architecture is particularly useful
when the Primary Database is located in the remote station. In this case, you can configure a Secondary
Database in the local station to save data temporarily if the Primary Database is not available (during a
network failure, for instance).

• Use project default checkbox: When this option is checked, BOS uses the settings configured in the Default
Database for the task that is being configured (Connection string, User name, Password, Retry Interval and

Creating a New Project

Page 107

Advanced Settings). When this option is not checked, you can configure these settings individually to the
current task.

• Connection string field: This field defines the database where BOS will write and read values as well as
the main parameters used when connecting to the database. Instead of writing the Connection string
manually, you can press the browse button (…) and select the database type from the Data Link Properties
window.

Data Link Properties dialog

Note: The list of Database Providers shown in the Data Link Properties window depends on the
providers actually installed and available in the computer where you are running BOS. Consult
the operating system documentation (or the database documentation) for further information
regarding the settings of the Provider for the database that you are using.

• User name field: User name used to connect to the database. The user name configured in this field must
match the user name configured in the database.

• Password field: Password used to connect to the database. The password configured in this field must match
the password configured in the database.

Note: In the Connection string, User name, and Password boxes, as in other boxes and fields that
accept plain text, you can configure tag names in curly brackets (e.g., {MyTag}) in order to
use the values of those tags. You can then change the tag values during run time and thereby
change your database connection and credentials. You should be aware, however, that tag values
are not encrypted when they are sent between the BOS project runtime server and connected
thin clients. Therefore, to ensure that your database credentials cannot be intercepted or
compromised, you can configure only server tags — that is, tags that have Scope set to Server; for

Creating a New Project

Page 108

more information, see Choosing the Tag Scope on page 154 — in these boxes. The tags will be
evaluated on the server only, and no tag values will be sent between the server and client.

• Retry Interval field: If BOS is unable to connect to the database for any reason, it retries automatically to
connect to the database after the number of seconds configured in this field have passed.

• Advanced button: After pressing this button, you have access to customize some settings. For most projects,
the default value of these settings do not need to be modified and should be kept.

Database Configuration: Advanced dialog

• Time Zone combo box:

• Local Time + Time Difference: Save the local time on the computer, plus the difference (bias) between the
local time zone and Coordinated Universal Time (UTC).

• Local Time: Save the local time only with no bias. This is not recommended.

• UTC: Save the UTC time only. This is the default, and it is strongly recommended for most situations.

• Milliseconds combo box: You can configure how the milliseconds will be saved when saving the date in
the database. Each database saves the date in different formats; for example, some databases do not
support milliseconds in a Date field. The following options are available:

• Default: Uses the format pre-defined for the current database. The databases previously tested by Pro-
face are previously configured with the most suitable option. When selecting Default, BOS uses the
setting pre-configured for the current database type. If you are using a database that has not been
previously configured, the Default option attempts to save the milliseconds in a separate field.

Tip: The default option for each database is configured in the StADOSvr.ini file, stored in
the \BIN sub-folder of BOS. See Studio Database Gateway on page 831 for information
about how to configure the StADOSvr.ini file.

• Disable: Does not save the milliseconds at all when saving the date in the database.

• Enable: Saves the milliseconds in the same field where the date is saved.

• Separate Column: Saves the milliseconds in a separated column. In this case, the date is saved
in one field (without the milliseconds precision) and the number of milliseconds is saved in a
different column. This option is indicated where you want to save timestamps with the precision of
milliseconds but the database that you are using does not support milliseconds for the Date fields.

• Database Gateway: Enter the Host Name/IP Address where the BOS Database Gateway will be running.
The TCP Port number can also be specified, but if you are not using the default, you will have to
configure the BOS Database Gateway with the same TCP Port. See Studio Database Gateway on page
831 for information about how to configure the advanced settings for the BOS ADO Gateway.

Creating a New Project

Page 109

• Disable Primary Keys: For some modules, BOS will try to define a primary key to the table in order to speed
up the queries. If you are using a database that does not support primary keys (e.g., Microsoft Excel),
then you should select (check) this option.

• Disable Delimiters: Select this troubleshooting option to disable the delimiters that are used to format
communications with the database. Delimiters can cause problems when a Trend Control or Grid
builds a query that includes aggregates such as Min and Max.

• Disable SQL variables: Select this troubleshooting option to disable SQL variables, such as @Value1 and ?,
that are often used in SQL statements and queries. Some specific database providers do not support
these variables.

Note: If you select this option, you might need to specify the language or culture that should
be used to format values in SQL statements. For more information, see "Advanced Settings" in
Studio Database Gateway on page 831.

Table Pane
This area allows you to configure the settings of the Table where the data will be saved. All tasks can
share the same database. However, each task (Alarm, Events, Trend worksheets) must be linked to its own
Table. BOS does not check for invalid configurations on this field, therefore you should make sure that the
configuration is suitable for the database that you are using.

• Use default name checkbox: When this option is checked (default), BOS saves and/or retrieves the data in the
Table with the default name written in the Name field.

• Automatically create checkbox: When this option is checked (default), BOS creates a table with the name
written in the Name field automatically. If this option is not checked, BOS does not create the table
automatically. Therefore, it will not be able to save data in the database, unless you have configured a
table with the name configured in the Name field manually in the database.

• Name: Specifies the name of the Table from the database where the history data will be saved.

Tip: To specify a sheet in a Microsoft Excel spreadsheet file, use the following syntax:

[sheetname$]

• Refresh button: If the database configured is currently available, you can press the Refresh button to
populate the Name combo-box with the name of the tables currently available in the database. In this
way, you can select the table where the history data should be saved instead of writing the Table name
manually in the Name field.

Run-Time Pane
This area allows you set runtime values. The following fields are available:

• Status (output) checkbox: The tag in this field will receive one of the following values:

Value Description

0 Disconnected from the database. The database is not available; your configuration is incorrect or it is an illegal operation.

1 The database is connected successfully.

2 The database is being synchronized.

• Reload (output): Specify a reload tag if you are using curly brackets in any of the configuration fields. When
you want to reconnect to the database using the updated values on your tags, set the tag on this field to 1.
BOS will update the configuration when trying to perform an action in the database, setting the tag back
to 0 when it is finished.

See also:

Configuring a Default Database for All Task History.

Creating a New Project

Page 110

CONFIGURE THE PERFORMANCE CONTROL SETTINGS
Configure the performance control settings to determine how memory is allocated for screen graphics during
run time.

The project runtime client software has been improved to keep screen graphics (e.g., objects, images, fonts)
in memory rather than load them from the hard drive each time a screen is opened. This makes opening and
switching screens much faster, which in turn improves the overall run-time performance.

Devices that run the client software often have limited memory, however, so it is necessary to change the
method of memory allocation as the memory becomes full.

Memory allocation states

When memory allocation is enabled (which it is by default in new projects) and your project is run, all unused
objects are kept in memory so that project screens can be reopened or redrawn quickly. This method or state
of memory allocation is called Always.

As the memory fills with objects, however, the amount of free memory decreases and may eventually reach
the Dynamic Limit (i.e., the value configured in the Before starting dynamic allocation setting). When this happens,
unused objects may be kept in memory but are removed if the space is needed for other objects that are
actually being used. This method or state of memory allocation is called Dynamic.

As the memory continues to fill with objects — typically because the client has many project screens open and
therefore many objects being used — the amount of free memory decreases until it finally reaches the Critical
Limit (i.e., the value configured in the Before disabling allocation setting). When this happens, all unused objects
are removed from memory and memory allocation is disabled until you restart the project. This method or
state of memory allocation is called Critical.

Tip: Icon files (*.ICO) cannot be kept in memory. If you use many icon files in your project —
particularly in Button objects — consider replacing them with new files in another format such as
GIF, JPG, or PNG.

Performance control has default settings that should work for most projects running on most clients, but if
you have problems, you can adjust the settings for your project or even disable memory allocation altogether.

To configure the performance control settings:

1. On the Project tab of the ribbon, in the Settings group, click Options.
The Project Settings dialog box is displayed, with the Options tab selected.

2. In the Options tab, in the Performance Control area, click Configure.

Creating a New Project

Page 111

The Performance Control dialog box is displayed.

Performance Control dialog box
3. To completely disable memory allocation, clear Enable memory allocation.

4. To adjust the limit at which memory allocation will change from Always to Dynamic, type a new value in
the Before starting dynamic allocation box.

5. To adjust the limit at which memory allocation will change from Dynamic to Critical, type a new value in
the Before disabling allocation box.

6. To restore the default settings, click Set Default.
You can monitor memory allocation during run time by calling the function GetPerformanceMetric.

ENABLE DATA PROTECTION TO ENCRYPT SENSITIVE INFORMATION
Enable Data Protection in order to encrypt sensitive information such as the user names and passwords that
you use to connect to databases and remote servers.

Before you begin this task, you should note the user names, passwords, and database connection strings that
you have already configured in your project. You should also consider backing up your entire project, but that
is not absolutely necessary.

There are many places in your project where you configure settings that can be encrypted by Data Protection.
These places include but are not limited to:

• In the Email and FTP settings;

• In the project security system, to connect to a LDAP server;

• In a Trend worksheet, to connect to a Historian database;

• In an OPC UA Client worksheet, to connect to an OPC UA server;

• In an OPC XML/DA Client worksheet, to connect to an OPC XML/DA server;

• In the settings to run your project as a Windows service; and

• In many other worksheets and screen objects that use the Studio Database Gateway to connect to external
databases. For more information, see Database Configuration on page 106.

By default, these settings always have some basic protection that is hardcoded into BLUE Open Studio 2020,
so they cannot be easily intercepted over the network. The settings are not fully encrypted, however, so they
might be vulnerable to serious attacks.

You can enable Data Protection in your project settings in order to fully encrypt these settings. The encryption
is done using Microsoft's Data Protection API (DPAPI), which is built into Windows, and it is keyed to the
computer where Data Protection is enabled. The settings will still be displayed in plain text whenever you
edit your project on the same computer, but they will be encrypted for all other development and run-time
purposes. For a complete description of DPAPI, go to: msdn.microsoft.com/library/ms995355

It is a simple procedure to enable Data Protection, but actually doing so will deeply affect your project and
change how it can be used on other computers. First, all user names, passwords, and database connection

http://msdn.microsoft.com/library/ms995355

Creating a New Project

Page 112

strings that you have previously configured will become invalid when you enable Data Protection. You will
need to configure these settings again after Data Protection is enabled.

Previously configured settings before (left) and after (right) Data Protection is enabled

Second, because the encryption is keyed to the computer on which Data Protection is enabled, you will be
prompted for your project's Data Protection password when you open the project on another computer for
the first time. (This includes when you use the Remote Management tool to download the project to a target
device. For more information, see Download your project to the target device on page 736.)

Prompted for your password on another computer

Third, you must also enable Data Protection in the Studio Database Gateway that will manage your project's
database connections, so that the gateway can communicate securely with the project runtime server during
run time. For more information about how to do that, see Studio Database Gateway.

To enable Data Protection in your project settings:

1. On the Project tab of the ribbon, in the Settings group, click Options.

Creating a New Project

Page 113

The Project Settings dialog box is displayed with the Options tab selected.

Project Settings: Options dialog box
2. Click Data Protection.

Creating a New Project

Page 114

The Data Protection dialog box is displayed.

Data Protection dialog box
3. Select the Enable check box.

The Password and Confirm Password boxes become active.

4. In the Password box, type your desired Data Protection password, and then in the Confirm Password box, type
it again.
A strong password should be at least 8 characters long and include at least 1 special character, 2
alphabetic characters, and 2 numeric characters. If your password does not meet these criteria, it will be
accepted but a warning message will be displayed.

5. Click OK.

Data Protection is now enabled. You can disable it at any time simply by clearing the Enable check box; the
Data Protection password is not required to do so. However, doing so will have different results depending on
when you do it.

When you enable Data Protection, all previously configured user names, passwords, and connection strings
become invalid. If you immediately disable Data Protection without making any other changes, the previously
configured settings will be restored. Otherwise, you must configure the settings with new values.

In contrast, if you disable Data Protection after you have configured the settings with new values, the settings
will remain encrypted and therefore unusable during run time. You will need to either configure the settings
again with new values OR re-enable Data Protection with the same password, before you try to run your
project.

If you ever change the Data Protection password in your project settings, you must also update the password
on the target device(s) to which you download the project, as well as in the Studio Database Gateway.

Note: Information that has been encrypted with DPAPI cannot be decrypted without your Data
Protection password. If you lose your password, neither Microsoft nor our own Technical Support
representatives can recover the information for you. You will need to reconfigure all of the affected
project settings.

Creating a New Project

Page 115

Viewer tab
Use the Viewer tab of the project settings to configure the project viewer and change certain run-time
behaviors.

Project Settings: Viewer tab

Titlebar
Select this option and type a new name into the field provided to specify or change the default
titlebar text for the Viewer window.

Minimize Box, Maximize Box, Close Box
Select or clear these options to show (enable) or hide (disable) these buttons on the Viewer
window.

Start Maximized
Select this option to maximize the Viewer window automatically when you run your project.

Creating a New Project

Page 116

Menu
Select this option and then click Options to specify which menu options are available at run
time. When the Runtime menu options dialog displays (as follows), click the checkboxes to show
(enable) or hide (disable) these menu options.

Resize Border
Select this option to allow the user to resize the Viewer window during run time.

Status Line
Select this option to display the Status Line in the runtime project.

Startup screen
Click the combo box and select the screen (.scc or .scr file) or screen group (.sg file) that you
want to display automatically when a thin client accesses your project.

Note: Another way to specify a screen or screen group as the startup screen is
to right-click on it in the Project Explorer and then choose Set as startup from the
shortcut menu.

Show ???? when quality is not GOOD
Some screen objects (e.g., Text Box) can be configured to directly display tag values. Select this
option to have an object display question marks (????) instead of the tag value when its quality
is not GOOD (i.e., BAD).

Hide Taskbar
Select this option to hide the Windows taskbar by default.

Disable Palm Rejection
Select this option to disable Palm Rejection during project run time. Palm Rejection is a feature
on Windows touchscreen devices that detects and rejects accidental touches from the operator's
palm. However, it can somewhat slow the touchscreen's responsiveness, so disabling it can
improve the performance of the project runtime.

Palm Rejection is not available on anything other than Windows touchscreen devices, so
selecting this option will have no effect in projects running on other target platforms.

Enable ToolTips
Select this option to see Windows ToolTips when running your project. You can configure
tooltips in the Hint field of the Object Properties dialog of each object.

Save pictures in separate files
When this option is selected, images that you paste into a screen are automatically converted
to Linked Picture objects and then saved as separate bitmap (.bmp) image files in your project
folder at <project name>\Web\Resources. You can then reuse the images without increasing

Creating a New Project

Page 117

the size of your project, because every instance of the image will link to the same file. That
should improve run-time performance.

When this option is cleared, images that you paste into a screen are kept as Bitmap objects and
embedded in the screen file. Each instance of an image will be embedded, so if you use the same
image more than once, it may greatly increase the size of the screen file.

Note: The effect of this option is permanent: once a pasted image is converted to
a Linked Picture object, clearing the option will not convert the image back to a
Bitmap object.

The Resources sub-folder is automatically maintained by the development application, and it is
used only for the bitmap images that are pasted and converted. You should not put other image
files in it, because they may be moved or deleted. Instead, put other images that you want to
link to in the Web sub-folder.

Auto Screen Scaling
Select this option to automatically scale project screens to fit the displays on client stations,
even dynamically when a user resizes the viewer window. This is done by calculating the ratio
between the project's full display resolution and the client station's actual display size and
then multiplying both the screen size and the screen position by that ratio. Screens are only
downscaled to fit smaller displays; they are not upscaled to fit larger displays.

This option applies only to the local Viewer module and the remote Secure Viewer. It does not
apply to the other types of project clients, which have their own Auto Screen Scaling options in their
respective settings.

This option is cleared by default because downscaling screens can sometimes make them
unusable (e.g., buttons too small to be pressed, gauges too small to be read). If the screens are
kept at full scale, a user can at least scroll and pan to see an entire screen.

Enable Enhanced Graphics
When this option is selected, your project screens will have enhanced graphics such as anti-
aliasing and opacity.

Anti-aliasing smooths the lines, edges, captions, and gradient fills on Shapes (i.e., Line objects
et al.), Text objects, and Button objects (Standard and OS styles). It is not supported for conical
gradient fills.

Opacity (0% to 100%) allows you to make a screen object translucent and show other objects
behind it. You can then arrange the objects to produce certain visual effects. To set opacity on
an object, apply the Visibility/Position animation.

Enabling enhanced graphics might decrease run-time performance on some clients, so you
should test it thoroughly before you deploy your project.

Active area indication
Click (enable) the Show Object Edge and Change Mouse Cursor checkboxes in this area to modify the
object edge and the mouse cursor when moving the cursor over any object where the Command
animation has been applied.

Virtual Keyboard
When this option is selected, the Virtual Keyboard (VK) is enabled for your project. The Virtual
Keyboard allows the user to enter data (text or numeric values) during run time using the client
station's touchscreen instead of a physical keyboard or keypad. For example, a Text object with
the Text Data Link animation applied and the Input Enabled option selected.

You can establish a default configuration for the Virtual Keyboard:

Default
Select the default keyboard type to be used in your project, when no keyboard type is specified
by the calling object or function.

Show Hint

Creating a New Project

Page 118

When this option is selected, a hint is displayed in the title bar of the Virtual Keyboard window.
For a specific object, you can configure the hint in the object properties. Otherwise, type a string
value in the Show Hint box to serve as a defaut hint for all keyboards in your project.

Enable Min/Max Fields
When this option is selected and the Keypad type of keyboard is used, the minimum and
maximum values allowed for the associated project tag will be displayed at the bottom of the
keyboard. For some screen objects, you can configure those values in the object properties.
Otherwise, the Min and Max properties of the associated project tag are used by default.

Note: The Min and Max fields are displayed only on the Keypad type of keyboard,
and only when the associated project tag is of Integer or Real type. If Min is
greater than Max, user input will be disabled. If Min/Max configured on the
object properties differs from Min/Max configured in the tag properties, the
project runtime will attempt to scale the user input accordingly.

Enable multi-line text input
When this option is selected, the AlphaNumeric type of keyboard can be used to enter multi-line
text, with "new line" control characters (i.e., CR+LF) between lines, in screen objects that accept
multi-line text input.

Built-in Dialogs
Select or type the scale at which the built-in dialogs (i.e., Logon, E-Sign, and Virtual Keyboard)
should be displayed during run time. This will make it easier to see and use the dialogs
on project runtime clients with small, high-resolution displays. You can specify a scale
between 100% (native resolution) and 400%, or you can select Auto which means the client will
automatically select the best scale for the display.

Mouse Cursor
Select this option to show the mouse cursor in the runtime project.

Execute only topmost object commands
This option controls how your project behaves when the user clicks in an area where two or
more screen objects overlap. If this option is checked, only the commands on the topmost object
will be executed. If this option is not checked, the commands on all of the overlapping objects
will be executed.

Note: The topmost object is the one with the highest ID number. (The ID number
of an object is displayed in the status bar at the bottom of the development
environment.) You can use the Move to Back / Move to Front and Move Backward / Move
Forward tools to change the order in which objects are stacked.

Enable focus on buttons, commands and text objects
This option is selected by default. When it is selected, clicking on on a command button or text
input during run time will put focus on that object, as shown in the illustration below:

Focus on text input (left), no focus on text input (right)

After that, the end-user can press Tab to tab through all such objects in the screen or they can
press Enter to activate the currently focused object (i.e., click on a command button, enter text in
a text input), similar to a normal Windows application. This is useful if the client station has a
physical keyboard and the end-user needs to quickly work through many such objects, because
it saves time that would otherwise be spent repeatedly switching between the keyboard and the
mouse or touchscreen.

To force the end-user to always use the mouse or touchscreen to activate screen objects, clear
this option.

Creating a New Project

Page 119

Use popup input for text objects
Select this option to display a small popup for text inputs, as shown in the illustration below:

This is an alternative to typing directly into the text object (which can seem like editing the
screen itself and therefore be confusing to some end-users) and to displaying a Virtual Keyboard
for input (which requires using the mouse or touchscreen).

Note:

If the Virtual Keyboard option (above) is selected, it will override this option.

Also, if the Enable focus on buttons, commands and text objects option (above) is cleared,
this option is automatically selected. This is to ensure there is some on-screen
indication of which text input is currently active.

Use .scr extension for screen files
When this option is selected, screen files are saved with the .scr extension in your project folder.
When this option is cleared, screen files are saved with the .scc extension.

The .scr extension has been deprecated because some anti-virus programs block it, and that can
cause problems during project run time. The .scc extension supersedes the .scr extension, and
it should be allowed by most if not all anti-virus programs.

This option was implemented in order to maintain backward compatibility with existing projects.
In projects that are created with the latest version of this software, this option is cleared by
default. In projects that were created with earlier versions of this software and then upgraded to
the latest version, this option might be selected by default.

If you do not have issues during project run time, you do not need to do anything. If you do have
issues, however, you can try selecting or clearing this option, as needed. When you do, all of
the existing screen files in your project folder will be saved again with the preferred extension.
Also, if you manually add a screen file to your project folder — for example, by copying it from
another project folder — that file will be saved with the preferred extension the next time you
either verify your project or open the screen for editing.

Multi-Touch Settings
Configure the default Multi-Touch settings for all screens in your project. For more information,
see About the Multi-Touch settings for project screens on page 349.

Creating a New Project

Page 120

Communication tab
Use the Communication tab of the Project Settings dialog box to configure the communication settings for your
project.

Data Server
Configure the communication settings for your project's data server (i.e., the TCP/IP Server Runtime task),
which exchanges data with thin clients and other projects during run time.

Encrypted Port
The port number for encrypted communication. (Communication is encrytped via TLS/SSL.)
This port is enabled by default in order to make your project more secure. The default port
number is 51234, but you can change it as long as you remember to update the corresponding
settings in your thin clients and network firewalls.

Port

Creating a New Project

Page 121

The port number for standard, unencrypted communication. This port is disabled by default
in order to encourage you to use encrypted communication (see Encrypted Port above). You can
enable both Encrypted Port and Port and then configure each client station to connect to either one
or the other, depending on its particular needs. The default port number is 1234, but you can
change it as long as you remember to update the corresponding settings in your thin clients and
network firewalls.

Send Period (ms)
The period (in milliseconds) between two consecutive messages sent from the data server to
client stations. The default period is 100 ms. A shorter period (i.e., a lower number) will increase
run-time performance but also increase network traffic. Conversely, a longer period (i.e., a
higher number) will decrease run-time performance but also decrease network traffic.

Enable binary control

Binary control encrypts communication between the data server and client stations by
converting messages to binary data using a proprietary method, before the messages are sent to
client stations. Enabling binary control can significantly decrease run-time performance.

Note: Binary control is a legacy feature. It has been deprecated in favor of TLS/
SSL (see Encrypted Port above), and it remains in the software only to support
existing projects.

Self-Signed Certificate Information
Opens the Self-Signed Certificate Information tool, which you can use to edit the certificate your
project presents to other clients and servers that are using the Encrytped Channel feature to
communicate. For more information, see Edit your project's self-signed certificate on page 123.

Remote Servers Certificates
Opens the Certificate Store Management tool, which you can use to manage your project's
certificate store. For more information, see Managing your project's certificate store on page
124.

Preloading tags from server
To improve performance, the viewer preloads all of the Server tags (i.e., tags with Server scope) that are used
in a project screen before it displays that screen. Configure the timeout settings for both remote and local
viewers.

Timeout when executing on remote
Specifies the time (in milliseconds) that a Thin Client running on a remote station will wait to
load the tags. If the timeout expires before the tags are loaded, the viewer will display the project
screen even though it is not yet synchronized.

Timeout when executing on local
Specifies the time (in milliseconds) that the Viewer program running on the local station (i.e.,
on the computer that hosts the project runtime) will wait to load the tags. If the timeout expires
before the tags are loaded, the viewer will display the project screen even though it is not yet
synchronized.

Preload all tags
When this option is selected, the viewer will subscribe to and preload all of the Server tags that
are defined for the entire project, not just the tags that are used in the project screen to be
displayed. The same timeouts apply, so they might need to be adjusted to allow for the increased
load.

Creating a New Project

Page 122

Driver and OPC
Select the method used by all communication drivers and OPC Client worksheets configured in the current
project when writing values to the remote PLC/device.

Send every state

When the communication task is configured to write values upon a change of tag value,
all changes in the tag value are buffered in a queue and sent to the device when the
communication task (Driver or OPC) is executed.

Note:

There is a limit on the size of the buffer for tag value changes, to prevent
accumulated changes from decreasing run-time performance. If the buffer size is
exceeded, then only the most recent changes are kept until the next time the task
is executed and the changes are sent. Also, a warning message is logged in the
dump file.

To adjust the buffer size, manually edit the following setting in your project file
(<project name>.APP):

[Options]
DriverAndOpcBufferSize=5

Send last state
When the communication task is configured to write values upon a change of tag value, only the
current (last) value of the tag is sent to the device when the communication task (Driver or OPC)
is executed. When this method is selected, if the tag changed value more than once while the
communication task was not being executed, the transient values of the tag are not sent to the
device. This is the desired behavior for most projects.

Tag Integration
Use these settings to integrate tags from remote devices into your project's tags database. For more
information, see Tag Integration on page 223.

Execution Environment
Configure the communication settings for the Remote Management tool, which sends your project files to a
target system.

Timeout (ms)
Specifies the time (in milliseconds) that the project will wait to communicate with the target
system.

Enable File Compression
Select this option to compress the system and project files before sending them to the target
system. This may reduce the download time if you have a slow connection between your server
and the target system. (If you have a fast connection, however, then selecting this option may
actually decrease performance because each compressed file must be decompressed on the
target system before the next file is sent. Select this option only if you have an extremely slow
connection, such as dial-up.) File compression is disabled by default.

OPC UA Server
Configure the communication settings for the OPC UA Server module, which can make your project
tags database available to OPC UA clients on your network. For more information, see Configure the
communication settings for OPC UA Server on page 637.

Creating a New Project

Page 123

EDIT YOUR PROJECT'S SELF-SIGNED CERTIFICATE
Use the Self-Signed Certificate Information tool to edit the certificate your project presents to other clients and
servers that are using the Encrytped Channel feature to communicate.

Note: This topic describes only the certificate for the Encrypted Channel feature. There is a similar
but separate certificate for the OPC UA Server feature. For more information, see Configure the
communication settings for OPC UA Server on page 637.

With regards to the Encrypted Channel feature, your project is considered a client if any of the following is
true:

• Your project includes a TCP/IP Client worksheet configured to exchange data with another project, and the
Enable Encrypted Channel option is selected in that worksheet's security settings;

• Your project's security system is set to Distributed – Client mode, and the Encrypted Channel option is selected in
that mode's server settings; or

• You use the Watch and/or LogWin tools to monitor a project running on a remote computer, and you
select the Encrypted Channel option when you make the connection.

Your project is considered a server if the Encrypted Port option is selected in the Communication tab of the
project settings.

A project can be both a client and a server, depending on how it is configured and how other projects connect
to it, and it presents the same certificate for both types of connections. A self-signed certificate is signed by
the software itself, as opposed to being signed by a Certificate Authority (CA).

To edit your project's self-signed certificate:

1. On the Project tab of the ribbon, in the Settings group, click Communication.
The Communication tab of the Project Settings dialog box is displayed.

2. Under Data Server, click Self-Signed Certificate Information.

The Server Self-Signed Certificate Information dialog box is displayed.

3. In the Common Name box, enter the common name of the data server itself.

Creating a New Project

Page 124

The default is [ServerName]. This is a special string that includes [NodeName] (see Machine below), and it
evaluates as the following:

StudioDataServer@[NodeName]

4. In the Organization, Organization Unit, Location Name, State/Province, and Country boxes, enter the appropriate
information for your project.

5. In the Machine box, enter the name of the machine that hosts the data server.
The default is [NodeName]. This is a special string that automatically gets the name of the computer or
device that hosts the project runtime.

6. In the Years Valid For box, enter the number of years for which the certificate will be valid, starting from the
date it is issued.
The default number of years is 5. When a certificate expires, you must delete it and then issue a new one.

7. Click Delete server certificate.
This is to make sure the existing certificate (if any) is deleted from the project files, so that a new certificate
can be issued with the updated information.

8. Click OK to close the Server Self-Signed Certificate Information dialog box.

The project runtime automatically issues the data server certificate when the project is run and the TCP/IP
Server Runtime task is started. At that time, the project runtime gets the name and address of the computer
or device that hosts it, and then it uses that information to issue the certificate. As such, if you test your
project on your local computer, a certificate will be issued using the name and address of that computer.
You should delete the certificate — by clicking Delete server certificate — before you copy your project to another
computer or download it to a project runtime.

When the certificate is issued, the certificate files are saved in your project's certificate store at:

<project name>\Config\certstore\own\studio_dataserver.der
<project name>\Config\certstore\own\studio_dataserver.pem

The .der file is the certificate itself, and the .pem file is the associated key. Both files must be present for the
certificate to be valid.

You can double-click the .der file in Windows in order to examine the certificate information. You will see the
Subject field of the certificate contains the value that you entered for Common Name above.

You will also see the Subject Alternative Name field of the certificate contains all of the valid names and addresses
of the computer or device that hosts the project runtime. When a client tries to connect to the server, it
compares the actual name or address of the server's host against the Subject Alternative Name field of the server's
certificate. If the name or address cannot be validated, the connection fails. This is done to confirm that the
server's certificate was issued on the server's host, rather than copied from another computer or device.

You can replace a self-signed certificate with a CA-signed certificate, as long as the certificate files have the
correct file names and locations. If they do not, the project runtime will not be able to find and use them.
Acquiring a CA-signed certificate and then using it to sign other certificates is beyond the scope of this
documentation, however.

MANAGING YOUR PROJECT'S CERTIFICATE STORE
Use the Certificate Store Management program to manage your project's certificate store. Certificates are
exchanged between clients and servers that are using the Encrytped Channel feature to communicate.

Note: This topic describes only the certificate store for the Encrypted Channel feature. There is a
similar but separate certificate store for the OPC UA Server feature. For more information, see How
to manage OPC UA Server during project run time on page 644.

With regards to the Encrypted Channel feature, your project is considered a client if any of the following is
true:

• Your project includes a TCP/IP Client worksheet configured to exchange data with another project, and the
Enable Encrypted Channel option is selected in that worksheet's security settings; or

Creating a New Project

Page 125

• Your project's security system is set to Distributed – Client mode, and the Encrypted Channel option is selected in
that mode's server settings.

• You use the Watch and/or LogWin tools to monitor a project running on a remote computer, and you
select the Encrypted Channel option when you make the connection.

Your project is considered a server if the Encrypted Port option is selected in the Communication tab of the
project settings.

A project can be both a client and a server, depending on how it is configured and how other projects connect
to it, and it has a single certificate store for both types of certificates.

When a client attempts to connect to and communicate with a server, they will present their certificates to
each other. Your project will automatically trust or reject a certificate depending on whether you selected the
Automatically trust server certificate option for a given feature, and the certificate files are saved in the appropriate
folders in your project's certificate store at:

<project name>\Config\certstore\rejected\
<project name>\Config\certstore\trusted\

This software includes a small utility program called Certificate Store Management (CertStoreManager.exe),
which helps you to view certificates and move them between folders in the certificate store. If you have
the full SCADA software installed, you can open the program by clicking Remote Servers Certificates in the
Communication tab of your project settings. The program will automatically open the certificate store for the
current project:

Certificate Store Management program

Trusted, Rejected
These lists display the respective contents of the trusted and rejected folders in your project's
certificate store. To move a certificate from one list to the other, select it and then click > or < as
needed.

Issued To, Client URI
Certificate information extracted from the selected certificate. This information cannot be edited.

Creating a New Project

Page 126

Add New Certificate
Click to add a new certificate to the Trusted list. You will be asked to locate and open the
certificate file. You should be familiar with certificate file names and extensions, as defined by
the X.509 standard, so that you can locate the correct file. The file will be copied to the trusted
folder in your project's certificate store.

Remove
Click to remove the selected certificate; the certificate file will be deleted from your project's
certificate store, regardless of which list/folder it is in. Be aware that removing a certificate does
not prevent a client or server from presenting the same certificate again in the future. If you
want to reject the certificate, move it to the Rejected list.

Tip: It is often useful to add certificates to your project's certificate store while you are still
developing your project, so that they can be downloaded with the rest of the project files.

If the SCADA software is licensed for Runtime only — that is, if it is installed on another computer and
running only as a project runtime server — you might not be able to access the project settings in order to
open the Certificate Store Management program. In this case, you can manually run the program by locating
it in the SCADA application folder and then double-clicking it. The program file should be located at:

C:\Program Files (x86)\Pro-face\BLUE Open Studio 2020\Bin\CertStoreManager.exe

When you open the Certificate Store Management program in this way, it will first ask you to locate and open
your project file (<project name>.app). Otherwise, the program behaves the same as if you opened it from
the project settings.

Regardless of how you move the certificate files, you should restart the TCP/IP Server Runtime task and/or
the TCP/IP Client Runtime task after you make any changes. This is to make sure rejected clients and servers
that were previously trusted are properly disconnected. You do not need to restart the entire project, thanks
to the project runtime server's task-based architecture.

Creating a New Project

Page 127

Preferences tab
Use this tab to configure your preferences for developing a project in the project development environment.

Project Settings: Preferences tab

Warning Messages
Display warning message before downloading screen to the target system

When this option is selected, if you make changes to a screen while the project development
environment is actively connected to a target system (via Remote Management), you will be
prompted to confirm that you want to download the updated screen to the target system. If this
option is cleared, the screen will be downloaded automatically.

Display confirmation message when renaming project tags

Creating a New Project

Page 128

When this option is selected, if you rename a tag in the Project Tags datasheet, you will
be prompted to replace the old tag name with the new tag name in all of the screens and
worksheets in your project. It is similar to using the Global Replace tool.

Display confirmation message when changing the screen position and size
When this option is selected, if you use the Layout tool to change the position and size of
a project screen (i.e., Width, Height, Top, Left in the screen attributes), you will be prompted to
confirm those changes.

Display warning message after saving symbols
When this option is selected, a warning message is shown after saving symbols.

Display warning message when replacing cells using driver browser
When this option is selected and you have used tag integration to get tags from a remote device,
a warning message will be displayed whenever you replace a local tag in a screen or worksheet
with a tag selected from the remote device.

Quality Feedback Service
This section allows you to configure your project to generate log files and/or dump files that can be used to
diagnose hardware and software problems, such as memory leaks and unexpected errors. These files are
saved in the Dump sub-folder of the running project at: <project name>\Web\Dump

Generate a log file when an unexpected error happens

When this option is selected, the runtime modules append the Log File (\Web\Dump\Dump.txt)
whenever an internal exception (error) occurs. These exceptions may not necessarily crash the
runtime modules, but they can affect the stability of the system and should be investigated.

The Log File is continually appended until it reaches its maximum size of 2MB. After it reaches
its maximum size, the existing file is deleted and a new file is created.

Generate a dump file when an unexpected error happens

When this option is selected, the runtime modules generate a new Dump File (*.dmp) with
useful information about the conditions of the error. This is a binary file that can only be read
by your support representative.

Dump Files are named WinXXX.dmp — where XXX is an identifying number (in hexadecimal
format) automatically generated by the system — in order to prevent an existing file from
being overwritten when an new error occurs. Therefore, if more than one error occurs, you will
find multiple Dump Files in the directory. The Log File indicates the name of the Dump File
associated with each error.

Enable log of memory
When this option is selected, the runtime modules append the Log File every 15 minutes with
information about the current memory allocation. (The first log entry is written out 15 minutes
after the runtime module is started.) This information can be used to identify memory leaks.

Enable detailed dump files
When this option is selected, the generated Dump Files will contain more detailed information
than they normally do. Please note that these files take much more hard drive space, so you
should select this option only when you are working with your support representative to
troubleshoot a specific issue.

Even if none of these Quality Feedback options are selected, a post-mortem Dump File (WinDump.dmp)
will always be generated when the runtime module is terminated by a fatal error. However, for debugging
purposes, it is strongly recommend that you enable all options in this section and then send the Log File and
all Dump Files to your support representative.

Other Preferences
Reset Tags Database when starting project

Creating a New Project

Page 129

When this option is selected, the project tags are automatically reset to their startup values
whenever you run your project. For more information, see Reset Tags Database.

Enforce Web functionality equivalence in local project screens

When this option is selected, the project development environment will warn you when you
try to use features or functions that behave differently depending on whether you view project
screens locally (i.e., on the same computer that hosts the project runtime) or remotely. This
ensures that your project screens always behave the same regardless of where they are viewed.
For example, when this option is selected, the Open function cannot be called in Global
Procedures, Script worksheets, or other background tasks.

This option is cleared by default in order to maintain compatibility with previous versions of
BLUE Open Studio 2020. If you do not need to maintain compatibility, you should select this
option.

Auto reload project on Viewer/Web Clients when it is changed

When this option is selected, project viewers on client stations will periodically check the project
runtime server to see if they have the latest version of the project. If they do not, they will
automatically reload the project from the server.

This option is not supported in a project running as a Windows service, because that project
runs in its own thread separate from the project development environment. After you make your
changes to the project, you must first restart the Windows service to include the changes and
then restart the project viewers to reload the project from the server.

Disable high quality when resizing bitmaps to improve performance
When this option is selected, bitmaps in project screens are resized at lower quality. Normally,
when bitmaps are displayed at anything other than actual size, they must be resampled to
maintain high quality, and if this resampling must be done frequently and/or for many bitmaps
in the same screen, it might decrease run-time performance.

Default project path

This is the location where new projects are saved by default when you create them. When you
install the full BLUE Open Studio 2020 software, the default project path is automatically set to:

C:\Users\<user name>\Documents\BLUE Open Studio 2020 Projects\

You can subsequently change the default project path to any location on your computer or
network.

Creating a New Project

Page 130

Configuring your project's default email settings
Some features, such as alarms and certain functions, are able to send email to designated recipients. To use
these features, you must configure your project's email settings.

The email settings can be configured at any point during runtime by calling the CnfEmail function. However,
you can also configure default settings that are automatically used when the project is first run and then
restored as needed during runtime, overwriting any changes made by calling the CnfEmail function.

1. On the Project tab of the ribbon, in the Web group, click Email/FTP.
The E-mail and FTP configuration dialog is displayed.

2. Click the E-Mail Settings tab.

3. In the E-mail (From) box, type your email address.

4. In the Server and Port boxes, type the server address and port number for your outgoing mail server.
The default port for SMTP is 25, but it depends on your server and network configuration. Please consult
your email provider.

5. If your outgoing mail server requires authentication, select My server requires authentication. If authentication
must also be encrypted, select Enable SSL. Then type your credentials in the User Name and Password boxes.
Most outgoing mail servers do require authentication, to prevent spamming and other abuse from
unknown users.

Creating a New Project

Page 131

6. In the Status box, type the name of a tag (Integer type) that will receive status codes when the project sends
email.

7. In the Reload box, type a tag/expression. When the value of this tag/expression changes, the project will
reload these default email settings.

8. Click OK to save your configuration and close the dialog.

Creating a New Project

Page 132

Configuring your project's default FTP settings
Some features in BLUE Open Studio 2020, such as certain functions, are able to transfer files between
computers using FTP. To use these features, you must configure your project's FTP settings.

The FTP settings can be configured at any point during runtime by calling the CnfFTP function. However, you
can also configure default settings that are automatically used when the project is first run and then restored
as needed during runtime, overwriting any changes made by calling the CnfFTP function.

1. On the Project tab of the ribbon, in the Web group, click Email/FTP.
The Email/FTP Configuration dialog is displayed.

2. Click the FTP tab.

3. In the User Name and Password boxes, type your credentials for the FTP server.

4. In the Server and Port boxes, type the server address and port number.
The default port for FTP is 21, but it depends on your server and network configuration. Please consult
your server administrator.

5. Select Active or Passive mode, depending on the server's configuration.
Passive FTP mode can be used to bypass some network firewalls. Again, please consult your server
administrator.

Creating a New Project

Page 133

6. In the Status box, type the name of a tag (Integer type) that will receive status codes when the project
transfers a file.

7. In the Reload box, type a tag/expression. When the value of this tag/expression changes, the project will
reload these default FTP settings.

8. Click OK to save your configuration and close the dialog.

Creating a New Project

Page 134

Runtime Tasks
Use the Runtime Tasks dialog box to configure which Runtime Tasks and runtime modules must be
automatically started when the project is run, as well as to manually start and stop tasks during project run
time.

The tab lists the available tasks for the current project. Each task's status and startup mode (Manual or
Automatic) is also displayed.

Runtime Tasks dialog box

For more information about these tasks and how they interact, see Internal structure and data flow on page
25.

Tasks that are configured as Manual must be manually started and stopped. Tasks that are configured as
Automatic are automatically started when the project is run.

Creating a New Project

Page 135

To start or stop a specific task, select that task in the list and then click Start or Stop on the right. You can also
use the StartTask, EndTask, and IsTaskRunning functions to programmatically start and stop tasks.

To change the startup mode of a specific task:

1. Select the task in the list, and then click Startup on the right. The Startup dialog box is displayed.

2. Select Manual or Automatic as needed.

3. Click OK.

The following table shows which tasks are available on each target platform:

Task Windows

Background Task Yes

Communication Driver Yes

Core Runtime Yes

Database/ERP Yes

LogWin Yes

Mobile Access Yes

OPC DA Client (Legacy) Yes

OPC DA Server Yes

OPC HDA Server Yes

OPC UA Client Yes

OPC UA Server Yes

OPC XML/DA Client Yes

TCP/IP Client Yes

TCP/IP Server Yes

Viewer Yes

Watch Yes

For more information about runtime editions, see About the BLUE Open Studio 2020 software components on
page 35. For more information about target platforms, see About target platforms, product types, and target
systems on page 98.

Creating a New Project

Page 136

Run a project as a Windows service
Your BOS project can be configured to run under Windows services.

Microsoft Windows services, formerly known as NT services, allow you to create long-running programs that
run in their own Windows sessions. These sessions can be automatically started when the computer starts
up, can be paused and restarted, and do not show any user interface. These features make services ideal
for use on a server or whenever you need long-running functionality that does not interfere with other users
who are working on the same computer. You can also run services in the security context of a specific user
account that is different from the logged-on user or the default computer account. For more information
about services, please refer to the Microsoft Developer Network (MSDN) Library.

Why would you want to run your project under Windows services?

• To ensure that your project always runs with whatever system privileges it needs, regardless of the
privileges of the user that is currently logged on to Windows;

• To prevent the user from interfering with your project while it is running; or

• To let your project keep running when there is no user logged on at all.

Create and configure the Windows service

Note: To perform these actions, you must be logged on as a user with Administrator privileges and
you should know how to use the Computer Management console. (To access the console, right-click
the Computer icon, and then click Manage on the shortcut menu.)

There are two ways to create and configure the Windows service for your project: you can use the Service
Configuration tool in the BOS development environment, or you can use the command-line utility that is
installed with the BLUE Open Studio 2020 software.

Service Configuration Tool

You can configure and run a new service from within the development environment by clicking Service on the
Project tab of the ribbon. This opens the Service Configuration dialog box:

Service Configuration dialog box

Application

http://msdn.microsoft.com/

Creating a New Project

Page 137

The location of the project file (<project name>.app) that the service will load and run when
it is started. This must be a complete file path. Use the browse button (…) to find and select the
project file on your computer.

User
The Windows user account under which the service will run. This is an optional setting; if it is
not used, then the service will run under Local System.

Note: Try to avoid running the service under Local System. That account has
too much privilege to the file system and too little privilege to run the OPC Client
and Server modules properly. The best alternative is to create a user solely to run
BOS and configure its privileges to fit the needs of your project. For more about
this, see "Configuring User Privileges" below.

Password
The password for the specified user account. This is an optional setting; it is not needed if no
user is specified or if the specified user does not have a password.

Startup Type
How the Windows service will start. The following options are available:

• Automatic: The service will start automatically when the computer starts up.

• Manual: The service can be started manually in the Computer Management console or by
clicking Start, as described below.

• Disabled: The service will be created and then disabled. It cannot run until a user with
Administrator privileges enables it in the Computer Management console.

Action pane
Start or stop the service. Please note that these buttons are not enabled until the service is
actually created.

Creating a New Service

To create a new service:

1. Next to the Project box, click … to open a standard Windows file browser. Use the browser to find and select
your project file.

2. In the User and Password boxes, type the username and password (if any) for the Windows user account
under which the service will run.

3. Select a Startup Type.

4. Click Apply. The service is created with the specified settings.

After the service has been created, it will appear in the Services console (This PC > Control Panel > System and
Security > Administrative Tools > Services) under the name "BLUE Open Studio 2020". You can use that console to
quickly stop and restart the service, if you do not want to run the BOS development application.

Command-line Utility

You can also configure the service by using the command-line utility, StdSvcInst.exe. It offers a few more
options than the Service Configuration tool described above — such as specifying a name and description for
the service — and it can be used without running the BOS development application. The utility is located in
the Bin folder of your BOS program directory. To run the utility, open a command prompt, navigate to the Bin
folder (C:\Program Files (x86)\Pro-face\BLUE Open Studio 2020\Bin), and then enter the command
with the desired parameters.

The utility has the following command syntax:

StdSvcInst { -create -app filepath -startup { auto | manual | disabled } -user username
 -password password -name displayname -descr description | -start | -stop | -delete }

Creating a New Project

Page 138

-create
Creates the Windows service.

-app filepath
Specifies which project file (<project name>.app) the service will load and run when it is
started. (This is the same as the Project box in the Service Configuration dialog.) You must include
the complete file path, and it must be enclosed in quotes.

This parameter is required when you create a new service.

-startup { auto | manual | disabled }
Specifies how the service will start. (This is the same as the Startup Type in the Service
Configuration box.) This parameter is optional; if it is not used, then the default behavior for a
new service is manual.

-user username
Specifies the Window user account under which the service will run. (This is the same as the
User box in the Service Configuration dialog.) This parameter is optional; if it is not used, then the
service will run under Local System.

-password password
Specifies the password for the given user account. (This is the same as the Password box in the
Service Configuration dialog described above.) This parameter is optional; it is not needed if no
user is specified or if the specified user does not have a password.

-name displayname
Defines the service name that is displayed in the Computer Management console. The name
must be enclosed in quotes. This parameter is optional; the default name is "Studio".

-descr description
Defines the service description that is displayed in the Computer Management console. The
description must be enclosed in quotes. This parameter is optional.

-start
Starts the service. This is the same as starting the service using the Computer Management
console or by clicking Start in the Service Configuration dialog.

-stop
Stops the service. This is the same as stopping the service using the Computer Management
console or by clicking Stop in the Service Configuration dialog.

-delete
Deletes the service.

Example: Creating the Service

In this example, we want to create a new Windows service with the following options:

BOS Project File C:\Users\<user name>\Documents\BLUE Open Studio 2020 Projects
\<project name>\<project name>.app

Startup Mode Automatic

User BOS

Password BOS

Service Name "BLUE Open Studio 2020"

Service Description "Starts BOS project"

Note that the system must already have a user account named "BOS" with password "BOS".

Creating a New Project

Page 139

So, to create the service with the desired options:

1. Make sure you are logged on as a user with Administrator privileges.

2. Open a command prompt (Start > Windows System > Command Prompt).
3. Navigate to the Bin folder:

cd "C:\Program Files (x86)\Pro-face\BLUE Open Studio 2020\Bin"

4. Enter the command:

StdSvcInst –create –app "C:\Users\<user name>\Documents\BLUE Open Studio 2020
 Projects\<project name>\<project name>.app" -startup auto –user BOS -password BOS –
name "BLUE Open Studio 2020" –descr "Starts BOS project"

If the procedure is successful, then the system will display the message Service created. Otherwise, it will
display an error message.

Example: Changing the Project File

After you create the service, you may want to change the BOS project file that it runs. You can do this by
using the -app parameter:

1. Make sure you are logged on as a user with Administrator privileges.

2. Stop the service if it is running.

3. Open a command prompt.

4. Navigate to the Bin folder.

5. Enter the command — for example, to set MyProject as the project file:

StdSvcInst –app "C:\Users\<user name>\Documents\BLUE Open Studio 2020 Projects
\MyProject\MyProject.app"

Example: Deleting the Service

To delete the service:

1. Make sure you are logged on as a user with Administrator privileges.

2. Stop the service if it is running.

3. Open a command prompt.

4. Navigate to the Bin folder.

5. Enter the command:

StdSvcInst –delete

Configure user privileges
The service will run under the privileges of the user account specified in the User field of the Service
Configuration tool (or by the -user parameter of the command-line utility). If BOS needs some system resource
to which that account does not have privileges, it will fail. Therefore, you must configure the account to have
the necessary privileges.

Note: The following actions can be performed only by a user with Administrator privileges.

Enabling the User Account to Log On as a Service

Before anything else, the specified user account must be enabled to log on to the computer as a service. To
enable the account:

Creating a New Project

Page 140

1. Open the Local Security Settings console (This PC > Control Panel > System and Security > Administrative Tools > Local
Security Policy).

2. In the console window, select the User Rights Assignment folder (Security Settings > Local Policies > User Rights
Assignment).

3. In the list of policies, double-click Log on as a service.

The Log on as a service dialog box is displayed.

4. Click Add User or Group.

The Select Users or Groups dialog is displayed.

5. Type the name of the user account under which you want the service to run.

6. Click OK.

Giving the User Account Full Control Over the Project Folder

For your BOS project to run properly, the specified user account must have full control over the project folder
and all of the files in it. To give the account those privileges:

1. In Windows Explorer, locate your BOS project folder (i.e., the folder that contains the file <project
name>.APP).

2. Right-click the folder, and then click Properties on the shortcut menu.

3. In the properties sheet, click the Security tab, and then click Edit.
4. In the Permissions dialog box, click Add, and then add the user account that you specified when you

created the service.

5. Select the user that you added, and then in the list of permissions, set Full Control to Allow.

6. Click OK to apply your changes and close the dialog, and then click OK again to close the properties sheet.

Allowing the User Account to Run the OPC Client/Server Module

As mentioned previously, normal users have too few privileges to properly run the OPC Client/Server module.
Therefore, you must configure the user account to have those privileges:

1. Open the Component Services console (This PC > Control Panel > System and Security > Administrative Tools >
Component Services).

2. In the console window, select the DCOM Config folder (Console Root > Component Services > Computers > My
Computer > DCOM Config).

3. In the DCOM Config pane, right-click Studio Scada OPC Server, and then click Properties on the shortcut menu.

4. In the properties sheet, click the Identity tab.

5. Select This user and then complete the fields with the same username and password that you specified
when you created the service.

6. Click OK to apply your changes and close the properties sheet.

7. Close the Component Services console.

Troubleshooting
When you run your BOS project as a Windows service, it has no user interface. Therefore, if an error occurs,
it will only be logged as a Windows application event. You can check the messages by using the Event Viewer
console (This PC > Control Panel > System and Security > Administrative Tools > Event Viewer).

Tags and the Project Database

Page 141

Tags and the Project Database

Tags and the Project Database

Page 142

About Tags and the Project Database
Tags are a core component of any project. Simply put, project tags are variables used to receive and store data
obtained from communication with plant floor devices, from the results of calculations and functions, and
from user input. In turn, tags can be used to display information on screens (and Web pages), to manipulate
screen objects, and to control runtime tasks.

But tags are more than simple variables. The project runtime includes a real-time database manager that
provides a number of sophisticated functions such as time-stamping of any value change, checking tag values
against runtime minimum and maximum values, comparing tag values to alarming limits, and so on. A
project tag has both a value and various properties that can be accessed, some at development and others
only at runtime.

All tags are organized into one of the following categories, which are represented by folders on the Global tab of
the Project Explorer:

• Project Tags are tags that you create during project development. Places where project tags are used
include:

• Screen tags

• Tags that read from/write to field equipment

• Control tags

• Auxiliary tags used to perform mathematical calculations

• Shared Database tags are created in a PC-based control program and then imported into the tags
database.

For example you might create tags in SteepleChase and import them into your project so that it can read/
write data from a SteepleChase PC-based control product.

You cannot modify shared tags within your project — you must modify the tags in the original PC-based
control program, and then re-import them into the tags database.

• System Tags are predefined tags with predetermined functions that are used for supervisory tasks during
project run time. For example,

• Date tags hold the current date in string format

Tags and the Project Database

Page 143

• Time tags hold the current time in string format

Most system tags are read-only, which means you cannot add, edit, or remove these tags from the
database.

To see a list of the system tags, select the Global tab in the Project Explorer, open the System Tags folder, and
open the Tag List subfolder.

After creating a tag, you can use it anywhere within the project, and you can use the same tag for more than
one object or attribute.

Project Tags Folder
The Project Tags folder contains all tags created and customized by the user. You can create project tags for
displays, to read from and write to field equipment, for control, to perform mathematical calculations, and so
forth.

To update a list of project tags, right-click on the Project Tags folder (or Datasheet View icon) and select the
Refresh option.

Important: Before deleting a tag, we strongly recommend using the Object Finder tool (on the
Home tab of the ribbon) to verify that you are not using the tag in another part of the project
(screens, math sheets, so forth). If you delete a tag from the project database that is being used in
another part of the project, you will cause a compiling error and the project will function poorly.

To create a new tag, right-click on the Project Tags folder, the Tag List sub-folder, or Datasheet View icon and
select Insert Tag from the shortcut menu. You also can click Tag on the Insert tab of the ribbon.

The New Tag dialog displays, as shown in the following figure:

New Tag dialog

Use this dialog to specify the following parameters:

• Name field: Type a name for the new tag. The first character must be a letter and you can use up to 255
characters in the name.

• Array Size field: Type a value to specify the size of the tag. Any size greater than 0 implies that the tag is an
array.

• Type combo-box: Select a standard tag type from the list (Boolean, Integer, Real, or String). You also can define
new types as structures formed by the classes.

• Description text box: Type a tag description for documentation purposes.

• Scope combo-box: Click to select one of the following options:

Tags and the Project Database

Page 144

• Server (default): The tag is maintained on the project server, and it is shared by all connected thin
clients. A change to the tag value affects the entire project.

• Local: A virtual copy of the tag is maintained separately on each local station (server + clients), and a
change to the tag value affects only the station on which the change was made.

These options have no affect on projects that do not have Web capabilities. If you select a Scope option for a
project with Web capabilities, then any object property using the Local tag will not work properly over the
Web.

Note: You must create unique tag names. You cannot create a tag that uses the name of an existing
tag.

You can view or edit the properties of a tag from either of the following dialoges:

• Tag Property dialog: Click Properties on the Home tab of the ribbon when the tag name displays in the Tag
name field or double-click on the tag name in the Tag List subfolder located in the Project Tags folder.

•
Project Tags dialog: Click the Datasheet View icon in the Project Tags folder.

The Project Tags datasheet includes columns for many of the tag properties.

Project Tags datasheet

Use this dialog to create, modify, or delete tags or tag properties. You can right-click on a tag property and use
standard Windows commands to cut (Ctrl+X), copy (Ctrl+C), or paste (Ctrl+V), any tag and its properties. You
can also undo (Ctrl+Z) the last modification to a field.

Tip: You can sort the data in the Project Tags sheet and/or insert/remove additional columns to/
from the sheet by right-clicking on it and choosing the applicable option from the shortcut menu.

Tags and the Project Database

Page 145

SET TAG PROPERTIES USING THE PROJECT TAGS DATASHEET
Use the Project Tags datasheet to set the properties of project tags.

The datasheet is essentially a spreadsheet that lists all of the tags (not including shared and system tags) that
are in your project database, as well as certain properties of those tags. You can change which tag properties
are included in the spreadsheet by showing or hiding additional columns, and you can set the properties of
specific tags by entering new values in the appropriate cells.

Note: You cannot use the Project Tags datasheet during run time. If you need to edit the tags
database during run time, use the Tags Database functions.

To use the Project Tags datasheet to set tag properties:

1. At the bottom of the Project Explorer window, click Global.
The Global tab is displayed.

2. Expand the Project Tags folder, and then in the folder, double-click Datasheet View.

The Project Tags datasheet is opened in the screen/worksheet editor.

Tags and the Project Database

Page 146

3. To show/hide additional columns for other tag properties, right-click anywhere in the datasheet, and then
on the shortcut menu, click the desired properties:

• Name (cannot be hidden)

• Size (shown by default)

• Type (shown by default)

• Description (shown by default)

• Scope (shown by default)

• More Columns > Startup
• More Columns > Min
• More Columns > Max
• More Columns > Unit
• More Columns > Retentive Value
• More Columns > Retentive Parameters
• More Columns > Dead Band
• More Columns > Smoothing
• More Columns > UA External Availability (shown by default)

Each row of the datasheet represents a project tag, and each column of the datasheet represents a
property of that tag.

4. To set a tag property, enter the new value in the appropriate cell. Repeat as needed.

Some properties do not apply to all data types, so for more information about the applicable properties,
see:

• Properties of Integer and Real tags on page 169

• Properties of Boolean tags on page 174

• Properties of String tags on page 178

5. When you are done, save and close the datasheet.

EXTENDING THE PROJECT TAGS DATASHEET
The Project Tags worksheet can be extended up to 65,488 rows, if necessary.

The datasheet is normally limited to a maximum of 32,721 rows. (This is separate from the maximum size of
the project database as a whole, as well as the runtime limit that is set when you select a target platform for a
new project.)

To extend the worksheet, edit your project file (<project name>.app) to include the following entry:

[Options]
EnableExtendedTagCount=1

Doing so, however, brings the following restrictions:

• Project tags in rows 32,722 through 65,488 of the worksheet cannot be used as array indices in
expressions. That is, in an expression like Abs(numArray[indexTag]), indexTag cannot be in that range
of rows. (This restriction does not apply to the VBScript interface.)

• In a Class worksheet, only the first 32 class members can have alarms. For all class members after the
first 32, alarms will not work.

Generally speaking, extending the Project Tags datasheet stretches the capabilities of this software and
should be done only when it is absolutely necessary. It is better to design your project to conserve tags.

Tags and the Project Database

Page 147

About classes
Class tags are compound tags that permit a high-degree of encapsulation within the Tags database. Where
basic tags receive a single value, classes are designed to receive multiple values.

You can create a class-type tag by grouping basic or array tags, which then become the class members. The
maximum number of members for any class depends on the product specification.

You specify class-type tags in one of two formats:

• For a simple class tag the syntax is TagName.ClassMemberName. (Where the period is used as a separator.)

For example, if you wanted to monitor several different conditions (such as temperature, level and
pressure) in a tank, you might create a class tag as follows:

• Tank.Temperature

• Tank.Level

• Tank.Pressure

• For creating a complex class tag (using an array tag) the syntax is
ArrayTagName[ArrayIndex].ClassMemberName. (Where again, the period is used as a separator.)

If you wanted to monitor the temperature, level, and pressure conditions in multiple tanks, you might
create a class tag as follows:

• Tank[tk].Temperature

• Tank[tk].Level

• Tank[tk].Pressure

Where tk is an array index, representing the tank number.

Classes Folder
The Classes folder contains all of the project classes and their respective members. Classes are compound
tags consisting of user-defined data-type structures or tag types (Integer, Real, Boolean, and String). Classes
allow for high-level encapsulation in the project database. A class-type tag provides a set of values for its
members.

To define a class you must define the members and their types. Class members are variables that hold values
for an object with particular characteristics. Thus, the defining a class can be very useful for projects with a
repeating group of variables.

Note: When you create a class folder, a Class icon displays in the Tag List subfolder located in the
Project Tags folder.

To access the members of a class, use the following syntax with a period (.) as the separator:
TagName.MemberName. For example: tk.LEV or tk.TMP.

If the Tank tag is an array, you use the following syntax:

ArrayTagName[ArrayIndex].MemberName

For example: Tank[1].Level or Tank[n].Temperature

A class-type tag contains a set of values (rather than a single value) associated with the class. You create
class-type tags by grouping simple tags, which become the members. The maximum number of members for
any class depends on the product specification. Class members can hold standard Integer, Real, Boolean, and
String values, as mentioned previously.

To create a new class, use one of the following methods to open the Insert Class dialog:

• On the Insert tab of the ribbon, in the Global group, click Class;

• Right-click on the Classes folder, the Members List sub-folder, or the Datasheet View icon in the Classes
folder; or

• Create a new class tag in the Project Tags folder.

Tags and the Project Database

Page 148

When the Insert Class dialog displays, enter a class name in the Name field, and then click OK to close the
dialog.

Insert Class dialog

Note: You must type a unique class name. You cannot create two classes with the same name. In
addition, you cannot configure shared tags and system tags as classes.

BOS saves class folders in the Tag List subfolder (located in the Project Tags folder). You can edit the classes
in this folder.

When the Class datasheet displays, you can use it to create, modify, or delete any class members and their
viewable properties. (You cannot edit classes from the Tag Property dialog.)

Class datasheet

Note: The Classes folder can contain up to 16,384 classes and up to 4,096 members per class. This
is a technical limitation of the tags database, not a licensing restriction; unused classes do not count
against the total number of tags used.

When a new tag is created with a class type, however, each class member counts as a tag used
because each member holds a value. (For example, if you create a class with 5 members and then
create 5 tags with that class type, then you have a total of 25 tags used.) The total number of tags
used cannot exceed the number of tags supported by the project's target system / runtime license.

To edit a class member or property, you can right-click on the item and use standard Windows commands to
cut (Ctrl+X), copy (Ctrl+C), or paste (Ctrl+V). You can also undo (Ctrl+Z) the last modification to a field.

You also edit member properties as follows:

• Name field: Type a name for the member or member property. The first character must be a letter and you
can use up to 255 characters in the name.

• Type combo-box: Select a member type (Boolean, Integer, Real, or String).

• Description field: Type a description of the member property for documentation purposes.

Note: Members of a class cannot be of another class type.

Tags and the Project Database

Page 149

Also, you must create a unique class name. You cannot reuse the name of an existing class.
However, you can create members with the same name in different classes.

To delete a class and all its members, right-click on a class folder and select delete. BOS disables the delete
option if you are running any runtime tasks. In addition, you cannot delete a class if it is associated with any
tag.

Shared Database folder
The Shared Database folder shows the tags that you have added to your project through tag integration.

The folder is located on the Global tab of the Project Explorer. It provides both a Datasheet View and a Tags List
similar to the Project Tags folder, but you cannot use them to edit the properties of integrated tags. You can only
read and write actual tag values during run time. If you want to edit the properties of integrated tags, you
must use the appropriate programming software to do it on the source device(s).

Integrated tags are automatically and continuously updated as long as the project runtime server remains
connected to the source device(s). You can use these tags the same as you would use normal project tags
that you created in BLUE Open Studio 2020; it is not necessary to configure an OPC or Driver worksheet that
associates project tags with device registers.

The Shared Database folder only shows the integrated tags that you have already added to your project. If you
have not set up any tag integration sources and then used the Object Finder to select specific tags, the folder
will be empty.

For more information, see Tag Integration on page 223.

System Tags Folder
The System Tags folder contains predefined tags that have specific functions (time, date, acknowledge alarms,
storage of the logged user, and so forth). You cannot edit or delete these tags; but you can access their values
from any BOS task, copy them, and use them elsewhere.

Note: To update BOS's shared database with the system tags files, right-click on the System Tags
folder or Datasheet View icon, and then click the Refresh option.

For a list of system tags, including their properties and descriptions, see List of System Tags.

You can view the properties of a system tag using the System Tags datasheet, which contains four columns
(Name, Size, Type, and Description).

Important: Most system tags are read-only. To change the time, for example, you must use the
proper math function and set the system time rather than writing to the system time tag.

LIST OF SYSTEM TAGS
This is a list of the system tags that are available in all projects.

List of system tags

Tag Name Data Type Description Scope

AckAll Boolean Toggle to 1 to acknowledge all alarms. 1 Server

AckAlr Boolean Toggle to 1 to acknowledge the highest priority unacknowledged alarm; see
Alarm below. 1

Server

Alarm String The name of highest priority unacknowledged alarm. 1 Server

AnalogValue_ Real A simulated analog value that steadily increases from 0 to 96 at the rate of
1.6/sec. When it reaches 96, it starts over at 0.

Local

Beep Boolean The current state of the audible alarm (i.e., the "beep"): 0 = OFF, 1 = ON. 1 Local

BeepOff Boolean Toggle to 1 to mute the audible alarm (i.e., the "beep"). 1

This does not acknowledge or disable the alarm itself, and this does not
toggle the value of the Beep system tag. This only suppresses the sound of

Local

Tags and the Project Database

Page 150

Tag Name Data Type Description Scope
the alarm on the local station. If you want to disable the audible alarm on all
stations, see Customize the audible alarm on page 408.

BlinkFast Boolean Toggles every 200 milliseconds by default.
To adjust this period, edit the program settings file (Program
Settings.INI) in order to change the BlinkFast setting.

Local

BlinkSlow Boolean Toggles every 600 milliseconds by default.
To adjust this period, edit the program settings file (Program
Settings.INI) in order to change the BlinkSlow setting.

Local

CrispDisplay Integer Local

CrispInput String Local

CrispOutput String

Legacy tags used by the CrispView custom interface. They are kept in BOS only
for backward compatibility and should not be used in new projects. For more
information, please contact Technical Support.

Local

Date String The current date on the local station, formatted according to the station's current
date format (e.g., 05/15/2008). For more information about the date
format, see About the date format and how to change it on page 707.
If this tag is referenced on a project thin client, its value might be different from
the current date on the project runtime server. See ServerDate_ below.

Local

Day Integer The current day of the month, between 1 and 31. Local

DayOfYear Integer The current day of the year, between 0 and 365. Local

DigitalValue_ Boolean A simulated digital value that alternates between 0 and 1 each second. Local

Goto String The start point of a Goto…Label structure. For more information, see Using the
Goto…Label structure in a Math worksheet on page 513.

Local

GroupCNFHiLevel Integer The end of current security level range to CNF. 3 Local

GroupCNFLoLevel Integer The start of current security level range to CNF. 3 Local

GroupHiLevel Integer The maximum security level of the current user's group. 2 3 Local

GroupLoLevel Integer The minimum security level of the current user's group. 2 3 Local

GroupName String The name of the Group to which the current User belongs. If the user belongs
to more than one group, this tag will have all the group names separated by
comma. 2

Local

Hint String The hint text for the current object. For more information, see Object Properties. Local

Hour Integer The current hour of the day, between 0 and 23. Local

InputMaxRange Real The maximum value (Max) for the current tag or object; see
InputOutOfRange below.

Local

InputMinRange Real The minimum value (Min) for the current tag or object; see
InputOutOfRange below.

Local

InputOutOfRange Boolean This tag toggles to 1 when the user's input is outside the Max/Min range of the
current tag or object.

Local

Label String The end point of a Goto…Label structure. For more information, see Using the
Goto…Label structure in a Math worksheet on page 513.

Local

LastCodeChar_ Integer Last code char in the Viewer (???) Local

LptOff Boolean Toggle to 1 to suppress the printing of alarms to the default printer. 1 Local

Minute Integer The current minute of the hour, between 0 and 59. Local

Month Integer The current month of the year, between 1 and 12. Local

Next Integer The end point of a For…Next loop. For more information, see Using the For…
Next loop in a Math worksheet on page 515.

Local

Reserved___1 Boolean Reserved for future use. Local

Tags and the Project Database

Page 151

Tag Name Data Type Description Scope

Reserved___2 Boolean Reserved for future use. Local

Reserved___8 Boolean Reserved for future use. Local

Reserved___9 Boolean Reserved for future use. Local

Reserved___10 Boolean Reserved for future use. Local

Second Integer The current second of the minute, between 0 and 59. Local

ServerDate_ String The current date on the project runtime server, formatted according to the
server's current date format (e.g., 05/15/2008). For more information
about the date format, see About the date format and how to change it on page
707.

Server

ServerTime_ String The current time on the project runtime server, presented as a string in
HH:MM:SS format. For example, 23:45:03.

Server

Time String The current time on the local station, presented as a string in HH:MM:SS format.
For example, 23:45:03. (This may be different from the current time on the
project runtime server; see ServerTime_ above.)

Local

Tomorrow Integer The next day of the month, between 1 and 31. Local

UserName String The name of the User that is currently logged in. 2 Local

Weekday Integer The current day of the week on the local station, presented as an integer:
0 = Sunday, 1 = Monday, 2 = Tuesday, 3 = Wednesday, 4 = Thursday,
5 = Friday, 6 = Saturday.

Local

Year Integer The current, four-digit year (e.g., 2008). Local

Yesterday Integer The previous day of the month, between 1 and 31. Local

1 For more information about configuring alarms, see Alarms folder.
2 For more information about configuring Users, Groups, and Security Levels, see Project Security on page
652.
3 This system tag has been deprecated and is available only for backward compatibility. If the user belongs to
more than one group, this tag has a value of -1. Use the function CheckSecurityLevel instead.

Tags and the Project Database

Page 152

Designing a Tag

Naming the Tag
Observe the following guidelines when you name a tag or class member:

• Each name must be unique — you cannot specify the same name as another user-created tag or class
member, an imported tag, a system tag, or a built-in function. If you enter an existing name, the project
development environment will recognize that name and it will not prompt you to create a new tag.

• The name can be composed of uppercase and lowercase letters (A–Z, a–z), the accented forms of those
letters (e.g., é, ü, ç), standard numerals (0–9), and the underscore character (_). All other punctuation,
special characters, mathematical symbols, and non-Latin alphabets are not allowed.

• The name must begin with a letter.

• The name can be up to 255 characters long.

• Even though the name can be composed of both uppercase and lowercase letters, it is not actually case-
sensitive. It will be recognized as long as it is spelled correctly. Therefore, you can use uppercase and
lowercase letters to make the name more readable to you. For example, TankLevel and tanklevel both
refer to the same tag.

Tip: To indicate a tag will be used as an indirect tag, insert the "at" sign (@) at the beginning of the
tag name.

Choosing the Tag Type
BOS allows you to create the following types of tags:

• Basic tags hold a single value.

• Array tags are a set of tags that use the same name with unique indexes.

• Class tags are a set of compound tags that consist of user-defined data types (Boolean, Integer, Real or
String) or data-type structures.

• Indirect tags are pointers that provide indirect access to another tag type, including class tags.

A discussion of these tag types follows.

Basic Tags
A basic tag receives a single value. Typically, most tags defined for a project are basic tags. Some examples of
a basic tag include:

• TankID (to identify different tanks in your project)

• Temperature (to identify the current temperature of an object)

• Status (to identify whether an object is open or closed)

Array Tags
An array tag consists of a set of tags that all have the same name, but use unique array indexes (a matrix of n
lines and one column) to differentiate between each tag. An array indexcan be a fixed value, another tag or an
expression. Maximum array sizes are determined by product specifications.

You can use array tags to:

• Simplify configurations

• Enable multiplexing in screens, recipes, and communication interfaces

• Save development time during tag declaration

You specify array tags in one of two formats:

Tags and the Project Database

Page 153

• For a simple array tag, type:

ArrayTagName[ArrayIndex]

• For a complex array tag (where the array index is an expression consisting of a tag and an arithmetic
operation), type:

ArrayTagName[ArrayIndex+c]

Where:

• ArrayTagName is the tag name;

• [ArrayIndex] is the unique index (fixed value or another tag);

• + is an arithmetic operation; and

• c is a numerical constant.

Note:

• You must specify a maximum index for each array tag by typing a value (n) in the Array
Size column of an Project Tags datasheet or in the Array Size field on a New Tag dialog. (See
"Creating project database Tags").

When you create an n-position array tag, BOS actually creates n+1 positions (from 0 to n). For
example, if you specify ArrayTag[15], the array will have 16 elements, where 0 is the start
position and 15 is the end position.

• You must not use spaces in an array tag.

When BOS reads a tag it begins with the first character and continues until it finds the first
space or null character. Consequently, the system does not recognize any characters following
the space as part of the array tag.

For example, if you type a[second + 1] BOS regards a[second as the tag and considers it
invalid because BOS does not find (recognize) the closing bracket. However, if you type a[second
+1], this is a valid array tag.

You can specify an array tag wherever you would use a variable name. Also, because array tags greatly
simplify configuration tasks and can save development time, we suggest using them whenever possible.

For example, suppose you want to monitor the temperature of four tanks. The conventional configuration
method is:

• temperature1 — high temperature on tank 1

• temperature2 — high temperature on tank 2

• temperature3 — high temperature on tank 3

• temperature4 — high temperature on tank 4

You can use array tags to simplify this task as follows (where [n] represents the tank number):

• temperature[n] — high temperature on tank n

The following table contains some additional examples of an array tag:

Array Tag Examples

Array Tag Example Description

Tank[1], Tank[2], Tank[500] Simple arrays, where the array indexes (1, 2, and 500) are numerical constants. For example, tank
numbers.

Tank[tk] A simple array, where the array index (tk) is a tag. For example, a tag representing the tank number.

Tank[tk+1] A complex array, where the array index (tk+1) is an expression. For example, the value of tk (tank
number) plus 1.

Tags and the Project Database

Page 154

Note: When using another tag to reference the index of an array, if the value of the tag is outside
the size of the array, then the following results are given:

• If IndexTag is greater than the size of the array, then MyArray[IndexTag] will point to the end
position of the array; and

• If IndexTag is less than 0, then MyArray[IndexTag] will point to the start position of the array
(i.e., MyArray[0]).

Indirect Tags
Indirect tags "point" to other database tags (including class-type tags). Using indirect tags can save
development time because they keep you from having to create duplicate tags (and the logic built into them).

You create an indirect tag from any string-type tag simply by typing the @ symbol in front of the tag name
@TagName.

• To reference a simple tag, assume the strX tag (a string tag) holds the value "Tank", which is the name of
another tag, then reading from or writing to @strX provides access to the value of the Tank tag.

• To reference a class-type tag and member, you simply create a string tag that points to the class tag and
the member. For example, if a tag strX (a string tag) holds the value "Tank.Level", which is the name
of the class tag, then reading from or writing to @strX provides access to the value of the Tank.Level
member.

• You can also point directly to a class-type tag member; by identifying a class-type that points to a class
member. For example: to access the Tank.Level member of the class, you must store the "Tank" value
within the strX tag and use the syntax, @strX.Level.

Choosing the Tag Data Type
Another consideration when designing a project tag is what type of data the tag will receive. The following data
types are recognized:

• Boolean (one bit): Simple boolean with the possible values of 0 (false) and 1 (true). Equivalent to the "bool"
data type in C++. Typically used for turning objects off and on or for closing and opening objects.

• Integer (four bytes): Integer number (positive, negative, or zero) internally stored as a signed 32-bit.
Equivalent to the "signed long int" data type in C++. Typically used for counting whole numbers or setting
whole number values. Examples: 0, 5, −200.

• Real (floating point, eight bytes): Real number that is stored internally as a signed 64-bit. Equivalent to the
"double" data type in C++. Typically used for measurements or for decimal or fractional values.

• String (alphanumeric data, up to 1024 characters): Character string up to 1024 characters that holds
letters, numbers, or special characters. Supports both ASCII and UNICODE characters. Examples: Recipe
product X123, 01/01/90, *** On ***.

You can also assign a new tag to a class that you have previously created.

You can find these tag types (and their respective icons) in the Global tab of the Project Explorer.

Choosing the Tag Scope
BOS allows you to decide whether a tag "lives" on the project server or on each local station:

• Server (default): The tag is maintained on the project server, and it is shared by all connected thin clients.
A change to the tag value affects the entire project.

• Local: A virtual copy of the tag is maintained separately on each local station (server + clients), and a
change to the tag value affects only the station on which the change was made.

Tags and the Project Database

Page 155

Creating Database Tags

Adding Tags to the Datasheet
Use the following steps to create tags from the Project Tags datasheet:

1. Select the Global tab in the Project Explorer, and then in that tab, expand the Project Tags folder.

2. Double-click Datasheet View.

The Project Tags datasheet is opened for editing.

3. Locate an empty line in the datasheet and then configure the following fields. You can press the Tab key to
move to the next field.
Name

Type a name using the proper syntax. For more information, see Naming the Tag on page 152.
Array Size

The default value is 0, which indicates it is a simple tag. To make the tag an array, type a value
to specify the maximum index of the array.

Type
Click the arrow to select a data type — Boolean, Integer, Real, or String — of the tag. For more
information, see Choosing the Tag Data Type on page 154.

Description
Type a description of the tag. This is for documentation purposes only, and therefore it is
optional.

Scope
Click the arrow to select the scope — Server or Local — of the tag. For more information, see
Choosing the Tag Scope on page 154.

UA External Availability
Click the arrow to select the availability — Disabled, Read Only, or Read/Write — of the tag to
OPC UA clients. For more information, see OPC UA Server on page 637.

4. Click in a new line to create another tag, or if you have no other tags to create, then save and close the
Project Tags datasheet.

Tags and the Project Database

Page 156

The following example shows a variety of tags configured in an Project Tags datasheet.

An example of the Project Tags datasheet

Creating Tags "On-the-Fly"
Instead of opening the Project Tags datasheet every time you want to create a new tag, you can create
individual tags "on-the-fly" by performing any of the following actions:

• On the Insert tab of the ribbon, in the Global group, click Tag;

Tags and the Project Database

Page 157

• In the Project Explorer, right-click on the Project Tags folder, the Datasheet View icon, or the Tag List subfolder
and then select Insert Tag from the shortcut menu; or

Inserting a Tag
• Type a new tag name into any Tag/Expression text field (available from Object Properties dialogs, worksheets,

and so forth). When the Question dialog asks if you want to create a new tag, click Yes.

Creating a New Tag
Any of these actions causes a New Tag dialog to display, which you can then complete as needed. For more
information, see "Configuring a New Tag".

Editing Tags
You can change the properties of a tag at any time during development or runtime. This section describes two
methods you can use to edit tags.

Note: You can right-click on a tag property and use standard Windows commands to cut (Ctrl
+X), copy (Ctrl+C), or paste (Ctrl+V) any tag and its properties. You can also Undo (Ctrl+Z) the last
modification to a field.

From the Project Tags Datasheet
Use the following steps to edit one or more tags in the Project Tags datasheet:

1. Select the Global tab, open the Project Tags folder, and double-click on the Datasheet View button.

2. When the Project Tags datasheet opens, locate your tag.

3. Double-click in the column containing the information to be changed, and then type the new information
into the datasheet.

Tags and the Project Database

Page 158

If you changed a tag name, the Confirm Global Replace dialog box is displayed. Click Yes to replace the
tag throughout your project, so that all objects, animations, tasks, and scripts will keep using the same
renamed tag. Click No to change the tag name only, but be aware that if the old tag name is still used
anywhere in your project, it will cause compiler errors when you try to run your project. To find where the
old tag name is used, verify your project.

When the Confirm Global Replace dialog box is displayed, you can also select the Do not display this dialog box
again check box. If you select the check box, you will no longer be able to globally replace tags by editing
the datasheet. It is equivalent to always clicking No in the Confirm Global Replace dialog box, as described
above.

4. When you are finished editing, save your changes to the tags database.

Tip: You can sort the data in the Project Tags sheet and/or insert/remove additional columns
to/from the sheet by right-clicking on it and choosing the applicable option from the shortcut
menu.

From the Tag List Folder
Use the following steps to edit one or more tags from the Tag List folder:

1. Select the Global tab, open the Project Tags folder, and double-click on the the Tag List folder to view a list
of all your tags.

2. Locate your tag and double-click on the tag name to open a Properties dialog.

Note: You also can right-click on the tag's icon and choose Properties from the shortcut menu.

Properties dialog

The Properties dialog contains fields and combo-boxes that correspond in name and function to the
columns on the Project Tags datasheet.

3. Make your changes in the Properties dialog as follows:

• To change the current Type or Scope properties, click the arrow button and select the new information
from the list.

• To change the Size or Description, highlight the existing text and type the new information into the text
box.

4. Click OK to save your changes to the tags database and close the Properties dialog.

Tip: You can sort the data in the Project Tags sheet and/or insert/remove additional columns
to/from the sheet by right-clicking on it and choosing the applicable option from the shortcut
menu.

Tags and the Project Database

Page 159

About classes
Class tags are compound tags that permit a high-degree of encapsulation within the Tags database. Where
basic tags receive a single value, classes are designed to receive multiple values.

You can create a class-type tag by grouping basic or array tags, which then become the class members. The
maximum number of members for any class depends on the product specification.

You specify class-type tags in one of two formats:

• For a simple class tag the syntax is TagName.ClassMemberName. (Where the period is used as a separator.)

For example, if you wanted to monitor several different conditions (such as temperature, level and
pressure) in a tank, you might create a class tag as follows:

• Tank.Temperature

• Tank.Level

• Tank.Pressure

• For creating a complex class tag (using an array tag) the syntax is
ArrayTagName[ArrayIndex].ClassMemberName. (Where again, the period is used as a separator.)

If you wanted to monitor the temperature, level, and pressure conditions in multiple tanks, you might
create a class tag as follows:

• Tank[tk].Temperature

• Tank[tk].Level

• Tank[tk].Pressure

Where tk is an array index, representing the tank number.

Classes Folder
The Classes folder contains all of the project classes and their respective members. Classes are compound
tags consisting of user-defined data-type structures or tag types (Integer, Real, Boolean, and String). Classes
allow for high-level encapsulation in the project database. A class-type tag provides a set of values for its
members.

To define a class you must define the members and their types. Class members are variables that hold values
for an object with particular characteristics. Thus, the defining a class can be very useful for projects with a
repeating group of variables.

Note: When you create a class folder, a Class icon displays in the Tag List subfolder located in the
Project Tags folder.

To access the members of a class, use the following syntax with a period (.) as the separator:
TagName.MemberName. For example: tk.LEV or tk.TMP.

If the Tank tag is an array, you use the following syntax:

ArrayTagName[ArrayIndex].MemberName

For example: Tank[1].Level or Tank[n].Temperature

A class-type tag contains a set of values (rather than a single value) associated with the class. You create
class-type tags by grouping simple tags, which become the members. The maximum number of members for
any class depends on the product specification. Class members can hold standard Integer, Real, Boolean, and
String values, as mentioned previously.

To create a new class, use one of the following methods to open the Insert Class dialog:

• On the Insert tab of the ribbon, in the Global group, click Class;

• Right-click on the Classes folder, the Members List sub-folder, or the Datasheet View icon in the Classes
folder; or

Tags and the Project Database

Page 160

• Create a new class tag in the Project Tags folder.

When the Insert Class dialog displays, enter a class name in the Name field, and then click OK to close the
dialog.

Insert Class dialog

Note: You must type a unique class name. You cannot create two classes with the same name. In
addition, you cannot configure shared tags and system tags as classes.

BOS saves class folders in the Tag List subfolder (located in the Project Tags folder). You can edit the classes
in this folder.

When the Class datasheet displays, you can use it to create, modify, or delete any class members and their
viewable properties. (You cannot edit classes from the Tag Property dialog.)

Class datasheet

Note: The Classes folder can contain up to 16,384 classes and up to 4,096 members per class. This
is a technical limitation of the tags database, not a licensing restriction; unused classes do not count
against the total number of tags used.

When a new tag is created with a class type, however, each class member counts as a tag used
because each member holds a value. (For example, if you create a class with 5 members and then
create 5 tags with that class type, then you have a total of 25 tags used.) The total number of tags
used cannot exceed the number of tags supported by the project's target system / runtime license.

To edit a class member or property, you can right-click on the item and use standard Windows commands to
cut (Ctrl+X), copy (Ctrl+C), or paste (Ctrl+V). You can also undo (Ctrl+Z) the last modification to a field.

You also edit member properties as follows:

• Name field: Type a name for the member or member property. The first character must be a letter and you
can use up to 255 characters in the name.

• Type combo-box: Select a member type (Boolean, Integer, Real, or String).

• Description field: Type a description of the member property for documentation purposes.

Note: Members of a class cannot be of another class type.

Tags and the Project Database

Page 161

Also, you must create a unique class name. You cannot reuse the name of an existing class.
However, you can create members with the same name in different classes.

To delete a class and all its members, right-click on a class folder and select delete. BOS disables the delete
option if you are running any runtime tasks. In addition, you cannot delete a class if it is associated with any
tag.

Tags and the Project Database

Page 162

Tag Properties
Tag properties are metadata associated with each project tag in the database.

Most of the time, you may think of project tags as simple program variables that store values, because that is
how you typically use them in your project. Each tag, however, is in fact a complex data structure that can be
handled in different ways during project run time, depending on how the tag properties are configured.

In addition to handling standard metadata like array size, data type, description, and scope, the tag properties
can be used to configure alarm conditions, get tag quality, convert between different units of measurement,
access individual bits, retain values through project restarts, save historical data, and so on.

Many tag properties can be viewed and edited directly in the Project Tags datasheet. In fact, every column in
the datasheet (including Name) is another tag property, and while the datasheet shows the most common
properties by default, you can configure it to show other properties in additional columns.

Tags and the Project Database

Page 163

You can also use the Properties command (on the Home tab of the ribbon, in the Tags group) to open the Tag
Properties dialog box, which shows all of the properties for a selected tag.

Finally, you can get and set many tag properties during project run time, just as you would get and set the
values of the project tags themselves.

Set tag properties using the Project Tags datasheet
Use the Project Tags datasheet to set the properties of project tags.

The datasheet is essentially a spreadsheet that lists all of the tags (not including shared and system tags) that
are in your project database, as well as certain properties of those tags. You can change which tag properties
are included in the spreadsheet by showing or hiding additional columns, and you can set the properties of
specific tags by entering new values in the appropriate cells.

Note: You cannot use the Project Tags datasheet during run time. If you need to edit the tags
database during run time, use the Tags Database functions.

To use the Project Tags datasheet to set tag properties:

1. At the bottom of the Project Explorer window, click Global.
The Global tab is displayed.

Tags and the Project Database

Page 164

2. Expand the Project Tags folder, and then in the folder, double-click Datasheet View.

The Project Tags datasheet is opened in the screen/worksheet editor.

3. To show/hide additional columns for other tag properties, right-click anywhere in the datasheet, and then
on the shortcut menu, click the desired properties:

• Name (cannot be hidden)

• Size (shown by default)

• Type (shown by default)

• Description (shown by default)

• Scope (shown by default)

• More Columns > Startup
• More Columns > Min
• More Columns > Max
• More Columns > Unit

Tags and the Project Database

Page 165

• More Columns > Retentive Value
• More Columns > Retentive Parameters
• More Columns > Dead Band
• More Columns > Smoothing
• More Columns > UA External Availability (shown by default)

Each row of the datasheet represents a project tag, and each column of the datasheet represents a
property of that tag.

4. To set a tag property, enter the new value in the appropriate cell. Repeat as needed.

Some properties do not apply to all data types, so for more information about the applicable properties,
see:

• Properties of Integer and Real tags on page 169

• Properties of Boolean tags on page 174

• Properties of String tags on page 178

5. When you are done, save and close the datasheet.

Set tag properties using the Properties command
Use the Properties command to set the properties of project tags.

The Properties command opens the Tag Properties dialog box, which you can use to set any and all of the
properties of a selected tag. This includes alarms and history properties, which cannot be set using the
Project Tags datasheet. However, when you use the Properties command, you can set the properties of only one
project tag at a time.

Note: You cannot use the Properties command during run time. If you need to edit the tags database
during run time, use the Tags Database functions.

To use the Properties command to set tag properties:

1. At the bottom of the Project Explorer window, click Global.
The Global tab is displayed.

Tags and the Project Database

Page 166

2. Expand the Project Tags folder, and then in that folder, expand the Tag List folder.
A list of all of the project tags is displayed.

3. In the Tag List folder, select the project tag for which you want to set properties.

4. On the Home tab of the ribbon, in the Tags group, click Properties.

The Tag Properties dialog box for the selected tag is displayed.

5. Use the dialog box to set the tag properties as needed, keeping in mind that the properties are distributed
among multiple tabs in the dialog box.

Tags and the Project Database

Page 167

Some properties do not apply to all data types, so for more information about the applicable properties,
see:

• Properties of Integer and Real tags on page 169

• Properties of Boolean tags on page 174

• Properties of String tags on page 178

6. When you are done, click OK to save your changes and close the dialog box.

Reference a tag property instead of a project tag
You can use special syntax to reference a tag property in the same way that you reference a project tag.

Anywhere in your project that you would normally reference a project tag — for example, when you configure
a tag/expression to control the visibility of a screen object — you can reference a tag property instead, using
the following syntax:

tagname->property

Examples:

MyInteger->Quality

MyReal->HiHi

MyClass.FirstMember->MemberName

MyArray[1]->Index

This works everywhere in BLUE Open Studio 2020, including in VBScript and in function parameters, and it
can be used to both get and set the values of tag properties.

Tip: When tag properties are referenced like this, they are also known as tag fields.

To get the correct spelling of property names, as well as some property-specific limitations, see Complete list
of tag properties on page 179.

Using TagsDB functions to edit the tags database during run time
Use the Tags Database (TagsDB) functions to add and remove tags, classes, and class members during project
run time, as well as to set properties and alarm conditions on tags.

There are several important things to keep in mind when you use TagsDB functions, because the functions
can do much more than set and get tag values. They actually change the structure of the tags database,
which can cause serious problems for a running project and all connected thin clients if it is not done
properly. As such, most TagsDB functions can be executed only under the following limitations.

First, you must use the SCADA runtime edition for Windows to run your project — in other words, you must
install the full Studio software on a Windows computer and then license it for "Runtime only". (You can also
license the software for "Engineering only", but your project will run for only 72 hours before it needs to be
restarted.) The TagsDB functions use the project development environment's database editor in essentially
the same way that you do when you manually edit your project during run time. Due to this limitation, the
TagsDB functions cannot be used in projects that are developed for and run on embedded devices.

Second, the TagsDB functions can be called only by scripts that are executed on the project runtime server.
The functions cannot be executed on project thin clients because a client cannot make structural changes
to the tags database without interfering with other clients, decreasing run-time performance, and potentially
corrupting the database. (In this case, "project thin clients" includes the Viewer module that runs on the same

Tags and the Project Database

Page 168

computer as the project runtime server, because it runs as a separate process on that computer.) Therefore,
generally speaking…

TagsDB functions can be used in:

• The Startup Script, which is executed when the project itself is run;

• Script Groups, which are periodically scanned by the Background Task; and

• Global Procedures that are called by the Startup Script or Script Groups.

TagsDB functions cannot be used in:

• The Graphics Script, which is executed by each project thin client client when it starts;

• Screen Scripts, which are attached to project screens and executed when those screens are opened; and

• Command animations.

To work around this limitation, create a Script Group to call the TagsDB functions and then configure a
trigger to control the execution of that Script Group.

Third, in any script that calls TagsDB functions to make structural changes to the tags database, you must
call the TagsDBBeginEdit function at the beginning of the script and the TagsDBEndEdit function at the end
of the script. The TagsDBBeginEdit function locks the database for editing and prevents any other run-time
changes. The TagsDBEndEdit function applies the changes made by TagsDB functions and then allows the
database to resume normal run-time behavior. Both functions must be called in the same script, because that
script (more specifically, the program thread running that script) owns the tags database while it is locked.
You cannot call TagsDBBeginEdit in one script and then call TagsDBEndEdit in another script.

Normally, when a project is edited during run time, the project runtime server and all project thin clients
must be updated with the changes as they are made. This is not a problem when you manually edit your
project, because you make your changes slowly and one at a time. In contrast, the TagsDB functions allow
you to make a large number of changes quickly, so updating the server and clients with all of those changes
while the project is running can severely decrease run-time performance. Therefore, to maintain performance
and protect the tags database, the server — including all background tasks such as alarms, trends, and other
scripts — is effectively paused when the TagsDBBeginEdit function is executed, and then the changes are
applied as a batch when the TagsDBEndEdit function is executed. Also, as part of this update process, project
screens that were already open on clients will be reopened and their OnOpen screen scripts will be executed
again.

Note: The TagsDBBeginEdit function has a persistent effect, which means that if you call the
function to lock the tags database during project run time and then stop the project, the database
will remain locked and you will not be able to manually edit it.

Restarting the project may or may not unlock the database, depending on how you developed your
project and which function call locked the database in the first place. As such, while the project is
stopped, you should use the Watch window to manually call the TagsDBEndEdit function. When it is
successfully executed, you can safely restart the project.

Examples
The following example shows how to use the TagsDB functions in VBScript to add a new class, then add a
new class member to that class, then add a new tag of that class, then set an alarm and a trend on that tag.

If($TagsDBBeginEdit()=0) Then
 If($TagsDBAddClass("TempClass")=0) Then
 If($TagsDBAddClassMember("TempClass","TempMember","Real")=0) Then
 If($TagsDBAddTag("TempTag","TempClass",2,0)=0) Then
 If($TagsDBSetAlarm("TempTag[0].TempMember",1,0,3.5)<>0) Then
 $Msg = "Alarm not Set"
 End If
 If($TagsDBSetTrend("TempTag[0].TempMember",0,1)<>0) Then
 $Msg = "Trend not Set"
 End If
 Else
 $Msg = "Tag not created"
 End If
 Else

Tags and the Project Database

Page 169

 $Msg = "Class Member not added"
 End If
 Else
 $Msg = "Class not created"
 End If
 $TagsDBEndEdit()
Else
 $Msg = "Tag functions not enabled"
End If

Please note how the script begins with the TagsDBBeginEdit function and then ends with the
TagsDBEndEdit function. Also, see how the nested If…Then…Else structures ensure that each function is
executed successfully (i.e., returns a value of 0) before the next one is attempted.

The following example shows how to remove the alarm, trend, tag, class member, and class, in reverse order
from how they were added in the previous example.

If($TagsDBBeginEdit()=0) Then
 If($TagsDBRemoveAlarm("TempTag",1)<>0) Then
 $Msg = "Alarm not removed"
 End If
 If($TagsDBRemoveTrend("TempTag")<>0) Then
 $Msg = "Trend not removed"
 End If
 If($TagsDBRemoveTag("TempTag")=0) Then
 If($TagsDBRemoveClassMember("TempClass","TempMember")<>0) Then
 $Msg = "Class member not removed"
 End If
 If($TagsDBRemoveClass("TempClass")<>0) Then
 $Msg = "Class not removed"
 End If
 Else
 $Msg = "Tag not removed"
 End If
 $TagsDBEndEdit()
Else
 $Msg = "Tag functions not enabled"
End If

It is not absolutely necessary to remove the alarm and trend before removing the tag they are on, because
they are discarded with the rest of the tag properties and other metadata when the tag itself is removed. They
are included in the example above simply to be thorough. In contrast, the class member and class cannot be
removed until every tag in that class is removed.

Properties of Integer and Real tags
Each Integer and Real tag in the tags database has several properties (or metadata) in addition to its actual
value. You can set these properties by using the Project Tags datasheet, the Properties command on the ribbon,
or the Tags Database functions.

Parameters
The following list describes the general parameters of Integer and Real tags. These parameters determine how
the selected tag is used in your project.

Tags and the Project Database

Page 170

Tip: You can also use the Project Tags datasheet to set the parameters of a project tag. This dialog
box reflects any changes you make in that datasheet, and vice versa. For more information, see Set
tag properties using the Project Tags datasheet on page 145.

Retentive Value

Continuously save the actual tag value during project run time, in case the project stops
unexpectedly. When the project is run again, the project tag will start with the last saved value.

Selecting this option will increase drive access during project run time and therefore can reduce
performance.

Retentive Parameters

Continuously save the tag properties for the project tag during project run time, in case the
project stops unexpectedly. When the project is run again, the project tag will start with the last
saved properties.

Selecting this option will increase drive access during project run time and therefore can reduce
performance.

Startup Value

The value with which the project tag will start when the project is run.

If the Retentive Value option is selected, the last saved value will be used instead of the startup
value.

Engineering Units
Min

The minimum allowed value of the project tag. Any attempt to set a value less than this
minimum will be ignored, and the project will generate a log message indicating that it tried to
set a tag value outside of the defined range. For more information, see Change how out-of-range
tag values are handled on page 185.

Tags and the Project Database

Page 171

Note: If both Min and Max are 0, there is no minimum value.

Max

The maximum allowed value of the project tag. Any attempt to set a value greater than this
maximum will be ignored, and the project will generate a log message indicating that it tried to
set a tag value outside of the defined range. For more information, see Change how out-of-range
tag values are handled on page 185.

Note: If both Min and Max are 0, there is no maximum value.

Unit

A brief description or reference (up to 7 characters) for the project tag.

This parameter is typically used to describe the engineering units (e.g., kg, BTU, PSI) in which
the tag value is given. It is for reference only and does not affect the actual tag value.

Signal Conditioning
Dead Band

The minimum amount by which the tag value must change in order for the new tag value to be
saved. (By default, every change in the tag value is saved.)

To enable the dead band, click the Dead Band check box and then type the dead band value in the
box to the right. Do not specify a percentage; the dead band value must be specified in the same
units as the tag value.

Smoothing

Average together successive changes in the tag value in order to reduce statistical noise.

Note: This can change the actual tag value.

Alarms
The following list describes the alarm properties of Integer and Real tags. These properties determine how the
project checks for alarm conditions on the selected tag.

Tags and the Project Database

Page 172

Tip: You can also use an Alarm worksheet to set the alarm properties of a project tag. This dialog
box reflects any changes you make in that worksheet, and vice versa. For more information, see
Alarm worksheet on page 374.

Alarms Enabled
Enable checking for alarm conditions on this tag, as configured below.

Remote Ack tag
The name of another tag that can be used to acknowledge alarms on this tag. When the value of
the specified tag changes, all of the unacknowledged alarms are acknowledged.

Dead Band Value

The minimum amount by which the tag value must come within its normal range in order for an
active alarm to be normalized.

For example, a tag has a HiHi alarm limit of 90 and a dead band value of 5. When the tag
value is greater than or equal to 90, the alarm becomes active. After that, the alarm becomes
normalized only when the tag value is less than or equal to 85.

Translation Enabled

Enable translation of the alarm messages that are configured for this tag. For more information
about translation, see Project Localization on page 694.

Note: Only the original alarm messages are saved in the historical database. The
translated alarm messages are saved in a separate file in your project folder at:
<project name>/Database/alarm.txt

Alarms

The alarm conditions that are configured for this tag. To enable a specific type of alarm
condition, click the corresponding check box to the left. When it is enabled, additional properties
become available:

Tags and the Project Database

Page 173

Limit
For HiHi, Hi, Lo, and LoLo, the limit is the actual value that the tag must exceed in order to
activate the alarm.

For Rate, the limit is the instantaneous rate of change that the tag must exceed in order to
activate the alarm. The instantaneous rate of change is calculated by averaging the changes in
tag value over time. Please note that if you enable this alarm type and specify a limit for it, you
must also select the frequency at which the rate will be checked. For example, if the alarm is
configured with a limit of 10 and a frequency of 1/s, and the tag value changes from 50 to 65
within one second, the alarm will become active.

For Deviation+ and Deviation-, the limit is value that is added to or subtracted from the deviation set
point. Please note that if you enable either of these alarm types and specify limits for them, you
must also specify a value for Deviation Setpoint below.

Message
The message that is displayed when the alarm becomes active. Messages can be displayed in an
Alarm/Event Control object, emailed to personnel, saved in the historical database, and/or sent
to the run-time log, depending on how your project is configured.

Group
The Alarm group/worksheet to which this alarm condition belongs.

Priority
The priority number associated with the alarm. When viewing alarms in an Alarm/Event Control
object , the user can sort and/or filter the alarms by priority.

Selection
An alias (e.g., AreaA, AreaB) associated with the alarm. When viewing alarms in an Alarm/Event
Control object, the user can sort and/or filter the alarms by their selection values.

Deviation SetPoint

The set point for the Deviation+ and Deviation- alarm conditions. When the actual tag value deviates
from this set point, the appropriate alarm becomes active.

If you want to be able to change the set point during project run time, type the name of another
project tag (e.g., MyDevSetPoint). The value of that tag will be used as the set point.

Deviation Dead Band
The dead band for the Deviation+ and Deviation- alarm types, similar to Dead Band Value above for the
other alarm types. This is the minimum amount by which the tag value must come within its
normal range in order for an active alarm to be normalized.

For more information about the types of alarms and how they are used during project run time, see Alarm
worksheet on page 374.

History
The following list describes the history properties of Integer and Real tags. These properties determine how the
project saves historical data for the selected tag.

Tags and the Project Database

Page 174

Tip: You can also use a Trend worksheet to set the history properties of a project tag. This dialog
box reflects any changes you make in that worksheet, and vice versa. For more information, see
Trend worksheet on page 410.

History Enabled
Enable the saving of historical data for this tag.

Group Number
The Trend group/worksheet to which this project tag is assigned.

Log Dead Band
The amount by which the actual tag value must change in order for the change to be saved in
the historical database.

Properties of Boolean tags
Each Boolean tag in the tags database has several properties (or metadata) in addition to its actual value. You
can set these properties by using the Project Tags datasheet, the Properties command on the ribbon, or the Tags
Database functions.

Parameters
The following list describes the general parameters of Boolean tags. These parameters determine how the
selected tag is used in your project.

Tags and the Project Database

Page 175

Tip: You can also use the Project Tags datasheet to set the parameters of a project tag. This dialog
box reflects any changes you make in that datasheet, and vice versa. For more information, see Set
tag properties using the Project Tags datasheet on page 145.

Retentive Value

Continuously save the actual tag value during project run time, in case the project stops
unexpectedly. When the project is run again, the project tag will start with the last saved value.

Selecting this option will increase drive access during project run time and therefore can reduce
performance.

Retentive Parameters

Continuously save the tag properties for the project tag during project run time, in case the
project stops unexpectedly. When the project is run again, the project tag will start with the last
saved properties.

Selecting this option will increase drive access during project run time and therefore can reduce
performance.

Startup Value

The value with which the project tag will start when the project is run.

If the Retentive Value option is selected, the last saved value will be used instead of the startup
value.

Unit

A brief description or reference (up to 7 characters) for the project tag.

This property is typically used to describe the engineering units in which the tag value is given.
Boolean and String tags do not have engineering units, however, so this property can also be
used to supplement the normal tag description.

Alarms
The following list describes the alarm properties of Boolean tags. These properties determine how the project
checks for alarm conditions on the selected tag.

Tags and the Project Database

Page 176

Tip: You can also use an Alarm worksheet to set the alarm properties of a project tag. This dialog
box reflects any changes you make in that worksheet, and vice versa. For more information, see
Alarm worksheet on page 374.

Alarms Enabled
Enable checking for alarm conditions on this tag, as configured below.

Remote Ack tag
The name of another tag that can be used to acknowledge alarms on this tag. When the value of
the specified tag changes, all of the unacknowledged alarms are acknowledged.

Translation Enabled

Enable translation of the alarm messages that are configured for this tag. For more information
about translation, see Project Localization on page 694.

Note: Only the original alarm messages are saved in the historical database. The
translated alarm messages are saved in a separate file in your project folder at:
<project name>/Database/alarm.txt

Alarms

The alarm conditions that are configured for this tag. To enable a specific type of alarm
condition, click the corresponding check box to the left. When it is enabled, additional properties
become available:

Message
The message that is displayed when the alarm becomes active. Messages can be displayed in an
Alarm/Event Control object, emailed to personnel, saved in the historical database, and/or sent
to the run-time log, depending on how your project is configured.

Group
The Alarm group/worksheet to which this alarm condition belongs.

Priority

Tags and the Project Database

Page 177

The priority number associated with the alarm. When viewing alarms in an Alarm/Event Control
object , the user can sort and/or filter the alarms by priority.

Selection
An alias (e.g., AreaA, AreaB) associated with the alarm. When viewing alarms in an Alarm/Event
Control object, the user can sort and/or filter the alarms by their selection values.

Text values
Text that is displayed in the Value column of an Alarm/Event Control object when each type
of alarm becomes active. These are typically mnemonics that correspond to the states of the
Boolean tag — for example, "Closed" when the Off alarm is active and "Open" when the On alarm
is active. If you do not configure these mnemonics, the actual tag value (0 or 1) will be displayed
instead.

For more information about the types of alarms and how they are used during project run time, see Alarm
worksheet on page 374.

History
The following list describes the history properties of Boolean tags. These properties determine how the project
saves historical data for the selected tag.

Tip: You can also use a Trend worksheet to set the history properties of a project tag. This dialog
box reflects any changes you make in that worksheet, and vice versa. For more information, see
Trend worksheet on page 410.

History Enabled
Enable the saving of historical data for this tag.

Group Number
The Trend group/worksheet to which this project tag is assigned.

Tags and the Project Database

Page 178

Properties of String tags
Each String tag in the tags database has several properties (or metadata) in addition to its actual value. You
can set these properties by using the Project Tags datasheet, the Properties command on the ribbon, or the Tags
Database functions.

Parameters
The following list describes the general parameters for String tags.

Tip: You can also use the Project Tags datasheet to set the parameters of a project tag. This dialog
box reflects any changes you make in that datasheet, and vice versa. For more information, see Set
tag properties using the Project Tags datasheet on page 145.

Retentive Value

Continuously save the actual tag value during project run time, in case the project stops
unexpectedly. When the project is run again, the project tag will start with the last saved value.

Selecting this option will increase drive access during project run time and therefore can reduce
performance.

Note: Due to a technical limitation in BLUE Open Studio 2020, only the first 100
characters of a string can be saved in this way.

Retentive Parameters

Continuously save the tag properties for the project tag during project run time, in case the
project stops unexpectedly. When the project is run again, the project tag will start with the last
saved properties.

Selecting this option will increase drive access during project run time and therefore can reduce
performance.

Startup Value

The value with which the project tag will start when the project is run.

If the Retentive Value option is selected, the last saved value will be used instead of the startup
value.

Unit

A brief description or reference (up to 7 characters) for the project tag.

Tags and the Project Database

Page 179

This property is typically used to describe the engineering units in which the tag value is given.
Boolean and String tags do not have engineering units, however, so this property can also be
used to supplement the normal tag description.

History
The following list describes the history properties of String tags. These properties determine how the project
saves historical data for the selected tag.

Tip: You can also use a Trend worksheet to set the history properties of a project tag. This dialog
box reflects any changes you make in that worksheet, and vice versa. For more information, see
Trend worksheet on page 410.

History Enabled
Enable the saving of historical data for this tag.

Group Number
The Trend group/worksheet to which this project tag is assigned.

Complete list of tag properties
This is a complete list of all tag properties that are supported by the project tags database. Please note that
some properties do not apply to all data types.

Data Type of Tag…Property Name Description R or
R/W

Data Type
of Property

Bool Int Real Str

Retain

Name The name of the tag, as configured in the
Project Tags datasheet.

R String, up to
255 chars

✓ ✓ ✓ ✓ n/a

MemberName The name of the class member in a properly
configured class. The syntax must be:

class.member-
>MemberName

Example: Tank.Lvl->MemberName
returns Lvl.

R String, up to
255 chars

✓ ✓ ✓ ✓ n/a

Size Array size. (An array is any project tag of Size
greater than 0.) If the tag is not an array, this
returns 0.

R Integer ✓ ✓ ✓ ✓ n/a

Tags and the Project Database

Page 180

Data Type of Tag…Property Name Description R or
R/W

Data Type
of Property

Bool Int Real Str

Retain

Index The index number of an element in an array.
The syntax must be:

tagname[index]->Index

Example: Tag[1]->Index returns 1.

R Integer ✓ ✓ ✓ ✓ n/a

Description The description of the tag, as configured in the
Project Tags datasheet.

R String, up to
128 chars

✓ ✓ ✓ ✓ ✓

Quality Tag quality, which can be one of the following:

• BAD (0–63)

• UNCERTAIN (64–127)

• N/A (128–191)

• GOOD (192–255)

The project runtime updates this property
whenever the tag receives a value returned
by an expression or received from a
communication task (such as driver or OPC).

If the expression is invalid (such as, division
by zero) or if there is a reading communication
error associated with the tag, then the project
sets the quality to BAD.

R Integer ✓ ✓ ✓ ✓

TimeStamp Time and date when the value of the tag last
changed.

R String ✓ ✓ ✓ ✓

SendEveryState This property can have one of the following
possible values:

• 0: Only the most recent change in the tag
value is sent from a project thin client to
the project runtime server.

• 1: Every change in the tag value is sent
from a project thin client to the project
runtime server.

This property is automatically set to 1 if the
tag is used in any Driver or OPC worksheet. It
ensures all changes are communicated from
clients through the server to connected devices.

Otherwise, when this property is set to 0,
the tag value is synchronized between client
and server at the normal synchronization
rate, and only the most recent change before
synchronization is sent from the client to the
server.

Note: If you use a tag in a
Driver or OPC worksheet, so
that its SendEveryState property
is set to 1, be careful about how
you use the same tag in scripts
that run on the client. A script
that causes a large number of
tag value changes in a short
period of time — for example,
a script that uses the tag as a
loop counter — might fill the
client/server communication

R Boolean ✓ ✓ ✓ ✓

Tags and the Project Database

Page 181

Data Type of Tag…Property Name Description R or
R/W

Data Type
of Property

Bool Int Real Str

Retain

buffer and affect run-time
performance.

Blocked This property can have two values:

• 0: The tag is unblocked and all runtime
tasks can access it normally.

• 1: The tag is blocked and all runtime tasks
will ignore it. It is effectively removed from
the project database.

This is useful when you want to dynamically
disable all actions associated with a specific
tag. Even when a tag is blocked, however, it still
counts towards the total number of tags used
for licensing purposes.

R/W Boolean ✓ ✓ ✓ ✓

Unit A brief description (up to 7 characters) of the
engineering unit (i.e., the unit of measurement)
for the tag value. For example, Kg, BTU,
psi.

R/W String, up to 7 chars ✓ ✓ ✓ ✓ ✓

Max The maximum value that can be stored in the
tag during run time.

R/W Real ✓ ✓ ✓

Min The minimum value that can be stored in the
tag during run time

R/W Real ✓ ✓ ✓

B0 … B31 Boolean value (0 or 1) of any of the 32 bits (b0,
b1, b2, … b31) of an Integer tag. (B0: LSB,
B31: MSB)

R/W Boolean ✓

DisplayValue A converted tag value that is only displayed on-
screen:

DisplayValue = (Value / UnitDiv) + UnitAdd

This is used when the actual tag values have
one Engineering Unit (see Unit above) but
need to be displayed on-screen in another
Engineering Unit (see DisplayUnit below).
For example, Celsius degrees and Farenheit
degrees.

If user input changes DisplayValue during run
time, then the conversion is reversed before the
change is actually written to the tag:

Value = (DisplayValue − UnitAdd) * UnitDiv

R/W Real ✓ ✓ n/a

DisplayUnit A brief description (up to 9 characters) of the
Engineering Unit for DisplayValue.

Note: This property can only
be set by using the functions
SetDisplayUnit and
SetTagDisplayUnit.

R String, up to 9 chars ✓ ✓

UnitDiv Number by which the tag value is divided to get
DisplayValue. To perform no division, UnitDiv
should be 1.

Note: This property can only
be set by using the functions
SetDisplayUnit and
SetTagDisplayUnit.

R Real ✓ ✓

Tags and the Project Database

Page 182

Data Type of Tag…Property Name Description R or
R/W

Data Type
of Property

Bool Int Real Str

Retain

UnitAdd Number added to the tag value to get
DisplayValue. To perform no addition, UnitAdd
should be 0.

Note: This property can only
be set by using the functions
SetDisplayUnit and
SetTagDisplayUnit.

R Real ✓ ✓

DisplayMax The maximum value that can be input to
DisplayValue during run time:

DisplayMax = (Max / UnitDiv) + UnitAdd

If DisplayMax is changed during run time, then
Max is also changed as follows:

Max = (DisplayMax − UnitAdd) * UnitDiv

R/W Real ✓ ✓

DisplayMin The minimum value that can be input to
DisplayValue during run time:

DisplayMin = (Min / UnitDiv) + UnitAdd

If DisplayMin is changed during run time, then
Min is also changed as follows:

Min = (DisplayMin − UnitAdd) * UnitDiv

R/W Real ✓ ✓

HiHiLimit Limit value for the HiHi alarm. R/W Real ✓ ✓ ✓

HiLimit Limit value for the Hi alarm. R/W Real ✓ ✓ ✓

LoLimit Limit value for the Lo alarm. R/W Real ✓ ✓ ✓

LoLoLimit Limit value for the LoLo alarm. R/W Real ✓ ✓ ✓

RateLimit Limit value for the Rate alarm. R/W Real ✓ ✓ ✓

DevSetpoint Set point for Deviation alarms.

Note: When referenced using
the syntax tagname->property,
this property is read-only and
then only if it is a literal value.
As an alternative, you can
configure a project tag for the
set point and then read/write
the value of that tag. For more
information, see Properties of
Integer and Real tags on page
169.

R Real ✓ ✓ n/a

DevPLimit Limit value for the Deviation+ alarm. R/W Real ✓ ✓ ✓

DevMLimit Limit value for the Deviation- alarm. R/W Real ✓ ✓ ✓

HiHi If 0, the HiHi alarm is not active. If 1, the HiHi
alarm is active.

R Boolean ✓ ✓ ✓ n/a

Hi If 0, the Hi alarm is not active. If 1, the Hi alarm
is active.

R Boolean ✓ ✓ ✓ n/a

Lo If 0, the Lo alarm is not active. If 1, the Lo alarm
is active.

R Boolean ✓ ✓ ✓ n/a

LoLo If 0, the LoLo alarm is not active. If 1, the LoLo
alarm is active.

R Boolean ✓ ✓ ✓ n/a

Tags and the Project Database

Page 183

Data Type of Tag…Property Name Description R or
R/W

Data Type
of Property

Bool Int Real Str

Retain

Rate If 0, the Rate alarm is not active. If 1, the Rate
alarm is active.

Note: When this alarm is
enabled on a Boolean tag, it
is also known as the Changed
alarm. The alarm becomes
active whenever the tag
value changes (i.e., from 0
to 1, or from 1 to 0), but it is
also immediately normalized
because that is the expected
behavior for Boolean tags.
To make this alarm useful
for Boolean tags, the Ack
Required option should be
selected in the appropriate
Alarm worksheet.

R Boolean ✓ ✓ ✓ n/a

DevP If 0, the Deviation+ alarm is not active. If 1, the
DevP alarm is active.

R Boolean ✓ ✓ n/a

DevM If 0, the Deviation- alarm is not active. If 1, the
DevM alarm is active.

R Boolean ✓ ✓ n/a

AlrStatus Integer value with the status of the current
active alarms associated to the tag. Each bit of
this integer value indicates a specific status:

• Bit 0 (LSB): HiHi Alarm active

• Bit 1: Hi Alarm active

• Bit 2: Lo Alarm active

• Bit 3: LoLo Alarm active

• Bit 4: Rate Alarm active

• Bit 5: Deviation+ Alarm active

• Bit 6: Deviation- Alarm active

Examples: If Tag->AlrStatus returns
2, it means that the Hi alarm is active. If it
returns 3, it means the HiHi and Hi alarms are
active simultaneously.

If this property returns 0, it means that there are
no active alarms associated with this tag.

For Boolean tags, only the values 1 (bit 1), 4
(bit 2) or 16 (bit 4) can be returned.

R Integer ✓ ✓ ✓

Ack This property can have two values:

• 0: There are no alarms on this tag that
require acknowledgment.

• 1: There is at least one alarm on this tag
that requires acknowledgment.

This works as a global acknowledge for the tag
and goes to 0 only when all alarms on the tag
have been acknowledged.

R Boolean ✓ ✓ ✓

UnAck This property can have two values:

• 0: There is at least one alarm on this tag
that requires acknowledgment.

R/W Boolean ✓ ✓ ✓

Tags and the Project Database

Page 184

Data Type of Tag…Property Name Description R or
R/W

Data Type
of Property

Bool Int Real Str

Retain

• 1: There are no alarms on this tag that
require acknowledgment.

If you manually set this value to 1, then the
active alarms (if any) are acknowledged. The
value of this property is always the opposite of
the Ack property.

AlrAckValue Text associated with the Acknowledged state
of a Boolean tag. This text is displayed in the
Value column of an Alarm/Event Control.

You can also edit this text in the Tag Properties
dialog box for the Boolean tag. For more
information, see Properties of Boolean tags on
page 174.

R/W String, up to 32 chars ✓ ✓

AlrOffValue Text associated with the Normalized state of a
Boolean tag. This text is displayed in the Value
column of an Alarm/Event Control.

You can also edit this text in the Tag Properties
dialog box for the Boolean tag. For more
information, see Properties of Boolean tags on
page 174.

R/W String, up to 32 chars ✓ ✓

AlrOnValue Text associated with the Active state of a
Boolean tag. This text is displayed in the Value
column of an Alarm/Event Control.

You can also edit this text in the Tag Properties
dialog box for the Boolean tag. For more
information, see Properties of Boolean tags on
page 174.

R/W String, up to 32 chars ✓ ✓

AlrDisable This property can have two values:

• 0: The alarms associated with this tag are
enabled. This means that when an alarm
condition occurs, the alarm will become
active.

• 1: The alarms associated to this tag are
disabled. This means that even if an
alarm condition occurs, the alarm will not
become active.

R/W Boolean ✓ ✓ ✓

Tag Integration
The following tag properties are available only for shared tags that you have imported into your project via Tag
Integration.

Also, these tag properties are available only on the project runtime server, which means they can be used
only in scripts and worksheets that are executed on the server. If these properties are referenced on a client,
they have no value. This limitation is by design — these properties are kept in the server's memory only to
facilitate communication between the server and the Tag Integration source, and it would require additional
system and network resources to make these properties available on all connected clients. To work around
this limitation: create new project tags that correspond to the properties you want to reference; make sure the
scope of those tags is set to Server, so they can be used on both the server and the clients; and then set the
values of those tags to be equal to the actual properties.

Data Type of Tag…Property Name Description R or
R/W

Data Type
of Property

Bool Int Real Str

Retain

Source The source name, as specified in the Tag
Integration settings. The default is DEV.

R String ✓ ✓ ✓ ✓ n/a

Tags and the Project Database

Page 185

Data Type of Tag…Property Name Description R or
R/W

Data Type
of Property

Bool Int Real Str

Retain

Address The I/O address of the shared tag. Example:
.step

R String ✓ ✓ ✓ ✓ n/a

CommUrl A uniform resource locator (URL) that describes
the location of the shared tag. This URL
includes the source name, the I/O address, Div,
Add, Action (Read, Write, Read/Write), and
Scan (Screen, Always, Auto). Examples:

SOURCE://
DEV/.steps/1/0/
ReadWrite/Auto/.steps

SOURCE://DEV1/
PLC_PRG.OPCTEST.ArrayWordTest_4_/1/0/
ReadWrite/Auto/
PLC_PRG.OPCTEST

R String ✓ ✓ ✓ ✓ n/a

OriginalTag The actual name of the PLC register or
variable. Example: for a project tag named…

DEV1..ZZ_Array3Dim_0_1_[2]

…the actual name is…

.ZZ_Array3Dim[0,1,2]

R String ✓ ✓ ✓ ✓ n/a

Used This property is set to 1 if the shared tag is
being used in your project in a screen, script,
etc. Otherwise, it is set to 0.

Please note that each element in an array
has its own Used property, so you can use
this property to create virtual groups of array
elements that are actually being used in your
project.

R Boolean ✓ ✓ ✓ ✓ n/a

Notes
• If a property is marked "n/a" with regards to being retentive, it is because either the property is inherent

in the tag definition (e.g., Name, Size) or the value of the property is continuously derived during run time
(e.g., alarm activation, DisplayValue).

• To enable retention of a tag's properties, select the Retentive Parameters option for that tag.

• You cannot use tag properties (such as Bit fields) to configure Alarm or Trend worksheets.

Change how out-of-range tag values are handled
A project tag will occasionally receive a value that is outside of its normal range. You can change how these
out-of-range values are handled during run time.

Note: This topic applies only to Integer and Real tags, because they are the only tags for which the
Min and Max properties have meaning. Boolean tags can only have values of 0 and 1, and String
tags do not have numeric values at all.

A project tag has a range of possible values, and that range is determined by the tag's Min and Max
properties. By default, if the tag receives a new value that is outside of its range — that is, if the value is less

Tags and the Project Database

Page 186

than the minimum or greater than the maximum — then the received value is ignored, the existing value is
retained, the tag quality is set to UNCERTAIN, and a warning message is sent to the Output window.

In some situations, however, it is useful to change how these out-of-range values are handled — in particular,
you might need to emulate how out-of-range values are handled by another vendor's hardware or software.

To change this behavior, you must manually edit your project file (e.g., <project name>.app) to add or
modify the following settings:

[Options]
WriteOutOfRange={FALSE|TRUE}
CapOutOfRange={FALSE|TRUE}

WriteOutOfRange
By default, this setting is FALSE. When this setting is TRUE, out-of-range tag values are
accepted as good (i.e., the tag quality is not set to UNCERTAIN).

CapOutOfRange
By default, this setting is FALSE. When this setting is TRUE, out-of-range tag values are capped
at the tag's minimum and maximum.

Note: If a setting is not present in the project file, then its default value is used.

To change how out-of-range tag values are handled:

1. Locate your project file, which is typically at: BLUE Open Studio 2020 Projects\<project
name>\<project name>.app

2. Open the project file with a standard text editor, such as Notepad, and then add or modify the settings
WriteOutOfRange and CapOutOfRange.
The following table shows how the two settings work together:

Settings Behavior

[Options]
WriteOutOfRange=FALSE
CapOutOfRange=FALSE

The received value is ignored, the existing value is retained, the tag quality is
set to UNCERTAIN, and a warning message is sent to the Output window.
This is the default behavior.

[Options]
WriteOutOfRange=FALSE
CapOutOfRange=TRUE

If the received value is lower than Min, then the tag value is set to Min, and if
the received value is greater than Max, then the tag value is set to Max. The
tag quality is set to UNCERTAIN.

[Options]
WriteOutOfRange=TRUE
CapOutOfRange=FALSE

Min and Max are ignored when setting tag values; the tag value is set to
whatever value it receives, and the tag quality is set to GOOD.
Min and Max are still applied to linear conversions in device communication.

[Options]
WriteOutOfRange=TRUE
CapOutOfRange=TRUE

If the received value is lower than Min, then the tag value is set to Min, and if
the received value is greater than Max, then the tag value is set to Max. The
tag quality is set to GOOD.

3. Save and close the project file.

Tags and the Project Database

Page 187

Using Tags in Your Project
Once you have added a tag to the project database, you can use that tag in your project by associating it to
objects on a screen.

The basic process for associating tag to screen objects consists of the following steps:

1. In the project screen, select the object to which you want to apply the tag.

2. Click one of the buttons in the Animations group to apply that animation to the object.

3. Double-click on the object to open its Object Properties dialog.

4. Locate the Tag text box for that property and type the tag name into the field.

Tag text box names and locations will vary, depending on the type of property you are using. For example:

Applying Tags to an Object
Comprehensive instructions for applying tags to screen objects are provided throughout the documentation
where appropriate.

Tags and the Project Database

Page 188

Deleting a tag from the project database
Delete a tag that is no longer in use by deleting its line in the Project Tags or Shared Database datasheet.

Before you delete a tag, we strongly recommend that you use the Cross-Reference tool to make sure the tag is
not being used anywhere in your project. (If you delete a tag that is still being used, then you will not be able
to verify and run your project.) Fix any screens or worksheets where the tag is being used before you proceed.

Note: This task applies to both the Project Tags and Shared Database datasheets.

To delete a tag:

1. Stop the project if it is running.

2. Open the datasheet for editing.

3. In the datasheet, find the line for the tag you want to delete.

4. Right-click the line, and then select Delete Line from the shortcut menu.
If the option is disabled, then you may need to clear any sorting or filtering that you previously applied to
the datasheet.
An alert dialog is displayed asking you to confirm the action.

5. Click Yes.
The line is deleted from the datasheet.

6. Save and close the datasheet.

Tags and the Project Database

Page 189

Sort or filter the rows in a worksheet
Sort or filter the rows in a worksheet in order to make it easier to browse the rows or find a specific item.

Before you begin this task, you must have already inserted a worksheet and opened it for editing. You should
also be familiar with how sorting and filtering is done in general-purpose spreadsheet applications.

Please note that you can sort or filter rows only in the following types of worksheets:

• The Project Tags, Shared Tags, and System Tags datasheets;

• The Translation Table worksheet;

• All task worksheets except Report and Script, which do not have rows; and

• All communication worksheets.

None of the other worksheets have rows to sort or filter.

Tags and the Project Database

Page 190

Sorting is done alphanumerically, by the selected column, in either ascending (0–9, A–Z) or descending (Z–A,
9–0) order.

Alarm worksheet rows in their original order

Alarm worksheet rows sorted by Type

Tags and the Project Database

Page 191

Filtering is done according to whatever string you enter in the selected column. Only the rows that match the
string will be displayed.

Alarm worksheet rows filtered where Tag Name is "Tag3"

Alarm worksheet rows filtered where Type is "Lo"

Tip: You can still delete rows while they are sorted or filtered.

To sort or filter rows:

1. To sort the rows, click the header of the column by which you want to sort. Click once to sort in ascending
order, and then click again to sort in descending order.
The current order (i.e., the direction of the sort) is indicated by the arrow to the right of the column name.

Note: You cannot sort by multiple columns.

2. To undo the sorting and restore the rows to their original order, click the header of the first (numbered)
column.

3. To filter the rows, type the string that you want to match in the top (zero) row of the worksheet and then
press either Tab or Return.

You may include * and ? as wildcard characters in your string:

• * matches any number of characters, including none. For example, Tag* would match Tag, Tag3,
Tag34567, TagA, and Tag_TEMP.

• ? matches exactly one character. For example, Tag? matches Tag3 and TagA, while Tag????? matches
Tag34567 and Tag_TEMP.

Also, you may filter by multiple columns. Only the rows that match the filter strings in all columns will be
displayed.

4. To undo the filtering and restore the rows to their original order, delete the string that you typed and then
press either Tab or Return.

Tags and the Project Database

Page 192

Please keep in mind that sorting or filtering the rows of a worksheet only helps you to edit that worksheet. It
does not change how the worksheet is executed during run time. The rows will be executed in their original
numbered order (i.e., the leftmost column) unless you actually move or delete a row.

Tags and the Project Database

Page 193

Using the Tags tools
The Home tab of the ribbon provides several tools that you can use to find and manage project tags, tag
properties, and functions.

Global Replace Tool
When clicking on the Global Replace tool from the Tag Properties Toolbar, the following window displays:

Global Replace dialog

From the Global Replace dialog, you can replace any tag(s) from all documents (screens and worksheets) of the
whole project. You can edit both the From and the To column.

When replacing composed tags (array size > 0 and/or Type = Class), you can configure a specific array
position (for example, TagA[1]) or class member (for example, TagB.MemberX) or both (for example,
TagC[3].MemberY). If you configure only the Main Tag Name (for example, TagC) in the From column, all tags
from this main tag will be modified for the tag configured in the To column.

If an invalid replacement is configured (for example, replace the Main Tag tag from a class type tag for a simple
tag (not a class tag), the OK button will be disabled. When the OK button is pressed, the tags configured on the
Global Replace dialog will be replaced in the order that they were configured on the dialog interface.

Note: You must close all documents (screens and worksheets) before executing this command.

When changing the tag name on the Project Tags database worksheet, BOS will ask you if you intend to
replace this tag through the whole project.

The Replace option will be created in the Edit menu. By using this option, the Global Replace dialog is prompted,
however, the changes are applied only the current screen or worksheet in focus.

Tags and the Project Database

Page 194

Replacing project tags in a document or screen object

To replace all occurences of a tag in the current document, do one of the following:

• On the Home tab of the ribbon, in the Tags group, click Replace; or

• On the Graphics tab of the ribbon, in the Editing group, click Replace.

To replace all occurences of a tag in a screen object, double-click the object to open its Object Properties dialog
and then click Replace.

All of these methods will open the Replace dialog, which is descibed below.

You can replace one or more tags by clicking the Whole Tag Name tab. Current tags used are displayed. The
original tag names are shown in the From column on the left, and you can enter your new tag names in the To
column on the right.

Whole Tag Name tab

Note that this does not rename or delete any tag — it only replaces the tags used in the object with other tags
from the database.

Tags and the Project Database

Page 195

You can also replace one or more strings (e.g., button captions, descriptive text) by clicking the String Value tab.

String Value tab

When you are done, click OK.

Removing unused tags from the project database
The Remove unused tags tool is used to scan the project database for unused tags, which you can then select and
remove.

"Unused tags" are tags that you have defined in the project database but have not used in any screen or task
worksheet. Since your project has a limited number of available tags (as determined by your product/license
type), you may want to remove some or all of these unused tags to decrease your project's tag count.

1. Save and close all open project screens and worksheets.

2. On the Home tab of the ribbon, in the Tags group, click Remove unused tags.
The development application automatically verifies your project, and if it finds any unused tags, then it
lists them in the Remove Unused Tags dialog.

Tags and the Project Database

Page 196

Note: The listed tags may include some that are accessed during runtime using indirect syntax
(e.g., GetTagValue(TagName) or @TagName, where the value of TagName is the name of an
unused tag).

Unused tags listed in Remove Unused Tags dialog
3. Determine which tags you want to remove, if any.

• If you want to remove all of the listed tags, simply click Remove.

• If you want to keep some of the listed tags, clear the Remove check boxes on the left for those tags, and
then click Remove.

• Click Check all or Uncheck all to select or clear, respectively, all of the Remove check boxes on the left.

• If you do not want to remove any of the listed tags, click Close.

The development application removes the selected tags and then asks if you want to verify the project
again.

4. Click Yes to verify the project again.

Reset Tags Database
Select Reset Tags Database to "reload" the tags database on the local station. This command affects all tags stored
in the Project Tags folder. This option is useful for resetting the project tags and restoring the values they
had when the project was loaded for the first time. When you stop the project but leave the development
environment open, the tags are not reset by default when the project is run again. Therefore, you can execute
this command to reset them before the project runs again.

When this command is executed, the Startup Value configured for each tag (Tags Properties dialog) is written to
the respective tag. If you did not configure any Startup Value for a numeric tag (Boolean, Integer or Real), the value
0 (zero) is written to the tag. If you did not configure any Startup Value for a string tag, the empty value ("") is
written to the tag.

Tags and the Project Database

Page 197

This command is disabled (in gray) if there is at least one runtime task running on the local station. You must
close all runtime tasks (Stop on the Home tab of the ribbon) before this command can be executed.

Note: The tags stored in the System Tags folder and in the Shared Tags folder (if any) are not
affected by this command.

Tip: If you want to reset the project tags automatically whenever you run the project (Run on the
Home tab of the ribbon), you can check the option Reset Tags Database when starting project on the
Preferences tab of the Project Settings dialog.

Tagname Text Box

Type a name into the Tagname text box to create a new tag for your
project. The Cross Reference and Tag Properties tools will reference this tag name for their actions.

Object Finder Tool

Click the Object Finder tool to open the Object Finder dialog, which lists all Tags and Functions currently
configured for the project.

Object Finder dialog

To select an existing tag/function, double-click on the tag/function name, and then click OK to close the box.
The selected name displays in the Tagname text box.

• To select a specific array index, click the Index button after specifying the array tag name.

Tags and the Project Database

Page 198

• To select a specific member name, click the Member button after specifying the class tag name.

• To create a new tag, click the New button.

• When the New Tag dialog displays, enter the following information, then click OK to close the box:

• Name
• Array Size
• Type (Boolean, Integer, Real, String, Class:Control, Class:msgonline, or Class:Alr)

• Description
• Scope (local or server)

Cross Reference Tool

Click the Cross Reference tool to search all project screens and worksheets for the tag noted
in the Tagname text box. This function writes a log, detailing all the occurrences of the tag, to the XRef tab in the
Output window. For example, the results of searching for a BlinkFast tag are as follows:

XRef Results

Set tag properties using the Properties command
Use the Properties command to set the properties of project tags.

The Properties command opens the Tag Properties dialog box, which you can use to set any and all of the
properties of a selected tag. This includes alarms and history properties, which cannot be set using the
Project Tags datasheet. However, when you use the Properties command, you can set the properties of only one
project tag at a time.

Note: You cannot use the Properties command during run time. If you need to edit the tags database
during run time, use the Tags Database functions.

To use the Properties command to set tag properties:

1. At the bottom of the Project Explorer window, click Global.
The Global tab is displayed.

Tags and the Project Database

Page 199

2. Expand the Project Tags folder, and then in that folder, expand the Tag List folder.
A list of all of the project tags is displayed.

3. In the Tag List folder, select the project tag for which you want to set properties.

4. On the Home tab of the ribbon, in the Tags group, click Properties.

The Tag Properties dialog box for the selected tag is displayed.

5. Use the dialog box to set the tag properties as needed, keeping in mind that the properties are distributed
among multiple tabs in the dialog box.

Tags and the Project Database

Page 200

Some properties do not apply to all data types, so for more information about the applicable properties,
see:

• Properties of Integer and Real tags on page 169

• Properties of Boolean tags on page 174

• Properties of String tags on page 178

6. When you are done, click OK to save your changes and close the dialog box.

Tags and the Project Database

Page 201

Import Wizard
The Import Wizard is a powerful tool that reduces engineering time during project development. Using
the Import Wizard, you can import tags from different data sources directly to the project tags database.
Depending on the data source, you can import not only the tag names, but also the communication interface
(the link between the tags and the PLC addresses).

When you click Import Wizard on the Home tab of the ribbon, an Import Database Wizard dialog displays to step
you through the process of importing tags. There are three steps for importing tags from these data source
types:

• BLUE Open Studio 2020 Project Database

• OPC Server Database

• CSV Database

• ODBC Database

• PanelBuilder32™ Database

• PanelMate Plus™ Database

• FactoryTalk™ Application

• Studio XML Screen

Step1: Select the Source Type

Import Wizard dialog box

Tags and the Project Database

Page 202

Click the data Source Type, which is where the tags are being imported from. Click Next.
Continue to the appropriate section for the instructions you need to complete the import database procedure:

• Import tags and files from a BLUE Open Studio 2020 project database on page 204

• Importing from OPC Server Databases on page 208

• Import tags from a CSV database on page 209

• Importing from ODBC Databases on page 213

• Importing from PanelBuilder32 Databases on page 214

• Importing PanelMate programs on page 215

• Import from a FactoryTalk application on page 217

Step 2: Configure the Source Type Settings

Import OPC Server Database Wizard (1/2) dialog box

Most of the settings in the second window depend on the data Source Type selected in the first step. The
screenshot above is an example of one data Source Type (OPC Server Database). The settings that are
common for any data Source Type are described below:

• Options box: Select Do not import duplicated tags if you do not want imported tags to overwrite tags with the same
name that already exist in the Tags Database of the current project. Select Replace duplicates with tags imported
to overwrite tags in the Tags Database with imported tags of the same name.

Tags and the Project Database

Page 203

• Use Prefix: Check to specify a prefix (up to 4 characters) to be concatenated to the name of the imported
tags. It is useful to use a prefix to differentiate the imported tags from the tags created manually.

Note: The other settings vary according to the data source selected in the first step, and they are
described in the specific sections for each data source type.

After configuring the settings in this dialog, click Next.

Step 3: Filter the tags

Import OPC Server Database Wizard (2/2) dialog box

The screenshot above is an example of one data Source Type (OPC Server Database). The fields and settings
that are common for all data Source Types include the following:

• Grid: Displays the list of tags found on the data source.

• checkbox: Check to import the tag from the data source to the Tags Database of the current project.

• TagName: Name of the tag

• Size: Array size of the tag

• Type: Data type of the tag (Boolean, Integer, Real, String or Class:<ClassName>)

• Description: Description of the tag

• Check button: Click to select/import all tags in the grid

Tags and the Project Database

Page 204

• Uncheck button: Click to uncheck all tags in the grid

• Filter button: Click to filter the tags. The Filter dialog will display, allowing you to specify a mask for each
column in the grid. Wild cards (* and ?) can be used to filter data.

• Clear Filter button: Click to reset the filter.

• Import Filtered Tags Only checkbox: Check this option to import only the tags that are visible in the grid
(filtered).

• Status box: Displays a message describing the status of the tag currently selected in the grid. This
information is especially useful to indicate why a tag cannot be imported.

• Legend box: Describes the meaning of the colors that represent tag status:

• (Red) Error:Tag cannot be imported because it is not supported by BOS. See the Status box for a detailed
description of the error.

• (Blue) Tag will be imported:Tag will be imported after you click the Finish button.

• (Gray) Tag can be imported:Tag can be imported but it has not been checked.

• Database size box: Displays summary information regarding the current Import Wizard:

• Current: Indicates the number of tags configured in the Project Tags database of the current project

• Importing: Indicates the number of tags selected to be imported

• Replacing: Indicates the number of tags configured in the Project Tags database of the current project
that will be replaced by an imported tag with the same name.

After selecting the tags to import, click the Finish button, or click Cancel to abort the operation.

Note: The other settings vary according to the data source selected in the first step, and they are
described in the specific sections for each data Source Type (see below).

Import tags and files from a BLUE Open Studio 2020 project database
This tool allows you to import tags, screens, and worksheets from another BLUE Open Studio 2020 project
database, which is useful for merging projects and importing project templates. It can also create a client-
server connection between your current project and the imported project running on a remote station, which
allows the two projects to share tag values during run time.

Note: If you are running Studio on a Windows computer that has User Account Control (UAC)
enabled, you might have issues while performing this task. If you do, try running Studio as an
administrator (i.e., right-click the Studio program icon, and then click Run as administrator on the
shortcut menu).

To import from another BLUE Open Studio 2020 project database into your current project:

1. On the Home tab of the ribbon, in the Tools group, click Import Wizard.

Tags and the Project Database

Page 205

The first page of the import wizard is displayed.

Import Wizard
2. In the Source Type list, select BLUE Open Studio 2020 Database, and then click Next.

Tags and the Project Database

Page 206

The next page of the import wizard is displayed.

Import BLUE Open Studio 2020 Database Wizard
3. In the Options area, select whether to import items that appear to be duplicates of existing items in your

current project.
Option Description

Do not import duplicate tags and files If an item has the same name as an existing item,
do not import it.

The following items will not be imported at all:

• Main Procedures

• Startup Script

Replace duplicates with imported tags and files Import all items. If an imported item has the same
name as an existing item, replace the existing item.

Some types of worksheets have incremented file numbers (e.g., SCRIPT0001, SCRIPT0002) instead of
user-defined file names. These worksheets will always be imported and they will never replace existing
worksheets, regardless of which option you select in this step. If there are existing worksheets with the
same file numbers, the file numbers of the imported worksheets will be automatically increased in order to
avoid replacing the existing worksheets. (Of course, this is relevant only if you also select the Import the whole
project option in the next step.)

4. In the Scope area, select whether to import tags only or the whole project.

Tags and the Project Database

Page 207

Option Description

Import tags only Import project tags only.

Import the whole project Import all items in the following folders:

• Project Tags

• Procedures

• Screens

• Screen Groups

• Web Pages

• Alarms

• Trends

• Recipes

• Reports

• Math

• Scripts

• Scheduler

• Drivers

• OPC (all types)

• TCP/IP

5. In the Application area, do the following:
a) Click Browse.

A standard Open dialog box is displayed.

b) Use the Open dialog box to locate and select the BLUE Open Studio 2020 project file (<project
name>.app) that you want to import into your current project.

c) Click Open.

The Open dialog box is closed, and the file path and name for the project file you selected are displayed in
the Application box.

6. If you also want to create a client-server connection between your current project and the imported project
running on a remote station, do the following:
a) Select the Generate TCP/IP Client worksheet option.

b) In the Remote IP box, type the IP address of the computer or device that hosts — or will host — the
imported project.

The import wizard will use this information to create a new TCP/IP Client worksheet in the current project
and then populate it with the imported tags. Keep in mind that once the worksheet has been created, you
can change any of its settings including the IP address you entered here.

7. If you want to add a prefix to the names of the imported tags, in order to differentiate them from other tags
in your current project, select the Use prefix option and then type the prefix (up to 4 characters) in the box.

8. Click Next.
The last page of the import wizard is displayed.

9. Use the last page of the import wizard to select the tags that you actually want to import into your current
project.
The list shows all of the tags that the import wizard found in the imported database, and the check box to
the left of each tag shows whether that tag is selected for import.

• You can select or clear the check box for each tag in the list.

• To select all of the check boxes, click Check. To clear all of the check boxes, click Uncheck.

• To sort the list of tags, click the header of the column by which you want to sort.

Tags and the Project Database

Page 208

• To filter the list of tags, click Filter and then configure filter strings for one or more columns. You can
use wildcard characters (* and ?) in the filter strings.

Please note that filtering the list of tags does not select any tags for import. It only makes the list
shorter and/or easier to navigate.

This is an important step because imported tags count against your project's tag limit. (For more
information, see About target platforms, product types, and target systems on page 98.) The current
number of tags in your project and the number of tags selected for import are shown in the Database size
area of the page.

10.Click Finish to finish importing the database.

Importing from OPC Server Databases
This wizard lets you import tags from an OPC Server running either locally or remotely. When you import tags
from the OPC Server, an OPC Client worksheet is automatically created to link the tags, eliminating the need
to manually configure the communication interface between your project and the external OPC Server.

Import OPC Server Database Wizard

• Local/Remote: Provide the following options:

• Local: Select this option to import tags from an OPC Server installed in the local computer.

• Remote: Select this option to import tags from an OPC Server installed in a remote computer. In the
Remote field, type the IP Address (or the host name) of the remote computer that hosts the project
runtime.

Tags and the Project Database

Page 209

• Merge Local and Remote OPC Servers checkbox: If you selected a Remote server, check this option to display
the list of OPC Servers installed in the local computer and also in the remote computer. Uncheck this
checkbox to display only the list of OPC Servers installed in the remote computer.

• Identifier combo-box: Displays the list of available OPC Servers.

• Branch: Click on the Browse button (…) to select the branch of the OPC Server from which the tags (items)
will be imported. Leave this field blank if you want to import tags from all branches configured in the OPC
Server.

• Use the item path for the tagname checkbox: Check this option to concatenate the path name to the item name
when importing tags from the OPC Server. Uncheck this option to use only the item names configured in
the OPC Server.

In the grid displayed in Step 3 (Import Wizard on the Home tab of the ribbon) for this Data Source Type, there is
an additional field with the label OPC, which displays the name of the items from the OPC Server.

Note: See Steps 1, 2 and 3 of Import Wizard for the settings and fields that are common for all Source
Types.

Import tags from a CSV database
This tool allows you to import tags from a CSV database — that is, a flat database file that contains comma-
separated values — or any similarly formatted text file.

Note: If you are running Studio on a Windows computer that has User Account Control (UAC)
enabled, you might have issues while performing this task. If you do, try running Studio as an
administrator (i.e., right-click the Studio program icon, and then click Run as administrator on the
shortcut menu).

To import from a CSV database file into your current project:

1. On the Home tab of the ribbon, in the Tools group, click Import Wizard.

Tags and the Project Database

Page 210

The first page of the import wizard is displayed.

Import Wizard
2. In the Source Type list, select CSV Database, and then click Next.

Tags and the Project Database

Page 211

The next page of the import wizard is displayed.

Import CSV Database Wizard
3. In the Options area, select whether to import tags that appear to be duplicates of existing tags in your

current project.
Option Description

Do not import duplicate tags If a tag has the same name as an existing tag, do
not import it.

Replace duplicates with imported tags Import all tags. If an imported tag has the same
name as an existing tag, replace the existing tag.

4. Select the database file to be imported:
a) To the right of the File box, click Browse.

A standard Open dialog box is displayed.

b) Use the Open dialog box to locate and select the file you want to import into your current project.

Please note that the Open dialog box can only recognize files with the .csv extension, even though the
import wizard can import files that do not strictly contain comma-separated values. As such, you might
need to rename the file you want to import in order to have the dialog box recognize it. You will be able
to specify a different separator in a subsequent step.

c) Click Open.

The Open dialog box is closed, and the file path and name for the file you selected are displayed in the File
box.

Tags and the Project Database

Page 212

5. In the Data Column area, for each tag property, select the number of the column/field in the database file
that contains the corresponding data.
Tag (i.e., the tag name) is mandatory, but the other properties are optional — if a property is not included
in the database file, select Not used.
For example, if the tag name, array size and data type are listed in the second, third, and first columns
of the database file, respectively, do the following: under Tag, select 2; under Array Size, select 3; under Type,
select 1; and under both Description and Web Data, select Not used.

For tag properties that are not used, the import wizard will insert default values according to the following
table:

Tag Property Default Value

Array Size 0

Type Integer

Description <blank>

Web Data (a.k.a. Scope) Local

6. In the Delimiters area, select the delimiters or separators for the database file to be imported. You can select
more than one.
Comma is the default for .csv files.

7. If you want to add a prefix to the names of the imported tags, in order to differentiate them from other tags
in your current project, select the Use prefix option and then type the prefix (up to 4 characters) in the box.

8. Click Next.
The last page of the import wizard is displayed.

9. Use the last page of the import wizard to select the tags that you actually want to import into your current
project.
The list shows all of the tags that the import wizard found in the imported database, and the check box to
the left of each tag shows whether that tag is selected for import.

• You can select or clear the check box for each tag in the list.

• To select all of the check boxes, click Check. To clear all of the check boxes, click Uncheck.

• To sort the list of tags, click the header of the column by which you want to sort.

• To filter the list of tags, click Filter and then configure filter strings for one or more columns. You can
use wildcard characters (* and ?) in the filter strings.

Please note that filtering the list of tags does not select any tags for import. It only makes the list
shorter and/or easier to navigate.

This is an important step because imported tags count against your project's tag limit. (For more
information, see About target platforms, product types, and target systems on page 98.) The current
number of tags in your project and the number of tags selected for import are shown in the Database size
area of the page.

10.Click Finish to finish importing the database.

Note: This import wizard cannot import Class tags. If you need to import Class tags, open the
database file in a spreadsheet application like Microsoft Excel and then copy-and-paste from the
spreadsheet to the Project Tags datasheet. For more information, see Project Tags Folder on page
143.

Tags and the Project Database

Page 213

Importing from ODBC Databases
This wizard allows you to import tags from an external SQL Relational Database such as Microsoft Access,
SQL Server, Oracle, My SQL, Sybase and others, through the ODBC interface.

Import ODBC Database Wizard

• Select Data Source button: Click to select the ODBC Data Source Name (DSN) linked to the database from
which the tags will be imported. The DSN must have previously been created with the Data Sources
(ODBC) window (Control Panel > Administrative Tools > Data Sources [ODBC]). After you select a DSN, the other fields
in this window will be populated automatically with information from the selected database.

• Table combo-box: Select the table that holds the tags in the import database.

• Tag combo-box: Select the name of the column that holds the tags in the import database.

• Array Size combo-box: Select the name of the column that holds the array size for the tags in the import
database.

• Type combo-box: Select the name of the column that holds the tag type in the import database.

• Description combo-box: Select the name of the column that holds the tag description in the import database.

• Web Data combo-box: Select the name of the column that holds the Web Data for the tags in the import
database.

Note: See Steps 1, 2 and 3 of Import Wizard for the settings and fields that are common for all Source
Types.

Tags and the Project Database

Page 214

Importing from PanelBuilder32 Databases

Note: This wizard is sold as an add-on and requires a license to be enabled. Consult your software
for further information.

This wizard lets you import not only the tags, but also the screens, alarm configuration and communication
interface from a text file (report) exported by the PanelBuilder32™ software. Using this wizard, you can convert
a PanelView™ program (developed with PanelBuilder32™) into the BLUE Open Studio 2020 project format and
then run it on any platform supported by this software.

• Import Screens: Check this option to import the graphical screens (including their objects and animations).

• Import Comm. Configuration: Check this option to import the communication interface (tags linked to PLC
addresses).

• Report File: Press the Browse button to select the name of the text file exported from PanelBuilder32™ (report
printed to a text file).

• ControlLogix Only: When importing a program that was configured to exchange data with ControlLogix PLCs,
this wizard can convert the communication interface to Ethernet/IP (ABCIP driver). To do so, type the
IP Address of the PLC and its slot number. This information will be used to create the communication
interface for the imported program. If the original program was already configured to use the Ethernet/IP
interface, these fields can be left blank, because the IP Address and CPU Slot Number are retrieved from
the program file itself.

In the grid displayed in Step 3 for this Data Source Type, there is an additional field with the label Address,
which displays the tag addresses from the PanelBuilder project.

Tags and the Project Database

Page 215

Tip: Please consult the documentation for this import wizard for detailed information about how
to export an program from the *.PBA format to the text (*.TXT) format, using PanelBuilder32™, and
import it into this software.

Note: See Steps 1, 2 and 3 of Import Wizard for the settings and fields that are common for all Source
Types.

Note: This software does not support some special characters (e.g., [] . –) in tag names. When
you import your PaneBuilder database, these special characters will be converted into underscores
(_).

Importing PanelMate programs
This wizard allows you to import not only the tags, but also the screens, alarm configuration, and
communication settings from an operator interface program that was created with PanelMate™ software.

Using this wizard, you can convert a PanelMate program into the BLUE Open Studio 2020 project format
and then run it on any platform supported by this software. The wizard can import programs from PanelMate
Plus 4.01 (or earlier) and PanelMate Power Pro 2.21 (or earlier), and it supports the following communication
drivers:

• Allen-Bradley Serial (ABKE)

• Modbus Serial, ASCII and RTU (MODBU)

• Modbus Plus (MODPL)

• Allen-Bradley Remote I/O (STRIO)

Note: This import wizard is sold as an add-on for BLUE Open Studio 2020, and it requires a license
to be enabled. For more information, consult your software vendor.

Also, if you are running BLUE Open Studio 2020 on a Windows operating system that has User
Account Control (UAC) enabled, then you may have problems using this import wizard. Close the

Tags and the Project Database

Page 216

application, and then run it again as an administrator (i.e., right-click the BLUE Open Studio 2020
program icon, and then click Run as administrator on the shortcut menu).

Import Tool for PanelMate

Import Screens
Check this option to import the graphical screens (including their objects and animations) to
BLUE Open Studio 2020.

PanelMate Model
Click Browse to select the directory where the database files of the PanelMate program that you
intend to import are stored.

Application
After specifying the correct file path in the PanelMate Model box, the programs that are available in
that directory will be available in this combo-box. Select the program that you want to import,
and then click Next.

See Steps 1, 2 and 3 of Import Wizard for the settings and fields that are common to all Source Types.

Tags and the Project Database

Page 217

Import from a FactoryTalk application
Use the Import Tool for FactoryTalk to import tags, screens, alarms, and device configurations from an
application that was previously created with FactoryTalk View.

This tool is sold as an add-on for Studio, which means your software license must include the appropriate
upgrade in order for the tool to be enabled in the project development environment. For more information,
contact your BLUE Open Studio 2020 software distributor.

If you are running Studio on a Windows computer that has User Account Control (UAC) enabled, you might
experience issues while using this tool. To avoid these issues, run Studio as an administrator (i.e., right-click
the Studio program icon, and then click Run as administrator on the shortcut menu).

Depending on which items (e.g., tags, screens, alarms) you actually want to import from the FactoryTalk
application, you might need to use FactoryTalk View to export those items from the application to external
files. You should have those files ready before you begin this task. For more information, consult the
documentation for FactoryTalk View.

The Import Tool for FactoryTalk can import both Site Edition (SE) and Machine Edition (ME) applications, and
it supports the following communication drivers: ABCIP, ABENI, ABKE, and ABTCP.

To import from a FactoryTalk application:

1. On the Home tab of the ribbon, in the Tools group, click Import Wizard.
The Import Wizard dialog box is displayed.

2. In the Source Type list, select BLUE Open Studio 2020 Import Tool for FactoryTalk, and then click Next to proceed to the
next page of the import wizard.
The Import Tool for FactoryTalk page is displayed.

Import Tool for FactoryTalk dialog box

Tags and the Project Database

Page 218

3. In the Options area, select whether to import items that appear to be duplicates of existing items in your
BOS project:
Option Description

Do not import duplicate items When this option is selected, the following items
will not be imported in case there are already
equivalents in the current project:

• Tags Database (i.e., tags with the same name
will not be imported)

• Screens (i.e., screens with the same name will
not be imported)

Replace duplicates with imported items When this option is selected, existing items in the
current project will be replaced by items of the
same name that are imported from the FactoryTalk
application.

4. If you want to import tags from the FactoryTalk application:
a) To the right of the Tag box, click Browse.

A standard Windows file browser is displayed.

b) Use the file browser to locate and select the .csv file that contains the tag information you exported
from the FactoryTalk application, and then click Open.
The location of the file is displayed in the Tag box.

c) If you want to add a prefix to the names of the imported tags, in order to differentiate them from other
tags in your BOS project, select Use prefix and then type the prefix in the box.

5. If you want to import screens — including objects and animations — from the FactoryTalk application:
a) To the right of the Screen(s) box, click Browse.

A standard Windows file browser is displayed.

b) Use the file browser to locate and select the .xml file that contains the screen information you exported
from the FactoryTalk application, and then click Open.
The location of the file is displayed in the Screen(s) box.

For more information about which objects and animations are supported, see Import Tool for FactoryTalk
User Manual.

6. If you want to import alarms from the FactoryTalk application:
a) To the right of the Alarm box, click Browse.

A standard Windows file browser is displayed.

b) Use the file browser to locate and select the .csv file that contains the alarm information you exported
from the FactoryTalk application, and then click Open.

Note: At this time, the Import Tool for FactoryTalk can import alarm configurations only from
FactoryTalk Site Edition (SE) applications.

The location of the file is displayed in the Alarm box.

7. To import all other information including images and parameters from the FactoryTalk application:
a) To the right of the FactoryTalk Application Folder box, click Browse.

A standard Windows file browser is displayed.

b) Use the file browser to locate and select the FactoryTalk application folder, and then click OK.
The location of the folder is displayed in the FactoryTalk Application Folder box.

8. If you want to import one or more device configurations from the FactoryTalk application:
a) In the Drivers area, select Import Drivers, and then click Configuration.

Tags and the Project Database

Page 219

The Device Configuration dialog box is displayed.

Device Configuration dialog box
b) Click Add.

The Device dialog box is displayed.

Device dialog box
c) In the Device Name box, type the name of the device exactly as it is in the FactoryTalk application.

d) In the Driver list, select a communication driver for the specified device.

Option Description

ABCIP Driver for Ethernet communication with Allen-Bradley devices using the
CIP protocol

ABENI Driver for Ethernet communication Allen-Bradley devices using the
AB-1761-NET-ENI Gateway Interface

ABKE Driver for serial communication with Allen-Bradley devices using the DF1
protocol

ABTCP Driver for Ethernet communication with Allen-Bradley devices using the
DF1 protocol

Tags and the Project Database

Page 220

e) In the Station box, type the station ID of the specified device.

f) Click OK.
The specified device is added to the Devices list in the Device Configuration dialog box.

g) Repeat these steps for each device configuration that you want to import.

h) When you are done, click OK to close the Device Configuration dialog box.

9. Click Next to proceed to next page of the import wizard, which is common to all source types.
For more information, see Import Wizard on page 201.

Import a Studio XML Screen
Use the Import Wizard to import a Studio XML Screen, which is an external text file created with BLUE Open
Studio 2020's custom XML schema.

Before you begin this task, you must have a properly formatted Studio XML Screen file that you can import.

A Studio XML Screen file contains the same information as a regular screen file. It is simply formatted as
human-readable XML instead of binary data, which makes it more flexible and portable.

XML files can be manually created in any text editor, of course, but our intent is to enable you to quickly and
programmatically create large numbers of screens in Microsoft Visual Studio using our custom XML schema
and its associated C# API. This often requires additional training and support, so the schema and API are not
included in the standard installation of BLUE Open Studio 2020. Instead, the schema, API, documentation,
sample files, and support contract can be purchased as a separate toolkit. For more information, please
contact your software vendor.

Once you have created your screens, you can use the Import Wizard to batch import them into your BOS
project.

Tip: You can also use the function ImportXML to import Studio XML Screen files during run time.

To import one or more Studio XML Screens:

1. On the Home tab of the ribbon, in the Tools group, click Import Wizard.
The Import Wizard dialog box is displayed.

2. In the Source Type list, click Studio XML Screen, and then click Next.

Tags and the Project Database

Page 221

The next step of the import wizard is displayed.

Selecting the screens to import
3. Under Options, choose whether imported screens should automatically replace existing screens in your

project.
Screens are considered to be duplicates if they have the same file name. For example, Objects.xml and
Objects.scc would be duplicates.

• If you do not want the imported screens to replace existing screens in your project, select Do not import
duplicate screens. A warning will be displayed for each duplicate that you try to import.

• If you want the imported screens to automatically replace existing screens in your project, select Replace
duplicates with imported screens.

4. Click Browse.
A standard Open dialog box is displayed.

5. Use the file browser to locate and select the Studio XML Screen files that you want to import, and then
click Open.
You can Ctrl-click and Shift-click to select more than one file.
The selected file(s) are displayed in the Screen(s) box.

6. Click Next.

Tags and the Project Database

Page 222

The selected screens are processed, and then the next step of the import wizard is displayed showing the
project tags that are included in the selected screens.

Selecting the project tags to import
7. In the list of project tags, select the tags that you want to import with the screens:

• For each tag in the list, select or clear the check box to the left.

• To select all of the check boxes, click Check. To clear all of the check boxes, click Uncheck.

• To filter the list of tags, click Filter and then configure filter strings for one or more columns. You can
use wildcard characters (* and ?) in the filter strings.

8. Click Finish.

The screens and included tags are imported into your project. Also, the screens are automatically
published for Thin Clients and Mobile Access — i.e., the corresponding *.HTML, *.SCC, and *.SSMA files
are automatically generated and saved in your project's Web folder, so the imported screens should be
immediately available for you to select.

Tags and the Project Database

Page 223

Tag Integration
Tag Integration is an enhanced framework for communication with third-party applications and devices.

Tag Integration is built on the same communication drivers that are described in the Drivers section, but
instead of manually configuring driver worksheets to associate project tags with device registers, you can
use the Object Finder to browse a Tag Integration source and then import device registers directly into your
project.

Device registers imported in this way appear as integrated tags in your project's Shared Database folder, and
they count against your project's tag limit as determined by its target system. Integrated tags are "live", which
means they are continuously and bilaterally updated during project run time as long as the Tag Integration
source is also running and connected. In most cases, you can use integrated tags in the same ways that you
would normally use project tags you created.

Tag Integration is available only for certain applications and devices, because additional work is required to
upgrade a traditional communication driver to support this feature. Many of the drivers included with this
software can be upgraded, however, so if the one you want is not listed in the Tag Integration settings, please
contact your software distributor and ask about custom development.

Tag Integration is configured in the Communication tab of your project settings.

Tip:

By default, the project runtime server will update integrated tags every 600 milliseconds, which is
the rate at which BlinkSlow toggles. To adjust the rate, manually edit your project file (<project
name>.APP) to add the following entry:

[Options]
MainDrvAlwaysTrigger=<tag name>

<tag name> can be either another system tag (e.g., BlinkFast, Second, Minute) or a project tag you
created. Whenever the value of that tag changes, the integrated tags are updated.

This works because the project runtime server automatically creates a virtual Main Driver Sheet to
manage integrated tags. The same trigger updates all Main Driver Sheets in your project, however,
so be careful if you are using both Tag Integration and traditional communication drivers to
communicate with devices. (Standard Driver Sheets have separate, configurable triggers.)

Tags and the Project Database

Page 224

Using TagsDB functions to edit the tags database during run time
Use the Tags Database (TagsDB) functions to add and remove tags, classes, and class members during project
run time, as well as to set properties and alarm conditions on tags.

There are several important things to keep in mind when you use TagsDB functions, because the functions
can do much more than set and get tag values. They actually change the structure of the tags database,
which can cause serious problems for a running project and all connected thin clients if it is not done
properly. As such, most TagsDB functions can be executed only under the following limitations.

First, you must use the SCADA runtime edition for Windows to run your project — in other words, you must
install the full Studio software on a Windows computer and then license it for "Runtime only". (You can also
license the software for "Engineering only", but your project will run for only 72 hours before it needs to be
restarted.) The TagsDB functions use the project development environment's database editor in essentially
the same way that you do when you manually edit your project during run time. Due to this limitation, the
TagsDB functions cannot be used in projects that are developed for and run on embedded devices.

Second, the TagsDB functions can be called only by scripts that are executed on the project runtime server.
The functions cannot be executed on project thin clients because a client cannot make structural changes
to the tags database without interfering with other clients, decreasing run-time performance, and potentially
corrupting the database. (In this case, "project thin clients" includes the Viewer module that runs on the same
computer as the project runtime server, because it runs as a separate process on that computer.) Therefore,
generally speaking…

TagsDB functions can be used in:

• The Startup Script, which is executed when the project itself is run;

• Script Groups, which are periodically scanned by the Background Task; and

• Global Procedures that are called by the Startup Script or Script Groups.

TagsDB functions cannot be used in:

• The Graphics Script, which is executed by each project thin client client when it starts;

• Screen Scripts, which are attached to project screens and executed when those screens are opened; and

• Command animations.

To work around this limitation, create a Script Group to call the TagsDB functions and then configure a
trigger to control the execution of that Script Group.

Third, in any script that calls TagsDB functions to make structural changes to the tags database, you must
call the TagsDBBeginEdit function at the beginning of the script and the TagsDBEndEdit function at the end
of the script. The TagsDBBeginEdit function locks the database for editing and prevents any other run-time
changes. The TagsDBEndEdit function applies the changes made by TagsDB functions and then allows the
database to resume normal run-time behavior. Both functions must be called in the same script, because that
script (more specifically, the program thread running that script) owns the tags database while it is locked.
You cannot call TagsDBBeginEdit in one script and then call TagsDBEndEdit in another script.

Normally, when a project is edited during run time, the project runtime server and all project thin clients
must be updated with the changes as they are made. This is not a problem when you manually edit your
project, because you make your changes slowly and one at a time. In contrast, the TagsDB functions allow
you to make a large number of changes quickly, so updating the server and clients with all of those changes
while the project is running can severely decrease run-time performance. Therefore, to maintain performance
and protect the tags database, the server — including all background tasks such as alarms, trends, and other
scripts — is effectively paused when the TagsDBBeginEdit function is executed, and then the changes are
applied as a batch when the TagsDBEndEdit function is executed. Also, as part of this update process, project
screens that were already open on clients will be reopened and their OnOpen screen scripts will be executed
again.

Note: The TagsDBBeginEdit function has a persistent effect, which means that if you call the
function to lock the tags database during project run time and then stop the project, the database
will remain locked and you will not be able to manually edit it.

Restarting the project may or may not unlock the database, depending on how you developed your
project and which function call locked the database in the first place. As such, while the project is

Tags and the Project Database

Page 225

stopped, you should use the Watch window to manually call the TagsDBEndEdit function. When it is
successfully executed, you can safely restart the project.

Examples
The following example shows how to use the TagsDB functions in VBScript to add a new class, then add a
new class member to that class, then add a new tag of that class, then set an alarm and a trend on that tag.

If($TagsDBBeginEdit()=0) Then
 If($TagsDBAddClass("TempClass")=0) Then
 If($TagsDBAddClassMember("TempClass","TempMember","Real")=0) Then
 If($TagsDBAddTag("TempTag","TempClass",2,0)=0) Then
 If($TagsDBSetAlarm("TempTag[0].TempMember",1,0,3.5)<>0) Then
 $Msg = "Alarm not Set"
 End If
 If($TagsDBSetTrend("TempTag[0].TempMember",0,1)<>0) Then
 $Msg = "Trend not Set"
 End If
 Else
 $Msg = "Tag not created"
 End If
 Else
 $Msg = "Class Member not added"
 End If
 Else
 $Msg = "Class not created"
 End If
 $TagsDBEndEdit()
Else
 $Msg = "Tag functions not enabled"
End If

Please note how the script begins with the TagsDBBeginEdit function and then ends with the
TagsDBEndEdit function. Also, see how the nested If…Then…Else structures ensure that each function is
executed successfully (i.e., returns a value of 0) before the next one is attempted.

The following example shows how to remove the alarm, trend, tag, class member, and class, in reverse order
from how they were added in the previous example.

If($TagsDBBeginEdit()=0) Then
 If($TagsDBRemoveAlarm("TempTag",1)<>0) Then
 $Msg = "Alarm not removed"
 End If
 If($TagsDBRemoveTrend("TempTag")<>0) Then
 $Msg = "Trend not removed"
 End If
 If($TagsDBRemoveTag("TempTag")=0) Then
 If($TagsDBRemoveClassMember("TempClass","TempMember")<>0) Then
 $Msg = "Class member not removed"
 End If
 If($TagsDBRemoveClass("TempClass")<>0) Then
 $Msg = "Class not removed"
 End If
 Else
 $Msg = "Tag not removed"
 End If
 $TagsDBEndEdit()
Else
 $Msg = "Tag functions not enabled"
End If

It is not absolutely necessary to remove the alarm and trend before removing the tag they are on, because
they are discarded with the rest of the tag properties and other metadata when the tag itself is removed. They

Tags and the Project Database

Page 226

are included in the example above simply to be thorough. In contrast, the class member and class cannot be
removed until every tag in that class is removed.

Screens and Graphics

Page 227

Screens and Graphics
The most basic function performed by BOS is to provide a window into the process. The ability to display the
status of the process by interacting with instrumentation (or computers), is described as the Human-Machine
Interface (HMI).

BOS allows you to create projects that can monitor processes using high-resolution color screens.

The BOS graphic tools consist of two modules:

• The Screen/Worksheet Editor in the BOS development environment (used to create or import graphics);
and

• The runtime project Viewer.

You can use animations to create dynamic graphic objects or symbols. Animations cause objects and symbols
to change appearance to reflect changes in the value of a tag or an expression. Each screen is an association
of static and animated objects.

Screens can have an optional bitmap that acts as a background in the object window. On the following
screen for example, the static images can be part of a bitmap in the background object and objects with
animation in the animation object layer can reflect the changes in the plant, giving the illusion that the screen
is three#dimensional.

All BOS configuration tasks require a Windows-compatible pointing device, such as a mouse or touch pad.
You can run a project in the Viewer without a pointing device if you configure keypad or keyboard keys for all
commands.

Screens and Graphics

Page 228

Graphics tab
The Graphics tab of the Project Explorer contains all of the screens, screen groups, and symbols in your
project.

Graphics tab of the Project Explorer

The folders on the Graphics tab are described in the following sections:

Screens
You create screens to provide a graphical interface for your project. Each screen can contain
many buttons, sliders, dials, indicators, graphs, and so on.

Screen Groups
You can combine individual screens into screen groups, so that they all open together at the
same time.

Thin Clients
You can deploy your project as a web application to be accessed by thin clients such as desktop
web browsers, tablets, and smartphones. You can even deploy different versions of your project
with different levels of functionality for each type of client.

Project Symbols
This folder contains all of the custom symbols that you create for your project. A symbol is a
group of interconnected screen objects that work together to perform a single function — for
example, lines, rectangles, and text fragments that have been arranged to make a slider control.

Graphics Script
You can use this worksheet to define VBScript sub-routines that are called only when the
graphics module starts (i.e., when a client station connects to the server and displays the
graphical interface), while it is running, and when it ends.

Native Symbols
This folder is a library of the symbols that are created with the native graphics tools in Studio.
It contains not only the custom symbols that you create (see Project Symbols above), but also a
large selection of premade symbols that are installed with Studio.

Screens and Graphics

Page 229

Industrial Graphics Symbols
This folder is a library of the symbols that are created with the Industrial Graphics editor, which
works as a companion to the native graphics tools in Studio.

Layout
The layout editor displays all of the screens the are currently open for editing. You can use it
to visualize how the screens are arranged together and reuse screens in multiple layouts — for
example, to create a common navigation bar across your entire project.

Screens folder
The Screens folder is located in the Graphics tab of the Project Explorer. It contains all of your Screen worksheets,
both completed and still in development.

To create a new Screen worksheet, do one of the following:

• On the Insert tab of the ribbon, in the Graphics group, click Screen;

• Right-click the Screens folder in the Project Explorer, and the click Insert on the shortcut menu; or

• Go to File, select New, click the File tab in the New dialog, select Screen from the list of worksheet types, and
then click OK.

When a Screen worksheet is opened for the first time, the Screen Attributes dialog for that worksheet is
automatically displayed. For more information, see Screen Attributes dialog.

To open an existing Screen worksheet, expand the Screens folder and then double-click the worksheet.

SCREEN ATTRIBUTES
Use the Screen Attributes dialog box to configure run-time settings — such as size, location, title bar, security
level, and screen logic — for a specific project screen.

Accessing the dialog box
The Screen Attributes dialog box is automatically displayed when you add a new Screen worksheet to your
project.

Screens and Graphics

Page 230

You can also access the dialog box for an existing Screen worksheet (assuming the worksheet is open for
editing) by doing one of the following:

• On the Draw tab of the ribbon, in the Screen group, click Attributes; or

• Right-click anywhere in the Screen worksheet, and then click Screen Attributes on the shortcut menu.

Description
This is a brief description of the project screen, for your own convenience. It is not shown anywhere during
run time.

Background Picture
Enable Background

Enables the background picture layer and specifies the image format. When this option is
selected, a new image file with the same name as the screen is automatically created in the
Screen sub-folder your project folder (e.g., <project name>\Screen\<screen name>.BMP). You
can then edit the file that was created, replace it with another file that has the same name, or
configure the Shared Image setting below to specify a file that has a different name.

Shared Image
Specifies the name of an image file to use instead of the image file that has the same name
as the screen. The file still must be located in the Screen sub-folder of your project folder. Do
not include the file extension with the file name, because it is automatically determined by the
image format. You can type a string expression for this setting (e.g., {MyBackground}).

For more information, see Modifying a screen's background color or image on page 233.

Screens and Graphics

Page 231

Size and Location
Width

The default width (in pixels) of the screen when it is opened.

Height
The default height (in pixels) of the screen when it is opened.

Top
The default distance (in pixels) between the top of the display and the top of the screen when the
screen is opened. This is also known as the screen's Y-position.

Left
The default distance (in pixels) between the left side of the display and the left side of the screen
when the screen is opened. This is also known as the screen's X-position.

If you use the Layout tool to lay out your project screens, these size and location settings will be automatically
updated to reflect any changes you make in that tool.

If you configure the screen to have a border, the user will be able to change the size and location of the screen
during run time. For more information, see Border below.

Runtime Properties
Style

The general run-time behavior of the screen:

Option Description

Overlapped Opens the screen without closing any other screens.

Popup Forces the screen in front of all other screens but does not close
them.

Replace (Partial) Opens the screen and closes all other Replace screens that it
partially covers. This is the default.

Dialog Similar to Popup, except that the other screens are also disabled
until the dialog is closed by the user.

Replace (Complete) Similar to Replace (Partial), except that it closes only other Replace
screens that it completely covers.

Border

The type of border around the screen:

Option Description

None No border; the screen is a flat, immovable rectangle on the display.
This is the default.

Thin A thin border that makes the screen a movable window. Includes the
title bar.

Resizing A thick border that makes the screen a movable, resizable window.
Includes the title bar.

Titlebar
Shows the window's title bar with the specified window name. You can type a string expression
for this setting (e.g., {MyWindow}). It is useful to specify a window name even if the title bar is
not shown, because the window name is always included when the screen is printed.

System Menu
Shows a menu of basic window commands at the left end of the title bar.

Screens and Graphics

Page 232

Maximize Box
Shows the Maximize button at the right end of the title bar.

Minimize Box
Shows the Minimize button at the right end of the title bar.

Don't Redraw
While this tag/expression evaluates as TRUE (i.e., not 0), most animations (except Command
animations; see Disable Commands below) in the screen are disabled. In other words, basic shapes
will not be redrawn when their size, color, position, or visibility change. Active, data, and library
objects (except symbols that include these animations) remain enabled, and all other screen
graphics will continue to be updated.

Disable Commands
While this tag/expression evaluates as TRUE (i.e., not 0), Command animations in the screen
are disabled. Typically, this means that clicking/tapping buttons in the screen will have no
effect, although other types of objects can also have Command animations applied to them.
Active, data, and library objects (except symbols that include Command animations) remain
enabled, and all other screen graphics will continue to be updated.

Security
Level

The minimum security level that a user must have in order to access this screen.

Screen Logic
On Open

A list of expressions to be evaluated once when the screen is opened, similar to a Math
worksheet.

While Open
A list of expressions to be continuously evaluated while the screen is open, similar to a Math
worksheet. If you specify a trigger, however, then the list will be evaluated once each time it is
triggered while the screen is open.

On Close
A list of expressions to be evaluated once when the screen is closed, similar to a Math
worksheet.

Multi-Touch Settings
Customizes the Multi-Touch settings for this screen. For more information, see About the Multi-Touch
settings for project screens on page 349.

Focus
Receive focus on open

When the screen is opened, the focus will automatically go to the first object in the screen
(according to Object ID) that can receive focus, as if the user tabbed into the screen.

Share tab order with other screens
When the user tabs through the last object in the screen, the focus will go to the next open
screen (according to Tab Order below) rather than back to the first object in the current screen.

Tab Order
Similar to Object ID for screen objects, this determines the tab order between screens when
multiple screens are open. When the user tabs through the last object in a screen, the focus

Screens and Graphics

Page 233

will go to the open screen with the next higher Tab Order number. Each screen should have a
unique Tab Order number between 0 and 32767.

Background screen
When the user clicks on the screen, it remains in the background and is not brought in front of
the other open screens. If more than one screen has this option selected, then the screens are
arranged in tab order with the greatest Tab Order number being the furthest back.

Performance Optimization
Hide screen instead of closing it

Closing the screen (by any user action or system process) in fact only makes it hidden, and
reopening the screen makes it visible again. This makes the screen appear to open very quickly.

This option should be selected only for critical screens. If too many screens are kept open,
regardless of whether they are visible or hidden, overall run-time performance will be affected.

Keep screen file in memory

When the screen is closed, the screen file is kept in memory so that it does not need to be
reloaded from the hard drive when the screen is reopened. The screen still needs to be redrawn,
however. This is not as fast as making a hidden screen visible again (see above), but it still
makes the screen appear to open quickly.

This option should be selected only for important screens. If too many project files are kept in
memory, overall run-time performance will be affected.

MODIFYING A SCREEN'S BACKGROUND COLOR OR IMAGE
A project screen can have either a solid background color or an editable background image.

Selecting a screen's background color
By default, a newly created project screen has a solid white background. To change this background color:

1. Make sure the screen file is open for editing.

2. On the Draw tab of the ribbon, in the Screen group, click Background Color. A standard color picker is displayed
as a shortcut menu.

3. Use the color picker to select a color. The color is applied to the entire project screen.

Tip: If you want to set a background color for only part of a screen, draw a shape object and then
send it to the back.

Enabling a screen's background image
To enable the background image for a screen and then edit it:

1. Make sure the screen file is open for editing.

2. On the Graphics tab of the ribbon, in the Screen group, click Attributes.The Screen Attributes dialog box is
displayed.

3. Select Enable Background. A new BMP file with the same name as the screen is automatically saved in the
Screen folder in your project folder (e.g., […]\<project name>\Screen\screenname.BMP).

4. Click OK to close the Screen Attributes dialog box.

5. On the Draw tab of the ribbon, in the Screen group, click Background Image. Microsoft Paint is run
automatically and the BMP file is opened for editing.

6. Use Microsoft Paint to edit the background image as needed.

Screens and Graphics

Page 234

Tip: To use an image editor other than Microsoft Paint, manually edit the program settings file
(Pro-face\BLUE Open Studio 2020\Bin\Program Settings.ini) to add the following setting:

[Options]
ImageEditor=filepath

Specifying an existing image file as the background
To select an existing image file, especially if it is in a format other than BMP:

1. Copy the image file that you want to use to the Screen folder in your project folder.

2. In the development environment, make sure the screen file is open for editing.

3. On the Draw tab of the ribbon, in the Screen group, click Attributes.The Screen Attributes dialog box is
displayed.

4. Select Enable Background, and then in the list to the right of the option, select the image file format.

5. Select Shared Image, and then in the box to the right of the option, type the name of the image file. Do not
include the file extension, because that is controlled by the list selection in the previous step.

You can specify folders within the Screen folder. For example, if you type MyBackgrounds\Background1,
the program will look for the image file at […]\<project name>\Screen\MyBackgrounds\Background1.

You can also specify a tag or expression in curly brackets (e.g., {MyTag}), in order to programmatically
change the background image during run time.

6. Click OK to close the Screen Attributes dialog box. If the program can find and load the specified image file,
the image will be displayed in the project screen. If not, then a warning message will be displayed.

Screen Group Folder
The Screen Group folder combines individual screens from the Screens folder into more manageable groups.

To open a specific screen group, open the Screen Group folder and right-click on the subfolder.

To remove a specific screen group, right-click on its subfolder and click the prompt screen to delete.

To create a new screen group:

1. On the Insert tab of the ribbon, in the Graphics group, click Screen Group to open the Insert Screen Group
dialog:

Insert a Screen Group dialog
2. Type a name for the new folder into the Name field.

Screens and Graphics

Page 235

3. Create a group of screens for this folder by selecting screens from the List of screens list. To select multiple
screens press the Ctrl key as you click on the screen names. Release the Ctrl key when you finish.

This list contains only those screens currently located in Screens folder.

4. Click OK to close the Insert Screen Group dialog.

Lay out project screens in a simulation of the client's display
Use the Layout tool to lay out — that is, to resize, reposition, and reorder — your project screens in a
simulation of the client's display.

By default, when you create a new project screen, it is created at your project's full display resolution. (You
selected the display resolution when you created the project itself, but you can also convert the resolution
after the fact, if necessary.) Therefore, when you open two screens at the same time, the second screen will
cover the first.

That works well enough for a simple project with only a few screens, but in a more complex project with many
screens and sub-screens, you will want to arrange the screens so that they fit together and not overlap. You
can use the Layout tool to do that.

When you make changes to a screen in the Layout tool, the screen's attributes are automatically updated
to reflect the changes. For example, when you resize a screen, the screen's Width and Height attributes are
updated. And when you reposition a screen, the screen's Top and Left attributes are updated. For more
information, see Screen Attributes on page 229. The changes are not actually saved, however, until you
close the screen file in the development environment.

To lay out your project screens:

1. In the Graphics tab of the Project Explorer, double-click Layout.
The Layout tool is opened as a new tab in the Screen/Worksheet Editor area, and all currently open
project screens are displayed in the tool. The order of the screens in the tool is determined by the order
of screens' tabs in the editor area, so that the left-most tab is in the back and the right-most tab is in the
front.

2. Make sure all of the project screens that you want to lay out are included in the Layout tool:
a) To add a screen to the Layout tool, double-click it in the Project Explorer.

The screen file is opened for editing, and it is also added to the Layout tool.

b) To remove a screen from the Layout tool, click the Close icon (×) in the screen's tab.
The screen file is saved and closed, and it is also removed from the Layout tool.

c) To reorder a screen in the Layout tool — that is, to bring it to the front or send it to the back — click
and drag the screen's tab right or left in the editor area.

3. Configure the project settings to show or hide whichever elements of the Viewer program window — for
example, the Title Bar, the Menu Bar, the window border, and so on — that you want have displayed to
users during project run time.

For more information, see Viewer tab on page 115.

Note: This applies only when the Windows-based Viewer program (i.e., either Secure Viewer
or the local Viewer module) is used to view the project screens. It does not apply when Mobile
Access is used, because then the browser is the program window.

The simulated display in the Layout tool is updated to reflect the changes in the project settings.

4. Lay out your project screens as needed:
a) To resize a screen, click and drag the edge of the screen.

b) To reposition a screen, click and drag the middle of the screen.

c) To arrange a screen, right-click in the screen, and then on the shortcut menu, click the appropriate
command.
For example, click Top Left to move the screen to the top-left corner of the full display.

Each time you change a screen, a message is displayed asking you to confirm the change. You can choose
to disable the messages and update the screen attributes without confirmation. You can also reenable the
messages later, if necessary. For more information, see Preferences tab on page 127.

Screens and Graphics

Page 236

When you have finished laying out your project screens, you might want to save them as a screen group so
that you can open them all together, at the same time, with a single command. For more information, see
Screen Group Folder on page 234.

Screens and Graphics

Page 237

Screen Objects and Animations

Editing
The Editing group provides tools for general screen editing.

SELECTION

On the Graphics tab of the ribbon, in the Editing group, click Selection to display a mouse cursor that you can
use to select and move objects on the screen.

DISABLING DRAG IN A SCREEN
You can disable the dragging of objects in the screen editor, to prevent accidental moves after you've layed out
the screen exactly as you want it.

On the Draw tab of the ribbon, in the Editing group, click Disable Drag.

REPLACING PROJECT TAGS IN A DOCUMENT OR SCREEN OBJECT

To replace all occurences of a tag in the current document, do one of the following:

• On the Home tab of the ribbon, in the Tags group, click Replace; or

• On the Graphics tab of the ribbon, in the Editing group, click Replace.

To replace all occurences of a tag in a screen object, double-click the object to open its Object Properties dialog
and then click Replace.

All of these methods will open the Replace dialog, which is descibed below.

You can replace one or more tags by clicking the Whole Tag Name tab. Current tags used are displayed. The
original tag names are shown in the From column on the left, and you can enter your new tag names in the To
column on the right.

Whole Tag Name tab

Note that this does not rename or delete any tag — it only replaces the tags used in the object with other tags
from the database.

Screens and Graphics

Page 238

You can also replace one or more strings (e.g., button captions, descriptive text) by clicking the String Value tab.

String Value tab

When you are done, click OK.

OBJECT PROPERTIES DIALOG BOX
The Object Properties dialog box shows the configurable properties of a screen object or animation. Each type
of object has its own object-specific properties, but all types have a few properties in common.

Accessing the dialog box
To access the Object Properties dialog box for a screen object, do one of the following:

• Select the screen object, and then on the Draw tab of the ribbon, in the Editing group, click Properties;

• Right-click the screen object, and then click Properties on the shortcut menu; or

• Double-click the screen object.

The dialog box in detail
All Object Properties dialog boxes contain the following elements:

 (Pin)
Click this button to "pin" the dialog box, so that it remains open and active when you select
other objects in the screen editor. For more information, see Focusing the Object Properties
Window on page 93.

Replace
Click this button to open the Replace dialog box, which you can use to replace strings, tags, or
properties in the selected object. For more information, see Replacing project tags in a document
or screen object on page 90.

Hint
Type a hint or tooltip that will be displayed during run time, when the user hovers the mouse
cursor over the object. This can be used to provide quick-help to the user.

The text in the Hint box is also temporarily written to the system tag Hint, so that you can trigger
actions based on the value of this tag when the mouse cursor is moved over a specific object.

Screens and Graphics

Page 239

To show hints/tooltips during run time, the Enable Tooltip option must be selected in the project
settings. You can enable/disable this feature separately for full project viewers (on the Project
tab of the ribbon, in the Settings group, click Viewer) and for thin clients (on the Project tab of the
ribbon, in the Web group, click Web).

 (Object Selector)
Use this list at the top-right corner of the dialog box to select the specific object or animation in
a group of objects that you want to configure. When you select another object, the dialog box
immediately changes to show the properties of that object.

GRID SETTINGS
To show/hide the grid in the screen editor, click Grid Settings on the Graphics tab of the ribbon and then click
View Gridlines on the shortcut menu.

To edit the grid settings, do one of the following:

• Click Grid Settings on the Graphics tab of the ribbon and then click Grid Settings on the shortcut menu; or

• Right-click anywhere in the screen editor and then click Grid Settings on the shortcut menu.

Either method will open the Grid Settings dialog:

Grid Settings dialog

UNDO
Select Undo to cancel the last action performed (and up to 20 actions taken prior to the last action) while
working on a screen. (Object Properties actions do not increase Undo steps.)

Note: Using the Undo menu option is the same as using Undo tool located on the Standard toolbar.

FORMAT TAB
The Format tab of the ribbon is used to format and arrange objects in a project screen.

Note: This tab is available only when you've selected one or more objects in a project screen.

Screens and Graphics

Page 240

The tools are organized into the following groups:

• Arrange: Arrange objects in a project screen, including bring to front and send to back, group, align, and
rotate.

• Position: Precisely adjust the position of a screen object in a project screen.

• Size: Precisely adjust the size of a screen object.

• Style: Change the fill and line color of a screen object.

• Fonts: Change the caption font of a screen object.

Shapes
The Shapes group provides the following tools, which you can use to create polygons, rectangles, lines, and
other objects for your screen.

LINE OBJECT

On the Graphics tab, in the Shapes group, click Line to draw an orthogonal line in the drawing area, as follows:

1. Click the left mouse button to set the starting point of the line.

2. Drag the cursor to adjust the line size.

3. Click again to place the object.

4. To view the object properties, double-click on the object. The Object Properties dialog displays as follows.

Object Properties: Line
Use the Object Properties dialog to specify the following parameters for the orthogonal line:

• Line: Specify a line style by clicking the No Line, Solid Line, or Dashed Line button.

• Color: Specify a line color by clicking the Color button. When the Color dialog opens, click a color to select it
and then close the dialog.

• Weight: Specify the line width (in pixels) by typing a number representing the line width into the text box.

OPEN POLYGON OBJECT

On the Graphics tab, in the Shapes group, click Open Polygon to draw an open polygon with a border in the
specified foreground color.

To draw an open polygon in the drawing area:

1. Click the left mouse button to set the starting point of the polygon.

2. Move the cursor to a new location and click again to place the second vertex.

3. Repeat this process until you create the desired polygon shape.

Screens and Graphics

Page 241

4. Double-click to stop drawing the polygon.

To change the shape of a polygon after you've drawn it, select it and drag any of its points.

Tip: If a polygon's individual points are not draggable, they may be grouped. To ungroup the
points, right-click on the polygon and choose Ungroup from the shortcut menu.

To view the object properties, double-click on the polygon object and the Object Properties dialog is displays
as follows.

Object Properties: Open Polygon
Use the Object Properties dialog to specify the following parameters for the polygon:

• Line: Specify a border line style by clicking the No Line, Solid Line, or Dashed Line button.

• Color: Specify a border line color by clicking the Color button. When the Color dialog opens, click on a color
to select it and then close the dialog.

• Weight: Specify the borderline width (in pixels) by typing a number representing the line width into the text
box.

CLOSED POLYGON OBJECT
On the Graphics tab, in the Shapes group, click Closed Polygon to draw a closed polygon, using a border in the
specified foreground color.

To draw a closed polygon in the drawing area:

1. Click the left mouse button to set the starting point of the polygon.

2. Move the cursor to a new location and click again to place the second point.

3. Repeat this process until you create the desired polygon shape.

4. Double-click or right-click to stop drawing the polygon.

5. To view the object properties, double-click on the polygon object.

To change the shape of a polygon after you've drawn it, select it and drag any of its points.

Tip: If a polygon's individual points are not draggable, they may be grouped. To ungroup the
points, right-click on the polygon and choose Ungroup from the shortcut menu.

Screens and Graphics

Page 242

The Object Properties dialog is displays as follows.

Object Properties Dialog: Closed Polygon
Use the Object Properties dialog to specify the following parameters for the polygon:

• Line: Specify a border line style by clicking the No Line, Solid Line, or Dashed Line button.

• Color: Specify a border line color by clicking the Color button. When the Color dialog opens, click a color to
select it and then close the dialog.

• Weight: Specify the borderline width (in pixels) by typing a number representing the line width into the text
box.

• Fill: To specify whether the polygon is filled, click No Fill or Fill.
If you enable the Fill option, you can specify a fill Color by clicking on the Color button. When the Color
dialog displays, click a color to select it and close the dialog.

RECTANGLE OBJECT

On the Graphics tab, in the Shapes group, click Rectangle to create rectangles, as follows:

1. Click in the drawing area and drag the mouse/cursor to draw the rectangle.

2. Release the mouse button when the rectangle is the size you want.

3. Double-click on the object to view the Object Properties dialog.

Object Properties: Rectangle
Use the Object Properties dialog to specify the following parameters for the orthogonal line:

Screens and Graphics

Page 243

• Type: Specify a border line style by clicking on None, Solid, Dashed, Etched, Raised or Sunken.

• Color: Specify a border line color by clicking the Color button to open the Color dialog. Click the color to
select it, and then close the dialog.

• Weight: Specify a border line width by typing a number representing the line width (in pixels) into the text
box provided.

• Fill: Specify whether to fill the rectangle by clicking No Fill or Fill.
If you select the Fill option, specify a fill color by clicking on the Color rectangle. When the Color dialog
displays, click a color to select it and close the dialog.

• Color: Specify a fill color by clicking the Color button to open the Color dialog. Click a color to select it, then
close the dialog.

• Caption: Press this button to open the Caption dialog where you can edit the text that can be written inside
the rectangle object:

Caption dialog

• Caption: Enter the text that you want to display inside the rectangle object. You can include a tag by
enclosing it in curly brackets (e.g., {tagname}).

• Fonts: Specify a font style for the caption by clicking the Fonts button.

• Align: Specify the alignment for the caption of the rectangle.

• Multiline: Allow the caption of the rectangle to be shown in more than one line, when checked.

• Auto Format: When checked, if the caption includes a decimal value enclosed by curly brackets (e.g.,
{1.2345}) or a tag of Real type (see Caption above), then the value will be formatted according to the
virtual table created by the SetDecimalPoints function.

• Wrap Text: When checked, the object automatically wraps the text when necessary.

• Auto gray out: Turns the caption of the rectangle to gray when the Command animation applied to the
rectangle is disabled by the Disable field or due to the Security System.

• Enable translation: Click (check) to enable translation during runtime using the Translation Tool.

ROUNDED RECTANGLE OBJECT

On the Graphics tab, in the Shapes group, click Rounded Rectangle to draw rounded rectangles (empty or filled), as
follows:

1. Click in the drawing area and drag the mouse/cursor to create the rectangle.

2. Release the mouse button to stop drawing the object.

Screens and Graphics

Page 244

3. Double-click on the object to view the Object Properties dialog.

Object Properties: Rounded Rectangle

Tip: A rounded rectangle has one extra handle in the bottom-right corner, which enables you to
modify the arc angle.

Use the Object Properties dialog to specify the following parameters for the orthogonal line:

• Line: Specify a borderline style by clicking the No Line, Solid Line, or Dashed Line button.

• Color: Specify a borderline color by clicking the Color button to open the Color dialog. Click the color to
select it and then close the dialog.

• Weight: Specify a borderline width by typing a number representing the line width (in pixels) into the text
box provided.

• Fill: Specify whether the rectangle is filled by clicking No Fill or Fill.
If you select the Fill option, specify a fill color by clicking on the Color button. When the Color dialog
displays, click a color to select it and close the dialog.

• Color: Specify a fill color by clicking the Color button to open the Color dialog. Click a color to select it, then
close the dialog.

• Caption: This option is not enabled for this object.

ELLIPSE OBJECT

On the Graphics tab, in the Shapes group, click Ellipse to draw ellipses, chords, arcs, and rings (see the following
figures).

Ellipse, Chord, Arc, and Ring

Tip: The Ring style is particularly useful when you are creating plumbing drawings.

To create an ellipse, use the following steps:

1. Click in the drawing area and drag the mouse/cursor to create an ellipse shape.

2. Release the mouse button to stop drawing the ellipse.

3. Use the Object Properties dialog to change the shape to a chord, arc, or ring.

Screens and Graphics

Page 245

4. Double-click on the object to view the Object Properties dialog.

Object Properties: Ellipse
Use the Object Properties dialog to specify the following parameters for the ellipse:

• Style: Specify the object style by selecting Ellipse, Arc, Chord, or Ring from the drop-down list. Next, select Left-
Bottom, Left-Top, Right-Bottom, or Right-Top from the Style list to choose the quadrant into which the ellipse is
drawn.

For example to represent a half-circle pipe, create two Ring objects. Specify one as Left-Bottom and the other
as Right-Bottom then join the two objects to create a half-pipe.

• Line: Specify a line style for the ellipse border by clicking the No Line, Solid Line, or Dashed Line button.

• Color: Specify the ellipse borderline color by clicking the Color button to open the Color dialog. Click the
color to select it, then close the dialog.

• Weight: Specify a line width for the ellipse border by typing a number representing the line width (in pixels)
into the text box provided.

• Fill: To specify whether the ellipse is filled, click No Fill or Fill.
If you select the Fill option, specify a fill color by clicking on the Color button. When the Color dialog
displays, click on a color to select it and close the dialog.

PASTE A BITMAP IMAGE INTO A SCREEN
To paste a bitmap image into a screen, copy it to the clipboard and then paste it directly into the Screen
worksheet.

This task assumes that you have a Screen worksheet open for editing.

Please note that by default, using this method to add an image to a project screen will embed the image data
in the screen file. This keeps everything in a single file, which is more convenient in some situations, but
it increases the screen file size each time you reuse the image and it is also less flexible than linking to an
external image file. Nevertheless, if this is what you want to do, then proceed with the task below.

If this is not what you want to do, however, then you have two other options.

First, if you want all bitmap images to be linked as external files, then you should first select the option Save
pictures in separate files, in the project settings. When that option is selected and you paste a bitmap image into a
screen, the image is automatically saved as a separate file in your project folder and then placed as a Linked
Picture object in the project screen. For more information about the option Save pictures in separate files, see
Project Settings: Viewer.

Second, if you want only a specific bitmap image to be linked as an external file, then you should not paste it
into the screen. Instead, you should manually place it as a Linked Picture object. This leaves you the ability to
paste and embed other bitmap images, according to the default settings.

The following table summarizes your options:

Screens and Graphics

Page 246

Save pictures in separate files…Action

…is selected …is not selected

Paste image into screen Image is placed as a Linked Picture object Image is placed as a Bitmap object

Link to external image file Image is placed as a Linked Picture object Image is placed as a Linked Picture object

To paste a bitmap image into a screen:

1. Open the desired image in an appropriate image editor, such as Microsoft Paint.

2. Select part or all of the image, either by using the Select tool in Paint or by pressing Ctrl+A.

3. Copy the selection to the clipboard, either by using the Copy tool in Paint or by pressing Ctrl+C.

4. Switch to the development application, and then make sure that you have the correct Screen worksheet
open for editing.

5. On the Home tab of the ribbon, in the Clipboard group, click Paste, or press Ctrl+V.
The bitmap image is placed as a screen object.

6. Click and drag the object to where you want it to be positioned in the screen. Also, click and drag the
object's handles to resize it, if necessary.

7. Double-click the screen object.
If Save pictures in separate files is selected in the project settings, then the bitmap image was placed as a Linked
Picture screen object. Skip the remaining steps of this task and instead proceed to Link to an external
image file on page 311.

On the other hand, if Save pictures in separate files is not selected, then the bitmap image was placed as a
Bitmap screen object. Proceed with the remaining steps below.

The Object Properties: Bitmap dialog is displayed.

Object Properties: Bitmap
8. If you want some part of the picture to be transparent to the screen background and other objects, then

select a transparent color:
a) Select Transparent.
b) Click and drag the tracker on the screen object until it is positioned over a sample of the desired

transparent color.
The tracker is an additional handle on the screen object that initially appears just inside the bottom-
right corner of the object. Moving the tracker on the object does not move or resize the object itself.

9. Close the Object Properties dialog.

Screens and Graphics

Page 247

CHANGE THE PROPERTIES OF MULTIPLE SCREEN OBJECTS
This task describes how to select two or more screen objects and then change the properties that are common
to the selected objects.

Before you begin this task, you must have a project screen open in the screen editor.

Which properties you can change depends on whether you select multiple objects of the same type or of
different types. If the objects are of the same type, you can change the properties that are specific to that type.
For example, if you select multiple Button objects, then you can change the properties that are specific to
Button objects.

Object properties of multiple selected Button objects

For more information about the properties of a specific type of object, see the documentation for that object.

Note: You can only use this method to change the properties of Shapes and Active Objects. You
cannot use this method to change the properties of Data Objects, Animations, Library items, or
objects in a group.

In contrast, if you select multiple objects of different types, you can change the properties that are common to
all of the objects. This includes not only cosmetic properties like Border and Background, but also functional

Screens and Graphics

Page 248

properties like Disable, Security, Enable Translation, and E-Sign. (Some properties may not apply to all
objects. For example, Button objects do not have Border and Rectangle objects do not have Security.)

Object properties for multiple objects of different types

In both cases, the dialog box shows the current values of the properties of the last selected object.

It is only when you actually change the value of a property that the change is applied to the selected objects.
All other properties are left unchanged, regardless the values shown in the dialog box.

To change the properties of multiple screen objects:

1. In the screen editor, do one of the following:

• Press and hold either Shift or Ctrl on the keyboard, and then click each object that you want to change;
or

• Use the cursor to draw a selection box around all of the objects that you want to change.

The objects are selected.

2. Do one of the following:

• On the Draw tab of the ribbon, in the Editing group, click Properties;

• Right-click the selected objects, and then on the shortcut menu, click Properties; or

• Press Alt+Enter on the keyboard.

Note: You cannot double-click to open the Object Properties dialog box as you otherwise would,
because clicking like that clears the selection.

The Object Properties dialog box is displayed for the selected objects.

3. Change the property values that you want to change, and then close the dialog box.

The changes are applied to all of the selected objects.

Active Objects
The Active Objects toolbar provides the following tools, which you can use to create interactive objects. Active
objects typically require more parameters than simple shapes.

Screens and Graphics

Page 249

TEXT OBJECT

On the Graphics tab, in the Active Objects group, click Text to create text objects, as follows:

1. Click in the drawing area. When a cursor displays, you can type a line of text.

2. After entering the text string, double-click on the new text object to view the Object Properties dialog.

Object Properties: Text
Use the Object Properties dialog to specify the following properties:

• Caption: Specify a text string by typing a caption in the text box.

• Text data link button: Click to apply the Text Data Link animation to the Text object.

If the caption doesn't include any placeholder characters (###) for the text-data link, then clicking this
button also automatically appends those characters.

• Align: Align the text by selecting Left, Center, or Right from the combo-box.

• Fonts: Specify a font style for the text by clicking the Fonts button. When the Fonts dialog displays, you can
specify the following parameters:

• Font (typeface)

• Font style
• Size
• Effects
• Color
• Script

• Border: Specify a text border by clicking the Border box.

To select a border color, click the Color rectangle. When the Color dialog displays, click a color to select it,
then close the dialog.

• Background: Specify a background color by clicking the Color button. When the Color dialog displays, click a
color to select it, then close the dialog.

• Enable translation (optional): Specify an external translation file for the text by clicking (checking) this box.

TEXT BOX OBJECT
Draw a Text Box object to create a way to input and/or output text, including multiple lines.

This object is an OS-style text input/output box that can be configured to show multiple lines. When the
object is associated with a String array, each line of the box corresponds to an array element: Line 1 is Array
Index 0, Line 2 is Array Index 1, Line 3 is Array Index 2, and so on.

Otherwise, the Text Box object works much like the Text Data Link animation.

Screens and Graphics

Page 250

To draw and configure a Text Box object:

1. Open a screen for editing.

2. On the Draw tab of the ribbon, in the Active Objects group, click Text Box.
The mouse cursor changes to a crosshair for drawing.

3. Draw the object where you want it on the screen, and then further move or resize it if necessary.

4. Double-click the object.
The Object Properties dialog box is displayed.

Text Box object properties
5. In the Hint box, type a hint or tooltip that you want to have displayed during run time when the mouse

hovers over the object.

6. In the Tag/Expression box, type the name of a project tag or an expression to associate it with the object.

Tip: Click the browse button (…) on the right to use the Object Finder to form the tag/
expression.

A project tag can be used for either input or output. An expression can be used only for output.

If you want to input or output multiple lines of text — that is, if you select Multi-line, which is described
below — then type the name of a String array with an index of 0 (e.g., MyStringArray[0]). If you try to
start at any other position, then you may see unexpected behavior during run time. For example, if you
type MyStringArray[4], then the first line of the object will display index 4 of the array but the second
line will start over at index 0.

You should not use any other type of array (i.e., Boolean, Integer, or Real) with the Multi-line option.

7. In the Format list, select how the numerical value (if any) of the specified tag/expression will be formatted
and displayed on-screen. Available options include Decimal, Hexadecimal, Binary and Auto. If you select Auto,
then the value will be formatted according to the virtual table created by the SetDecimalPoints function.
This option does not actually change the specified tag/expression in any way. For example, Tag/Expression is
set to an Integer tag, Input Enabled is selected, and Format is set to Hexadecimal. You may input a new value in
hexadecimal format, but it is saved in your project database as an integer.

8. By default, Input Enabled is selected. If you do not want to allow user input during run time, clear this check
box.

Note: If you clear the Input Enabled check box, the object's font color becomes black and its
background color becomes gray. This is to visually indicate to the user that input is disabled, and

Screens and Graphics

Page 251

it overrides the object's own font and color settings, including additional settings applied a Color
animation.

9. In the Mask/Count box, type a value that will restrict the input:

• To mask a numerical value so that it matches a specific format, type one or more # characters. Each #
represents one character of input/output. You may include a decimal separator for decimal values (e.g.,
###.##).

It is important to remember that the project runtime will always display the most significant digits of
a numerical value, regardless of the number or placement of # characters in the text. That means if
you do not have sufficient # characters to display the value, then it will be transformed in some way
depending on the format of the value (as set by the Format option described below):

• In Decimal format, the number of decimal places is determined by the position of the decimal
separator in the ### text. However, if you do not have enough # characters to the left of the decimal
separator to display the whole value, then the whole value will overrun the fractional value. For
example, if you try to display a value of 112.64 in #.##, you will see 112.

• In Hexadecimal and Binary formats, if you have more # characters than you need to display the value,
then the runtime project will fill in with leading zeroes. If you have less characters than you need,
then the value will simply be truncated.

• In Auto format, the runtime project will ignore the number of # characters and display the entire
numeric or string value. Numeric values will be displayed in decimal format with their complete
whole and fractional values, regardless of the placement of the decimal separator in the ### text.
Given an exceptionally large value or long string, this may disrupt the layout of your screens.

• To limit a string to specific character count, type a value between 0 and 1024. 1024 is the maximum
limit because it is the maximum size of the String data type. If you enter more than 1024 characters,
then the string will be truncated and the remaining characters will be discarded.

Please note that this character count limit is per line, so if you configure the object to have multiple
lines (i.e., if you select Multi-line) and associate it with a String array, then each line of text / array
element may be up to the limit.

10.In the Minimum Value and Maximum Value fields, type the minimum and maximum numerical values (if any)
that will be accepted from the user. This is optional.

11.In the Disable box, type the name of project tag or an expression. This is optional.
When the value of the tag/expression is TRUE (1), the object is disabled.

12.To make the object accept/display multiple lines of text, select Multi-line .
When Multi-line is selected, the Scroll Bar and Word Wrap options also become available and the Password option
becomes unavailable.

13.To make the object obfuscate text input (e.g., ********), select Password.

Tip: During run time, if you want to insert a line break in a multi-line text box, press Shift+Return, Ctrl
+Return, or Alt+Return.

BUTTON OBJECT
The Button object

On the Graphics tab, in the Active Objects group, click Button to create custom-sized buttons, as follows:

1. Click in the drawing area and drag the mouse/cursor to create the button shape.

2. Release the mouse button when the button is the size you want.

Screens and Graphics

Page 252

3. Double-click on the object to view the Object Properties dialog.

Object Properties: Button
Use the Object Properties dialog to specify the following parameters for the button:

• Caption: Specify a caption by typing the text into the text box. You can include a tag by enclosing it in curly
brackets (e.g., {tagname}).

• Style: Select a style for the button:

• 3D Sharp: A raised, rounded button with somewhat sharpened corners, suitable for touchscreen displays.

• 3D Soft: A raised, rounded button with softened corners, suitable for touchscreen displays.

• OS Like: A button styled to match the operating system on which the project client is running, suitable
for Windows desktops that have the Thin Client software installed.

• Standard: The standard, flat button from the previous versions of BOS.

Examples of button styles
• Background color: Select a background color for the button.

• Align: Select the alignment for the caption of the button.

• Fonts: Specify a font style for the caption by clicking the Fonts.

When the Fonts dialog is displayed, specify the following parameters:

• Font (typeface)

• Font style
• Size
• Effects
• Color

Screens and Graphics

Page 253

• Script style
• Images: Insert an image file into the button by clicking the Images button.

When the Images dialog is displayed, specify the following parameters:

• File: Type the file path to the image file. You can also click the browse button to the right of the box, to
open a standard Windows file browser.

Tip: Icon files (*.ICO) cannot be kept in memory, which means they must be loaded from the
hard drive every time the project screen is opened or redrawn, and that may decrease your
run-time performance. If you use many icon files in your project, consider replacing them with
new files in another format such as GIF, JPG, or PNG. For more information, see Configure
the performance control settings on page 110.

• By default, the image is displayed at its actual size. To change this, in the Size list, select Custom, and
then configure the desired Width and Height (in pixels) of the image.

• Position: Select where the image should be positioned in relation to the caption.

• Offset: Specify the offset (in pixels).

• Transparent Color: Select which color in the image should be transparent. The background color (see
above) will show through these areas.

• Advanced: Specify advanced settings for the button by clicking the Advanced button.

When the Advanced dialog is displayed, specify the following parameters:

• Enable translation (optional): Specify an external translation file for the button label by clicking (checking)
the box.

• Multiline: Allow the caption of the button to be shown in more than one line, when checked.

• Wrap Text: When checked, the object automatically wraps the text when necessary.

• Auto gray out: Turns the caption of the button to gray when the Command animation applied to the
button is disabled by the Disable field or due to the Security System.

• Auto Format: When checked, if the caption includes a decimal value enclosed by curly brackets (e,g,
{1.2345}) or a tag of Real type (see Caption above), then the value will be formatted according to the
virtual table created by the SetDecimalPoints() function.

• Command: Click to automatically apply a Command animation to the button and then switch to the
animation's properties.

PUSHBUTTON OBJECT

On the Graphics tab, in the Active Objects group, click Pushbutton to create a Pushbutton object using the
Command animation with an object or pre-configured pushbuttons.

BOS provides the following pre-configured button types, all of which mimic the standard panel buttons of the
same name:

• Momentary (default): Changes state (Open or Closed) when you press the button and reverts to its initial state
when you release the button. This button type always displays in its normal position when you open the
screen.

• Maintained: Changes state (Open or Closed) when you press the button but does not revert to its initial state
when you release the button. You must press the button again to change its present state. This button
type maintains its state across screen changes.

• Latched: Changes state (Open or Closed) when you press the button and remains in this state until you
release it by changing the Reset tag.

BOS also provides the following button styles:

• Rectangular with a faceplate and indicator light

• Rectangular without a faceplate or indicator light (default)

• Rectangular with a 3-D

Screens and Graphics

Page 254

• Rectangular with a floating appearance

To add one or more pre-configured buttons to a screen:

1. Click the Pushbutton tool, and position the mouse (pointer) on the screen.

2. Click and drag to create/adjust the size of the rectangular button.

The button size and text font characteristics determine how much text you can display and how much
area you can touch on a touch screen. You can resize the button and change the font characteristics later
to permit longer messages to be shown in a given space.

3. Double-click on the object to open the Object Properties dialog.

Tip: Alternatively, you can right-click on the pushbutton object or highlight the object, press Alt
+Enter, and select Properties from the resulting shortcut menu to open the Object Properties dialog.

Object Properties: Pushbutton

Object Properties: Pushbutton

You can use this dialog to specify the following parameters:

• Type drop-down list: Click to select the pushbutton type (Momentary (default), Maintained, or Latched).

• State drop-down list: Click to specify a default state for the pushbutton (Normally Open (default) or Normally
Closed).

Click the button to toggle between its default and non-default state (according to its specified Type). For
example, in the button's initial state, it may conform to characteristics specified in the Open area of the
Configuration dialog (see below). Click the button again to toggle to the opposite state, which in this
example is Closed, and conform to characteristics specified in the Closed area.

• Tag/Exp text box: Type a tag or an expression to accomplish the following:

• Type in a tag to receive the Write Value from the appropriate state (Open or Closed) area in the Configuration
dialog.

• Type an expression to execute On Down, when you press the pushbutton down.

Note: BOS does not write the result of any expression in the Tag/Exp field into a tag.

• Indicator text box: Type a tag to define an indicator that causes the button to change to a specified color
when the tag value matches one of two specified values. You must define both the colors and tag values in
the Configuration dialog. If you leave this field blank, the indicator changes color automatically when you
press the button.

• E-Sign checkbox: When this option is checked, the user will be prompted to enter the Electronic Signature
before executing the animation.

Screens and Graphics

Page 255

• Reset text box (active for Latched pushbutton type only): Type a tag to control the button's latched state, as
follows:

• Type a zero and the button will remain in a latched state after you press it.

• Type a nonzero value and a latched button will become unlatched after you press it. You must reset the
tag value to zero before you can press the button again.

• Key area: Specify a keyboard key or create a key combination to toggle a pushbutton when you have no
pointing device (mouse or touch screen) or if you want to create shortcut keys in addition to pushbuttons.

• Key drop-down list: Type a key in the text box or select a non-alphanumeric key from the drop-down list.
Enter a single character or key only. Numbers are not valid entries for this field.

Click (check) the Shift, Ctrl, or Alt box to create a combination key, meaning the Shift, Ctrl, or Alt key must
be pressed with the key specified in the drop-down list.

Click the browse button … to open the Key Modifier dialog, which enables you to modify your combination
keys. You can choose Left, Right or Left or Right to specify the position on the keyboard of the Shift, Ctrl or
Alt key in the combination key. If you choose Left or Right, the command will be executed any time either of
these keys is pressed in combination with the key specified in the drop-down list.

Tip: If you have defined custom keys for your project, you can select them in this list. For more
information, see Define custom keys for selected screen objects.

• Disable text box: Type a tag using a nonzero value to disable this pushbutton so that pressing the button
has no effect. This box is empty by default, which also enables the Command animation.

• Ext Trans. checkbox: Click (check) to translate the text automatically using pre-configured translation
worksheets. (See the Translation Tool for more information.)

• Security text box: Type a value to specify a security level (0 to 255) for this button. If the user does not have
the specified security level, the button becomes inactive. If the user has the appropriate security level, or
you leave this field blank, the button remains active.

• Config button: Click to open the Configuration dialog, which allows you to specify style and state parameters
for the pushbutton:

Configuration dialog

This dialog provides the following parameters:

Screens and Graphics

Page 256

• Style combo-box: Click the combo-box button to select a pushbutton style (Rectangle (default) or Rectangle with
Indicator).

• Effect combo-box: Click to select a 3-D effect for the pushbutton.

• Floating (default): Buttons resemble a flat object with a shadow

• 3D: Buttons have beveled edges and appear to "depress" into the screen when pressed.

You can use the Style and Effect parameters in combination to create four different buttons, as shown in the
following figures:

Pushbutton Styles
• Align: Specify the alignment for the caption of the pushbutton.

• Button Color box: Click to specify a default color for the button area of a pushbutton object that includes an
indicator and a faceplate. When the Color dialog displays, click on a color to select it, and close the dialog.

• Legend Plate Color box: Click to specify or change a default color for the legend plate area of a pushbutton
object that includes an indicator. When the Color dialog displays, click on a color to select it, and close the
dialog.

A legend plate encloses a button and indicator light. This field becomes inactive if the pushbutton Style
does not include an indicator.

• Open and Closed areas: The following parameters are used to configure the appearance of a pushbutton
object in its open and closed states.

• Color box: Click to specify a default color for an indicator in each State. When the Color dialog displays,
click on a color to select it, and close the dialog.

If you selected a pushbutton style that does not include an indicator, you can use this field to specify a
button color for each State.

• Blink combo-box: Click to specify whether the color you specified in the Color box blinks and how fast it
blinks for each state (None (no blinking, default), Slow, and Fast).
If you set the color to blink, it alternates between the color specified in the Color box and the Legend Plate
Color (if an indicator) or the Button Color (if a button).

• Caption text box: Use this text box to enter the caption of the button. Alternatively, if the button style
includes an indicator, the legend plate. You can include a tag by enclosing it in curly brackets (e.g.,
{tagname}).

• Fonts button: Click to open the Font dialog, which you can use to specify or change the message font
characteristics for each state.

• Text Blink combo-box: Click to specify whether the text you specified blinks and how fast it blinks for
each state (None (no blinking, default), Slow, and Fast). Unlike a blinking color, blinking text appears and
disappears.

• Write Value combo-box: Click to select a value in either field. When the pushbutton is in the appropriate
state (Open or Closed), BOS writes this value to the tag specified in the Tag/Exp field (Object Properties
dialog).

• Auto Format: When checked, if the caption includes a decimal value enclosed by curly brackets (e,g,
{1.2345}) or a tag of Real type (see Caption above), then the value will be formatted according to the virtual
table created by the SetDecimalPoints() function.

CHECK BOX OBJECT
The Check Box object is useful to create interfaces where the users can enable/disable an option on the
display.

On the Graphics tab, in the Active Objects group, click Check Box to create a Check Box object on your screen:

Screens and Graphics

Page 257

1. Click in the drawing area and drag the mouse/cursor to draw the check box and its label.

2. Release the mouse button when the object is the size you want.

3. Double-click on the object to view the Object Properties dialog.

Object Properties: Check Box

Tip: To change the default size of the check box, edit your project file (<project name>.app) to add
the following setting:

[Objects]
CheckBoxSize=height_in_pixels

Doing this will change the size of all check boxes in your project.

Use the Object Properties dialog to specify the following parameters for the Check Box object:

• Caption: Specify a caption by typing the text into the text box. You can include a tag by enclosing it in curly
brackets (e.g., {tagname}).

• Fonts: Specify a font style for the caption by clicking the Fonts button.

• E-Sign: When this option is checked, the user will be prompted to enter the Electronic Signature before
executing the command.

• Confirm check box: Click (check) this box to ensure BOS prompts you to confirm the action at runtime.

• Key drop-down list: Select a key from the list to associate that keyboard key with the object or group of
objects. You can then press this key to check/uncheck the check box.

Click (check) the Shift, Ctrl, or Alt box to create a combination key, meaning the Shift, Ctrl, or Alt key must
be pressed with the key specified in the drop-down list.

Click the browse button … to open the Key Modifier dialog, which enables you to modify your combination
keys. You can choose Left, Right or Left or Right to specify the position on the keyboard of the Shift, Ctrl or
Alt key in the combination key. If you choose Left or Right, the command will be executed any time either of
these keys is pressed in combination with the key specified in the drop-down list.

Tip: If you have defined custom keys for your project, you can select them in this list. For more
information, see Define custom keys for selected screen objects.

• Disable field: Type a tag or expression into this field to enable and disable the object. You disable the Check
Box object when you enter a value different from 0.

• Security field: Type a value in this field to specify a security level for the object, as defined under Security.
When a user logs on, and does not have the specified security level, BOS disables the object.

Screens and Graphics

Page 258

• Tag field: When the user clicks on the check box during runtime, the value of this tag is updated. If no
Feedback was specified, the value of this tag is also used to indicate the current status of the object.

• True Value field: Specify a value that will be used to change the control to TRUE state and to indicate that
the control is in TRUE state. For more information about states, please refer to the states table.

• Advanced button: Press this button to open the Advanced dialog:

Advanced dialog

• Tri-State: If enabled the control has a third state. The third state will be displayed when the tag
configured in the Feedback field assumes the value specified in the Tri-State field. If the Feedback field is left
in blank, the third state will be displayed when the tag configured in the Tag field assumes the value
specified in the Tri-State field.

Note: The Tri-State field must not be configured with the same value as the True Value field, nor
with an empty string value.

• Feedback:Value that indicates the state of the object (FALSE, TRUE, or TRI-STATE). When the value of
the tag configured in Feedback is equal to the value of the tag configured in True Value, the state is set to
TRUE. When the value of the tag configured in Feedback is equal to the value of the tag configured in
Tri-State, the state is set to TRI-STATE. When none of these conditions are satisfied, the state is set to
FALSE. If the Feedback field is left in blank, then the tag configured in the Tag field will be used as the
Feedback tag.

• Ext Trans.: When this option is checked, the caption of the object supports the translation.

• Auto gray out: Turns the caption of the object to gray when it is disabled by the Disable field or due to the
Security System.

• Force: Click (check) this box to force the Tag Database to recognize a tag change when the user clicks on
the object, even if the value of the tag in question does not change.

• Enable Focus: When this option is checked, the object can receive the focus during runtime by the
navigation keys.

• Push Like: When this option is checked the control is displayed as a button, instead of the standard
check box standard shape.

• Fill Color: Specify the fill color for the button. This option is enabled only when the Push Like option is
checked.

• Auto Format: When checked, if the caption includes a decimal value enclosed by curly brackets (e,g,
{1.2345}) or a tag of Real type (see Caption above), then the value will be formatted according to the
virtual table created by the SetDecimalPoints function.

Modes of Operation
The Check Box object can operate in two different modes: Normal and Tri-State. For more information, see
Modes of operation for Check Box and Radio Button objects.

Screens and Graphics

Page 259

RADIO BUTTON OBJECT
The radio button object is useful to create interfaces where the users can chose one option from multiple
options on the display.

On the Graphics tab, in the Active Objects group, click Radio Button to create a radio button object on your screen:

1. Click in the drawing area and drag the mouse/cursor to draw the radio button and its label.

2. Release the mouse button when the object is the size you want.

3. Double-click on the object to view the Object Properties dialog.

Object Properties: Radio Button

Tip: To change the default size of the radio button, edit your project file (<project name>.app) to
add the following setting:

[Objects]
RadioButtonSize=height_in_pixels

Doing this will change the size of all radio buttons in your project.

Use the Object Properties dialog to specify the following parameters for the radio button object:

• Caption: Specify a caption by typing the text into the text box. You can include a tag by enclosing it in curly
brackets (e.g., {tagname}).

• Fonts: Specify a font style for the caption by clicking the Fonts button.

• E-Sign: When this option is checked, the user will be prompted to enter the Electronic Signature before
executing the command.

• Confirm checkbox: Click (check) this box to ensure BOS prompts you to confirm the action at runtime.

• Key drop-down list: Select a key from the list to associate that keyboard key with the object or group of
objects. You can then press this key to check/uncheck the radio button.

Click (check) the Shift, Ctrl, and/or Alt boxes to create a combination key, meaning the Shift, Ctrl, and/or Alt
key must be pressed with the key specified in the drop-down list.

Click the browse button … to open the Key Modifier dialog, which enables you to further modify your
combination keys. You can choose Left, Right or Left or Right to specify the position on the keyboard of the
Shift, Ctrl, or Alt key in the combination key. If you choose Left or Right, the command will be executed any
time either of these keys is pressed in combination with the key specified in the drop-down list.

Tip: If you have defined custom keys for your project, you can select them in this list. For more
information, see Define custom keys for selected screen objects.

Screens and Graphics

Page 260

• Disable field: Type a tag or expression into this field to enable and disable the object. You disable the radio
button object when you enter a value different from 0.

• Security field: Type a value in this field to specify a security level for the object, as defined under Security.
When a user logs on, and does not have the specified security level, BOS disables the object.

• Tag field: When the user clicks on the radio button during runtime, the value of this tag is updated. If no
Feedback was specified, the value of this tag is also used to indicate the current status of the object.

• True Value: Specify a value that will be used to change the control to TRUE state and to indicate that the
control is in TRUE state. For more information about states, please refer to the states table.

• Advanced: Press this button to open the Advanced dialog:

Advanced dialog

• Tri-State: If enabled the control has a third state. The third state will be displayed when the tag
configured in the Feedback field assumes the value specified in the Tri-State field. If the Feedback field is left
in blank, the third state will be displayed when the tag configured in the Tag field assumes the value
specified in the Tri-State field.

Note: The Tri-State field must not be configured with the same value as the True Value field, nor
with an empty string value.

• Feedback: Value that indicates the state of the object (FALSE, TRUE, or TRI-STATE). When the value of
the tag configured in Feedback is equal to the value of the tag configured in True Value, the state is set to
TRUE. When the value of the tag configured in Feedback is equal to the value of the tag configured in
Tri-State, the state is set to TRI-STATE. When none of these conditions are satisfied, the state is set to
FALSE. If the Feedback field is left in blank, then the tag configured in the Tag field will be used as the
Feedback tag.

• Ext Trans.: When this option is checked, the caption of the object supports the translation.

• Auto gray out: Turns the caption of the object to gray when it is disabled by the Disable field or due to the
Security System.

• Force: Click (check) this box to force the Tag Database to recognize a tag change when the user clicks on
the object, even if the value of the tag in question does not change.

• Enable Focus: When this option is checked, the object can receive the focus during runtime by the
navigation keys.

• Push Like: When this option is checked the control is displayed as a button, instead of the standard radio
button standard shape.

• Fill Color: Specify the fill color for the button. This option is enabled only when the Push Like option is
checked.

• Auto Format: When checked, if the caption includes a decimal value enclosed by curly brackets (e,g,
{1.2345}) or a tag of Real type (see Caption above), then the value will be formatted according to the
virtual table created by the SetDecimalPoints() function.

Screens and Graphics

Page 261

Modes of Operation
The Radio Button object can operate in two different modes: Normal and Tri-State. For more information, see
Modes of operation for Check Box and Radio Button objects.

COMBO BOX OBJECT

On the Graphics tab, in the Active Objects group, click Combo Box to select a single label from a combo-box list of
labels.

If the list is longer that the space allotted, a scroll bar is enabled for the list. During runtime, if you select a
label from the list, the combo-box hides itself and the selected label displays in the combo box.

Double-click on the combo-box object to open the Object Properties dialog box.

Object Properties: Combo Box

You can use this dialog box to set the following parameters:

• Label text box: Type a string tag to receive the value of the label currently displayed in the combo box.

• Position text box: Type an integer tag, which corresponds to the label currently displayed in the combo box.
Changing this tag value changes the label being displayed.

• Disable text box: Type a tag with a nonzero value to disable this combo box. Type a zero, or leave the field
blank (default) to enable the Command animation. If you disable the combo box, it appears grayed out
during runtime.

• Data Sources button: Click to open the Data Sources dialog box (see below).

Screens and Graphics

Page 262

• Advanced button: Click to open the Combo Box - Advanced dialog box:

Combo Box - Advanced

• Align combo-box: Click to specify the label alignment (Left, Center, or Right) which affects the alignment in
both the combo box and its list.

• Color box: Click to specify a background color for the combo box. When the Color dialog box opens, click
a color to select it, then click OK to close the dialog box.

• Drop List Size (Items) field: Specify the number of items that should be displayed at one time when the user
clicks on the combo box. The higher the number of items, the longer the drop list will appear.

Note: If this number is less than the total number of items in the list, then the drop list will
also scroll.

• Decimal Points: Select how decimal values will be displayed on-screen:

• Auto Format: Decimal values will be formatted according to the virtual table created by the
SetDecimalPoints function.

• Custom: Enter the number of decimal places to display (e.g., 2) for all decimal values.

• Fonts button: Click to open a standard Font dialog box. Use this dialog box to change the characteristics of
a message font.

• Security text box: Type a security level for the command (0 to 255). If an operator logs on and does not
have the specified security level, the command becomes inactive. If an operator logs on and does have the
specified security level, or you leave this field blank, the Command animation remains active.

• Require confirmation checkbox: Click (check) to prompt an operator to confirm a command during runtime.

• Enable translation checkbox: Click (check) to enable automatic translation of the combo box labels using the
Translation Table.

• Sort checkbox: Click (check) to display the contents of your array of labels in alphabetical order. This
parameter is available only when you select the Array Tag type.

• E-Sign checkbox: When this option is checked, the user will be prompted to enter the Electronic Signature
before executing the animation.

• Input Enabled checkbox: Click (check) to allow an operator to select a label by typing the contents of that
label into a tag in the Label field.

• Virtual keyboard: Virtual Keyboard type used for this object. You need to select the Virtual Keyboard option in
the Viewer settings (Viewer on the Project tab of the ribbon) before configuring the Virtual Keyboard for this
interface.

Screens and Graphics

Page 263

Data Sources
Use the Data Sources dialog box to configure the items/labels that will be displayed in the Combo Box object.

Data Sources dialog box

• Type combo box: Select the type of data source that you want to use, and the click Settings to configure the
source. Each type of source is described in detail below.

• Field field (for Text File and Database only): Specify which field/column of the data source to read from.

• Reload field (for Text File and Database only): Enter a tag name. When the value of the specified tag
changes, the combo box will reload the labels from the data source.

Data Source Type: Static Labels
When Type is set to Static Labels, you can configure the following settings:

Static Labels dialog box

Enter your labels — with one label per line — just as if you were editing a plain text file.

The labels are not sorted in any way, so be sure to put them in the order you want them displayed during
runtime. The first line is position 0, the second line is position 1, and so on.

Click OK when you are done.

Screens and Graphics

Page 264

Data Source Type: Array Tag

Note: This type is not supported in project screens that are viewed through Mobile Access.

When the Type is set to Array Tag, you can configure the following settings:

Array Tag dialog box

• Array Tag: Enter the name of a String array that contains the items for the combo box.

• Number of Items: Specify how much of the array should be displayed in the combo box. Keeping in mind that
the combo box counts array index 0 as the first item, if you enter a value of 4, then the combo box will
display array index 0 through array index 3.

Click OK when you are done.

Data Source Type: Text File

Note: This type is not supported in project screens that are viewed through Mobile Access.

When the Type is set to Text File, you can configure the following settings:

Grid Data – Text File dialog box

• File: Enter the name of the text file source. You can either type the file name and its path or click the …
button to browse for it. (If the file is stored in your project folder, then you can omit the path in the name.)

Tip: You can configure tag names between curly brackets (e.g., {tagname}) in the File field.

• Delimiters: Set the delimiter(s) used in the data source file. For instance, if the data will be read from a CSV
(comma separated values) file, you would select the Comma option. You can even choose a custom delimiter
by checking the Other option and typing the custom delimiter in the field beside it.

Screens and Graphics

Page 265

Click OK when you are done.

Data Source Type: Database
When the Type is set to Database, you can configure the following settings:

Database Configuration dialog box

For more information, see Database Configuration on page 106.

LIST BOX OBJECT
The List Box screen object displays a list of messages or menu items for the user to select from. When the
user selects a message, its corresponding numerical value is written to a project tag.

If the list of messages is too long to fit within the viewable area of the List Box object, the object provides scroll
bars.

The user can browse the list and make a selection by doing one of the following, depending on how you design
your project interface:

• Use mouse or touchscreen input to click/tap the list's scroll bar and then select a message;

• Press the Up, Down, Esc, Tab and/or Enter keys on the keyboard or keypad; or

• Use on-screen controls (e.g., Button objects, linked symbols) that have been configured with the PostKey
function to post the equivalent key codes.

Generally, when you run a project, the active List Box object displays a list of messages. On a screen
containing only one List Box object and no text input boxes, the List Box object will be active automatically.
On a screen containing multiple List Box objects and text input boxes, you can use a cursor (pointing device)
or the Tab key to select and activate a List Box object.

To add a List Box object to a screen:

1. On the Draw tab of the ribbon, in the Active Objects group, click List Box.

2. Draw the List Box object in the screen, and then drag object's handles to adjust its size.

Screens and Graphics

Page 266

The height of the object and the font size determine how many messages are visible. The width of the
object determines how much of the message length is visible.

After you draw the object, you can adjust the size and font characteristics to allow more messages to
display in the given space.

3. Double-click on the object to open the Object Properties dialog.

Object Properties: List Box

You can use this dialog to specify the following parameters:

• Value drop-down list (located below the Replace button): Click to select one of the following the tag values
used to index the message list.

• Boolean
• Integer (default)

• LSB (Least Significant Bit)

Note: For more information, see the discussion about the State field on the Messages
Configuration dialog.

• Messages button: Click to open the Messages Configuration dialog (see below).

• User Enable text box: Type a tag, expression, or a (nonzero) number to select a message in the runtime
project. The default is 1 (true or enabled).

• Control Enable text box: Type a tag, expression, or a (nonzero) number to select a message in the runtime
project — depending on the current value of the Read/Search Tag. The default is 1 (true or enabled).

BOS bases this parameter on the Value field (in the Messages Configuration dialog) that you associate
with the selected message. Enabling this field allows tag changes triggered by the process to affect which
messages you can select.

• Read/Search Tag text box: Type an integer or a Boolean tag to point to a selected message based on the
message Value field (in the Messages Configuration dialog). You can use the Control Enable and User Enable
fields to control whether the operator or a process can alter this tag.

• Write Tag text box (optional): Type a string tag to receive the Message value of the last-selected message. When
you close and reopen the screen containing a List Box object, BOS uses this tag value to determine the last
message selected in the list box.

Screens and Graphics

Page 267

• E-Sign checkbox: When this option is checked, the user will be prompted to enter the Electronic Signature
when using this object.

• Row checkbox: Click (check) to include set up and set down arrows in the List Box object scroll bar.

• Page checkbox: Click (check) to include page up and page down arrows in the List Box object scroll bar.

• Start/End checkbox: Click (check) to include home and end arrows in the List Box object scroll bar.

• List wrap checkbox: Click (check) to continue displaying and scrolling the message list (starting at the
opposite end) after you scroll to the beginning or end of the list.

• Require enter for selection checkbox: Clicking (checking) this box requires the user to press Enter (or post the
equivalent key code) to make a selection. If this option is not checked, then a selection is made whenever
focus changes to another screen object (i.e., the user tabs out of the list or clicks/taps on another object).

• Color boxes: Click a color box to open the Color dialog or the 16-color Color Selection dialog. Either dialog
allows you to specify or change colors for the List Box object. Click a color to select it and then click OK to
close the dialog.

• Highlight Color box: Specify a color for highlighting messages (default is blue).

• Text Color box: Specify a color for highlighting message text (default is black).

• Win Color box: Specify a color for the list box background (default is white).

• Border Color box: Specify a color for the list box border (default is black).

Messages Configuration Dialog

Message Configuration dialog

Screens and Graphics

Page 268

Use the parameters on this dialog as follows:

• State field (read-only): Use this field to view the indexed individual messages. BOS numbers this field based
on the Read/Search Tag type you selected:

• Boolean: Provides two valid states, labeled 0 and 1

• Integer: Provides 256 valid states, labeled 0 to 255

• LSB: Provides 32 valid states (i.e., the 32 bits in an integer value), labeled 0 to 31

• Message field: Enter the string to be displayed in the List Box object. You can include tags in a message by
enclosing them in curly brackets (e.g., {tagname}).

• Value field: Type a message value matching the specified Read/Search Tag value. (Also, the same value written
to the write tag.)

If you specify LSB for the Value field, BOS uses the value specified in the State field for both the Read/Search Tag
and the write tag.

• Text Foreground color field: Click to specify a color for the message text foreground. The color is displayed
only when the message is not selected.

• Text Blink checkbox: Click (check) to cause a message to blink, once per second, when it is selected.

• Fonts button: Click to open the Font dialog, which allows you to change the characteristics (style, size, and
so forth) of the message font.

• Enable translation: Click (check) to enable translation during runtime using the Translation Tool.

• Auto Format: When checked, if a message includes a decimal value enclosed by curly brackets (e,g,
{1.2345}) or a project tag of Real type (see Message above), then the value will be formatted according to
the virtual table created by the SetDecimalPoints function.

SMART MESSAGE OBJECT
The Smart Message screen object displays messages and images that can be changed during run time by
updating the value of the associated project tag.

The following smart message object types are available:

• Message Display: Enables you to display any one of multiple messages within a single screen object.

• Multistate Indicator: Enables you to display any one of multiple messages within a single screen object, and
also has the ability to display bitmap images with the messages.

• Multistate Pushbutton: Enables you to display messages and bitmap images. This object also resembles a
multi-position switch in that it allows you to increment through the messages by clicking on the object
during run time.

These smart message object types vary in their ability to display messages and graphics, write to a tag, and
control how many messages and graphics display on the screen. However, all of the object types can receive
process input (Read Tag value) to determine which message to display.

To add a smart message object to the screen:

1. On the Draw tab of the ribbon, in the Active Objects group, click Smart Message.

2. Draw the Smart Message object in the screen, and then drag object's handles to adjust its size.

You use the object's height, width, and font size to determine how much text and how large a bitmap
image you can display on the screen.

Screens and Graphics

Page 269

3. Double-click on the object to open the Object Properties dialog.

Object Properties: Smart Message

You can use this dialog to specify the following parameters:

• Type combo-box: Click to select the smart message object type. The object type sets the behavior of the
object during run time and the features supported by it:

• Message Display (default)

• Multistate Indicator
• Multistate Pushbutton

• Value type drop-down list: Select the type of values used to index the message list:

• Boolean: Provides two valid states. Use this selection when you want to display either one of two different
messages, based on a boolean value (0 or 1).

• Integer (default): Provides 500 valid states. Use this selection when you want to display different
messages based on specific values from an Integer tag.

• LSB (least significant bit): Provides 32 valid states (i.e., 32 bits in an integer value). Use this selection
when you want to display different messages based on which bit from an integer tag is set. If more than
one bit from the Integer tag is set simultaneously, the message associated with the least significant bit
that is set (value 1) will be displayed.

Note: If Multistate Pushbutton is the Smart Message type, only 16 different messages can be associated
with the object, even for Integer or LSB values.

• Switch event drop-down list (available for Multistate Pushbutton only): Select one of the following options to
specify when the message is changed:

• On Down: Switch to the next message when you click on the object (default).

• While Down: Switch to the next message continuously while you hold the mouse button down on the
object.

• On Up: Switch to the next message when you release the mouse button on the object.

• Align: Select the alignment of the text displayed by the Smart Message object.

• Fonts: Launches the Fonts dialog, where you can configure the font settings for the text displayed in the
object.

• Check expression on each message line check box: When this option is cleared, only Read Tag/Expression is evaluated
during run time and the resulting value determines which message is displayed. When this option is
selected, each message has its own tag/expression

• Read Tag/Expression text box: Enter a project tag or expression. The value determines which message is
displayed by the object during run time.

Screens and Graphics

Page 270

• Messages: Displays the Configuration dialog box, where you can configure the messages for the object. See
"Messages Configuration" below.

• Write Tag text box (optional and available for Multistate Pushbutton only): Enter the name of a project tag. The
value associated with the message currently displayed by the object is written to this tag.

• E-Sign (available for Multistate Pushbutton only): When this option is selected, the user will be prompted to enter
the Electronic Signature before executing the animation.

• Hide border: When this option is selected, the line border of the object is not visible.

• Border weight: Defines the thickness (in pixels) of the line drawn around the object.

• Security (available for Multistate Pushbutton only): System Access Level required for the object/animation.

• Key area (optional and available for Multistate Pushbutton only): Shortcut used to go to the next message (step)
using a keyboard when the Multistate Pushbutton type is selected. This option is especially useful when
creating projects for runtime devices that do not provide a mouse or touch-screen interface, when the
keyboard is the only physical interface available to interact with your project during run time.

Tip: If you have defined custom keys for your project, you can select them in this list. For more
information, see Define custom keys for selected screen objects.

Screens and Graphics

Page 271

Messages Configuration
The behavior of the object, and thus the layout of this dialog box, depend on whether Check expression on each
message line is selected.

Configuring messages for the resulting values of Read Tag/Expression

Configuring a different tag/expression for each message line

Data Source list box: The source of the messages to be displayed by the object. Select one of the following:

• Static: The messages are configured and stored directly on the object. Configure a worksheet row for each
possible state. For more information, see the table "Properties for Data Source: Static" below.

• Text File: The messages are loaded from an external source file. In the Source File box, type the path (relative
to your project folder) and name of the file.

Tip: If you want to change the file path during run time, type the name of a string tag in curly
brackets (e.g., {MyTag}) and then store the file path in that tag.

For more information about how to create and format the file, see "Source File Format" below.

The following table describes the meaning of the properties associated with each message, regardless of the
Data Source:

Screens and Graphics

Page 272

Properties for Data Source: Static

Property Description

Text/Message Message (text) that will be displayed when selected during run time. You can include tags in a message by enclosing them in curly
brackets (e.g., {tagname}).

Value (when Check
expression on each
message line is cleared)

The unique value associated with each Text/Message.
Read Tag/Expression (in the Object Properties) is continuously evaluated during run time, and the resulting value determines
which message is displayed on the object. If the resulting value is not in this list, the message configured in the first row (Error) is
displayed.

When Type (in the Object Properties) is Multistate Pushbutton, the resulting value is also written to the tag configured in Write
Tag.

Tag/Expression (when
Check expression on each
message line is selected)

The tag/expression associated with each Text/Message.
All of these are continuously evaluated during run time, and the first one in the list that evaluates as TRUE (non-zero) determines
which message is displayed on the object. If none of these evaluate as TRUE (non-zero), the message configured in the first row
(Error) is displayed.

Text (FG) Foreground color for the messages displayed during run time.

Text (BG) Background color for the messages displayed during run time.

Text Blink If selected, the message text will blink during run time.

Rec (FG) Line color (Border) for the rectangle behind the message.

Rec (BG) Background (Fill) color for the rectangle behind the message.

Rec Blink If selected, the rectangle behind the message will blink during run time.

Graphic File Path and name of the bitmap file (*.BMP) (if any) that will be displayed when the message associated with it is selected during run
time. If you do not specify the path, the bitmap file must be stored in your project folder.

Transparent Select the color that will be transparent in the graphic file, if the En. Transparent checkbox is selected.

En. Transparent If selected, the color selected in the Transparent field will be set as transparent in the graphic file.

Enable translation: Click (check) to enable translation during run time using the Translation Tool.

Auto Format: When selected, if a message includes a decimal value enclosed by curly brackets (e,g, {1.2345}) or
a project tag of Real type (see Text/Message below), then the value will be formatted according to the virtual table
created by the function SetDecimalPoints.

Note: The properties Graphic File, Transparent and En. Transparent are not available for the Message Display
type.

Tip: You can copy data from this dialog and paste it into an Excel worksheet, and vice versa.

Source File Format
This section describes the format of the text file supported by the Smart Message object when the Data Source
is Text File. The main advantage of using an external text file instead of static values is that it gives you the
flexibility to change the messages during run time, by pointing to a different text file, or even by changing the
content of the text file dynamically.

The text file must be created in the CSV format (comma separated values), where the comma character (,)
is used to divide the columns (data) in each line (row) of the file. Therefore, you can use any CSV editor such
as Microsoft Notepad and Microsoft Excel to create the CSV file with the messages and their properties for the
Smart Message object.

The description of each property associated with the messages is provided in the Smart Message section. The
order of the data in the CSV file is described in the following table:

Screens and Graphics

Page 273

Column # Property Default Value

1 Text/Message -

2 Value -

3 Text (FG) 0

4 Text (BG) 16777215

5 Text Blink 0

6 Rec (FG) 8421376

7 Rec (BG) 16777215

8 Rec Blink 0

9 Graphic File -

10 Transparent 0

11 En. Transparent 0

When configuring text messages that have the comma character as part of the message, you must configure
the whole message between quotes (e.g., "Warning, Turn the motor Off"); otherwise, the comma will be
interpreted as a data separator instead of as part of the message.

• The first line of this file is equivalent to the State = Error. In other words, if there is no message associated
with the current value of the tag configured in the Read Tag field, the message configured in the first row
(State = Error) is displayed during run time.

• The data configured in the Value column of the first row from this file is irrelevant. This row must always be
configured, regardless of the object type (even for Multistate Pushbutton).

• Only the Text/Message and Value columns are mandatory. The other columns are optional, and the default
values will be used if you do not specify any value for them (see table).

• The fields Text(FG), Text(BG), Rec(FG), Rec(BG) and Transparent can be configured with the code of the color
associated with it. The code can be entered directly in decimal format (e.g., 255) or in hexadecimal format
using the syntax #value (e.g., #0000FF).

• The fields Text Blink, Rec Blink and En. Transparent can be configured with Boolean values 0 or 1 (0 = Unselected; 1
= selected), or with the keywords FALSE or TRUE (FALSE = Unselected; TRUE = selected).

Example:

Error Message,,0,16777215,1,8421376,16777215,1,error.bmp,0,0
Message Zero,0,0,16777215,0,8421376,16777215,0,open.bmp,65280,1
Message Ten,10,0,16777215,0,8421376,16777215,0,closed.bmp,65280,1
Message Twenty,20,0,16777215,0,8421376,16777215,0,,0,0
Message Thirty,30,0,16777215,0,8421376,16777215,0,,0,0

Tip: You can use the Smart Message editor (Data Source is Static) to configure the messages, values
and colors. To do so, select the configuration, copy it and paste it into an Excel worksheet. Then,
you can save the Excel worksheet as a CSV file (File > Save As). This procedure provides you with a
user friendly interface for configuring the color codes.

CHANGE THE PROPERTIES OF MULTIPLE SCREEN OBJECTS
This task describes how to select two or more screen objects and then change the properties that are common
to the selected objects.

Before you begin this task, you must have a project screen open in the screen editor.

Which properties you can change depends on whether you select multiple objects of the same type or of
different types. If the objects are of the same type, you can change the properties that are specific to that type.

Screens and Graphics

Page 274

For example, if you select multiple Button objects, then you can change the properties that are specific to
Button objects.

Object properties of multiple selected Button objects

For more information about the properties of a specific type of object, see the documentation for that object.

Note: You can only use this method to change the properties of Shapes and Active Objects. You
cannot use this method to change the properties of Data Objects, Animations, Library items, or
objects in a group.

In contrast, if you select multiple objects of different types, you can change the properties that are common to
all of the objects. This includes not only cosmetic properties like Border and Background, but also functional
properties like Disable, Security, Enable Translation, and E-Sign. (Some properties may not apply to all
objects. For example, Button objects do not have Border and Rectangle objects do not have Security.)

Object properties for multiple objects of different types

In both cases, the dialog box shows the current values of the properties of the last selected object.

It is only when you actually change the value of a property that the change is applied to the selected objects.
All other properties are left unchanged, regardless the values shown in the dialog box.

Screens and Graphics

Page 275

To change the properties of multiple screen objects:

1. In the screen editor, do one of the following:

• Press and hold either Shift or Ctrl on the keyboard, and then click each object that you want to change;
or

• Use the cursor to draw a selection box around all of the objects that you want to change.

The objects are selected.

2. Do one of the following:

• On the Draw tab of the ribbon, in the Editing group, click Properties;

• Right-click the selected objects, and then on the shortcut menu, click Properties; or

• Press Alt+Enter on the keyboard.

Note: You cannot double-click to open the Object Properties dialog box as you otherwise would,
because clicking like that clears the selection.

The Object Properties dialog box is displayed for the selected objects.

3. Change the property values that you want to change, and then close the dialog box.

The changes are applied to all of the selected objects.

Libraries

SYMBOLS LIBRARY

The Symbols library is a visual browser for all of the symbols that are available to be used in your project
screens. To open the library: on the Draw tab of the ribbon, in the Libraries group, click Symbols.

Screens and Graphics

Page 276

The Symbols library is displayed:

The symbols library

The library is divided into two main folders: the Project Symbols folder contains your user-made symbols for the
current project, and the System Symbols folder contains all of the premade symbols (sorted by type) that are
installed with the BLUE Open Studio 2020 software.

To select a symbol and place it in a project screen:

1. Find the symbol you want in the library, and then double-click it. The mouse cursor will change to indicate
that you have a symbol waiting to be placed.

2. Return to the project screen where you want to place the symbol.

3. Click anywhere in the project screen to place the selected symbol.

4. Edit the symbol's object properties as needed, including any custom properties.

For more information, see Save your own project symbols on page 277.

Screens and Graphics

Page 277

Save your own project symbols
A symbol is a set of one or more screen objects that is saved in the Symbols library, so that you can reuse it
in your projects.

Every time you reuse a symbol, you actually make a copy that is linked to the master symbol in the Symbols
library. (These linked copies are also called "instances" of the symbol.) Thereafter, if you make any changes to
the master symbol, those changes automatically propagate to every linked copy in every project.

You can customize each linked copy of the master symbol by defining Custom Properties. For example, when
you create a gauge that displays tank levels and then save that gauge as a master symbol, you can define
custom properties on the symbol that will allow each linked copy to display the level of a different tank.

Project Symbols folder in the Graphics tab

Create a master symbol
To create a master symbol and save it to the Symbols folder:

1. Design your symbol just as you would normally draw a project screen, using any combination of Static and
Active Objects. For example, three check boxes in a rectangular pane:

Drawing objects in a project screen

Screens and Graphics

Page 278

2. Select the object(s) or Group that you want to save as a symbol.

Selecting the objects

Note: It is not necessary to make a Group out of two or more objects before saving them as a
symbol. Saving the objects together as a symbol effectively groups them.

There is a situation, however, where you may want to group the objects first. A symbol can have only one
hint. If more than one object has a hint configured on it (in the Object Properties), those hints are not
shown when the objects are saved together as a symbol. To specify a hint for the symbol as a whole, you
must first group the objects and then configure the hint on the Group. That hint will carry through when
you save the Group as a symbol.

Screens and Graphics

Page 279

3. Right-click on the selection, and then click Create Linked Symbol on the shortcut menu.

Creating a linked symbol
4. A standard Save As dialog box is displayed, and you are prompted to give the new symbol a file name.

Symbol files (*.sym) are saved in the \Symbol folder of your project.

Screens and Graphics

Page 280

5. Click Save to save the file. The symbol appears in the Project Symbols folder, in the Graphics tab of the
Project Explorer.

Symbol file in the Project Explorer

The symbol also appears in the Project Symbols folder of the Library.

The symbol is now ready to be reused in your project, but the way it is currently saved, every copy will have
identical properties. You must now define custom properties on the symbol — that is, the properties you want
to be able to customize each time you reuse the symbol.

Edit the master symbol
You can edit a master symbol after you've initially saved it, to add or delete objects in the symbol or to define
custom properties on it. Remember that any changes you make to the master symbol will automatically
propagate to every linked copy in every project.

Note: There is one exception. If you change the hint on a symbol — as described in "Create a
master symbol" — then the change will appear only on new instances of the symbol. Existing
instances will be unchanged.

To edit a symbol:

Screens and Graphics

Page 281

1. Right-click on the symbol file in the Symbols folder, and then choose Edit from the shortcut menu.

Editing the symbol file

Tip: You can also right-click on any instance of the symbol and choose Edit Linked Symbol from the
shortcut menu.

The symbol file is opened for editing in its own window. This symbol editor works in the same way as a
regular screen editor, except that every object in the window is part of the symbol. If you add, move or
delete objects in the symbol editor, you may change the size or shape of the symbol and disrupt the layout
of any Screens where it is used.

Symbol file opened for editing

Besides adding, moving or deleting objects in the symbol, you can also edit the Object Properties as you
normally would. You may want some properties to be the same in every instance of the symbol, but other
properties need to be customized according to where and how the symbol is used. In this example, you
probably want to customize the captions for the three check boxes, the tags with which the check boxes
are associated, and the caption for the pane itself.

Screens and Graphics

Page 282

2. Select the first object in the symbol and open its Object Properties. For example, the first check box:

Object Properties dialog box for the first Check Box object
3. In any field where you would normally configure a tag, expression, or value, you can instead define a

custom property using the sytax…

#[Category.]Property:[Value]

…where:

• Category is an optional name for a collection of related properties, such as all captions or all Check
Box values. If you do not specify Category for a property, it will be automatically listed under the
"Main" category.

• Property is a label to identify the specific property. Property is required for each property, and it
must always be followed by a colon (:).

• Value is an optional default value for the property.

Note: All Tag/Expression syntax rules apply to Value, including tag names, pointers, arrays,
strings, numerical and boolean values, and scripting functions.

In the following example, we want to be able to customize which tag will be set when the Check Box is
selected or cleared. So, in the Tag field, type #Option1.Tag: as shown.

Defining a custom property for the Tag property

Screens and Graphics

Page 283

When you go to complete the properties on an instance of the symbol, #Option1.Tag: will appear like
this:

Custom properties on a symbol

But more about that later…

4. Depending on the context, some object properties require a specific type of value like a String, a Boolean
or a numerical value. For these properties, you must enclose the custom property declaration in curly
brackets ({}).

In this example, the Caption field requires a String, so type {#Option1.Caption:"Option 1"} as shown.

Defining a custom property for the Caption property

Again, when you go to complete the properties on an instance of the symbol, they will appear like this:

Custom properties on a symbol
5. Repeat steps 2 through 4 as needed, to define the rest of the custom properties on the symbol.

Screens and Graphics

Page 284

In this example, the finished symbol has all of the following properties:

Custom properties on a symbol
6. Save the symbol and close the symbol editor.

7. On the Home tab of the ribbon, in the Tools group, click Verify. This will update all existing instances of the
symbol in your project.

Add tooltips to custom properties
You can configure a description for each custom property available in the symbol. After creating a symbol,
open it with the symbol editor, right-click in the symbol editor (not on the symbol itself) and choose Edit Symbol
Properties from the shortcut menu.

When assigning values to the custom properties of the symbol on the screens, the user can read the
description as Tooltips just by moving the mouse cursor on the property name, as illustrated on the following
picture:

Tooltip showing the description of the property

Password protect a symbol
You can put a password on any of your user-made symbols to prevent them from being edited or analyzed by
other users. To protect a symbol:

1. In the Symbols folder, right-click on the desired symbol file (.sym) and then choose Password Protection from
the shortcut menu. A Password Protection dialog box is displayed.

2. In the New Password field, type your password.

3. In the Confirm Password field, type your password again.

4. Click OK.

Screens and Graphics

Page 285

Once this is done, you will be prompted for the password whenever you attempt to edit the symbol or unlink
an instance of the symbol.

Make a user-made symbol available to other projects
User-made symbols are normally available only in the project where they were initially created and saved.
However, you can send a user-made symbol to the System Symbols folder of the Library, to make it available
to all of your projects:

1. In the Symbols folder of the Project Explorer, right-click the desired symbol file (.sym) and then choose
Send to System Symbols from the shortcut menu. A standard Save As dialog box is displayed, automatically
pointing to the \Symbol sub-directory of the BOS program directory instead of the \Symbol sub-folder of
your project folder.

Saving a symbol
2. Choose a location in which to save the symbol file. You can choose one of the existing categories/folders,

or you can create a new one.

3. Click Save. The symbol file is saved in the specified location and the symbol is displayed in the System
Symbols folder of the Symbols library.

Saving a symbol
For more information, see Using the Library.

Insert a symbol in a project screen
To insert a symbol in a project screen and then complete its custom properties:

1. Open the desired project screen from the Screens folder, or insert a new screen. The screen is opened for
editing.

2. Open the Symbols Library by doing one of the following:

• On the Graphics tab of the ribbon, in the Libraries group, click Symbols;

• Double-click Symbols in the Project Explorer; or

• Right-click in the screen where you want to insert the symbol, and then click Insert Linked Symbol on the
shortcut menu.

Screens and Graphics

Page 286

3. Select the symbol from the Symbols Library, and then click in the screen:

Symbol placed in a project screen

Once the symbol is inserted, you can manipulate it like any other object in the screen. You can align
and distribute it with other objects, and you can apply Animations to it. However, the first thing to do is
complete the custom properties for this instance of the symbol.

Object Properties dialog box for the symbol
4. Open the Object Properties for the symbol.

5. Click Expand to open the Symbol Properties dialog box.

Symbol Properties dialog box for the symbol

To see all of the properties at the same time, select the Display properties from all categories check box.

Displaying properties from all categories

Screens and Graphics

Page 287

6. Enter the property values as needed. In this example, the three check boxes are used to determine whether
to alert Tom, Dick and/or Harry. The captions are updated accordingly, and the check box tags are
configured with the first three elements of a Boolean array called AlertOptions.

Completed properties for the symbol
7. Click OK to close the Symbol Properties dialog box, and then close the Object Properties dialog box.

The custom properties are resolved during runtime, as shown below.

Symbol during editing

Symbol during run time

Note: Remember, the completed custom properties on each instance of a symbol are independent
from every other instance of that symbol, but if you make any changes to the master symbol file,
those changes automatically propagate to every instance.

ACTIVEX CONTROL OBJECT

On the Graphics tab, in the Libraries group, click ActiveX Control to open the Insert ActiveX Control dialog, which
you can use to place ActiveX components on your screen.

Screens and Graphics

Page 288

When the dialog opens (as in the following figure), it contains a list of all ActiveX components that are
registered on your PC.

Insert ActiveX Control dialog

Note: When you use ActiveX controls in your project, your runtime stations should have the same
controls already installed and registered. Stations often have "auto download" and "auto install"
features disabled for security reasons, so they may not be able to get ActiveX controls that are
called by your project. Consult your hardware manufacturer and ActiveX controls provider for more
information about how to manually install controls.

If you still want to enable automatic download of ActiveX controls, you can do so by manually
editing your project file (<project name>.app) to include the following settings:

[UsedControls]
EnableDownload=1
Count=number of controls

[UsedControl1]
CLSID=class ID of the ActiveX control
Version=version of the ActiveX control
Codebase=URL of the ActiveX control file, or of the .CAB file that contains the
 ActiveX control files
RegFile1=name of a specific .OCX or .DLL file within the .CAB file; see below
RegFilen=name of a specific .OCX or .DLL file within the .CAB file; see below
…

[UsedControln]
…

The CLSID and Version settings are required for each ActiveX control, and they must match the
ID and version of the actual control file(s) to which Codebase links. This allows a runtime station

Screens and Graphics

Page 289

to check the control against those that are already registered. If the settings do not match, then the
runtime station may unnecessarily download the same control again.

If you don't know the CLSID and Version settings for an ActiveX control, you can find them
in the registry key of an already installed and registered control. Search for the control file in
HKEY_CLASSES_ROOT\CSLID in the Windows Registry.

Also, the URL for the Codebase setting can be either absolute or relative to the Web server's "home"
directory. For example:

Codebase=http://server_address/AddOns/IndDateTimePick.ocx

…or…

Codebase=AddOns/IndDateTimePick.ocx

Finally, the Regfile settings are required only if Codebase links to a .CAB file. If it does, then
use one or more Regfile settings to name the specific files within the .CAB file that must be
downloaded and registered.

ActiveX controls are components designed according to a standard. Because BLUE Open Studio 2020 is an
ActiveX container, you can configure and run ActiveX controls in project screens. ActiveX controls can provide
the following interfaces:

• Properties: Variables whose values can be read and/or written for your project (e.g., Object Color, FileName,
URL, and so forth)

• Methods: Functions from the ActiveX object that can be triggered by your project (e.g., open a dialog,
execute a calculation, and so forth)

• Events: Internal messages that can trigger the execution of expressions in your project (e.g., Mouse_Click,
Download_Completed, and so forth)

The name of the properties, methods and events supported by each ActiveX depends on its own
implementation.

There are two different ways to interface your project with the ActiveX control:

• By using the ActiveX functions XGet(), XSet() and XRun()

OR

• By using the Object Properties window to configure the object

Double-click on the ActiveX Control to open the Object Properties dialog.

Object Properties: ActiveX Control

Screens and Graphics

Page 290

The Object Properties window displays the name of the ActiveX control. Generally, each ActiveX control is
either a *.dll or a *.ocx file registered in your local computer. You must assign a name (alias) to the ActiveX
control on the Name field (e.g., MyControl). This name is used to reference the object when calling one of the
ActiveX functions that are provided in the Built-in Scripting Language.

Note: You should not configure two ActiveX controls on the same screen with the same name. For
instance, if you insert two "Windows Media Player" ActiveX controls on the same screen, and assign
the name MyMP1 to one object (Name field), you cannot assign the same name to the second object
on the same screen. You would have to assign the name MyMP2, for example, to the second object.

The Property Pages button opens the standard window for configuring the Static Properties (if any). The layout
and the options in this dialog depend on the implementeation of each ActiveX Control. Use this interface to
set properties that should not be changed during runtime (fixed properties).

The Configuration button on the Object Properties window opens dialogs that allow you to do the following:

• Associate tags to properties of the ActiveX Control;

• Trigger methods from the ActiveX Control based on tag change; and

• Configure scripts, which are executed when Events from the ActiveX Control occur.

The following sections describe how to configure these interfaces.

Note: Although the Configuration dialog displays the list of all properties, methods and events, you
only have to configure the items that you need for your project.

The screen shots used in the following sections depict the Acrobat 3D Office control. The names of the
properties, methods and events vary for each ActiveX control, but the configuration interface is the same. The
concepts described here apply to all controls.

Configuring Properties
The Properties tab provides a grid with the following fields:

Configuration Dialog – Properties Tab

• Property: Lists all properties available from the ActiveX object, and indicate their types:

Screens and Graphics

Page 291

Property Icon Property Type

Boolean

Integer

Real

String

• Tag/Expression: The tag configured in this field is associated with the respective property of the ActiveX
object. The Action column will define whether the value of this tag will be written to the ActiveX property,
or if the value of the ActiveX property will be written to this tag (or both).

Note: You can configure an expression in this field if you want to write the result of an
expression to the property of the ActiveX object. However, in this case, the value of the property
cannot be read back to one tag (unless you use the XGet() function). Therefore, an expression is
configured in this field, the Scan field is automatically set to Set.

• Action: Defines the direction of the interface between the tag or expression configured in the Tag/
Expression field and the ActiveX property, according to the following table:

Action Description

Get Read the value of the ActiveX property and write it to the tag configured in the Tag/Expression field.

Set Write the value from the tag or expression configured in the Tag/Expression field into the ActiveX property.

Get+Set Executes both actions (Get and Set). However, when opening a screen with the ActiveX object, the Get command is executed
before any Set command is executed. In other words, the tag configured in the Tag/Expression field is updated with the value
of the ActiveX property when the project screen is opened.

Set+Get Executes both actions (Get and Set). However, when opening a screen with the ActiveX object, the Set command is executed
before any Get command is executed. In other words, the ActiveX property is updated with the value of the tag configured in
the Tag/Expression field when the project screen is opened.

Note: When the value of the property is "Read-only" (cannot by overwritten by your project), the
Action field is automatically set to Get.

• Scan: Defines the polling method to get values from the ActiveX propreties, according to the following table:

Scan Description

No The project runtime server gets the value only when the ActiveX object sends a message that the value has changed.

Always The project runtime server continuously gets the value while the project screen that contains the ActiveX object is open.

Note: Some ActiveX controls are designed to send messages to their containers (e.g., your project)
indicating that a property changed value and the new value should be read (Get) again. However,
other ActiveX controls do not implement this algorithm. In this case, the only way to get the
updated values of the ActiveX properties is to keep polling these values from the ActiveX control
(Scan=Always).

Screens and Graphics

Page 292

Configuring Methods
The Methods tab provides a grid with the following fields:

Configuration Dialog – Methods Tab

• Method: List all methods available from the ActiveX object.

• Parameters: The tags configured in this field are associated with the parameters of the method of the
corresponding ActiveX object. If the method does not support any parameter, the fixed text <None> is
displayed in the Parameters field. Otherwise, you can type the tags associated in the parameters of the
ActiveX object. When the method has more than one parameter, you can type one tag for each parameter,
separating them by a comma (,). For example, TagA , TagB , TagC. When the method is executed,
either the value of the tags are written to the parameters of the method (input parameters), or, after the
method is executed, the ActiveX writes the value of the parameters to the tags (output parameters).

Tip: When you click the Browse button (), it will display the list of parameters supported by
the method, allowing you to associate one tag with each parameter.

• Trigger: When the tag configured in this field changes value, the respective method of the ActiveX control is
executed.

• Return: The tag configured in this field receives the value returned by the method (if any).

Screens and Graphics

Page 293

Configuring Events
The Events tab provides a grid with the following fields:

Configuration Dialog – Events Tab

• Event: List all events available from the ActiveX object.

• Parameters: The tags configured in this field are associated with the parameters of the event of the
corresponding ActiveX object. If the event does not support any parameter, the fixed text <None> is
displayed in the Parameters field. Otherwise, you can type the tags associated with the parameters of the
ActiveX object. When the event has more than one parameter, you can type one tag for each parameter,
separating them by a comma (,). For example, TagA , TagB , TagC. When the event is generated, either
the value of the tags are written to the parameters of the event (input parameters), or the parameter values
are written to the tags (output parameters).

Tip: When you click the Browse button (), it will display the list of parameters supported by
the event, allowing you to associate one tag with each parameter.

• Script: The script configured in this field will be executed when the event is triggered by the ActiveX control.

Tip: When you click the Browse button (), it will display a dialog with the complete script
associated with the event. The main dialog displays only the expression configured in the first
line of the script.

.NET CONTROL OBJECT

.NET Components are designed according to the Microsoft .NET Framework, which is a standard for modular
programming technologies. Because BOS is a .NET container, you can configure and run .NET Components in
your project screens. The actual functions of a .NET Component are contained within a .NET Control object,
which provides the configuration dialogs.

.NET Components include the following interfaces:

• Properties: Variables whose values can be read and/or written for your project (e.g., Object Color, FileName,
URL, and so forth)

Screens and Graphics

Page 294

• Methods: Functions from the .NET Component that can be triggered by your project (e.g., open a dialog,
execute a calculation, and so forth)

• Events: Internal messages that can trigger the execution of expressions in your project (e.g., Mouse_Click,
Download_Completed, and so forth)

The properties, methods and events supported by each .NET Component vary according to the component's
implementation.

When using .NET Components in your project, make sure that the target system (runtime station) can
support the same components and that they are properly installed and registered. Your project includes links
to the .NET Components; however, the installation of these components on the target system must be done
separately. Furthermore, when .NET Components are used on screens open in remote Thin Clients, the .NET
Components must also be manually installed on the Thin Client stations. The Microsoft Windows operating
system installs a large selection of components by default, but additional components are offered by third-
party providers. Consult your .NET Component provider for further information about how to install.

Selecting and Placing a .NET Control Object
To select and place a .NET Control object in your project screen:

1. On the Graphics tab, in the Libraries group, click .NET Control. The .NET Framework Components dialog box is
displayed.

.NET Framework Components dialog

This dialog box lists all of the .NET components that are installed and registered on your computer, but
BLUE Open Studio 2020 does not necessarily support all of the listed components. In order to be placed in
a project screen, a component must meet the following requirements:

• It must be built with .NET Framework version 2.0, 3.0, or 3.5. Components that have been built
with .NET Framework 4.0 or later are not supported.

• It must be designed using Windows Forms (WinForms) rather than Windows Presentation Foundation
(WPF). Components that have been designed using WPF are not supported. You can use third-party
development tools such as Visual Studio to "wrap" a WPF-based component, however, so that it has
WinForms control layer and therefore can be used in BLUE Open Studio 2020.

• It must be designed as a User Control — that is, it must extend the
System.Windows.Forms.UserControl class.

Screens and Graphics

Page 295

• The DataGrid and DataGridView controls are not supported in any case. As an alternative, use BLUE
Open Studio 2020's own Grid object.

2. Select a component from the list, and then click OK to place it in your project screen. You can also click the
Browse… button to find an unregistered component on your computer.

Tip: Registered .NET Components are typically stored in the following directory:

C:\WINDOWS\Microsoft.NET\Framework\

However, you can have the application include unregistered components in the .NET Framework
Components dialog by editing the <project name>.APP file to add this parameter:

[Execution Environment]
DotNetControlPath=OptionalPath

For example:

[Execution Environment]
DotNetControlPath=C:\DOTNET CONTROLS BACKUP

Thereafter, the .NET Framework Components dialog will list all registered components and all
components found in the specified directory.

3. By default, a new .NET Control object is placed in the upper-left corner of your project screen. Click on the
object and drag it to where you want it placed.

4. Once the object is placed, double-click on it to open its Object Properties dialog.

Object Properties: .NET Control
The Object Properties dialog shows the name of the .NET Component. You must assign a name (alias) to the
component in the Name box (e.g., CheckBox1). This name is used to reference the component when using the
scripting languages (VBScript and built-in scripting).

Note: You should not configure two .NET Control objects on the same screen with the same name.
For instance, if you place two CheckBox components on the same screen and assign the name
CheckBox1 to one object (Name field), you cannot assign the same name to the second object on the
same screen. You would have to assign the name CheckBox2, for example, to the second object.

The Property Pages button opens the standard window for configuring the Static Properties (if any). The layout
and the options in this dialog depend on the implementeation of each .NET Component. Use this interface to
set properties that should not be changed during runtime (fixed properties).

Screens and Graphics

Page 296

The Members button on the Object Properties dialog opens additional dialogs that allow you to do the following:

• Associate tags to properties of the .NET Component

• Trigger methods from the .NET Component based on tag change

• Configure scripts, which are executed when Events from the .NET Component occur

The following sections describe how to configure these interfaces.

Note: Although the Members dialog displays the list of all properties, methods and events, you only
have to configure the items that you need for your project.

The screen shots used in the following sections depict the CheckBox component. Although the names of
properties, methods and events varies by component, the configuration interface is the same for any .NET
Component. The concepts described here apply to all of them.

Configuring Properties
The Properties tab provides a grid with the following fields:

Members Dialog – Properties tab

• Property: List all properties available from the .NET Component, and indicate their types:

Property Icon Property Type

Boolean

Integer

Real

String

• Tag/Expression: The tag configured in this field is associated with the respective property of the .NET
Component. The Action column will define whether the value of this tag will be written to the property, or if
the value of the property will be written to this tag (or both).

Screens and Graphics

Page 297

• Action: Defines the direction of the interface between the tag or expression configured in the Tag/
Expression field and the .NET property, according to the following table:

Action Description

Get Read the value of the property and write it to the tag configured in the Tag/Expression field.

Set Write the value from the tag or expression configured in the Tag/Expression field into the property.

Get+Set Executes both actions (Get and Set). However, when opening a screen with the .NET Component, BOS executes the Get
command before executing any Set command. That is, the tag configured in the Tag/Expression field is updated with the
value of the property when BOS opens the screen where the .NET Component is configured.

Set+Get Executes both actions (Get and Set). However, when opening a screen with the .NET Component, BOS executes the Set
command before executing any Get command. That is, the property is updated with the value of the tag configured in the Tag/
Expression field when BOS opens the screen where the .NET Component is configured.

Note: When the value of the property is "Read-only" (cannot by overwritten by your project), the
Action field is automatically set to Get.

• Scan: Defines the polling method to get values from the propreties. For .NET Components, all properties
scan Always by default. That is, BOS keeps polling the value of the property and updating the tag
configured in the Tag/Expression field with this value.

Configuring Methods
The Methods tab provides a grid with the following fields:

Members Dialog – Methods tab

• Method: Lists all methods available from the .NET Component.

• Parameters: The tags configured in this field are associated with the corresponding method. If the method
does not support any parameter, then the fixed text <None> is displayed. Otherwise, you can enter the tags
that you want to associate with the parameter. When the method has more than one parameter, you can
enter one tag for each parameter, separating them by a comma (,). For example, TagA , TagB , TagC.

Screens and Graphics

Page 298

Tip: When you click the Browse button (), it will display the list of parameters supported by
the method, allowing you to associate one tag with each parameter.

When the method is executed, either the value of the tags are written to the parameters of the method
(input parameters), or, after the method is executed, the .NET Component writes the value of the
parameters to the tags (output parameters).

• Trigger: When the tag configured in this field changes value, the respective method of the .NET Component
is executed.

• Return: The tag configured in this field receives the value returned by the method (if any).

Configuring Events
The Events tab provides a grid with the following fields:

Members Dialog – Events tab

• Event: Lists all events available from the .NET Component.

• Parameters: The tags configured in this field are associated with the corresponding event. If the event does
not support any parameter, then the fixed text <None> is displayed. Otherwise, you can enter the tags that
you want to associate with the parameter. When the event has more than one parameter, you can enter
one tag for each parameter, separating them by a comma (,). For example, TagA , TagB , TagC.

Tip: When you click the Browse button (), it will display the list of parameters supported by
the event, allowing you to associate one tag with each parameter.

When the event occurs, either the value of the tags are written to the parameters of the method (input
parameters), or, after the event occurs, the .NET Component writes the value of the parameters to the tags
(output parameters).

• Script: The script configured in this field will be executed when the event is triggered by the .NET
Component.

Screens and Graphics

Page 299

Tip: When you click the Browse button (), it will display a dialog with the complete script
associated with the event. The main dialog displays only the expression configured in the first
line of the script.

CUSTOM WIDGET
A custom widget is a type of screen object that displays an external, HTML5-compliant webpage within a
frame in a project screen. The widget can do anything that the webpage could normally do when viewed in a
browser.

Custom widgets are a platform-agnostic alternative to ActiveX and .NET controls, which are supported only
on Microsoft Windows. In fact, each widget is essentially a small, embedded browser window that loads a
specified webpage. Also in contrast to ActiveX and .NET controls, these webpages do not need to be compiled,
installed, or registered on a computer before they can be used. They are included with the rest of the project
files when you download your project to a target device.

You can create a library of custom widgets for your project, and then you can reuse those widgets as many
times as you want in any of your project screens. Each instance of a widget is a discrete screen object with its
own object properties.

When you create a new widget (or edit an existing widget), you can define properties and events for that
widget:

• Properties are used to exchange data between the webpage and the rest of your project. They are similar to
memory registers in a PLC: you can associate them with project tags, and then you can read/write them
when their values change.

• Events are used to trigger actions in your project. Depending on how it is designed and used, the webpage
can send events through the widget to your project, and then those events cause scripts to be executed in
your project.

All instances of a custom widget have the same basic properties and events, because those instances are
simply copies of the master in the library, but you can configure the object properties of each instance in
order to associate different tags and attach different scripts.

As for the webpage itself, you can develop it to do anything you want using HTML5, CSS, and JavaScript.
Studio will automatically create the web files in your project folder, when you create the new widget and add it
to your project's library, but after that you can freely edit the the files.

Create a new custom widget
Use the Custom Widgets command to create a new custom widget and then add it to your project's library.

To create a new custom widget:

1. On the Draw tab of the ribbon, in the Libraries group, click Custom Widget.

Screens and Graphics

Page 300

The Custom Widgets dialog box is displayed. This dialog box lists all of the widgets that have been added to
your project's library.

Custom Widgets dialog box
2. Click New.

Screens and Graphics

Page 301

A Custom Widget dialog box is displayed for the new widget that you are creating.

Custom Widget dialog box
3. In the Name box, type a name for the widget.

The name cannot contain any spaces.

4. In the Height and Width boxes, type the default height and width (in pixels) that the widget should have when
it is added to a project screen.

Note: A custom widget, like most other screen objects, can be resized after it is inserted in a
project screen.

5. To add a property to the widget, do the following:
a) In the Properties area, click Add.

The Add dialog box is displayed.

b) In the Name box, type the name of the property.

c) Click OK to add the property to the widget and then close the dialog box.

d) Repeat for each property that you want to add.

These are the basic properties that will be shared by all instances of the widget. To customize the
properties on a specific instance of widget — that is, to associate different tags with the properties on that
instance — you will need to configure the widget's object properties.

6. To add an event to the widget, do the following:
a) In the Events area, click Add.

The Add dialog box is displayed.

b) In the Name box, type the name of the event.

c) Click OK to add the event to the widget and then close the dialog box.

Screens and Graphics

Page 302

d) Repeat for each event that you want to add.

These are the basic events that will be shared by all instances of the widget. To customize the events on a
specific instance of widget — that is, to attach different scripts to the events on that instance — you will
need to configure the widget's object properties.

7. When you are done, click OK to create the widget.
The new widget is added to the list of widgets in the Custom Widgets dialog box. Also, the web files that
actually make up the widget are automatically created in your project folder at:

<project name>\Web\Widgets\<widget name>

8. If you want to immediately insert an instance of this widget, make sure it is selected in the list of widgets
and then click OK.
The Custom Widgets dialog box is closed, and the widget is inserted in the project screen.

9. If you want to close the Custom Widgets dialog box without inserting an instance of this widget, click
Cancel.

Edit the web files for a custom widget
Edit the web files for a custom widget in order to develop the content of the widget and link the widget's
properties and events.

Before you begin this task, you should be familar with how to develop webpages using HTML5, CSS, and
JavaScript. Also, you must have already created the custom widget and added it to your project's library;
the associated web files are automatically created in your project folder only after the widget is added to the
library.

The files should be located at:

<project name>\Web\Widgets\<widget name>\

Each custom widget actually comprises three web files, but only two of the files are user-editable:

• index.html is the webpage itself. It is what is displayed within the widget's frame in the project screen.
You may edit the entire body of the webpage (i.e., everything between <body> and </body>).

• custom_widget.js is the library of JavaScript functions that are associated with the webpage. You need
to develop functions that link the widget's properties and events with the actual content and behavior of
the webpage.

Do not edit the third file, <widget name>.wjson. It contains important settings for the custom widget.

Now, given the almost limitless ways in which you can develop an HTML5-compliant webpage, it is beyond the
scope of this documentation to cover every possible step and option in editing these web files. Instead, the rest
of this topic will feature a simple example of a custom widget that can load another webpage and then notify
your project that the webpage was loaded. The widget — which you created earlier; see Create a new custom
widget on page 299 — should have at least one property named URL and one event named PageLoaded.

To edit the web files for a custom widget:

1. Locate the widget's web files in your project folder.

The files should be located at:

<project name>\Web\Widgets\<widget name>\custom_widget.js
<project name>\Web\Widgets\<widget name>\index.html

2. Use a text editor to open index.html.

The default contents of <body> are a simple badge and label.

<!DOCTYPE html>
<html style="overflow: hidden;">
 <head>
 <script src="../Resources/Apis/Proxy.js" cwidget="MyWidget"></script>

Screens and Graphics

Page 303

 <script src="./custom_widget.js"></script>
 <title>MyWidget</title>
 </head>
 <body>
 <div style="width:96vw;height:95vh;background-color:white;text-
align:center;vertical-align:middle;line-height:98vh;border:solid;border-
width:thin;border-color:#e6e9eb">
 <div>
 <img src="../Resources/Images/HTML5.png"
 style="width:32px;height:32px"/>
 <p></p>
 <div style="height: 64px; top: 28px; width: 100%; position:
 absolute;">MyWidget</div>
 </div>
 </div>
 </body>
</html>

3. Delete the default contents of <body>.

<!DOCTYPE html>
<html style="overflow: hidden;">
 <head>
 <script src="../Resources/Apis/Proxy.js" cwidget="MyWidget"></script>
 <script src="./custom_widget.js"></script>
 <title>MyWidget</title>
 </head>
 <body>

 </body>
</html>

4. Insert your own HTML code into the body of the webpage.
The entire body is displayed within the widget's frame in your project screen.

In this example, you are inserting an iframe element that can be used to load other webpages. (The
iframe element is a sort of browser window within the browser window, or in this case, a browser window
within the custom widget.)

<!DOCTYPE html>
<html style="overflow: hidden;">
 <head>
 <script src="../Resources/Apis/Proxy.js" cwidget="MyWidget"></script>
 <script src="./custom_widget.js"></script>
 <title>MyWidget</title>
 </head>
 <body>
 <iframe id="myFrame" style="width: 100vw; height: 100vh;"></iframe>
 </body>
</html>

5. Save and close index.html.

6. Use the text editor to open custom_widget.js.

// Subscribes to receive property changes
cwidget.on("PropertyName", function() {

 // Gets property value
 console.log(cwidget.PropertyName);

 // Sets property value
 cwidget.PropertyName = "value"

 // Triggers an event

Screens and Graphics

Page 304

 cwidget.dispatchEvent("EventName");

});

This is an example of a JavaScript function that can be executed during project run time. cwidget
is a JavaScript object that represents your custom widget, and it has various properties and
methods associated with it. For example, cwidget.on is executed when the value of a property
changes, cwidget.PropertyName (e.g., cwidget.URL) accesses the value of the property itself,
cwidget.dispatchEvent notifies your project when an event has occurred, and so on.

You can copy this example as many times as you want, for however many properties and events you have
added to your custom widget, and then develop each function to do something different. You can also
develop entirely new functions and sub-routines, using your knowledge of JavaScript.

7. Delete the body of the function, so that you can insert your own commands.

cwidget.on("PropertyName", function() {

});

8. Replace PropertyName with the name of the property you added to your custom widget.

In this example, you are using the URL property.

cwidget.on("URL", function() {

});

Now this function will be executed whenever there is a change in the value of your widget's URL property
(or more specifically, whenever there is a change in the value of the project tag associated with the URL
property).

9. Develop your function.

In this example, your function will load a webpage and then notify your project that the webpage was
loaded.

cwidget.on("URL", function() {

 var myFrame = document.getElementById("myFrame");
 myFrame.onload = cwidget.dispatchEvent("PageLoaded");
 myFrame.src = cwidget.URL;

});

The first line declares a new JavaScript object named myFrame and then links it to the iframe element
that you inserted into your HTML file. The second line causes the PageLoaded event to be dispatched
when a webpage is loaded. (In other words, the widget in your project is notified that the PageLoaded event
occurred.) And the third line sets the source of myFrame to be equal to the widget's URL property, which
causes the iframe element to load the specified URL.

Remember, the entire function depends on the cwidget.on method, so whenever there is a change in the
value of your widget's URL property, this function will be executed and a new webpage will be loaded.

10.Save and close custom_widget.js.

Of course there are many other things you can do with these web files, but that is beyond the scope of this
documentation. More thorough descriptions and examples will be provided in future releases of this software.
In the meantime, if you need help with developing your custom widgets, please contact your BLUE Open
Studio 2020 software distributor.

Screens and Graphics

Page 305

Import a Custom Widget Package (CWP)
Import a Custom Widget Package — that is, a custom widget that has been packaged and distributed as
a .cwp file — and add it to your project's library.

The project development software includes a number of premade widgets, and additional widgets might be
made available by other sources. You can use any of these widgets in your project just as you would use
widgets that you created yourself.

To import a Custom Widget Package:

1. On the Draw tab of the ribbon, in the Libraries group, click Custom Widget.
The Custom Widgets dialog box is displayed. This dialog box lists all of the widgets that have been added to
your project's library.

Custom Widgets dialog box
2. Click Import.

A standard Open dialog box is displayed, and by default, it starts in the following location in your
application folder:

C:\Program Files (x86)\Pro-face\BLUE Open Studio 2020\Redist\CustomWidgetsLibrary

This folder contains the premade widgets that are included with the project development software, but you
can use the Open dialog box to navigate to any folder.

3. Locate and select the Custom Widget Package (.cwp file) that you want to import, and then click Open.

The custom widget files are extracted and copied to the following location in your project folder:

<project name>\Web\Widgets\<widget name>

Screens and Graphics

Page 306

The custom widget is added to your project's library, and you can now insert it in a project screen. For more
information about how to configure and use the custom widget, check the custom widget files in your project
folder for a "help" or "readme" document.

For more information about how to package and distribute your own custom widgets, contact your BLUE
Open Studio 2020 software distributor.

Insert and configure a custom widget
Use the Custom Widget command to select and insert an instance of custom widget in a project screen, and then
configure the object properties of that instance.

Remember that all instances of a widget share the same basic properties and events, as you defined them
when you created the widget and added it to your project's library, but you can customize these properties
and events for each instance of the widget. Specifically, you can configure the object properties of an instance
in order to associate tags with properties and attach scripts to events.

To insert and configure a custom widget:

1. Make sure you have the correct project screen open in the Screen/Worksheet editor.

2. On the Draw tab of the ribbon, in the Libraries group, click Custom Widget.
The Custom Widgets dialog box is displayed. This dialog box lists all of the widgets that have been added to
your project's library.

3. In the list, select the custom widget that you want to insert into the project screen, and then click OK.
The dialog box is closed and the a new instance of the widget is inserted.

4. Use the standard screen editing tools to adjust the size and position of the widget, if necessary.

5. To open the widget's object properties, do one of the following:

• Select the widget/object, and then on the Draw tab of the ribbon, in the Editing group, click Properties.

• Right-click the widget/object, and then on the shortcut menu, click Properties.

• Double-click the widget/object.

The Object Properties dialog box for that widget is displayed. The name of the master widget is displayed in
the Custom Widget box, and the name of this instance of the widget is displayed in the Name box.

Object properties for a custom widget
6. Click Members.

The Members dialog box is displayed. It shows all of the properties and events that you defined when you
created the custom widget and added it to your project's library.

7. Click the Properties tab, and then for each property in the list, type the tag/expression that should be
associated with the property.
Whenever the value of the tag/expression changes, it updates the value of the property in the widget's web
files. Whenever the value of the property changes, it updates the associated tag.

Screens and Graphics

Page 307

Tip: You can double-click in the Tag/Expression box in order to open the Object Finder and use it
to compose the tag/expression.

8. Click the Events tab, and then for each event in the list, attach a script:
a) In the Script box, click the … button.

A standard script editor is displayed.

b) Compose the script as you would in any other VBScript interface in Studio.

Note: Only VBScript is supported at this time.

c) Click OK to save the script and close the script editor.

Whenever the specified event is received from the widget's web files, it causes the script to be executed.

9. Click OK to close the Members dialog box.

10.Close the Object Properties dialog box.

Configure the web server for custom widgets
If you use a web server to serve your project to thin clients, there is an additional step you must take in order
to configure that web server for custom widgets.

Before you begin this task, you should be familiar with how to configure and run a web server, such as
Internet Information Services for Windows.

Also, this task assumes that you have already configured your project for thin client access, that the
web server is running, and that your remote users are using any of the standard thin clients. For more
information, see Thin Clients and Mobile Access on page 740.

If you are only using the local Viewer module to view your project running on the same computer, you do not
need to do anything and you may skip this task.

In short, when a user opens a project screen that contains a custom widget, the widget tries to load its web
files from a specific URL. That URL can vary, depending on how you develop and deploy your project, so you
must make sure the web server knows exactly where the web files are located on the server. To do that, you
will create a direct link from your project's website to those web files.

To configure the web server for custom widgets:

1. From the Windows Control Panel, run Administrative Tools > Internet Information Services (IIS) Manager.
2. In Internet Information Services (IIS) Manager, right-click your project's website (see below), and then on

the shortcut menu, click Add Virtual Directory.

• If your remote users are using Thin Clients to access your project, you should have already configured
Default Web Site so that its physical path (i.e., its root directory) points directly to your project folder. If
this is true, right-click Default Web Site.

• If your remote users are using Mobile Access to access your project, Default Web Site should contain a
folder that was automatically created when you installed the Mobile Access Runtime software. For
example, Default Web Site > BOS2020. If this is true, right-click that folder.

The Add Virtual Directory dialog box is displayed.

3. In the Add Virtual Directory dialog box, in the Alias box, type CustomWidget.

4. In the Physical path box, type the complete file path for your project folder, or click the browse button (…) on
the right in order to open a standard Windows file browser that you can use locate and select the project
folder.
For example:

C:\Users\<user name>\Documents\BLUE Open Studio 2020 Projects\<project name>

5. Under Pass-through authentication, click Connect as.
The Connect As dialog box is displayed.

Screens and Graphics

Page 308

6. In the Connect As dialog box, under Path credentials, select Specific user, and then to the right of the box, click
Set.
The Set Credentials dialog box is displayed

7. In the Set Credentials dialog box, type the user name and password of a Windows user on the computer
that has permission to access the project folder.

By default, the web server only has permission to access the files in the website's own physical path.
This is to ensure that visitors to the website do not have unauthorized access to the rest of the computer.
Therefore, if you create a virtual directory that points to a location outside of the website's physical path,
you need to give the web server permission to access that location.

8. Click OK to close the Set Credentials dialog box and return to the Connect As dialog box.
The name of the Windows user is displayed in the Specific user box.

9. Click OK to close the Connect As dialog box and return to the Add Virtual Directory dialog box.

10.Click OK to close the Add Virtual Directory dialog box.
The virtual directory named CustomWidget is added to your project's website.

11.Exit Internet Information Services (IIS) Manager.

Install the Custom Widget Framework on a client station
If your project screens include custom widgets, you might need to install Custom Widget Framework on some
client stations to enable them to properly display the widgets.

This task applies only to stations on which you have already installed the Thin Client software — in other
words, stations that are using the Thin Client software to view your project screens.

Stations that are viewing your project through Mobile Access do not need to have Custom Widget Framework
installed, because custom widgets are HTML5-based screen objects that can be displayed normally in the web
browser.

Before you begin this task, you must have installed the full Studio software on at least one Windows
computer — typically, on your project development workstation — because doing so also unpacks the Custom
Widget Framework installer. (Custom Widget Framework is not included in the Thin Client installer because it
would greatly increase the file size of that installer, for a feature that not all projects use.)

You must have Administrator privileges on a computer or device in order to install any software.

To install the Custom Widget Framework on a client station:

1. Locate the Custom Widget Framework installer (CustomWidgetFrameworkSetup.exe) in your Studio
program folder.

If Studio was installed in its default location, the Custom Widget Framework installer should be located at:

C:\Program Files (x86)\Pro-face\BLUE Open Studio 2020\Redist\CustomWidgetFramework
\CustomWidgetFrameworkSetup.exe

2. Copy the installer to the client station, either over the network or on a portable hard drive.

3. Run the installer. You might need to do this as a user with Administrator privileges: right-click the
installer, and then on the shortcut menu, click Run as Administrator.

4. Follow the installer's instructions. On the Choose Destination Location page of the installer, make sure the
Bin sub-folder in the Thin Client program folder is selected. If it is not, click Browse and then use the file
browser to locate and select the Bin sub-folder.

Automatic resizing of custom widgets
Custom widgets can be automatically resized during project run time in order to fit changing contents.

When you create a new custom widget, you specify a default size for that widget. And then when you insert a
Custom Widget object into a project screen, you can manually resize it like you would any other screen object.
Given the nature of a custom widget, however — it is an embedded container for an external HTML file — the
configured size of the widget might be too small to display the entire contents of the widget.

To handle this, automatic resizing of custom widgets has been implemented. When a screen is opened during
project run time, each widget in the screen is immediately resized to fit the current contents of its associated

Screens and Graphics

Page 309

HTML file. (The configured position of the widget does not change; its top-left corner remains the same as
when you inserted the object in the screen.) Then, if/when the contents of the HTML file change, the widget
is resized again to fit the new contents. This is especially useful if the HTML file has been designed so that it
dynamically updates throughout the project run time.

Example of a "date picker" widget, before resizing

Example of a "date picker" widget, after resizing

Please note the associated HTML file can be designed so that its contents change in size in any or all
directions, not just to the bottom and right. The widget will still be resized to fit the contents, and this might
appear to change the position of the widget but it does not; the actual position of the widget remains the
same, as determined by its top-left corner, even though the contents appear to overflow it.

Screens and Graphics

Page 310

The following series of illustrations shows an example of a custom widget being resized as the contents
change. The black frame represents the Custom Widget object as it was inserted into the project screen, and
yellow-and-green pattern represents the contents of the associated HTML file.

Screens and Graphics

Page 311

Automatic resizing does not apply to custom widgets that are included in Linked Symbols. This is to prevent
any disruption in the layout of the symbol.

Also, automatic resizing does not necessarily apply to custom widgets that are designed to display other
webpages. This is because the webpages are typically displayed within an iframe element in the HTML file,
and that element constrains the content of the webpages. The iframe element itself would have to change size
in order to trigger the automatic resizing.

Tip:

By default, automatic resizing is enabled for all custom widgets. You can disable it on a widget-by-
widget basis, however. To do this, edit the widget's associated JavaScript file (custom_widget.js) to
include the following line:

_proxy.autoResize = false;

This change will apply to all instances of the same custom widget.

For more information about editing custom_widget.js, see Edit the web files for a custom widget
on page 302.

LINK TO AN EXTERNAL IMAGE FILE
Use a Linked Picture screen object to link to an external image file, so that you can easily reuse the image in
your project and/or change the image during run time.

This task assumes that you have a Screen worksheet open for editing.

Also, you must decide where exactly the image file will be stored:

• If you want the image file to be downloaded with the rest of the project files to the target system, it must be
saved in your project folder at:

BLUE Open Studio 2020 Projects\<project name>\Web

• If the image file will be located elsewhere on the network or target system, note the complete file path.

To link to an external image file:

1. On the Draw tab of the ribbon, in the Libraries group, click Linked Picture.
A standard Open dialog box is displayed.

2. Use the dialog box to locate and select the image file, and then click OK.

The following table shows which image file types are supported on each target platform:

Screens and Graphics

Page 312

File Type Windows Mobile Access

Windows Bitmap (.bmp) ✓ ✓

Windows Metafile (.wmf, .emf) ✓

JPEG (.jpg, .jpeg) ✓ ✓

PNG (.png) ✓ ✓

TIFF (.tif, .tiff) ✓

GIF (.gif) ✓

AutoCAD DXF (.dxf), versions 10 and 11 only ✓

Exchangeable image file (.Exif), which is
commonly used in digital cameras

For maximum compatibility across all target platforms, you should use PNG files whenever possible.

The image is added to the worksheet as a Linked Picture screen object.

3. Double-click the screen object.

The Object Properties: Linked Picture dialog box is displayed.

4. In the Link File box, examine the link.

If the image file is located in the Web folder, the link is a relative file path. If the image file is located
elsewhere, the link is an absolute file path.

You can specify folders within the Web folder. For example, if you type MyPictures\Picture1.bmp, the
project runtime will look for the image file at the following location:

<project name>\Web\MyPictures\Picture1.bmp

Tip:
The file extension is not always required for the link to work. In projects that are configured to
run on the Windows target platform, if no file extension is specified, .png is used by default. To
change this, use a text editor to open your project file (<project name>.APP) and then edit the
following property:

[Viewer]
DefaultLinkedPictureExtension=<image file extension>

In projects that are configured to run on the Embedded target platform, if no file extension is
specified, .bmp is used by default. This cannot be changed.

5. If you want to change the link — and therefore change the picture — during project run time, replace the
file path with a project tag:
a) In the Link File box, select the file path, and then copy it to the clipboard.

Screens and Graphics

Page 313

b) Replace the file path in the Link File box with the name of a String tag in curly brackets (e.g.,
{MyLinkedPicture}).

c) If the tag does not exist, you will be prompted to create it. Make sure that you create it as a String tag.

d) Set the tag's startup value to be the file path that you copied to the clipboard, either by pasting the file
path into the tag's Startup property (in the Project Tags Datasheet View) or by configuring the Startup
Script to set the tag value when the project is run.

With a properly configured project tag, the link will be refreshed whenever the tag value changes during
run time. Keep in mind that the tag value must have the same format as a normal link: a relative file path
for a file located in the Web folder, or an absolute file path for a file stored elsewhere on the network or
target system.

6. If you want some part of the picture to be transparent to the screen background, select a transparent
color:
a) In the Transparent Color group, select either Color Code or Tracker in the list.

b) If you selected Color Code, type a tag/expression that will provide the 24-bit color code of the desired
transparent color.
For more information about Windows color codes, see Color Interface on page 73 and WdColor
Enumeration.

c) If you selected Tracker, click and drag the tracker on the screen object until it is positioned over a sample
of the desired transparent color.
The tracker is an additional handle on the screen object that initially appears just inside the bottom-
right corner of the object. Moving the tracker on the object does not move or resize the object itself.

Note: Transparent color is not supported for Windows Metafiles (.wmf, .emf)

7. Close the Object Properties dialog box.

Please note that if you enable performance control in the project settings, each image file will be cached in
and then loaded from memory, if possible, rather than from its specified location in the project folder or on
the network. This will improve run-time performance, because loading a file from RAM is faster than loading it
from the hard drive. For more information, see Configure the performance control settings on page 110.

If you do not want the image files to be cached, however — in other words, if you want to ensure that the
lastest versions of the files are always loaded from their specified locations — you should disable performance
control. This is typically required when certain images (e.g., snapshots) are updated during project run time.

Applying animations to screen objects
Use the Animations group to apply animations to a screen object or group of objects. Animations enable you to
modify object properties on the fly (during runtime) according to tag values. Some animations also enable you
to execute commands or insert values (set points) to the tags.

http://msdn.microsoft.com/library/ff196272.aspx
http://msdn.microsoft.com/library/ff196272.aspx

Screens and Graphics

Page 314

COMMAND ANIMATION

On the Graphics tab, in the Animations group, click Command to add the animation to a selected object or group of
objects. The animation enables you to click on the object or press a pre-defined key to execute the command
at runtime. Double-click on the object to view its object properties.

Object Properties: Command

The Command animation provides one tag for each one of the events supported by it. Notice that more than
one event can be configured simultaneously for the same Command animation:

• On Down: Executes the command/script once when the user clicks on the object with the left mouse button.

• On While: Keeps executing the command/script continuously while the mouse pointer is pressed on the
object. The period (in milliseconds) of execution for the command/script is set in the Rate field from the
Configuration dialog screen, except for the VBScript option, which is executed as fast as possible.

• On Up: Executes the command/script once when the user releases the left mouse button on the object.

• On Right Down: Executes the command/script once when the user clicks on the object with the right mouse
button.

• On Right Up: Executes the command/script once when the user releases the right mouse button on the
object.

• On Double Click: Executes the command/script once when the user double-clicks on the object with the left
mouse button.

• On Touch, On Touch Start, On Touch Delta, On Touch Complete: These events are used for multi-touch gestures. For
more information, see About Touch Events on page 361.

Tip: An asterisk (*) on an event tab indicates that something is configured for that event. This
makes it easier to see at a glance which events are configured.

Screens and Graphics

Page 315

Type menu: This setting defines the type of action that must be executed by the event of the Command
animation. Notice that each event has its own type. Therefore, the same Command animation can be
configured with different types of action for different events. The following types are supported:

Type Description

Built#in Language Allows you to configure a script using the BOS built-in language. When this type is selected, the user can configure up to 12
expressions for each event in the Expression column. The expressions are executed sequentially from the first row until the last
one when the event is triggered. The result of each expression is written to the tag configured in the Tag column (if any). Consult
the Built-in Scripting Language chapter for more information.

VBScript Allows you to configure a script using the standard VBScript language. When this type is selected, the user can configure a script
in the VBScript editor for the Command animation. Consult the VBScript chapter for further information about the VBScript
language.

Open Screen Allows you to configure the Command animation to open a specific screen when the event is triggered during runtime. This type
is equivalent to the Open function. You can either type the screen name in the Open Screen field or browse it. Furthermore, you
can type a string tag between curly brackets {TagName} in this field. When the event is executed, the project will attempt to open
the named screen.

Note: The screen file extension (either *.scc or *.scr) is assumed, so you do not need to include it.
However, if you have two screen files with the same name but different extensions in your project folder (e.g.,
MyScreen.scc and MyScreen.scr), the one with the preferred extension — as determined by
whether the Use .scr extension for screen files option in the project settings is selected — will be opened. For
more information, see Viewer tab on page 115.

Close Screen Allows you to configure the Command animation to close a specific screen when the event is triggered during runtime. This type
is equivalent to the Close function. You can either type the screen name in the Close Screen field or browse it. You can also
type a string tag between curly brackets {TagName} in this field. When the event is executed, the project will attempt to close the
named screen.

Set Tag Allows you to configure the Command animation to set a tag when the event is triggered during runtime. You can either type the
tag name in the Set Tag field or browse it. When the event is executed, the project will write the value 1 to the tag configured in
this field.

Reset Tag Allows you to configure the Command animation to reset a tag when the event is triggered during runtime. You can either type the
tag name in the Reset Tag field or browse it. When the event is executed, the project will write the value 0 to the tag configured in
this field.

Toggle Tag Allows you to configure the Command animation to toggle a tag when the event is triggered during runtime. You can either
type the tag name in the Toggle Tag field or browse it. When the event is executed, the project will toggle the value of the tag
configured in this field.

Config button: Launches the Configuration dialog, where the Command animation can be fully configured.

Back to button: Click to go back to the object properties of the underlying Button object.

Screens and Graphics

Page 316

Configuration dialog
This dialog allows you to fully configure the Command animation…

Configuration dialog

The event tabs (e.g., On Down, On While, etc.) and the Type menu are the same as in the Object Properties
dialog described above. The remaining settings are shared for all events:

• Options pane:

• Enable Focus checkbox: When this option is checked, the object that the Command animation was
applied to can receive the focus during runtime by the navigation keys.

• Force checkbox: When this option is selected, any project tag that receives a value will trigger events as
if the tag changed, even if the new value is equal to the old value. For example, if a tag has a value of 0
and the Command animation runs a procedure that writes 0 to that tag, all other tasks in the project
runtime will recognize that the tag changed, even though it did not. This option is useful for making
sure that events triggered by tag changes (e.g., Write on Tag Change on a communication driver) are always
triggered when the Command animation is used.

Screens and Graphics

Page 317

Please keep in mind that if the tag's value does not actually change, the tag's timestamp (tagname-
>Timestamp) is not updated either.

Force applies to both the procedure run by the Command animation itself and any global procedures
called in that procedure, as long as they are run on the project runtime client where the Command
animation is used (i.e., on the device where the button is pushed).

Force does not apply to global procedures that are run on the project runtime server using the function
RunGlobalProcedureOnServer, even if the function is called in the procedure run by the Command
animation. If you want to force tag changes in global procedures run on the server, use the function
ForceTagChange.

• Beep checkbox: When this option is checked, a short beep is played when the Command is executed.
This option is useful to provide an audio feed-back to the user, indicating that the Command was
executed. It does not indicate, however, if the action triggered by the Command animation was
successful or not.

• Release checkbox: When this option is checked, the On Up event is executed when you drag the cursor
(or your finger) out of the object area (whether the button was released or not). This option is useful
to make sure that the On Up event will always be executed after an On Down event, even if the user
releases the mouse cursor out of the object area before releasing it.

• Confirm checkbox: When this option is checked, user will have to answer a confirmation question before
executing the command. This option is useful for decreasing the accidental triggering of critical events
during runtime.

• E-Sign checkbox: When this option is checked, the user will be prompted to enter the Electronic
Signature before executing the command.

• Key Only checkbox: When this option is checked, the user can only use the keyboard shortcut
(configured in the Key pane described below) to execute commands.

• Disable: Disables action by the user when the result of the expression configured in this field is TRUE (value
different from 0).

• Security: Security access level required to use the Command animation.

• Key group: Shortcut used to trigger the events On Down, While Down and On Up using a keyboard. (In
other words, pressing this keyboard shortcut is the same as clicking the left mouse button.) This option
is especially useful when creating projects for runtime devices that do not provide a mouse or touch-
screen interface — the keyboard is the only physical interface available to interact with your project during
runtime.

• Shift, Ctrl, or Alt boxes: Click to create a key combination key, meaning the Shift, Ctrl and/or Alt key
must be pressed with the key specified in the drop-down list.

• Click the browse button (…) to open the Key Modifer dialog, which enables you to modify your
combination keys. You can choose Left, Right or Left or Right to specify the position on the keyboard of the
Shift, Ctrl or Alt key in the key combination. If you choose Left or Right, the command will be executed
any time either of these keys is pressed in combination with the key specified in the drop-down list.

Tip: If you have defined custom keys for your project, you can select them in this list. For more
information, see Define custom keys for selected screen objects.

HYPERLINK ANIMATION

On the Graphics tab, in the Animations group, click Hyperlink to add the animation to a selected object or group
of objects. Applying this animation allows you to click on the object(s) during execution to launch the default
browser and load the specified URL.

Screens and Graphics

Page 318

Double-click on the object to open the Object Properties dialog.

Object Properties: Hyperlink

You can use this dialog to specify the following parameters:

• Hyperlink Type combo-box: Click the combo-box button to select a URL protocol from the list. The project
uses this protocol when it loads the URL.

• URL field: Type the URL address you want to load.

Tip: You are not required to enter the protocol type in the URL field. When you select a protocol
type from the Hyperlink Type list, the project automatically adds the protocol's prefix to the URL
address.

• Disable field: Type a value greater than zero into this field to disable the hyperlink Command animation for
the selected object(s).

• E-Sign checkbox: When this option is checked, the user will be prompted to enter the Electronic Signature
before executing the animation.

• Security field: Type a value into this field to specify a security level for the object(s). If a user logs on but
does not have the required security level, the project disables the hyperlink command for the object(s).

BARGRAPH ANIMATION

On the Graphics tab, in the Animations group, click Bargraph to add bar graph properties to a selected object, then
double-click on the object to open the Object Properties dialog.

Object Properties: BarGraph

Screens and Graphics

Page 319

Use the Object Properties dialog to specify the following parameters:

• Tag/Expression field: Type a tag or expression that evaluates the bar graph level. You also can click the icon
to browse your directories for an existing tag or expression.

• Minimum Value field: Type a numeric constant or a tag value into this field to define the minimum value used
to calculate the height (if vertical) or width (if horizontal) of the bars.

• Maximum Value field: Type a numeric constant or a tag value into this field to define the maximum value used
to calculate the height (if vertical) or width (if horizontal) of the bars.

If you do not specify a value for this field, the application opens a dialog requesting you confirm creation of
the tag.

Tip: The application also allows you to enter constants in tag/numeric value fields. Constant
values (defined by the # character) are equivalent to numeric values, except that constants
display in the Tag Replace dialog. You may find constants useful for documentation purposes or
for creating generic objects.

For example: #Name:100.

Where the value (100) following the semicolon (:) is the constant, and Name is a constant
mnemonic only and not added to database.

• Foreground Color: To specify a fill color for the bars, click the combo-box button. When the Color dialog
displays, click on a color to select it, and then close the dialog.

• Direction area: Click the Vertical or Horizontal radio button to specify the direction of the bar graph.

• Orientation area: Click the Up, Center, or Down radio button to specify the orientation of the maximum and
minimum values when drawing the bars.

TEXT DATA LINK ANIMATION

On the Graphics tab, in the Animations group, click Text Data Link to add the animation input or output text
property to a selected Text object. Applying the Text Data Link property allows you to insert and display tag
values in real time if you are using the keyboard or on-screen keypad to run a project.

Note: You can only apply this animation to Text objects that include one or more # characters.
Each # represents one character of input/output. You can combine # characters with regular text in
the same Text object — for example, MyLabel ##### or $###.##.

It's important to remember that the runtime project will always display the most significant digits of
a numeric value, regardless of the number or placement of # characters in the text. That means if
you do not have sufficient # characters to display the value, then it will be transformed in some way
depending on the format of the value (as set by the Fmt option described below):

• In Decimal format, the number of decimal places is determined by the position of the decimal
separator in the ### text. However, if you do not have enough # characters to the left of the
decimal separator to display the whole value, then the whole value will overrun the fractional
value. For example, if you try to display a value of 112.64 in #.##, you will see 112.

• In Hexa and Binary formats, if you have more # characters than you need to display the value,
then the runtime project will fill in with leading zeroes. If you have less characters than you need,
then the value will simply be truncated.

• In Auto format, the runtime project will ignore the number of # characters and display the entire
numeric or string value. Numeric values will be displayed in decimal format with their complete
whole and fractional values, regardless of the placement of the decimal separator in the ### text.
Given an exceptionally large value or long string, this may disrupt the layout of your screens.

Screens and Graphics

Page 320

Double-click on the object to open the Object Properties dialog. You can use this dialog to specify the following
parameters:

Object Properties: Text Data Link

• Tag/Expression text field: Type one of the following into the field:

• The name of a tag on which to perform an input or output operation; or

• An expression on which to perform an output operation only.

You can also click the browse button … to open the Object Finder to find an existing tag or expression.

Note: If the configured tag/expression is invalid, then during runtime, the placeholder
characters (###) will be displayed instead.

• Format combo-box: Click to select how the numeric value (if any) of the specified tag or expression will
be formatted and displayed on-screen. Available options include Decimal, Hexa (i.e., hexadecimal), Binary
and Auto. If you select Auto, then the value will be formatted according to the virtual table created by the
SetDecimalPoints function.

This option does not actually change the specified tag or expression in any way. For example, Tag/Expression
is set to a tag of Integer type, Input Enabled is checked, and Fmt is set to Hexa. You may input a new value in
hexadecimal format, but it is saved in your project database as an integer.

• Input Enabled checkbox: Click (check) this option to allow user input to the specified tag. Disable (uncheck)
this option to only display the output from the specified tag or expression.

• Back to text: Click to go back to the object properties of the underlying Text object.

• Minimum Value field: Enter a minimum value for the tag associated with this Text object. A user will not be
permitted to input a number lower than this value.

• Maximum Value field: Enter a maximum value for the tag associated with this Text object. A user will not be
permitted to input a number greater than this value.

• Password checkbox: Click (check) this option to hide password text entries by replacing the text with
asterisks (*).

• Confirm checkbox: Click (check) this option to require users to confirm any new values set during runtime.

• Auto Size checkbox: Click (check) this option to automatically resize the Text object to fit the output. This
option is not available if Input Enabled is checked (see above).

• E-Sign checkbox: When this option is checked, the user will be prompted to enter the Electronic Signature
before changing the tag value.

• VK: Virtual Keyboard type used for this object. You need to select the Virtual Keyboard option in the Viewer
settings (Viewer on the Project tab of the ribbon) before configuring the Virtual Keyboard for this interface.

• Disable field: Type a value greater than zero in this field to disable the tag's data input property.

Screens and Graphics

Page 321

• Security field: Type a value in this field to specify the security level for a specific data input object (as defined
in the Security section).

COLOR ANIMATION

On the Graphics tab, in the Animations group, click Color to add the animation to a selected object. The Colors
animation allows you to modify the color of a static object during runtime based on the value of a tag or
expression.

Double-click on the object to open the Object Properties dialog.

Object Properties: Colors

You can use this dialog to specify the following parameters:

• Type: Determines the mode in which this animation works:

• By Limit: When selecting this type, you can specify up to four limits (Change Limit) for this animation
and a color for each limit. When the value of the tag or expression configured in the Tag/Expr field
reaches the limits, the color associated with the respective limit is applied to the object.

• By Color: When selecting this type, you can specify the code of the color that must be applied to the
object directly in the Tag/Expr field. Using this code, you can apply any color supported by your device
to the object.

Tip: You can configure the RGBColor function in the Tag/Expr field when Type = By Color. This
allows you to configure the color by its RGB codes. See Color Interface for a table with the codes
for the most commonly used colors.

• Tag/Expression field: Type the name of a tag or expression you want to monitor. When Type = By Limit, BOS
compares the result of the tag/expression with the specified Change Limits to determine the proper color
for the selected object. When Type = By Color, the result of this field sets the color that will be applied to
the object.

• Change Limit field: Type a limit value (a numeric constant or tag) for the color change. The numbers must
be configured in ascendant order according to the following sequence of the fields displayed on the Object

Screens and Graphics

Page 322

Properties dialog: Upper left, lower left, upper right and lower right field. If you click on the More button,
you can configure up to 16 different limits for the color animation.

Color Limits dialog
• Color combo box: Click the combo-box button to associate a color with each color change limit. When the

Color dialog opens, click a color to select it, and then close the dialog.

• Blink combo-box: Click the combo-box button to specify whether the color change will blink, and how fast it
will do so.

Note: The following fields are automatically disabled (grayed out) when Type = By Color: Change Limit,
Color and Blink.

Screens and Graphics

Page 323

VISIBILITY/POSITION ANIMATION
The Visibility/Position animation allows you to move an object horizontally and/or vertically during run time.

On the Graphics tab, in the Animations group, click Visibility/Position to add the animation to an object. Double-click
on the object to open its Object Properties dialog.

Object Properties: Visibility/Position

Use the dialog to configure the following properties:

• Visibility box: Configure a tag/expression in this box to control the visibility of the object. When the value of
the tag/expression is 0 (FALSE), the object is hidden, and when the value is non-zero (TRUE) or the box is
left empty, the object is visible.

Objects that are hidden cannot be clicked/tapped and therefore cannot execute any Command animations
applied to them.

For some types of screen objects (i.e., all Shapes, Standard-style Buttons, and Linked Pictures), Visibility
controls not just the visibility but the opacity of the object, and the value (from 0 to 1) of the tag/
expression determines the percentage of opacity. For example, a value of 0.8 would give the object 80%
opacity. The value can change during run time, so you can use it to make objects appear to fade in and
out. Please note that you must have Enable Enhanced Graphics selected in the project settings in order to use
this feature. For more information, see Project Settings: Viewer.

• Horizontal and Vertical: Configure these settings to determine how the object moves in the screen:

• Tag/Expression boxes: Configure a tag/expression that will determine the position of the object during run
time; as the value changes, the object is moved in the screen. Whether you can configure a tag or an
expression depends on whether the Slider/Gestures option (see below) is selected:

• If the Slider/Gestures option is not selected, then configure either a tag or an expression in this box.

• If the Slider/Gestures option is selected, then configure only a project tag (Integer or Real type) in this
box. When the end user manually moves the object, the new value is written back to the tag.

For the horizontal position, the value increases as the object moves to the right and it decreases at the
object moves to the left. For the vertical position, the value increases as the object moves to the bottom
and it decreases as the object moves to the top.

• Value range boxes: Enter the minimum and maximum values for the tag/expression. If the actual value
goes outside of its range, then the value is ignored and the limit is used instead.

• Position boxes: Enter values to specify how far (in pixels) the object can move from its starting position.
The starting position is equal to "0,0". Values greater than 0 allow the object to move right and down,
and values less than 0 allow the object to move left and up.

Screens and Graphics

Page 324

During run time, the object's position is proportional to the tag/expression value within its range. For
example, if Position is 0 to 100 and Range is 0 to 10, then each increment in the value will move the object
10 pixels. This is true for both Horizontal and Vertical.

• Reference drop-down lists: Select a reference point on the object. The following table shows how your
selections for Horizontal and Vertical work in combination:

 LEFT CENTER RIGHT

TOP

CENTER

BOTTOM

This reference point is meaningful only if you have the Resize animation added to the same object.
The position of the object is always based on this reference point, regardless of the size or shape of the
object.

• Slider/Gestures: When multi-touch gestures are enabled, the end user can use one- or two-finger "slide"
gestures to move this object during run time. The changes in position are written back to the project tags
configured in the Tag/Expression boxes above.

• Enable option: Select to enable gestures on this specific object.

Please note that Multi-Touch must also be enabled for the project and screen.

• Inertia option: Select to apply inertia to this object, so that it slows down naturally rather than stops
abruptly when the end user stops touching it.

• Disable box: Configure a tag/expression. When its value is TRUE (i.e., not 0), then gestures are disabled
on this object.

• Security box: Type the minimum security level that the end user must have to use gestures on this
object.

For more information, see Multi-Touch on page 348.

Screens and Graphics

Page 325

RESIZE ANIMATION
The Resize animation allows you to increase or decrease the size of an object during runtime.

On the Graphics tab, in the Animations group, click Resize to add the animation to an object. Double-click on the
object to open its Object Properties dialog.

Object Properties: Resize

Use the dialog to configure the following properties:

• Height and Width: Configure these settings to determine how the object moves in the screen:

• Tag/Expression boxes: Configure a tag/expression that will determine the size of the object during run
time; as the value changes, the object is resized in the screen. Whether you can configure a tag or an
expression depends on whether the Gesture option (see below) is selected:

• If the Gesture option is not selected, then configure either a tag or an expression in this box.

• If the Gesture option is selected, then configure only a project tag (Integer or Real type) in this box.
When the end user manually resizes the object, the new value is written back to the tag.

• Value range boxes: Enter the minimum and maximum values for the specified tag(s). If a tag's actual
value goes outside of its range, then the value is ignored and the limit is used instead.

• Size range (%) boxes: Enter the minimum and maximum values for the size of the object. The minimum
value can be as low as 0% (making the object effectively invisible), and the maximum value can be as
high as you want. 100% is the original size of the object when you draw it in the screen worksheet,
200% is double the original size, and so on.

During run time, the object's size is proportional to the tag value within its range. For example, if Size
range (%) is 0 to 100 and Value range is 0 to 10, then each increment in the value will increase the object
size by 10%. This is true for both Height and Width.

• Reference drop-down lists: Select a reference point to determine the directions in which the object will
change size. The following table shows how your selections for Height and Width work in combination:

 LEFT CENTER RIGHT

TOP

Screens and Graphics

Page 326

CENTER

BOTTOM

• Gesture: When multi-touch gestures are enabled, the end user may use two-finger "pinch" and "stretch"
gestures to resize this object during run time. The changes in size are written back to the project tags
configured in the Tag/Expression boxes above.

• Enable option: Select to enable gestures on this specific object.

Please note that Multi-Touch must also be enabled for the project and screen.

• Inertia option: Select to apply inertia to this object, so that it slows down naturally rather than stops
abruptly when the end user stops touching it.

• Disable box: Configure a tag/expression. When its value is TRUE (i.e., not 0), then gestures are disabled
on this object.

• Security box: Type the minimum security level that the end user must have to use gestures on this
object.

For more information, see Multi-Touch on page 348.

ROTATION ANIMATION
Use the Rotation animation to rotate screen objects.

On the Graphics tab, in the Animations group, click Rotation to add the animation to a Line, Open Polygon, Closed
Polygon, Bitmap, or Linked Picture object.

Note:

The Rotation animation does not work in a group of objects. If the animation is added to an object
and then that object is grouped with others, it will be disabled.

After the animation is added, double-click the object to open the Object Properties dialog box.

Object Properties: Rotation

Use this dialog box to edit the following properties:

Screens and Graphics

Page 327

• Tag/Expression box: Specify a tag/expression that will determine the angle of the object during run time;
as the value changes, the object is rotated in the screen. Whether you can specify a tag or an expression
depends on whether the Gesture option (see below) is selected:

• If the Gesture option is not selected, specify either a tag or an expression in this box.

• If the Gesture option is selected, specify only a project tag (Integer or Real type) in this box. When the end
user manually rotates the object, the new value is written back to the tag.

• Range area: Type the Minimum and Maximum values for Tag/Expression.

• Rotation (degrees) area: Type the Start and End positions (in degrees) of the object. The actual rotation is
proportional to the value of Tag/Expression within Range — in other words, the Start position is equal to the
Minimum value, and the End position is equal to the Maximum value. An object can rotate up to 360 degrees,
and it rotates clockwise by default.

For example, a Rotation animation has the following settings: Minimum is 0, Maximum is 100, Start is 0, and
End is 180. If the current value of Tag/Expression is 50 (i.e., halfway between Minimum and Maximum), then
the actual rotation of the object is 90 degrees (i.e., halfway between Start and End). A value of 25 is equal
to 45 degrees, a value of 75 is equal to 135 degrees, and so on.

Values less than Minimum and greater than Maximum are not ignored. Instead, they continue the rotation at
the same proportional rate. Given the same settings as in the previous example, a value of -50 is equal to
-90 degrees, a value of 150 is equal to 270 degrees, and so on.

If you actually need to limit the value of Tag/Expression, reconfigure it to include the Min and Max functions.

• Reference combo-box: Select one of the following as a pivot point on which to rotate the object:

• Left-Top: Upper-left corner of the object.

• Left-Bottom: Lower-left corner of the object.

• Center: Center of the object.

• Right-Top: Upper-right corner of the object.

• Right-Bottom: Lower-right corner of the object.

You can fine tune the pivot point by configuring the Offset settings described below.

• Advanced button: Click to open the Advanced dialog box, where you can edit the following settings:

Object Properties: Rotation – Advanced

• Offset (pixels) area: Enter the number of pixels by which to offset the Reference (i.e., pivot point) on the X
axis and/or Y axis.

• Counter Clockwise checkbox: Click (enable) this option to make the object rotate counterclockwise instead
of clockwise.

• Gesture: When multi-touch gestures are enabled, the end user may use two-finger "turn" gestures to rotate
this object during run time. The changes in angle are written back to the project tag specified in the Tag/
Expression box above.

• Enable option: Select to enable gestures on this specific object.

Please note that Multi-Touch must also be enabled for the project and screen.

Screens and Graphics

Page 328

• Inertia option: Select to apply inertia to this object, so that it slows down naturally rather than stops
abruptly when the end user stops touching it.

• Disable box: Specify a tag/expression. When its value is TRUE (i.e., non-zero), gestures are disabled on
this object.

• Security box: Type the minimum security level that the end user must have to use gestures on this
object.

For more information, see Multi-Touch on page 348.

Use custom properties to set property values when screens are opened

Studio allows you to assign values, tags, or even expressions to screen objects properties or animation
properties dynamically when opening the screens. This feature is based on the use of Custom Properties
(formerly known as Mnemonics).

Custom Properties are place holders (aliases) that can configured to screen animations and objects properties.
The built-in function $Open() can be used to set values, tags, or even expressions dynamically to the Custom
Properties when opening the screen. Therefore, the same screen can be used to display different values,
depending on the context in which it was opened.

The Custom Properties follow the syntax below:

#CustomPropertyName:CustomPropertyValue

…where:
CustomPropertyName

Identifier (alias name) of the custom property.
CustomPropertyValue

Actual (default) value of the custom property. It can be a literal value (numeric or
alphanumeric), a tag, or even an expression between parentheses. It can also be omitted (no
default value), so there is no default value for the custom property, but its value can still be set
dynamically when opening the screen with the built-in function $Open().

During the runtime, only the CustomPropertyValue is used and the remaining text from the aforementioned
syntax is ignored. Examples:

Custom Property (full syntax) Custom Property Name (alias used as identifier) Custom Property Value (used during the
runtime)

#MyNumValue:10 MyNumValue 10

#MyTextValue:"ABC" MyTextValue "ABC"

#MyTag:Second MyTag Second

#MyExpression:(Minute*10) MyExpression (Minute*10)

In most cases, the Custom Property value is completely replaced by the value passed by the built-in function
$Open(). For example, assume you configured an object property from the screen MyScreen with the syntax:

#MyCustomProperty:

Then, you execute the following expression to open the screen:

$Open("MyScreen",-1,-1,-1,-1,0,0,"#MyCustomProperty:Second")

The screen will be opened, and the placeholder #MyCustomProperty: will be replaced by the tag Second
during the runtime.

Additional examples:

Screens and Graphics

Page 329

Custom Property configured on the objects and
animations

Custom Property passed by the built-in function
$Open()

Actual value executed during the runtime

#MyCustomProperty:Minute #MyCustomProperty:Second Second

#MyCustomProperty:Minute #MyCustomProperty:Second-
>Quality

Second->Quality

#MyCustomProperty:Minute #MyCustomProperty:Mytag[1].MyMemberMytag[1].MyMember

#MyCustomProperty:Minute #MyCustomProperty:Mytag[1].MyMember-
>Quality

Mytag[1].MyMember->Quality

Replace Custom Property value partially using tag fields configured on the objects and animations
Assume you have a screen where you configure the following syntaxes on different objects:

• #MyTag:Minute

• #MyTag:Minute->Min

• #MyTag:Minute->Max

• #MyTag:Minute->Unit

Notice that the same Custom Property (MyTag) is associated with different values (Minute, Minute->Min,
Minute->Max, and Minute->Unit). It is valid, as long as all values are associated to different fields of the
same tag. Conveniently, you can replace the tag Minute by another tag dynamically and keep the fields
configuraton, calling the built-in function $Open() as follows:

$Open("MyScreen",-1,-1,-1,-1,0,0,"#MyCustomProperty:Second")

This function will replace values as indicated in the following table:

Custom Property configured on the objects and
animations

Custom Property passed by the built-in function
$Open()

Actual value executed during the runtime

#MyCustomProperty:Minute #MyCustomProperty:Second Second

#MyCustomProperty:Minute-
>Min

#MyCustomProperty:Second Second->Min

#MyCustomProperty:Minute-
>Max

#MyCustomProperty:Second Second->Max

#MyCustomProperty:Minute-
>Unit

#MyCustomProperty:Second Second->Unit

Replace Custom Property value partially using class tags on the objects and animations
Assume you have a screen where you configure the following syntaxes on different objects:

• #MyTag:MyTagA.MemberX

• #MyTag:MyTagA.MemberY

• #MyTag:MyTagA.MemberZ

Notice that the same Custom Property (MyTag) is associated with different values (MyTagA.MemberX,
MyTagA.MemberY, and MyTagA.memberZ). It is valid, as long as all values are associated to different
members of the same class tag. Conveniently, you can replace the main tag name MyTagA by another tag
dynamically and keep the respective members, calling the built-in function $Open() as follows:

$Open("MyScreen",-1,-1,-1,-1,0,0,"#MyCustomProperty:MyTagB")

This function will replace values as indicated in the following table:

Screens and Graphics

Page 330

Custom Property configured on the objects and
animations

Custom Property passed by the built-in function
$Open()

Actual value executed during the runtime

#MyCustomProperty:MyTagA.MemberX#MyCustomProperty:MyTagB MyTagB.MemberX

#MyCustomProperty:MyTagA.MemberY#MyCustomProperty:MyTagB MyTagB.MemberY

#MyCustomProperty:MyTagA.MemberZ#MyCustomProperty:MyTagB MyTagB.MemberZ

Note: This partial replacement is valid ONLY if both the original class tag (MyTagA) and the target
class tag (MyTagB) share the same class type.

Replace Custom Property value partially using array tags
Assume you have a screen where you configure the following syntaxes on different objects:

• #MyTag:MyArray[1]

• #MyTag:MyArray[2]

• #MyTag:MyArray[3]

Notice that the same Custom Property (MyTag) is associated with different values (MyArray[1], MyArray[2],
and MyArray[3]). It is valid, as long as all values are associated to different array positions from the same
tag. Conveniently, you can replace the tag name MyArray by another tag dynamically and keep the respective
array positions, calling the built-in function $Open() as follows:

$Open("MyScreen",-1,-1,-1,-1,0,0,"#MyCustomProperty:NewArray")

This function will replace values as indicated in the following table:

Custom Property configured on the objects and
animations

Custom Property passed by the built-in function
$Open()

Actual value executed during the runtime

#MyCustomProperty:MyArray[1] #MyCustomProperty:NewArray NewArray[1]

#MyCustomProperty:MyArray[2] #MyCustomProperty:NewArray NewArray[2]

#MyCustomProperty:MyArray[3] #MyCustomProperty:NewArray NewArray[3]

Note: This partial replacement is valid ONLY if both the original tag (MyArray) and the target tag
(NewArray) are array tags.

Screens and Graphics

Page 331

Format tab
The Format tab of the ribbon is used to format and arrange objects in a project screen.

Note: This tab is available only when you've selected one or more objects in a project screen.

The tools are organized into the following groups:

• Arrange: Arrange objects in a project screen, including bring to front and send to back, group, align, and
rotate.

• Position: Precisely adjust the position of a screen object in a project screen.

• Size: Precisely adjust the size of a screen object.

• Style: Change the fill and line color of a screen object.

• Fonts: Change the caption font of a screen object.

Change the properties of multiple screen objects
This task describes how to select two or more screen objects and then change the properties that are common
to the selected objects.

Before you begin this task, you must have a project screen open in the screen editor.

Which properties you can change depends on whether you select multiple objects of the same type or of
different types. If the objects are of the same type, you can change the properties that are specific to that type.
For example, if you select multiple Button objects, then you can change the properties that are specific to
Button objects.

Object properties of multiple selected Button objects

For more information about the properties of a specific type of object, see the documentation for that object.

Screens and Graphics

Page 332

Note: You can only use this method to change the properties of Shapes and Active Objects. You
cannot use this method to change the properties of Data Objects, Animations, Library items, or
objects in a group.

In contrast, if you select multiple objects of different types, you can change the properties that are common to
all of the objects. This includes not only cosmetic properties like Border and Background, but also functional
properties like Disable, Security, Enable Translation, and E-Sign. (Some properties may not apply to all
objects. For example, Button objects do not have Border and Rectangle objects do not have Security.)

Object properties for multiple objects of different types

In both cases, the dialog box shows the current values of the properties of the last selected object.

It is only when you actually change the value of a property that the change is applied to the selected objects.
All other properties are left unchanged, regardless the values shown in the dialog box.

To change the properties of multiple screen objects:

1. In the screen editor, do one of the following:

• Press and hold either Shift or Ctrl on the keyboard, and then click each object that you want to change;
or

• Use the cursor to draw a selection box around all of the objects that you want to change.

The objects are selected.

2. Do one of the following:

• On the Draw tab of the ribbon, in the Editing group, click Properties;

• Right-click the selected objects, and then on the shortcut menu, click Properties; or

• Press Alt+Enter on the keyboard.

Note: You cannot double-click to open the Object Properties dialog box as you otherwise would,
because clicking like that clears the selection.

The Object Properties dialog box is displayed for the selected objects.

3. Change the property values that you want to change, and then close the dialog box.

The changes are applied to all of the selected objects.

Screens and Graphics

Page 333

Set the tab order of screen objects
Set the tab order of screen objects to make a screen easier to use from a physical keyboard/keypad rather
than from a mouse or touchscreen.

When you press Tab on the keyboard/keypad during project run time, the focus moves to the next object or
field on the screen. (This is also known as an object becoming active.) Focus makes it possible to interact with
that object or field using only the keyboard/keypad. For example:

• When the focus is on a button, you may press Return to click/tap that button;

• When the focus is on a text box, you may type a value into that box and then press Return to enter the
value; and

• When the focus is on list or menu, you may use the arrow keys to navigate the menu and then press Return
to make a selection.

If you repeatedly press Tab, then the focus will move through all of the objects in a screen according to the
screen's tab order. By default, the tab order is the same as the layer order, starting with the layer farthest
back (ID: 0) and proceeding to the front (ID: n). However, you can draw objects anywhere, rearrange them,
and adjust their layers as you develop the screen, so the default tab order of a finished screen may seem to
jump around at random rather than move from left to right and/or top to bottom as the user would expect.

You can set the tab order to make it move through the screen exactly how you want it to, independent of the
layer order.

To set the tab order:

1. Open a screen for editing.

2. Right-click on the screen background, and then click Tab Order on the shortcut menu.

Note: If Tab Order is not available on the shortcut menu, it may be because you actually right-
clicked on a screen object or you have a screen object selected. Make sure you have no screen
object selected and you are right-clicking on the screen background.

The screen enters Tab Order mode, with the order number of each screen object shown in an orange badge
at the top-right corner of the object.

Example of Tab Order mode

A group of objects has a single order number for the entire group (e.g., 4), and then the objects within the
group have their own sub-order (e.g., 4.1 and 4.2). This continues as deeply as necessary to accomodate

Screens and Graphics

Page 334

nested groups. If you do not see the sub-order numbers, right-click again in the screen and then click
Expand All Groups on the shortcut menu.

3. To quickly set the tab order for all objects, simply click on the objects in the order that you want.
The order numbers will update as you click on the objects.

4. To set the order number for a specific object:
a) Double-click on the object's badge.

The badge changes to a text input box.

b) Type the order number for that object. Be sure to included any necessary sub-orders.

c) Press Return to apply the change.

Note: You cannot change the sub-order of objects within a Linked Symbol, because it is only
a copy of a Master Symbol that is shared across the entire project. Instead, you must edit the
Master Symbol itself. For more information, see Save your own project symbols on page 277.

5. When you have finished setting the tab order and want to exit Tab Order mode, right-click on the screen
and then click Tab Order on the shortcut menu.

Bring to front / Send to back
Bring a screen object to the front or send it to the back of other overlapping objects, as part of arranging the
objects on the project screen.

Before you begin this task, you must have a project screen open for editing and the screen must have two or
more objects already on it.

Note: In this section, "object" refers to both individual screen objects and object groups, but it does
not refer to multiple objects that have been selected together but not grouped.

Screen objects are automatically assigned ID numbers, starting with ID 0, as you add the objects to a project
screen. (To check the ID number of an object, simply select it. The ID number is displayed on the status bar
at the bottom of the development application window.) The object with ID 0 is the furthest back, behind all
other objects on the screen, and each additional object is displayed in front of it.

In other words, objects with higher ID numbers are displayed in front of objects with lower ID numbers.

On a finished screen, you will probably have objects arranged in overlapping layers, and you may want
rearrange the objects so that they are displayed correctly. You can bring an object to the front, so that it is
displayed in front of all other objects, or you can send an object to the back, so that it is displayed behind all
other objects. You can also move an object forward or backward one layer at a time, if necessary.

Bringing the red circle to the front

Sending the blue rectangle to the back

When you rearrange objects, their ID numbers are automatically adjusted to reflect their new order. For
example, if you have four objects on a screen and you send the frontmost object (ID 3) to the back, then that
object becomes ID 0 and the ID numbers of the other three objects are increased accordingly.

Screens and Graphics

Page 335

Please note that windowed objects — that is, screen objects that include some kind of window displaying
other data — are handled differently than shapes (e.g., Line, Rectangle) and simple active objects (e.g.,
Button, Check Box). The windowed objects on a screen will always be in front; you cannot send them behind
the other types of objects. This is to ensure that the windowed objects will be rendered properly during project
run time.

Windowed objects include:

• Text Box object

• Combo Box object

• Alarm/Event Control object

• Trend Control object

• Grid object

• Most ActiveX and .Net Control objects

If you have more than one windowed object on the same screen, then you can arrange those objects relative
to each other. For example, you can send a Grid object behind a Trend Control object. Both windowed objects
will still be in front of the other types of objects, however, and in most cases, you should not have overlapping
windowed objects anyhow.

To bring a screen object to the front or send it to the back:

1. Select the screen object that you want to move forward or backward.
"Handles" are displayed at the object's corners to show that it is selected.

2. To bring the object all the way to the front (i.e., increase it to the highest ID number), do one of the
following:

• On the Format tab of the ribbon, in the Arrange group, click Bring to Front; or

• Right-click the object itself, and then click Bring to Front on the shortcut menu.

3. To bring the object one layer forward (i.e., to increase its ID number by 1), do one of the following:

• On the Format tab of the ribbon, in the Arrange group, click and hold Bring to Front until the shortcut menu
appears, and then click Bring Forward on the shortcut menu; or

• Right-click the object itself, and then click Bring Forward on the shortcut menu.

4. To send the object all the way to the back (i.e., decrease it to ID 0), do one of the following:

• On the Format tab of the ribbon, in the Arrange group, click Send to Back; or

• Right-click the object itself, and then click Send to Back on the shortcut menu.

5. To send the object one layer backward (i.e., to decrease its ID number by 1), do one of the following:

• On the Format tab of the ribbon, in the Arrange group, click and hold Send to Back until the shortcut menu
appears, and then click Send Backward on the shortcut menu; or

• Right-click the object itself, and then click Send Backward on the shortcut menu.

Group and ungroup screen objects
Use the Group command to group screen objects together.

A group of objects can be selected, moved, copied, and in some cases modified as if it is a single object, which
makes it easier to manage in a busy project screen. Moreover, a group can be grouped with other groups to
create increasingly complex groups.

To group two or more screen objects, select the objects that you want to group and then do one of the
following:

• On the Format tab of the ribbon, in the Arrange group, click Group; or

Screens and Graphics

Page 336

• Right-click the selected objects, and then click Group on the shortcut menu.

Grouping the selected objects

Tip: If the Format tab of the ribbon is not visible, or if the Group command is not available on the
shortcut menu, it is because you have not selected any objects in the screen editor.

To edit the object properties on a group, use the Object Properties dialog box just as you would on a single
object. A group has more than one set of object properties, however, like an object that has animations added
to it. As such, use the list in the top-right corner of the dialog box to select each set of object properties.

Selecting a set of object properties in a group

Once you have created a group — also called a symbol — you may choose to save a master of it in your
Symbols Library and then reuse it elsewhere in your project. Each copy will be linked to the master so that if
you change the master, all of the linked copies will also be changed. For more information, see Save your own
project symbols on page 277.

To ungroup a group of objects, select the group and then do one of the following:

Screens and Graphics

Page 337

• On the Format tab of the ribbon, in the Arrange group, click and hold Group to access the menu, and then
click Ungroup on the menu; or

• Right-click the selected group, and then click Ungroup on the shortcut menu.

Tip: A complex group can comprise several subgroups, so to ungroup it completely, first ungroup
the group and then ungroup the subgroups.

Align, Center and Distribute Tools
When you select a series of objects (two or more), you can align those objects based on the location of the last
object selected. As you select objects, solid handles display on the last object selected, and the handles on all
previously selected objects become empty (unfilled) boxes.

Note: In all of the figures provided, the rectangle represents the last object selected.

Use the following alignment tools to align a series of objects.

Click the Align left tool to align all selected objects to the left edge of the last object selected. For an example,
see the following figure:

Aligning Objects Left

Click the Align right tool to align all selected objects to the right edge of the last object selected. For an example,
see the following figure:

Aligning Objects Right

Click the Align top tool to align all selected objects to the top edge of the last objected selected. For an example,
see the following figure:

Aligning Object Tops

Screens and Graphics

Page 338

Click the Align bottom tool to align all selected objects to the bottom edge of the last object selected. For an
example, see the following figure:

Aligning Object Bottoms

Click the Center Vertically tool to align all selected objects to the vertical center of the last object selected. For an
example, see the following figure:

Centering Objects Vertically

Click the Center Horizontally tool to align all selected objects to the horizontal center of the last object selected.
For an example, see the following figure:

Centering Objects Horizontally

Click the Evenly distribute horizontally tool to put an equal amount of horizontal space between a series of objects
(two or more). For an example, see the following figure:

Distributing Objects Horizontally

Screens and Graphics

Page 339

Click the Evenly distribute vertically tool to put an equal amount of vertical space between a series of objects (two
or more). For an example, see the following figure:

Distributing Objects Vertically

Note: The distribution tools may move the last object selected (with solid handles) by no more than
a few pixels to equally space all of the objects.

Rotate Tool

Click the Rotate tool to rotate the selected object 90 degrees (a quarter turn) clockwise.

Rotating Objects

Note: You can use this tool only with a single selected object or grouped object. You cannot use this
tool with multiple objects selected.

FLIP VERTICALLY TOOL
Click the Flip Vertically tool to invert the selected object vertically. The object rotates around an imaginary line
through its vertical center until it is a mirror image of the original object. For an example, see the following
figure:

Flipping Objects Vertically

Note: You can use this tool only with a single selected object or grouped object. You cannot use this
tool with multiple objects selected.

Screens and Graphics

Page 340

FLIP HORIZONTALLY TOOL
Click the Flip Horizontally tool to invert the selected object horizontally. The object rotates around an imaginary
line through its horizontal center until it is a mirror image of the original object. For example, see the
following figure:

Flipping Objects Horizontally

Note: You can use this tool only with a single selected object or grouped object. You cannot use this
tool with multiple objects selected.

Resize Tools
Use the following ribbon options for resizing:

• Click the Resize width tool to set the width of all selected objects to the width of the last object selected, or to
resize one selected object so that its width equals its height.

• Click the Resize height tool to set the height of all selected objects to the height of the last object selected, or
to resize one selected object so that its height equals its width.

Tip: You can use Resize width and Resize height to turn an ellipse into a circle or a rectangle into a
square. Make sure you have only one object selected, however.

You also can use the mouse pointer and arrow keys to resize objects. When you select an object (or group of
objects) with the pointer, handles are displayed at each corner and at the midpoint of each side. You can use
these handles as follows:

• To enlarge an object, drag a handle in the direction you want to resize the object. Dragging a side handle
resizes the object in one direction only (height only or width only). Dragging a corner handle resizes the
entire object (height and width).

When you drag a corner handle, the object's proportions are constrained by default. To freely resize the
object, hold down the SHIFT key as you drag the handle.

• To resize an object one pixel at a time, click and hold a handle and then press the arrow keys. For the
corner handles and the left and right side handles, press the LEFT ARROW and RIGHT ARROW keys. For
the top and bottom handles, press the UP ARROW and DOWN ARROW keys.

• To resize an Open or Closed Polygon, draw a selection box around all of the polygon's points and group
them. You can then resize the polygon like a normal object.

Note: When you resize a Symbol, a Group, or any other collection of selected objects, all of the
objects in the collection are resized in the same direction and to the same degree.

Fill Color Tool
Click the Fill Color tool to specify a default fill color for the following objects:

• Closed Polygons

• Ellipses

• Rounded Rectangles

• Rectangles

Screens and Graphics

Page 341

Tip: To save development time, select several objects (of any type specified in the preceding list) and
use Fill Color to specify a default fill color for all of them at once.

Line Color Tool
Click the Line Color tool to specify a line color for selected objects or to set a default color for new objects,
including the following:

• Open Polygons

• Closed Polygons

• Lines

• Ellipses

• Rounded Rectangles

• Rectangles

When you click the Line Color tool, the Line Selection dialog displays. Use this dialog to specify line styles and
color for the selected objects.

Tip: To save development time, you can select several of the preceding objects and use the Line Color
tool to specify a line color for all of the objects at once.

Fonts Tool
Click the Fonts tool to specify the font and color for selected Text objects, or to specify a default font and color
for new Text objects.

Tip: To save development time, select several Text objects and use the Fonts tool to specify font and
color settings for all of the objects at once. (You cannot use this function for grouped Text objects
however.)

Screens and Graphics

Page 342

Data Input
Project screens are often viewed on HMI panels and mobile devices that have touchscreens instead of physical
keyboards. Therefore, the user must have some way to input data (i.e., numeric values and text) using only
the touchscreen. This section describes how to configure the data input options for your project.

The following screen objects, animations, and functions can accept data input from the user:

• Text object with Text Data Link animation (if the Input Enabled option is selected in the object properties)

• Text Box object (if the Input Enabled option is selected in the object properties)

• Combo Box object (if the Input Enabled option is selected in the object properties)

• Alarm/Event Control object (for adding comments and filtering the list)

• Trend Control object (for changing the time and period of the trend graph)

• Grid object (in any column that has input enabled)

• KeyPad function

• ShowInplaceInput function

Also, if you have enabled the security system for your project, the user will occasionally need to type their
user name and/or password — for example, to log on to the project, to e-sign an event, to change their
password, and so on.

In each of these situations, when data input is required — that is, when an object is tapped or a function is
called — you can choose to display a special, on-screen interface in front of the normal project screen. This
interface serves two purposes. First, it ensures that the user knows the project is waiting for their input; some
project screens are so full of objects that it can be difficult for the user to see a blinking cursor in a particular
text box. And second, it provides a touchscreen keyboard or keypad on which the user can actually type their
input.

The exact nature of the on-screen interface varies depending on the type of client that the user is using to
access your project.

Data input in screens on Thin Clients
To get data input from the user in screens viewed on Thin Clients, you can choose to display a Virtual
Keyboard (VK) dialog box that is similar to the On-Screen Keyboard app in Windows.

You can enable the Virtual Keyboard separately for each type of Thin Client:

• For Secure Viewer — which includes the local Viewer that runs as part of the project runtime — configure
your project's Viewer settings.

Keep in mind that when you enable the Virtual Keyboard for each type of Thin Client, it will be displayed
on all client stations that use the same type of Thin Client to access your project, regardless of whether
those stations actually have touchscreens instead of physical keyboards. Consider how this might affect the
usability of your project, especially if there will be a mix of client stations.

Keyboard types and options
When you enable the Virtual Keyboard, you can also select a default keyboard type and some additional
options. The following tables shows the possible combinations of keyboard types and options:

Keypad

This standard keypad is used to enter numeric values only.

Screens and Graphics

Page 343

Keypad with the Enable Min/Max fields option selected

This standard keypad is used to enter numeric values only. The minimum and maximum values
allowed for the associated tag — as set in the tag properties — are displayed at the bottom of the
keypad.

EnhKeypad

Screens and Graphics

Page 344

This enhanced keypad is used to enter alphanumeric characters on devices that have small
displays. The -> button in the bottom-right corner lets the user proceed through sets of keys
until they find the specific character they want.

AlphaNumeric

This full keyboard is used to enter alphanumeric characters.

Note: The screen shot above has been scaled to fit this documentation. The
actual size of the AlphaNumeric keyboard is comparable to the other keyboards
described in this topic.

AlphaNumeric with the Enable multi-line text input option selected

This full keyboard accepts multi-line text with line breaks (CR+LF). When Caps Lock is enabled,
the OK/Accept key in the bottom-right corner of the keyboard becomes a Return key instead.

Screens and Graphics

Page 345

Note: The screen shot above has been scaled to fit this documentation. The
actual size of the AlphaNumeric keyboard is comparable to the other keyboards
described in this topic.

Once you have enabled the Virtual Keyboard and selected a default keyboard type, it will be used for all data
input in your project unless you override it for a specific screen object or function call. For a screen object,
you can select another keyboard type in that object's properties. For a function call, you can use the optional
function parameters to determine how the . For more information, see the documentation for each screen
object and function.

Change the size, position, or language of the Virtual Keyboard
By default, the Virtual Keyboard is displayed near the screen object that invoked it, but you can edit the
following properties in your project file (<project name>.app) in order to force the keyboard to be displayed
in a fixed size and/or position:

[Keypad]
VKType=<0–3> // 0 (Default) = The Virtual Keyboard will work in default mode
 // 1 (Auto Size) = The Virtual Keyboard will automatically resize
 according to the screen size
 // 2 (Manual Size/Position) = The entries below will be used

//Properties for AlphaNumeric
AlphaNumeric-PosX= // The TOP coordinate (in pixels) where the Virtual Keyboard must
 be displayed
AlphaNumeric-PosY= // The LEFT coordinate (in pixels) where the Virtual Keyboard must
 be displayed
AlphaNumeric-Width= // Virtual Keyboard width (in pixels)
AlphaNumeric-Height= // Virtual Keyboard height (in pixels)

//Properties for EnhKeypad
EnKeyPad-PosX=
EnKeyPad-PosY=
EnKeyPad-Width=
EnKeyPad-Height=

//Properties for Keypad with Min/Max fields enabled
KeyPadMinMax-PosX=
KeyPadMinMax-PosY=
KeyPadMinMax-Width=
KeyPadMinMax-Height=

//Properties for Keypad with Min/Max fields not enabled
KeyPad-PosX=
KeyPad-PosY=

Screens and Graphics

Page 346

KeyPad-Width=
KeyPad-Height=

To change the language of the Virtual Keyboard during project run time, use the SetKeyboardLanguage
function.

Data input in screens on Mobile Access
To get data input from the user in screens viewed on Mobile Access, you can choose to display a customized
Data Input dialog box. Displaying this dialog box automatically invokes the built-in keyboard on mobile
devices.

Note:

At this time, the Data Input dialog box is displayed only for the following screen objects and
functions:

• Text object with Text Data Link animation (if the Input Enabled option is selected in the object
properties)

• Text Box object (if the Input Enabled option is selected in the object properties)

• KeyPad function

More objects and functions will be supported in the future, as the Mobile Access web interface is
improved.

The Data Input dialog box is automatically displayed for all Text objects with Text Data Link animations. It
cannot be disabled. There are several reasons for this, but the most important to you and your users is that it
makes it clear when the project is waiting for input from the user. Without the dialog box, it might be difficult
to see that a Text object has become active in the Mobile Access web interface, especially if a project screen
has been scaled to fit a smaller display.

In contrast, the Data Input dialog box is optional for Text Box objects. It is enabled by default, but you can
choose to disable it and then have the user type directly into each Text Box object like they would type into
a text box in a standard web form. To disable the dialog box for Text Box objects, clear the Always Use Data Input
Dialog option in the Mobile Access Configuration worksheet. For more information, see Configure the global
settings for all areas on page 803.

When the Data Input dialog box is invoked, it is displayed in the center of the web browser window. It is
actually part of the Mobile Access web interface, so the user cannot move or close it like they might move
or close a dialog box that is displayed by the underlying operating system. The user must acknowledge it —
either by entering a value or by clicking/tapping Cancel — and the project screen is paused (i.e., graphics and
tag values are not updated) until they do so.

The Data Input dialog box has the same appearance on all client stations, regardless of the station's web
browser or operating system, because it is part of the Mobile Access web interface. However, displaying the
dialog box on a mobile device also invokes that device's native virtual keyboard, and the appearance of that
keyboard can vary greatly from device to device, depending on the device's operating system and settings.

Examples of the Data Input dialog box
The appearance of the Data Input dialog box is determined by which options are selected in the object
properties for a specific screen object. The following table shows some examples:

Options Selected Description Appearance

• Input Enabled Single-line data input dialog box.

• Input Enabled Single-line data input dialog box with hint.

Screens and Graphics

Page 347

Options Selected Description Appearance
• Hint (or optStrHint parameter for Keypad

function)

• Input Enabled

• Hint (or optStrHint parameter for Keypad
function)

• Password (or optNumIsPassword parameter
for Keypad function)

Single-line data input dialog box with hint and
obfuscated password.

Note: Password obfuscation applies
to text values only. In other words,
the specified project tag must be
String type. If it is not, the option is
ignored.

• Input Enabled

• Multi-line (Text Box object only)

Multi-line data input dialog box. To include line
breaks in the entered value, press Return on the
keyboard (either physical or virtual). The value will
not actually be entered until you click/tap OK in the
dialog box.

Note: Multi-line applies to text
values only. In other words, the
specified project tag must be String
type. If it is not, the option is ignored.

• Input Enabled

• Minimum Value (or optNumMin parameter for
Keypad function)

• Maximum Value (or optNumMax parameter for
Keypad function)

Single-line data input dialog box with the minimum
and maximum values allowed. The user must enter
a value that is between the minimum and maximum
values, and if they do not, the entered value is
highlighted in red and the OK button is disabled.

Note: The minimum and maximum
values are valid for numeric values
only. In other words, the specified
project tag must be Integer or Real
type. If it is not, the options are
ignored.

Entering negative values
Some mobile device operating systems have limitations on how users can enter negative values.

For example, the default numeric keyboard on some Android devices does not allow the user to enter negative
values, so it might be necessary to install/use a different keyboard.

Keep these limitations in mind and communicate them to your users, if necessary

Screens and Graphics

Page 348

Multi-Touch
You can enable multi-touch gestures in project screens in order to provide your end users with additional
interface options.

On an older touchscreen device that supports only a single touch point, the user's touch or tap is directly
equivalent to a simple mouse click, so they cannot do anything that they could not otherwise do by
connecting a mouse to the device.

On a newer touchscreen device that supports multiple touch points, however, the user can use two or more
fingers at the same time in order to manipulate project screens and screen objects. The additional touch
points provide context that is not available in a single touch point; two fingers working together can perform
different gestures, and different gestures trigger different actions on-screen. For example:

• You can swipe two fingers together in the same direction to quickly pan through a window or scroll
through a list;

• You can stretch and pinch with two fingers to resize a screen object or zoom in/out on a project screen;
and

• You can "grip" a screen object with two fingers and then rotate it like a dial.

Moreover, if you are experienced with VBScript, you can use Touch Events to customize the behavior of multi-
touch beyond the standard gestures described in this section. These Touch Events are actually VBScript sub-
routines that receive the raw touch input data from the Windows API.

Requirements and considerations
Keep in mind that these system requirements do not apply to the computer that you are using to develop your
BLUE Open Studio 2020 project; if you can run the project development application and create a project, you
can configure the necessary settings to include multi-touch in your project. Instead, these requirements apply
to the project thin clients that your end users will use to access your project.

To support multi-touch gestures on a Windows computer, the client device must have:

• A touchscreen display that is capable of reading two or more touch points;

• A version of Windows that includes support for touch input; and

• One of the following project viewers or thin clients:

• Secure Viewer for Windows

For more information about installing each of these, see Installation Guide on page 34.

To confirm that a Windows computer can support multi-touch gestures, open the System or About control
panel and then look for Pen and Touch. It must say that touch input is available with at least two touch points.

Example of Pen and Touch in the System control panel

To support multi-touch gestures on a mobile device (i.e., smartphone or tablet) that accesses your project
through Mobile Access, the client device must have:

• A touchscreen display that is capable of reading two or more touch points;

• An operating system that includes support for touch input; and

• An HTML5-compatible web browser.

Screens and Graphics

Page 349

We cannot give further instructions for confirming that a specific device can support multi-touch gestures,
but generally speaking, all of the latest Android and iOS devices should be able to.

If you will be running your project in a mixed environment — that is, if your end users will be using different
types of client devices, including some that do not support touch input — then you should be careful about
how you include multi-touch gestures in your project. Always provide a second way to manipulate a screen or
object, using a keyboard, a mouse, or a single-finger tap.

Limitations on support for Multi-Touch
At this time, multi-touch gestures are fully supported only on Windows computers. Support for specific
gestures on other platforms is limited. The specific limitations are described in their respective sections, but
the following table provides a summary:

Feature Windows Mobile Access

Zoom and Pan gestures in project screens Supported Supported

Gestures with Alarm/Event Control object Supported Not supported

Gestures with Trend Control object Supported Not supported

Gestures with Grid object Supported Not supported

Gestures with Position animation Supported Supported

Gestures with Resize animation Supported Not supported

Gestures with Rotation animation Supported Not supported

Touch Events for up to 10 touch points Supported Not supported

About the Multi-Touch settings for project screens
The Multi-Touch settings determine how multi-touch gestures behave in each project screen.

You may configure default settings for your entire project, so that each new project screen has the same
settings as all other screens of the same type, and you may also customize the settings for specific screens
when the default settings would not be appropriate.

CONFIGURE THE DEFAULT MULTI-TOUCH SETTINGS FOR ALL PROJECT SCREENS
Configure the default Multi-Touch settings for all project screens in your project, so that the screens all
behave the same way during project run time.

The Multi-Touch settings come preconfigred for most common uses, so you need to configure them further
only if:

• You are not satisfied with the run-time behavior of these settings; and/or

• You want to use project tags to programmatically change the setting during project run time.

Keep in mind that these are the default settings for all screens in your project. If you only want to configure
the settings for a specific screen, see Configure the Multi-Touch settings for a specific project screen on page
352.

To configure the default Multi-Touch settings for all project screens:

1. On the Project tab of the ribbon, in the Settings group, click Viewer.
The Project Settings dialog is displayed with the Viewer tab selected.

Screens and Graphics

Page 350

2. Click Multi-Touch Settings.

The Multi-Touch Settings dialog is displayed.

Screens and Graphics

Page 351

3. In the Screen Style list, click the style for which you want to configure the default settings.
Every style has its own settings, so you might need to repeat the following steps for each style. For more
information about the different styles of project screens, see Screen Attributes on page 229.

4. In the Enable list, either click an option or type the name of a project tag (Boolean or Integer type).
This setting determines whether the Multi-Touch features in general (i.e., gestures, screen zoom/pan,
inertia, touch events) are enabled for the selected screen style. If you typed the name of a project tag, the
value of the tag will control the setting during project run time.

Option Description

0:No The Multi-Touch features are disabled for the
selected screen style.

1:Yes The Multi-Touch features are enabled for the
selected screen style.

5. In the Screen Zoom/Pan Gestures area, configure the zoom settings.
a) In the Mode box, either select an option or type the name of a project tag (Integer type).

This setting determines the zoom/pan mode for the selected screen style. If you type the name of a
project tag, the value of that tag will determine the mode during project run time.

Option Description

0:Disable Zoom/Pan is disabled for the selected screen style.

1:Inner Inner Zoom/Pan is enabled for the selected screen style. Zooming changes
the scale of the screen's contents, and panning moves the viewable area
within the screen's border. The screen itself does not change size or
position.

2:Outer Outer Zoom/Pan is enabled for the selected screen style. In practice, this
is more like Resize/Move: zooming changes the size of the entire screen
(automatically scaling the screen's contents to fit), and panning moves the
screen in relation to the other open screens.

Please note this mode is not directly supported on Mobile Access.
However, selecting the Enable Screen View Zoom option (in the Mobile
Access Configuration settings) produces essentially the same effect for
all screens. For more information, see Configure the global settings for all
areas on page 803.

Screens and Graphics

Page 352

For more information, see Using multi-touch gestures in project screens on page 355.

b) In the Max Inner Zoom (%) box, either select an option or type the name of a project tag (Integer type).
This will be the maximum magnification allowed for the viewable area inside the project screen, when
Mode is set to Inner. If you type the name of a project tag, the value of that tag will determine the zoom
during project run time. Values less than 100 (i.e., 100%) and greater than 1000 (i.e., 1000%) will be
ignored.

c) In the Min Outer Zoom (%) box, either select an option or type the name of a project tag (Integer type).
This will be the minimum size allowed for the project screen (as a percentage of size specified in the
screen attributes), when Mode is set to Outer. If you type the name of a project tag, the value of that tag
will determine the zoom during project run time. Values less than 20 (i.e., 20%) and greater than 100
(i.e., 100%) will be ignored.

d) In the Max Outer Zoom (%) box, either select an option or type the name of a project tag (Integer type).
This will be the maximum size allowed for the project screen (as a percentage of the size specified in
the screen attributes), when Mode is set to Outer. The default option is (Auto), which means that the
maximum screen size will be equal to the size of the display on which the project is viewed. If you type
the name of a project tag, the value of that tag will determine the zoom during project run time. Values
less than 100 (i.e., 100%) and greater than 1000 (i.e., 1000%) will be ignored.

6. In the Inertia Settings area, configure the deceleration values for the different types of movement.
All values are in pixels per second.
a) In the Deceleration box, either type a value or type the name of a project tag (Real type) that contains the

value.
This value controls the deceleration from "slide to pan" and "slide to move" gestures.

b) In the Angular Deceleration box, either type a value or type the name of a project tag (Real type) that
contains the value.
This value controls the deceleration from "turn to rotate" gestures.

c) In the Expansion Deceleration box, either type a value or type the name of a project tag (Real type) that
contains the value.
This value controls the deceleration from "pinch/stretch to resize" and "pinch/stretch to zoom"
gestures.

For a detailed explanation of how inertia is used in multi-touch gestures, see "Inertia Mechanics" at the
Microsoft Developer Network website: msdn.microsoft.com/library/dd562169.aspx

7. Repeat from Step 3 for each style of screen that you want to configure.

8. Click OK to save the settings and close the dialog.

CONFIGURE THE MULTI-TOUCH SETTINGS FOR A SPECIFIC PROJECT SCREEN
Configure the Multi-Touch settings for a specific project screen when the project's default settings would not
be appropriate.

Before you begin this task, you should have the selected Screen worksheet open for editing.

Keep in mind that the project's default settings are there to ensure that the project screens all behave the
same way during project run time. Consistency makes your project easier to use. (For more information, see
Configure the default Multi-Touch settings for all project screens on page 349.) As such, you should change
the settings for a specific project screen only when it is absolutely necessary to the purpose of that screen.

To configure the Multi-Touch settings for a specific project screen:

1. Do one of the following:

• On the Draw tab of the ribbon, in the Screen group, click Attributes; or

• Right-click anywhere in the Screen worksheet, and then click Screen Attributes on the shortcut menu.

http://msdn.microsoft.com/library/dd562169.aspx

Screens and Graphics

Page 353

The Screen Attributes dialog is displayed.

Screen Attributes dialog
2. Click Multi-Touch Settings.

The Multi-Touch Settings dialog is displayed, with most of the settings disabled because the screen is using
the project's default settings.

Screens and Graphics

Page 354

3. Clear the Use Project Default option.

The remaining settings are enabled for configuring.

4. In the Enable list, either click an option or type the name of a project tag (Boolean or Integer type).
This setting determines whether the Multi-Touch features in general (i.e., gestures, screen zoom/pan,
inertia, touch events) are enabled for the selected screen style. If you typed the name of a project tag, the
value of the tag will control the setting during project run time.

Option Description

0:No The Multi-Touch features are disabled for the
selected screen style.

1:Yes The Multi-Touch features are enabled for the
selected screen style.

5. In the Screen Zoom/Pan Gestures area, configure the zoom settings.
a) In the Mode box, either select an option or type the name of a project tag (Integer type).

This setting determines the zoom/pan mode for the selected screen style. If you type the name of a
project tag, the value of that tag will determine the mode during project run time.

Option Description

0:Disable Zoom/Pan is disabled for the selected screen style.

1:Inner Inner Zoom/Pan is enabled for the selected screen style. Zooming changes
the scale of the screen's contents, and panning moves the viewable area
within the screen's border. The screen itself does not change size or
position.

2:Outer Outer Zoom/Pan is enabled for the selected screen style. In practice, this
is more like Resize/Move: zooming changes the size of the entire screen
(automatically scaling the screen's contents to fit), and panning moves the
screen in relation to the other open screens.

Please note this mode is not directly supported on Mobile Access.
However, selecting the Enable Screen View Zoom option (in the Mobile
Access Configuration settings) produces essentially the same effect for
all screens. For more information, see Configure the global settings for all
areas on page 803.

For more information, see Using multi-touch gestures in project screens on page 355.

Screens and Graphics

Page 355

b) In the Max Inner Zoom (%) box, either select an option or type the name of a project tag (Integer type).
This will be the maximum magnification allowed for the viewable area inside the project screen, when
Mode is set to Inner. If you type the name of a project tag, the value of that tag will determine the zoom
during project run time. Values less than 100 (i.e., 100%) and greater than 1000 (i.e., 1000%) will be
ignored.

c) In the Min Outer Zoom (%) box, either select an option or type the name of a project tag (Integer type).
This will be the minimum size allowed for the project screen (as a percentage of size specified in the
screen attributes), when Mode is set to Outer. If you type the name of a project tag, the value of that tag
will determine the zoom during project run time. Values less than 20 (i.e., 20%) and greater than 100
(i.e., 100%) will be ignored.

d) In the Max Outer Zoom (%) box, either select an option or type the name of a project tag (Integer type).
This will be the maximum size allowed for the project screen (as a percentage of the size specified in
the screen attributes), when Mode is set to Outer. The default option is (Auto), which means that the
maximum screen size will be equal to the size of the display on which the project is viewed. If you type
the name of a project tag, the value of that tag will determine the zoom during project run time. Values
less than 100 (i.e., 100%) and greater than 1000 (i.e., 1000%) will be ignored.

6. In the Inertia Settings area, configure the deceleration values for the different types of movement.
All values are in pixels per second.
a) In the Deceleration box, either type a value or type the name of a project tag (Real type) that contains the

value.
This value controls the deceleration from "slide to pan" and "slide to move" gestures.

b) In the Angular Deceleration box, either type a value or type the name of a project tag (Real type) that
contains the value.
This value controls the deceleration from "turn to rotate" gestures.

c) In the Expansion Deceleration box, either type a value or type the name of a project tag (Real type) that
contains the value.
This value controls the deceleration from "pinch/stretch to resize" and "pinch/stretch to zoom"
gestures.

For a detailed explanation of how inertia is used in multi-touch gestures, see "Inertia Mechanics" at the
Microsoft Developer Network website: msdn.microsoft.com/library/dd562169.aspx

7. Click OK to save the settings and close the dialog.

About the different types of multi-touch gestures
This section describes the different types of multi-touch gestures and how they can be used in your project.

The gestures themselves — swipe, slide, pinch, stretch, and so on — are a standard part of many operating
systems today, so you are probably already familiar with using them on a tablet or smartphone. And even if
you are not, illustrations of the gestures are provided in this section.

What this section describes is which gestures can be used in which areas of your project. For example, the
same "pinch" and "stretch" gestures can be used to resize a project screen, to resize a screen object with the
Resize animation, or even to navigate through a trend graph.

Please note that for the purposes of this documentation, "multi-touch gesture" almost always means a gesture
using two fingers. There are some exceptions, such as using a one-finger swipe to select cells in a Grid object,
but those exceptions will be descibed in detail in their respective sections.

USING MULTI-TOUCH GESTURES IN PROJECT SCREENS
You can use multi-touch gestures to either zoom-and-pan or resize-and-move a project screen during project
run time, depending on how the screen is configured.

Specifically, it depends on whether Zoom/Pan Mode for a given screen is set to Inner or Outer. For more
information, see About the Multi-Touch settings for project screens on page 349.

Note: For these gestures to work, at least two fingers must be touching the same project screen. If
only one finger is inside the screen and the others are outside it, the touch input will be ignored.

http://msdn.microsoft.com/library/dd562169.aspx

Screens and Graphics

Page 356

Inner Zoom/Pan
When Inner Zoom/Pan is enabled for a project screen, you can use two-finger gestures to zoom and pan the
contents of that screen. Simply touch two fingers to any part of the screen, and then either pinch and stretch
to zoom or slide to pan. Zooming changes the scale of the screen's contents, and panning moves the viewable
area within the screen's border. The screen itself does not change size or position in relation to the other open
screens.

You can use Inner Zoom/Pan to get a closer look at part of a project screen. For example, if a large external
image such as a photo or illustration is displayed in a small inset screen, you can use Inner Zoom/Pan
to manipulate the image within that inset. Also, if the Auto Screen Scaling option is selected in your project
settings and some screens are downscaled so much that they become illegible, you can use Inner Zoom/Pan
to improve the view of those screens.

These gestures are not supported on Mobile Access.

Outer Zoom/Pan
When Outer Zoom/Pan is enabled for a project screen, you can use two-finger gestures to resize and move
that screen within the viewer window. Simply touch your fingers to any part of the screen, and then either

Screens and Graphics

Page 357

pinch and stretch to resize or slide to move. Zooming changes the size of the entire screen (automatically
scaling the screen's contents to fit), and panning moves the screen in relation to the other open screens.

You can use Outer Zoom/Pan to change the layout of all open screens, just as you would arrange windows on
the Windows desktop.

These gestures are not supported on Mobile Access.

Note: As an alternative to Outer Zoom/Pan, you can enable the Resizing border for a project screen.
That will also make the screen resizable and movable within the viewer window, although it adds
a Windows-style border (including title bar) around the screen. For more information, see Screen
Attributes on page 229.

USING MULTI-TOUCH GESTURES IN DATA OBJECTS
You can use multi-touch gestures to manipulate Alarm/Event, Trend, and Grid objects during project run
time.

Note: For these gestures to work, all fingers must be touching the same screen object. If only one
finger is inside the object and the others are outside it, then the touch input will be ignored.

Screens and Graphics

Page 358

Alarm/Event Control object
When Multi-Touch is enabled for a project screen, then any Alarm/Event Control object in that screen can be
manipulated with multi-touch gestures. Specifically, you can swipe with one finger to select items in the list of
alarms/events, and you can slide with one or two fingers to scroll through the list.

These gestures are not supported on Mobile Access.

Trend Control object
When Multi-Touch is enabled for a project screen, then any Trend Control object in that screen can be
manipulated with multi-touch gestures. Specifically, you can either pinch/stretch to zoom or slide to pan the
viewable area of the trend.

Screens and Graphics

Page 359

Zooming changes the period and scale of the trend (i.e., the X and Y axes) just as if you clicked any of the
Zoom tools on the Trend Control object's toolbar. Consequently, if you click Cancel Zoom on the toolbar, then any
zooming done by your gestures will be canceled and the period and scale will be reset.

Panning works only when the Trend Control object is configured to show historical data.

These gestures are not supported on Mobile Access.

Grid object
When Multi-Touch is enabled for a project screen, then any Grid object in that screen can be manipulated
with multi-touch gestures. Specifically, you can swipe with one finger to select cells in the grid, and you can
slide with two fingers to scroll/pan the viewable area of the grid.

Screens and Graphics

Page 360

These gestures are not supported on Mobile Access.

USING MULTI-TOUCH GESTURES IN OBJECT ANIMATIONS
You can use multi-touch gestures to trigger Position, Resize, and Rotation animations during project run
time.

Note: For these gestures to work, all fingers must be touching the same screen object. If only one
finger is inside the object and the others are outside it, then the touch input will be ignored.

Position animation
When Multi-Touch is enabled for a project screen, any object with a Position animation in that screen can
be manipulated with multi-touch gestures. Specifically, you can slide with one or more fingers to move the
object.

This is essentially the same as when Multi-Touch is disabled, of course, because the purpose of the Position
animation is to make the object movable. In this case, the primary benefit of enabling Multi-Touch is inertia,
which makes the movement of the object more natural.

This gesture is supported on Mobile Access.

Screens and Graphics

Page 361

Resize animation
When Multi-Touch is enabled for a project screen, any object with a Resize animation in that screen can be
manipulated with multi-touch gestures. Specifically, you can pinch and stretch with two fingers to resize the
object.

This gesture is not supported on Mobile Access.

Rotation animation
When Multi-Touch is enabled for a project screen, you can use a two-finger gesture to "grip" and turn any
object with a Rotation animation in that screen. Simply touch your fingers to the object and turn it.

This gesture is not supported on Mobile Access.

About Touch Events
Touch Events are predefined VBScript sub-routines that you can add to screen objects and project screens to
create custom touch behaviors.

These Touch Events are based directly on the Windows Touch API — specifically, on the
_IManipulationEvents interface and the ManipulationStarted, ManipulationDelta, and
ManipulationCompleted methods. For more information about these methods, go to: msdn.microsoft.com/
library/dd562197

The Windows Touch API passes the raw input from up to 10 touch points to the project runtime, and then the
project runtime interprets that input and passes it to your project as Touch Events.

In practice, Touch Events are essentially the same as any other VBScript interface in your project. You select
a screen object or project screen, add the appropriate Touch Event depending on when you want the script
to be executed (e.g., when the user starts or stops touching), and then develop the script to do whatever you
want. The only real differences between Touch Events and the other VBScript interfaces are: Touch Events
can only be executed as sub-routines, which means that they do not return values; and they can only receive
the selected touch input data as arguments. If you can work within these guidelines, however, you can use
Touch Events to develop custom touch behaviors far beyond the standard gestures.

Touch Events are not supported on Mobile Access.

http://msdn.microsoft.com/library/dd562197
http://msdn.microsoft.com/library/dd562197

Screens and Graphics

Page 362

ADD A TOUCH EVENT TO A SCREEN OBJECT
Add a Touch Event to a screen object in order to process touch input on that object.

This task is a supplement to other topics that discuss how to use multi-touch gestures in your project. You
must have the Multi-Touch feature enabled, either for your entire project or for a specific project screen, and
you must have either Inner or Outer mode selected. For more information, see About the Multi-Touch settings
for project screens on page 349.

Also, this task assumes you have already created the screen object to which you want to add the Touch
Event, and it begins from that point.

Touch Events are added to a screen object through the Command animation.

To add a Touch Event to a screen object:

1. Click the screen object to which you want to add the Touch Event.
The screen object is selected.

2. On the Draw tab of the ribbon, in the Animations group, click Command.
The Command animation is added to the selected screen object.

3. Double-click the screen object.
The Object Properties dialog is displayed.

4. If the Command animation properties are not already displayed, then in the properties list (in the top-right
corner of the dialog), click Command.

5. If the VBScript event tabs are not already displayed, then in the Type list, click VBScript.

VBScript event tabs in the Command animation properties
6. In the VBScript event tabs, click the tab for the Touch Event that you want to add.

You might need to use the arrow buttons to scroll left and right through the tabs.

Screens and Graphics

Page 363

Tab Description

On Touch Process the raw data from the touch input. The
sub-routine is continuously executed while the user
touches the screen object.

On Touch Start Perform an action once, when the user starts
touching the screen object.

On Touch Delta Perform an action each time the user moves their
fingers on the screen object.

On Touch Completed Perform an action once, when the user stops
touching the screen object.

7. Click in the text box below, and then type your VBScript code.

At this point, you can develop the Touch Event just as you would develop any other VBScript sub-routine in
your project. For more information, see Overview of VBScript on page 1233.

The OnTouch sub-routines each have predefined parameters that are described in subsequent topics in this
section. Do not edit those parameters; they receive data from the touch input and then make it available for
use in your code.

ADD A TOUCH EVENT TO A PROJECT SCREEN
Add a Touch Event to a project screen in order to process touch input on the screen in general, rather than on
a specific object in the screen.

This task is a supplement to other topics that discuss how to use multi-touch gestures in your project. You
must have the Multi-Touch feature enabled, either for your entire project or for a specific project screen, and
you must have either Inner or Outer mode selected. For more information, see About the Multi-Touch settings
for project screens on page 349.

Also, this task assumes you already have the Screen worksheet open for editing, and it begins from that point.

Touch Events are added to a project screen through the Screen Script worksheet.

To add a Touch Event to a project screen:

1. Do one of the following:

• On the Draw tab of the ribbon, in the Screen group, click Script; or

• Right-click anywhere in the screen worksheet, and then click Screen Script on the shortcut menu.

The screen's associated Screen Script worksheet is opened for editing.

2. Right-click anywhere in the worksheet, and then point to Add Touch Event on the shortcut menu.
A sub-menu of the available Touch Events is displayed.

3. On the sub-menu, click the Touch Event that you want to add.
Option Description

Sub Screen_OnTouch Process the raw data from the touch input. The
sub-routine is continuously executed while the user
touches the project screen.

Sub Screen_OnTouchStart Perform an action once, when the user starts
touching the project screen.

Sub Screen_OnTouchDelta Perform an action each time the user moves their
fingers on the project screen.

Sub Screen_OnTouchCompleted Perform an action once, when the user stops
touching the project screen.

Sub Screen_OnSwipeRight Perform an action once, when the user swipes
horizontally from left to right on the project screen.

Sub Screen_OnSwipeLeft Perform an action once, when the user swipes
horizontally from right to left on the project screen.

Screens and Graphics

Page 364

Option Description

Sub Screen_OnSwipeDown Perform an action once, when the user swipes
vertically from top to bottom on the project screen.

Sub Screen_OnSwipeUp Perform an action once, when the user swipes
vertically from bottom to top on the project screen.

Tip: "Swipe" means to quickly move your finger across the screen in a specific direction (up,
down, left, right).

The Touch Event is inserted as a VBScript sub-routine in the worksheet.

4. Click in the sub-routine that you just inserted, and then type your VBScript code.

At this point, you can develop the Touch Event just as you would develop any other VBScript sub-routine in
your project. For more information, see Overview of VBScript on page 1233.

The OnTouch sub-routines each have predefined parameters that are described in subsequent topics in this
section. Do not edit those parameters; they receive data from the touch input and then make it available for
use in your code.

The OnSwipe sub-routines do not have any parameters. They are executed as-is when the corresponding
events occur.

ONTOUCH
Use the sub-routine OnTouch in VBScript to process the raw touch point data that are provided while the user
touches the project screen or screen object.

Syntax

Sub OnTouch(arX,arY,arIDs,arFlags,arMask,arTime,arXContacts,arYContacts)
 …
End Sub

arX
An array of integer values, from arX(0) to arX(n), providing the x-coordinates (in pixels from
the left of the screen) of the currently active touch points.

arY
An array of integer values, from arY(0) to arY(n), providing the y-coordinates (in pixels from
the top of the screen) of the currently active touch points.

arIDs
An array of integer values, from arIDs(0) to arIDs(n), providing the unique identifiers of the
currently active touch points. Each discrete touch point receives its own identifier, even if it is
the same finger touching, then lifting, then touching again. These identifiers are incremented
from when the device is turned on, and they include all touches captured by the operating
system, not just those captured by your project during run time.

arFlags
An array of integer values, from arFlags(0) to arFlags(n), where each value is a set of bit
flags that specify various aspects of touch point press, release, and motion.

For more information about the bit flags and their possible values, go to "TOUCHINPUT
structure" on the Microsoft Developer Network website at: msdn.microsoft.com/library/
dd317334.aspx

arMask
An array of integer values, from arMask(0) to arMask(n), where each value is a set of bit flags
that specify which of the optional parameters (i.e., arTime, arXContacts, arYContacts) contain

http://msdn.microsoft.com/library/dd317334.aspx
http://msdn.microsoft.com/library/dd317334.aspx

Screens and Graphics

Page 365

valid information. The availability of valid information is device-specific; for example, for the
parameter arTime, some devices provide only the time elapsed since the device was turned on,
rather than the actual system time.

For more information about the bit flags and their possible values, go to "TOUCHINPUT
structure" on the Microsoft Developer Network website at: msdn.microsoft.com/library/
dd317334.aspx

arTime
An array of integer values, from arTime(0) to arTime(n), providing the timestamps (in
milliseconds) of the currently active touch points.

arXContacts
An array of integer values, from arXContacts(0) to arXContacts(n), providing the widths (in
hundredths of a pixel) of the contact areas of the currently active touch points. The contact area
of a touch point is the area actually touched by the user's fingertip.

arYContacts
An array of integer values, from arYContacts(0) to arYContacts(n), providing the heights (in
hundredths of a pixel) of the contact areas of the currently active touch points. The contact area
of a touch point is the area actually touched by the user's fingertip.

Returned value
This is a sub-routine (as opposed to a function) in VBScript, so it does not return any value.

Notes
This sub-routine is based on the WM_TOUCH system message and the associated TOUCHINPUT data
structure in the Windows API. For more information, go to "Windows Touch Input" on the Microsoft Developer
Network website at: msdn.microsoft.com/library/dd317321.aspx

The sub-routine is executed continuously while the user is touching the project screen or screen object. There
are no delta or cumulative values, so there is nothing to reset when the manipulation is completed. These are
the raw data provided by the Windows API.

You are not required to use the received parameters in your code. They simply make the raw touch input data
available to you, for you to use (or not) as you deem necessary.

In all of the parameters described above, the array elements represent the individual touch points on the
screen, in the order that the user actually touches the screen. The first array element (position 0) is the first
touch point, the second array element (position 1) is the second touch point, and so on up to the maximum
number of touch points supported by the device.

Please note that the arrays are dynamically resized to fit to the current number of active touch points.
In other words, the array elements do not exist until the user's fingers actually touch the screen and the
corresponding touch points are added, and the array elements are subsequently eliminated when the touch
points are removed. This can make it difficult to reference the array elements in your project unless you
include the following code (or something similar) in the sub-routine:

n = UBound(arX)

For i = 0 to n
 $TouchX[i] = arX(i)
 $TouchY[i] = arY(i)
 $TouchID[i] = arIDs(i)
 $TouchTime[i] = arTime(i)
Next

The function UBound measures the current size of arX (although any of the parameters may be used), and
then the For loop copies the values to appropriately named tag arrays (e.g., TouchX, TouchY) in your project
tags database. Once this is done, you can reference the tag arrays rather than the parameters.

http://msdn.microsoft.com/library/dd317334.aspx
http://msdn.microsoft.com/library/dd317334.aspx
http://msdn.microsoft.com/library/dd317341.aspx
http://msdn.microsoft.com/library/dd317334.aspx
http://msdn.microsoft.com/library/dd317334.aspx
http://msdn.microsoft.com/library/dd317321.aspx

Screens and Graphics

Page 366

Unlike the parameters, the tag arrays are not dynamically resized, so garbage values may be left in the higher
array positions when touch points are removed. To clean out those garbage values, you might also include the
following code (or something similar) in the sub-routine:

s = $TouchX->Size

For i = (n+1) to s
 $TouchX[i] = 0
 $TouchY[i] = 0
 $TouchID[i] = 0
 $TouchTime[i] = 0
Next

By this time, you may have noticed that there is no graceful way to handle the elimination of array elements
from anything other than the highest array position. If the user touches the screen with two fingers and then
lifts their second finger, the second element of the array (position 1) is eliminated without issues. But if the
user touches the screen with two fingers and then lifts their first finger, the first element of the array (position
0) is eliminated and the second element (position 1) becomes the first element (position 0).

You can use the unique identifiers provided by arIDs, rather than the array positions that will change as
the arrays are dynamically resized, to handle specific touch points over time. The exact method for doing
that, however, depends on how you develop the rest of your project and therefore is beyond the scope of this
documentation.

ONTOUCHSTART
Use the sub-routine OnTouchStart in VBScript to perform an action when the user starts touching the
project screen or screen object.

Syntax

Sub OnTouchStart(x,y)
 …
End Sub

x
The starting x-coordinate (in pixels from the left of the screen) of the first touch point.

y
The starting y-coordinate (in pixels from the top of the screen) of the first touch point.

Returned value
This is a sub-routine (as opposed to a function) in VBScript, so it does not return any value.

Notes
This sub-routine is based on the method ManipulationStarted in the Windows API. For more information,
go to "Windows Touch Input" on the Microsoft Developer Network website at: msdn.microsoft.com/library/
dd317321.aspx

The sub-routine is executed once when the manipulation is started — that is, when the first touch point is
added to the project screen or screen object. Additional touch points after the first do not trigger this sub-
routine.

You are not required to use the received parameters in your code. They simply make the raw touch input data
available to you, for you to use (or not) as you deem necessary.

http://msdn.microsoft.com/library/dd317347.aspx
http://msdn.microsoft.com/library/dd317321.aspx
http://msdn.microsoft.com/library/dd317321.aspx

Screens and Graphics

Page 367

ONTOUCHDELTA
Use the sub-routine OnTouchDelta in VBScript to perform an action each time the user manipulates the
project screen or screen object.

Syntax

Sub
 OnTouchDelta(x,y,deltaX,deltaY,deltaScale,deltaExpansion,deltaRotation,cumulativeX,cumulativeY,cumulativeScale,cumulativeExpansion,cumulativeRotation,inertiaEnabled)
 …
End Sub

x
The current x-coordinate (in pixels from the left of the screen) of the first touch point.

y
The current y-coordinate (in pixels from the top of the screen) of the first touch point.

deltaX
The change (in pixels) between the previous x-coordinate and the current x-coordinate of the
first touch point.

deltaY
The change (in pixels) between the previous y-coordinate and the current y-coordinate of the
first touch point.

deltaScale
The change (as a percentage) in the distance between the first and second touch points.

deltaExpansion
The change (in pixels) in the distance between the first and second touch points.

deltaRotation
The change in the angle of rotation (in radians) indicated by the first and second touch points.

cumulativeX
The total change (in pixels) between the starting x-coordinate and the current x-coordinate of
the first touch point.

cumulativeY
The total change (in pixels) between the starting y-coordinate and the current y-coordinate of the
first touch point.

cumulativeScale
The total change (as a percentage) in the distance between the first and second touch points,
from the start of the manipulation.

cumulativeExpansion
The total change (in pixels) in the distance between the first and second touch points, from the
start of the manipulation.

cumulativeRotation
The total change in the angle of rotation (in radians) indicated by the first and second touch
points, from the start of the manipulation.

inertiaEnabled
A boolean value indicating whether inertia is enabled for the project screen or screen object.

Screens and Graphics

Page 368

Returned value
This is a sub-routine (as opposed to a function) in VBScript, so it does not return any value.

Notes
This sub-routine is based on the method ManipulationDelta in the Windows API. For more information, go
to "Windows Touch Input" on the Microsoft Developer Network website at: msdn.microsoft.com/library/
dd317321.aspx

The sub-routine is executed once for each discrete movement in the current manipulation. Changes in
position require one touch point. Changes in size and/or rotation require two touch points.

You are not required to use the received parameters in your code. They simply make the raw touch input data
available to you, for you to use (or not) as you deem necessary.

ONTOUCHCOMPLETED
Use the sub-routine OnTouchCompleted in VBScript to perform an action when the user stops touching the
project screen or screen object.

Syntax

Sub
 OnTouchCompleted(x,y,cumulativeX,cumulativeY,cumulativeScale,cumulativeExpansion,cumulativeRotation)
 …
End Sub

x
The ending x-coordinate (in pixels from the left of the screen) of the first touch point.

y
The ending y-coordinate (in pixels from the top of the screen) of the first touch point.

cumulativeX
The total change (in pixels) between the starting x-coordinate and the ending x-coordinate of the
first touch point.

cumulativeY
The total change (in pixels) between the starting y-coordinate and the ending y-coordinate of the
first touch point.

cumulativeScale
The total change (as a percentage) in the distance between the first and second touch points,
from the start to the end of the manipulation.

cumulativeExpansion
The total change (in pixels) in the distance between the first and second touch points, from the
start to the end of the manipulation.

cumulativeRotation
The total change in the angle of rotation (in radians) indicated by the first and second touch
points, from the start to the end of the manipulation.

Returned value
This is a sub-routine (as opposed to a function) in VBScript, so it does not return any value.

Notes
This sub-routine is based on the method ManipulationCompleted in the Windows API. For more information,
go to "Windows Touch Input" on the Microsoft Developer Network website at: msdn.microsoft.com/library/
dd317321.aspx

http://msdn.microsoft.com/library/dd317346.aspx
http://msdn.microsoft.com/library/dd317321.aspx
http://msdn.microsoft.com/library/dd317321.aspx
http://msdn.microsoft.com/library/dd317345.aspx
http://msdn.microsoft.com/library/dd317321.aspx
http://msdn.microsoft.com/library/dd317321.aspx

Screens and Graphics

Page 369

The sub-routine is executed once when the manipulation is completed — that is, when the last touch point is
removed from the project screen or screen object.

You are not required to use the received parameters in your code. They simply make the raw touch input data
available to you, for you to use (or not) as you deem necessary.

Screens and Graphics

Page 370

Import a Studio XML Screen
Use the Import Wizard to import a Studio XML Screen, which is an external text file created with BLUE Open
Studio 2020's custom XML schema.

Before you begin this task, you must have a properly formatted Studio XML Screen file that you can import.

A Studio XML Screen file contains the same information as a regular screen file. It is simply formatted as
human-readable XML instead of binary data, which makes it more flexible and portable.

XML files can be manually created in any text editor, of course, but our intent is to enable you to quickly and
programmatically create large numbers of screens in Microsoft Visual Studio using our custom XML schema
and its associated C# API. This often requires additional training and support, so the schema and API are not
included in the standard installation of BLUE Open Studio 2020. Instead, the schema, API, documentation,
sample files, and support contract can be purchased as a separate toolkit. For more information, please
contact your software vendor.

Once you have created your screens, you can use the Import Wizard to batch import them into your BOS
project.

Tip: You can also use the function ImportXML to import Studio XML Screen files during run time.

To import one or more Studio XML Screens:

1. On the Home tab of the ribbon, in the Tools group, click Import Wizard.
The Import Wizard dialog box is displayed.

2. In the Source Type list, click Studio XML Screen, and then click Next.

Screens and Graphics

Page 371

The next step of the import wizard is displayed.

Selecting the screens to import
3. Under Options, choose whether imported screens should automatically replace existing screens in your

project.
Screens are considered to be duplicates if they have the same file name. For example, Objects.xml and
Objects.scc would be duplicates.

• If you do not want the imported screens to replace existing screens in your project, select Do not import
duplicate screens. A warning will be displayed for each duplicate that you try to import.

• If you want the imported screens to automatically replace existing screens in your project, select Replace
duplicates with imported screens.

4. Click Browse.
A standard Open dialog box is displayed.

5. Use the file browser to locate and select the Studio XML Screen files that you want to import, and then
click Open.
You can Ctrl-click and Shift-click to select more than one file.
The selected file(s) are displayed in the Screen(s) box.

6. Click Next.

Screens and Graphics

Page 372

The selected screens are processed, and then the next step of the import wizard is displayed showing the
project tags that are included in the selected screens.

Selecting the project tags to import
7. In the list of project tags, select the tags that you want to import with the screens:

• For each tag in the list, select or clear the check box to the left.

• To select all of the check boxes, click Check. To clear all of the check boxes, click Uncheck.

• To filter the list of tags, click Filter and then configure filter strings for one or more columns. You can
use wildcard characters (* and ?) in the filter strings.

8. Click Finish.

The screens and included tags are imported into your project. Also, the screens are automatically
published for Thin Clients and Mobile Access — i.e., the corresponding *.HTML, *.SCC, and *.SSMA files
are automatically generated and saved in your project's Web folder, so the imported screens should be
immediately available for you to select.

Alarms, Events, and Trends

Page 373

Alarms, Events, and Trends
The Alarm and Trend tasks are used to log historical data, and the Alarm/Event and Trend Control objects
are used to display historical data on a project screen.

These two features are normally used together, but they do not need to be; project data may be logged without
being displayed during runtime, and the data displayed during runtime may be taken from outside the
project.

Alarms, Events, and Trends

Page 374

Alarm worksheet
The Alarms folder enables you to configure alarm groups and tags related to each group. The Alarm worksheet
defines the alarm messages generated by the project. The primary purpose of an alarm is to inform the
operator of any problems or abnormal condition during the process so he can take corrective action(s).

The Alarm worksheet is executed by the Background Task module (see Runtime Tasks on page 134). It
handles the status of all alarms and save the alarm messages to the history, if configured to do so, but it
does not display the alarm messages to the operator; the Alarm/Event Control screen object, available on the
Graphics tab of the ribbon, must be created and configured in a screen in order to display alarms.

To create a new Alarm worksheet, do one of the following:

• On the Insert tab of the ribbon, in the Task Worksheets group, click Alarm;

• Right-click the Alarms folder in the Project Explorer, and then click Insert on the shortcut menu; or

• Click New on the File menu, click the File tab, and then select Alarm Worksheet.
To edit an existing Alarm worksheet, double-click it in the Project Explorer.

Alarm worksheet

You can create multiple Alarm groups (worksheets) and each group can be configured with independent
settings, such as message colors, history log enabled/disabled, and so forth.

Each Alarm worksheet is composed of two areas:

• Header: Settings applied to all tags and alarms configured in the same alarm group. These settings allow
you to configure the formatting of the message and the actions that must be triggered based on alarm
events (e.g., print alarms, send alarms by email, and so forth). For more information, see Header Settings.

• Body: Configure alarm messages and associate them to conditions linked to tags. For more information,
see Body Settings.

Note:

Alarms, Events, and Trends

Page 375

The Alarm task has been modified to avoid automatically acknowledging alarms by another alarm.
For example, the Hi (Lo) alarm should not be automatically acknowledged when the HiHi (LoLo)
alarm becomes active. To enable the previous behavior, set the following key in your project (.APP)
file:

[Alarm]
UseLegacyPriorityAck=1

Alarm Worksheet Header
The following table describes the Header settings on an Alarm worksheet:

Field Remarks Syntax

Description Description of the alarm group. It is displayed on the workspace. This field is used for
documentation only.

Text (up to 80 chars)

Group Name Name of the Alarm group. During runtime, the operator can filter alarms based on the
Group Name by the built-in Filters dialog of the Alarm/Event control object.

Text (up to 32 chars)

Email Settings Launches the Email Settings dialog, where you can configure the settings for emails
sent automatically based on alarm conditions.

Button

Advanced Launches the Advanced Settings dialog, where you can configure the settings for
emails sent automatically based on alarm conditions.

Button

On Line > Display in Alarm Controls When checked, the alarms are available to be displayed on the Alarm/Event Control
object.

Checkbox

On Line > Ack Required When checked, the alarms require acknowledgment. In this case, the alarms
are displayed on the Alarm/Event Control object (Online mode) until they are
acknowledged AND normalized.

Checkbox

On Line > Beep When checked, the computer keeps beeping while there are alarm(s) to be
acknowledged, currently active.

Checkbox

On Line > Send to printer This option has been deprecated because it invokes the DOS print command (prn),
which has been deprecated in Windows 7 and later. Now, when this option is selected,
alarm messages are simply passed to an external batch file as soon as the alarms
are created. You can edit the batch file to process the alarm messages as you see
fit. It is located in the SCADA program folder at: Pro-face\BLUE Open
Studio 2020\Bin\unprint.bat

Checkbox

History > Save to Disk When checked, the alarm messages are stored in the history log when they become
active.

Checkbox

History > Generate Ack Messages When checked, the alarm messages are stored in the history log when they are
acknowledged.

Checkbox

History > Generate Norm Messages When checked, the alarm messages are stored in the history log when they become
normalized.

Checkbox

Colors in Alarm Controls > Enable When checked, the alarms configured in this group will be displayed with the colors
assigned to each alarm state (Activation, Acknowledgement or Normalization),
according to the colors configured in the Alarm Group.

Color

Colors in Alarm Controls > FG and BG You can configure the text foreground color (FG) and background color (BG) for
the alarms displayed on the Alarms/Events Control object. Each alarm state can be
displayed with a different color schema:

• Activation: Alarm active and not acknowledged

• Acknowledgement: Alarm active and acknowledged

• Normalization: Alarm no longer active and not acknowledged.

Color

Alarms, Events, and Trends

Page 376

CONFIGURE THE EMAIL SETTINGS FOR AN ALARM WORKSHEET
Your project can automatically send emails to specified addresses when alarm events occur. Configure the
email settings for an Alarm worksheet in order to customize the format and frequency of those emails.

Before you begin this task, make sure you have configured an outgoing email server and account for your
project. There are two ways to do this:

• Configure the default email settings for your project; or

• Configure a script that calls the CnfEmail function at least once. This is typically done in the Startup
Script, so that the email settings are configured before anything in the project tries to send email, but it
can be done again in other scripts in order to change the settings during project run time.

You do not need to have an email client application (e.g., Microsoft Outlook) installed on the computer or
device that hosts the project runtime, because the project runtime can connect directly to the email server. In
other words, the project runtime itself acts as an email client.

Note: Keep in mind that the email settings for your project, as described above, are separate from
the email settings for an Alarm worksheet, as described below.

This task assumes you have created an Alarm worksheet and that worksheet is open in the Screen/
Worksheet Editor. The procedure below begins at that point.

To configure the email settings for an Alarm worksheet:

1. In the header of the Alarm worksheet, click Email Settings.
The Email Settings dialog box is displayed. Email is disabled by default for each Alarm worksheet, so most
of the settings in this dialog box are not available until email is enabled.

2. Select the Enable send automatic email option.

All of the settings in the dialog box become available.

Alarms, Events, and Trends

Page 377

3. In the To box, type the primary email address to which you want send alarm messages. If you want to send
to more than one address, insert semicolons (;) to separate the addresses.

You can also send "carbon copies" and "blind carbon copies" to other email addresses. Type those
addresses in the Cc and Bcc boxes, respectively. The same email is sent to all of the addresses at the same
time.

The To, Cc, and Bcc settings each have a limit of 1024 characters. These settings accept string expressions,
but when the expressions are evaluated, the resulting values are subject to the same character limit.

4. In the Subject area, in the Custom box, type the text that you want to use as the subject of each email.
Alternatively, you can select Use alarm message in order to use the actual alarm message as the subject of the
email, but this is not recommended because the alarm message is included in the body of the email.

The procedure above describes the minimum that you need to do in order to send email for the Alarm
worksheet. When the alarms events that are configured in the worksheet occur during project run time,
corresponding alarm messages are added to an internal memory buffer, and then those messages are
periodically sent as email until the buffer is empty.

If you want to customize the format and frequency of those emails, review the additional settings described
below:

Send 1 message per email

Select this option in order to send one alarm message (event) per email, each time sending is
triggered (see Send Trigger below). Otherwise, all of the messages currently stored in the buffer are
sent as a batch in a single email.

This option is automatically selected and cannot be cleared when the Use alarm message option is
selected for the subject of the email.

Remove failed messages from the buffer
Select this option in order to remove alarm messages (events) from the buffer after the
project runtime tries to send them, even if there is an error (failure) and the email is not sent
successfully. Otherwise, the messages are kept in the buffer until the email is sent successfully,
or until the buffer is full (see Max buffer size below).

Send email when alarm is

Select which alarm events should generate messages:

Option Description

active When an alarm becomes active.

ack When an alarm is acknowledged.

norm When an alarm is normalized.

Each type of event can be selected individually, but that selection applies to all alarms
configured in the same worksheet. If you want to generate messages when some alarms but not
others become active, separate those alarms into different worksheets.

Current Status
You can type the name of a project tag in this box. During project run time, this tag is updated
with a numeric value that indicates the status of the latest email:

Value Description

-2 Incorrect version of the INDMail.DLL library.

-1 The INDMail.DLL library is corrupted.

0 SendEmailExt function is not being executed.

1 Sending email(s).

2 Last email was sent successfully.

3 There was an error sending the last email.

Alarms, Events, and Trends

Page 378

Current Error
You can type the name of a project tag (String type) in this box. During project run time, this tag
is updated with the error message describing the result of the last email that the project tried to
send. The error message is a string, so the project tag must be String type in order to hold the
message.

Message Format

This interface allows you to customize the format of the alarm messages that are included in the
body of the email:

• Day, Month, Year, Hour, Minute, Second, MS: The options checked will compose the timestamp for
each alarm message. MS stands for milliseconds.

• Items: The options checked will compose the actual message for each alarm. Use the Move Up
and Move Down buttons to change the order of the items.

• Separator: The separator that is inserted between items in the alarm message. This is
important if you have set up another program to receive the emails and then automatically
parse the messages.

The Sample box displays an example of the message format as you customize it.

Send Trigger
When the value of this tag/expression changes, the alarm messages (events) currently stored in
the buffer are sent according to these email settings. The default trigger is the Minute tag, which
is a system tag that updates each minute of the clock on the computer or device that hosts the
project runtime, and it prevents the messages from overloading the email server or "spamming"
the email recipients. The default trigger might not be frequent enough to keep up with alarms
as they occur, however, especially if you have selected the Send 1 message per email option; if there
are 10 messages stored in the buffer and only one message is sent per minute, then it will take
10 minutes to send all of the messages. Therefore, you may configure a different tag/expression
that can accomodate the actual behavior of your project.

Max buffer size
This is the maximum number of alarm messages (events) that can be stored in the buffer. The
buffer stores messages on a "First In, First Out" (FIFO) basis, so if new messages are added after
the maximum has been reached, then the older messages are removed without being sent. The
default maximum is 1000 messages, but you can increase it if the computer or device that hosts
the project runtime has sufficient memory.

Buffer size
You can type the name of a project tag in this box. During project run time, this tag is updated
with the number of alarm messages (events) currently stored in the buffer.

Clear Buffer
You can type a tag/expression in this box. When its value changes during project run time, all
alarm messages (events) currently stored in the buffer are removed and will never be sent.

Disable send
You can type a tag/expression in this box. While its value is TRUE (i.e., not 0) during project
run time, the sending of email is disabled for this Alarm worksheet. Alarm messages (events)
currently stored in the buffer are not sent, regardless of Send Trigger, and new messages are not
added to the buffer.

When you are done, click OK to save the settings and close the dialog box.

Alarms, Events, and Trends

Page 379

ADVANCED SETTINGS FOR ALARM WORKSHEET

Alarms Worksheet — Advanced

The following table describes the Advanced settings on an Alarm worksheet:

Field Remarks Syntax

Disable When the value of the tag configured in this is TRUE, all alarms configured in this
group are temporarily disabled. This option is useful to disable alarms under special
conditions (e.g., during maintenance).

Tag

Total Alarms The tag configured in this field, if any, is updated with the number of alarms from this
group, which are currently active.

Tag

Total Unack The tag configured in this field, if any, is updated with the number of alarms from this
group, which are currently active AND have not been acknowledged yet.

Tag

Remote Ack Trigger When the tag configured in this field change of value, all active alarms from this group
are acknowledged. This option can be used to acknowledge alarms regardless of any
action from the operator.

Tag

Dead Band Time > Activation Each alarm must remain continuously in its alarm condition for the period of time
specified in this field before becoming active. This option is useful to avoid generating
alarms on intermittent conditions (e.g., noise). If this field is left in blank, the alarm
becomes active as soon as its condition is true.

Tag or Number

Dead Band Time > Normalization Each alarm must remain continuously out from its alarm condition for the period of
time specified in this field before becoming normalized. This option is useful to avoid
normalizing alarms on intermittent conditions (e.g., noise). If this field is left in blank,
the alarm become normalized as soon as its condition is no longer true.

Tag or Number

Dead Band Time > Time Stamp/Value Each alarm maintains a time stamp of the last significant activity, along with the value
of the tag at that time. You can select the type of activity that updates the time stamp:

• Activation/Norm (default): The time when the dead band ended — that is, when
the alarm becomes activated or normalized.

• Last Tag Change: The time when the value of the tag last changed during the
dead band.

• Start Condition: The time when the dead band started.

Combo

Alarm Worksheet Body
The following table describes the Body settings on an Alarm worksheet:

Alarms, Events, and Trends

Page 380

Field Description Syntax

Tag Name Name of the tag associated with the alarm. Tag

Type Type of the alarm:

• HiHi: Activates the alarm if the tag value is greater than or equal to the specified limit.

• Hi: Activates the alarm if the tag value is greater than or equal to the specified limit. (For
Boolean tags, if the value is 1.)

• Lo: Activates the alarm if the tag value is less than or equal to the specified limit. (For Boolean
tags, if the value is 0.)

• LoLo: Activates the alarm if the tag value is less than or equal to the specified limit.

• Rate: Activates the alarm if the tag value changes more than the specified limit in a given
period. (For Boolean tags, if the value changes at all.)

• DevP: Activates the alarm if the tag value is greater than or equal to the tag's deviation set
point plus the limit.

• DevM: Activates the alarm if the tag value is less than or equal to the tag's deviation set point
minus the limit.

If you select Rate, you must also specify the check frequency (e.g., once per minute) in the tag
properties. If you select DevP or DevM, you must also specify the deviation set point in the tag
properties. For more information, see Properties of Integer and Real tags on page 169.

Combo-box

Limit Limit associated with each alarm.

The limits can be modified dynamically during run time, using the tag fields HiHiLimit,
HiLimit, LoLimit, LoLoLimit, RateLimit, DevPLimit, and
DevMLimit. For example: TagLevel->HiLimit

Number

Message Message associated to the alarm. The message can be displayed on the Alarm/Event Control
object and/or stored in the Alarm History and/or sent by Email, depending on the settings
configured in the Header of the Alarm group.

Text and/or {Tag} (up to 256 chars)

Priority Priority number associated to the alarm. When displaying alarms on the Alarm/Event Control object
, the operator can filter and/or sort the alarms by priority.

Number (from 0 to 255)

Selection Alias associated to the alarm (e.g., AreaA, AreaB, etc). When displaying alarms on the Alarm/Event
Control object, the operator can filter and/or sort the alarms by their selection value.

Text (up to 7 characters)

Tip: If you need more
characters or a different data
type, use a custom field instead.

Custom fields Additional custom fields that will be saved in history. The number of custom fields (up to 10) can be
set in Project Settings: Options.

Any

When you save an Alarm worksheet, only the header settings are saved as part of the worksheet file. All of
the alarm configurations that make up the body of the worksheet are actually saved as tag properties. The
next time you open that worksheet, the tags database is scanned for all alarm configurations that belong to
the worksheet (i.e., the alarm group), and then that information is used to recreate the body of the worksheet.
This happens quickly and automatically every time you open the worksheet, so it might seem like you are
opening a static file but that is not the case.

You may think of the Alarm worksheet as an editor for those tag properties that are related to alarms. If you
use either the Tag Properties dialog box or the TagsDBSetAlarm function to edit the same properties, the
updated alarm configurations will be included in the body of the worksheet the next time you open it. In fact,
you can set alarms on tags before you create any Alarm worksheets at all; when you do create the worksheets,
they will be automatically populated with alarm configurations according to their group numbers.

You cannot configure more than one alarm of the same type on a given tag, and each alarm configuration
cannot belong to more than one group/worksheet.

If you make extensive changes to the tags database after you save an Alarm worksheet, it might not be
possible to recreate the body of the worksheet the next time you open it. For example, if you copy all of the
tags from the tags database (in Datasheet View) to a spreadsheet program, use that program to sort the tags,
and then copy the tags back to the tags database, most or all of the tag properties will be reset in the process.

Alarms, Events, and Trends

Page 381

SORT OR FILTER THE ROWS IN A WORKSHEET
Sort or filter the rows in a worksheet in order to make it easier to browse the rows or find a specific item.

Before you begin this task, you must have already inserted a worksheet and opened it for editing. You should
also be familiar with how sorting and filtering is done in general-purpose spreadsheet applications.

Please note that you can sort or filter rows only in the following types of worksheets:

• The Project Tags, Shared Tags, and System Tags datasheets;

• The Translation Table worksheet;

• All task worksheets except Report and Script, which do not have rows; and

• All communication worksheets.

None of the other worksheets have rows to sort or filter.

Alarms, Events, and Trends

Page 382

Sorting is done alphanumerically, by the selected column, in either ascending (0–9, A–Z) or descending (Z–A,
9–0) order.

Alarm worksheet rows in their original order

Alarm worksheet rows sorted by Type

Alarms, Events, and Trends

Page 383

Filtering is done according to whatever string you enter in the selected column. Only the rows that match the
string will be displayed.

Alarm worksheet rows filtered where Tag Name is "Tag3"

Alarm worksheet rows filtered where Type is "Lo"

Tip: You can still delete rows while they are sorted or filtered.

To sort or filter rows:

1. To sort the rows, click the header of the column by which you want to sort. Click once to sort in ascending
order, and then click again to sort in descending order.
The current order (i.e., the direction of the sort) is indicated by the arrow to the right of the column name.

Note: You cannot sort by multiple columns.

2. To undo the sorting and restore the rows to their original order, click the header of the first (numbered)
column.

3. To filter the rows, type the string that you want to match in the top (zero) row of the worksheet and then
press either Tab or Return.

You may include * and ? as wildcard characters in your string:

• * matches any number of characters, including none. For example, Tag* would match Tag, Tag3,
Tag34567, TagA, and Tag_TEMP.

• ? matches exactly one character. For example, Tag? matches Tag3 and TagA, while Tag????? matches
Tag34567 and Tag_TEMP.

Also, you may filter by multiple columns. Only the rows that match the filter strings in all columns will be
displayed.

4. To undo the filtering and restore the rows to their original order, delete the string that you typed and then
press either Tab or Return.

Alarms, Events, and Trends

Page 384

Please keep in mind that sorting or filtering the rows of a worksheet only helps you to edit that worksheet. It
does not change how the worksheet is executed during run time. The rows will be executed in their original
numbered order (i.e., the leftmost column) unless you actually move or delete a row.

Saving your alarm history / event log to an external database
By default, your project's alarm history and event log are saved to proprietary-format text files in your
project's Alarms folder. However, you can change your project settings to save them to an external SQL
database instead.

Note: If your project was created with an earlier version of this software and then upgraded to the
latest version, you should consider starting over with new database tables.

In the latest version of this software, new database tables are automatically indexed by event time in
order to improve run-time performance. Existing database tables cannot be indexed in this way, so
if you can afford to discard that data, you should update your database configuration to create new
tables.

If you do this, you must also manually edit your project file (<project name>.APP) to correct the
following setting:

[Alarm]
AddEventTimeColumn=1

This setting exists in order to maintain backward compatibility, and it defaults to 0 for projects that
were upgraded.

1. On the Project tab of the ribbon, in the Settings group, click Options.

Alarms, Events, and Trends

Page 385

The Project Settings dialog is displayed.

Project Settings: Options
2. In the Alarm History and Events area, in the History Life Time box, type the number of days of history that you

want to save.
As the history exceeds the specified number of days, it will be automatically deleted in a first-in, first-
out manner. If no number is specified — that is, if it is left blank or set to 0 — then history will never be
deleted. There is no limit to how much history you can save, but the more you save, the more disk space it
will take.

3. From the History Format list, select Database.

4. To configure a single, default database to be used for both the alarm history and the event log (as well as
all other runtime tasks), in the Default Database area, click Configure.
The Default Database Configuration dialog is displayed. Use the dialog to configure the database
connection. For more information, see Configuring a default database for all task history.

Alarms, Events, and Trends

Page 386

5. To configure a separate database for either your event log or your alarm history, click Event Database or Alarm
Database, respectively.
In either case, a Database Configuration dialog is displayed. Use the dialog to configure the database
connection. For more information, see Database Configuration.

6. Click OK.

Format of the alarm history
This topic describes the location and format of the alarm history that is saved during project run time, if one
or more alarm worksheets have been configured.

By default, a project's alarm and event history is saved in Proprietary format. You can configure your project
settings to save the alarm and event history in Database format. For more information, see Saving your alarm
history / event log to an external database on page 103.

When your project is configured to save the history in Proprietary format (i.e., when History Format is Proprietary),
the alarm history is saved as sequentially numbered .alh files in your project folder. A new .alh file is created
for each calendar day, and that file is named according to the following syntax:

ALYYMMDD.ALH

For example, the alarm history for 17 August 2018 is saved in your project folder at: <project name>\Alarm
\AL180817.ALH

All of the alarm history for a given day is saved in the same file, regardless of whether the project is stopped
and then restarted during that day. (In other words, restarting the project does not create an additional file for
that day.) Each change in the alarm state — active, normalized, acknowledged — is appended to the file as a
new line, and each line comprises pipe-separated values that describe the alarm. (The pipe character is also
known as the vertical bar.) You can open the file with a text editor or spreadsheet program.

Tip: To change the location where your project saves its alarm and event history files, use the
SetAppAlarmPath function.

When your project is configured to save the history in Database format (i.e., when History Format is Database),
the alarm history is saved in a table in the external database. All of the alarm history for the entire project is
saved in a single table named ALARMHISTORY by default, although you can change that name in your project
settings. Each change in the alarm state — active, normalized, acknowledged — is inserted into the table as a
new row.

The fields/columns of the alarm history are described below:

Proprietary Database

Field Number Column Name Data Type

Description

P1 — Integer (int) Internal version number of the alarm history format.

This value is saved only when History Format is Proprietary. You can use this
information to differentiate between .alh files that were created by previous and
current versions of this software.

Note: If the user deletes (hides) the alarm, the internal version
number is replaced with xxx. For more information, see
"Al_Deleted" below.

P2

P3

Al_Start_Time Timestamp (datetime) Timestamp that indicates when the alarm started (i.e., when the alarm became
active).

When History Format is Proprietary, the start time is saved in the local time
zone (i.e., in the time zone that is selected in the computer's settings) and in the
following format:

DD/MM/YYYY|HH:MM:SS.mmm

Alarms, Events, and Trends

Page 387

Proprietary Database

Field Number Column Name Data Type

Description

The date information is saved in field P2, and the time information is saved in
field P3. Please note the pipe character that separates the two fields.

When History Format is Database, the start time is saved in Coordinated
Universal Time (UTC) by default and in the database's native datetime format.
If the database does not support milliseconds in its datetime format, the
milliseconds portion is saved in Al_Start_Time_ms.

— Al_Start_Time_ms Integer (int) The milliseconds portion of Al_Start_Time.

This value is saved only when History Format is Database and the database
does not support milliseconds in its datetime format.

P4 Al_Tag String (varchar) Name of the project tag on which the alarm occurred.

P5 Al_Message String (varchar) Alarm message.

P6 Al_Ack Boolean (int) A numeric flag that indicates whether the alarm was acknowledged, where:

• 0 = Alarm was acknowledged or does not require acknowledgment.

• 1 = Alarm was not acknowledged.

P7 Al_Active Boolean (int) A numeric flag that indicates whether the alarm is still active, where:

• 0 = Alarm is not active.

• 1 = Alarm is active.

This information is useful for that indicates when an alarm has been
acknowledged but not normalized.

P8 Al_Tag_Value Real (float) Value of the project tag when the alarm state changed.

P9 Al_Group Integer (int) Group or worksheet number of the alarm.

P10 Al_Priority Integer (int) Priority number of the alarm.

P11 Al_Selection String (varchar) Alias for the alarm, by which the user can select and filter alarms in the Alarm/
Event Control object.

P12 Al_Type Integer (int) Type of alarm, where:

• 1 = HiHi

• 2 = Hi

• 4 = Lo

• 8 = LoLo

• 16 = Rate

• 32 = DevP (a.k.a. Deviation+)

• 64 = DevM (a.k.a. Deviation-)

P13 Al_Ack_Req Boolean (int) A numeric flag that indicates whether the alarm requires acknowledgment,
where:

• 0 = Alarm does not require acknowledgement.

• 1 = Alarm requires acknowledgement.

P14

P15

Al_Norm_Time Timestamp (datetime) Timestamp that indicates when the alarm was normalized.

When History Format is Proprietary, the norm time is saved in the local time
zone (i.e., in the time zone that is selected in the computer's settings) and in the
following format:

DD/MM/YYYY|HH:MM:SS.mmm

Alarms, Events, and Trends

Page 388

Proprietary Database

Field Number Column Name Data Type

Description

The date information is saved in field P14, and the time information is saved in
field P15. Please note the pipe character that separates the two fields.

When History Format is Database, the norm time is saved in Coordinated
Universal Time (UTC) by default and in the database's native datetime format.
If the database does not support milliseconds in its datetime format, the
milliseconds portion is saved in Al_Norm_Time_ms.

— Al_Norm_Time_ms Integer (int) The milliseconds portion of Al_Norm_Time.

This value is saved only when History Format is Database and the database
does not support milliseconds in its datetime format.

P16

P17

Al_Ack_Time Timestamp (datetime) Timestamp that indicates when the alarm was acknowledged by the user.

When History Format is Proprietary, the ack time is saved in the local time
zone (i.e., in the time zone that is selected in the computer's settings) and in the
following format:

DD/MM/YYYY|HH:MM:SS.mmm

The date information is saved in field P16, and the time information is saved in
field P17. Please note the pipe character that separates the two fields.

When History Format is Database, the ack time is saved in Coordinated
Universal Time (UTC) by default and in the database's native datetime format.
If the database does not support milliseconds in its datetime format, the
milliseconds portion is saved in Al_Ack_Time_ms.

— Al_Ack_Time_ms Integer (int) The milliseconds portion of Al_Norm_Time.

This value is saved only when History Format is Database and the database
does not support milliseconds in its datetime format.

P18 Al_User String (varchar) User who was logged on to the station when and where the alarm occurred.
(It is possible for different users to be logged on each time the alarm state
changes.)

P19 Al_User_Comment String (varchar) Comment submitted by the user when they acknowledged the alarm.

P20 Al_User_Full String (varchar) Full name of the user who was logged on to the station when and where the
alarm occurred. (It is possible for different users to be logged on each time the
alarm state changes.)

P21 Al_Station String (varchar) Name of the computer where the alarm occurred.

P22 Al_Prev_Tag_Value Real (float) Value of the project tag immediately before the alarm state changed.

see description Al_Deleted Boolean (int) A numeric flag that indicates whether the user "deleted" the on-screen alarm
message. The alarm is not actually deleted from the alarm history, it is only
hidden in the Alarm/Event Control object. The alarm history is updated to reflect
this.

When History Format is Proprietary, the line in the history file is updated so
that the internal version number in field P1 is replaced with xxx.

When History Format is Database, the row in the database table is updated so
that Al_Deleted has one of the following values:

• 0 = Alarm message was not deleted (hidden) by the user.

• 1 = Alarm message was deleted (hidden) by the user.

see description Al_Event_Time Timestamp (datetime) Timestamp that indicates when the most recent alarm state change occurred.

When History Format is Proprietary, this information is not actually saved in
the alarm history. Instead, it is automatically derived from the other three alarm
times (Start, Norm, Ack).

When History Format is Database, the event time is saved in Coordinated
Universal Time (UTC) by default and in the database's native datetime format.

Alarms, Events, and Trends

Page 389

Proprietary Database

Field Number Column Name Data Type

Description

If the database does not support milliseconds in its datetime format, the
milliseconds portion is saved in Al_Event_Time_ms.

— Al_Event_Time_ms Integer (int) The milliseconds portion of Al_Event_Time.

This value is saved only when History Format is Database and the database
does not support milliseconds in its datetime format.

P23 Bias Integer (int) The difference (in minutes) between the local time zone and UTC, when the
alarm is logged and the alarm times (Start, Norm, Ack) are saved.

When History Format is Proprietary, this information is always saved because
the alarm times are always saved in the local time zone.

When History Format is Database, this value is saved only if the Local Time +
Time Difference option (in your project settings) is also selected.

P24 — Integer (int) A numeric flag that indicates which project runtime task generated the alarm,
where:

• 0 = Background Task

• 1 = OPC UA Client Runtime

• 2 = Driver Runtime

This value is saved only when History Format is Proprietary.

P25 — String (varchar) A multi-part code that describes the specific data element on which the alarm
occurred. The format of the code varies depending on which project runtime
task generated the alarm.

When the alarm is generated by the OPC UA Client Runtime task, the value
saved in this field contains an additional pipe character that separates parts of
the code. The value actually ends with a Start of Text control character (^B or
#). Keep this in mind when you try to read or parse the history file, because the
additional pipe character effectively splits one field into two and increases the
total number of fields in each line of the file.

This value is saved only when History Format is Proprietary.

P26 — String (varchar) The substate of the alarm (e.g., Unacknowledged, Acknowledged, Unconfirmed,
Confirmed).

This value is saved only when History Format is Proprietary and the alarm is
generated by the OPC UA Client Runtime task.

P27 — n/a This field is an artifact created by how the custom fields are appended to the
line in the Proprietary format. It contains no value.

P28 … P37 Al_Custom1 …
Al_Custom10

String (varchar) Up to 10 custom fields. For more information about custom fields, see Options
tab on page 102.

— Last_Update Timestamp (datetime) Timestamp that indicates when the database entry was created or last updated.

This value is saved only when History Format is Database. The update time
is saved in Coordinated Universal Time (UTC) and in the database's native
datetime format. If the database does not support milliseconds in its datetime
format, the milliseconds portion is saved in Last_Update_ms.

This information is used to synchronize databases when the project is
configured to use the Secondary Database in addition to the Primary Database.

— Last_Update_ms Integer (int) The milliseconds portion of Last_Update.

This value is saved only when History Format is Database and the database
does not support milliseconds in its datetime format.

Tip:

Alarms, Events, and Trends

Page 390

To customize the column names in the database table, manually edit your project file (<project
name>.APP) as follows:

[Alarm]
<default column name>=<custom column name>

For example:

[Alarm]
Al_Message=Alarm_Message
Al_Ack=Acknowledgment

Alarms, Events, and Trends

Page 391

Events
This section describes BOS's logging and event-retrieval features. An event can be any tag change, generating
reports or recipes, opening and closing screens, logging onto and logging off the security system, and so forth.
BOS saves all of these events in a log file, which can then be retrieved by the Alarm/Event Control object.

Enable the event logger
Event logging is disabled by default, to conserve runtime resources. To enable the saving of events to the
history file, use the Event Logger in the Project Explorer.

1. In the Project Explorer, on the Global tab, double-click Event Logger.
The Event Settings dialog is displayed.

Event Settings dialog
2. Select Enable event logger.
3. In the Disable box, type the name of a project tag. Whenever the value of the tag is TRUE (i.e., non-zero)

during runtime, event logging will be suspended.

4. In the Settings area, select which types of events that you want to log to the history file.
Option Description

Security System Events generated by your project's security system,
including:

• Log On / Log Off users

• User created/removed by calling the
CreateUser or RemoveUser functions

• User blocked/unblocked by calling the
BlockUser or UnblockUser functions

Alarms, Events, and Trends

Page 392

Option Description
• User blocked by the security system after several

attempts to enter an invalid password

• Password expired

• Password modified

• Invalid Log On attempt

Display Open Screen and Close Screen events.

Recipe Recipes loaded, saved, initialized, or deleted.

Report Reports saved to disk or sent to printer.

Custom Messages Events generated by calling the SendEvent
function.

System Warning Various runtime warnings and errors, including:

• Errors that occur when sending alarms by email

• Tag was blocked/unblocked

• Division by zero

• Connection/Disconnection of the remote
security system

5. To log changes in specific project tags, select Tags, and then in the table, specify the tags.
Column Description

Tag Name The name of the project tag that you want to log to
the history file.

Dead Band A value to filter changes against, so that only
changes greater than this value are logged.

For example, if you specify a Dead Band value of 5
for a tag value of 50 and the tag value changes to
52, then the system will not register this variation
in the event log, because the change is less than
5. However, if the tag value change is equal to or
greater than 5, then the system will log the new
value to the history file.

Message A string (message) related to this tag change. You
can specify tags in messages using the {tagname}
syntax.

The Tags option is useful for logging events that are not important enough to be alarm conditions (for
example, Motor On, Motor Off, and so on).

6. Click OK.

By default, the event log is saved as a series of text files in your project's Alarms folder. For more information,
see Format of the event history on page 395.

Alternatively, you can save the event log to an external SQL database. For more information, see Saving your
alarm history / event log to an external database on page 103.

Alarms, Events, and Trends

Page 393

Saving your alarm history / event log to an external database
By default, your project's alarm history and event log are saved to proprietary-format text files in your
project's Alarms folder. However, you can change your project settings to save them to an external SQL
database instead.

Note: If your project was created with an earlier version of this software and then upgraded to the
latest version, you should consider starting over with new database tables.

In the latest version of this software, new database tables are automatically indexed by event time in
order to improve run-time performance. Existing database tables cannot be indexed in this way, so
if you can afford to discard that data, you should update your database configuration to create new
tables.

If you do this, you must also manually edit your project file (<project name>.APP) to correct the
following setting:

[Alarm]
AddEventTimeColumn=1

This setting exists in order to maintain backward compatibility, and it defaults to 0 for projects that
were upgraded.

1. On the Project tab of the ribbon, in the Settings group, click Options.

Alarms, Events, and Trends

Page 394

The Project Settings dialog is displayed.

Project Settings: Options
2. In the Alarm History and Events area, in the History Life Time box, type the number of days of history that you

want to save.
As the history exceeds the specified number of days, it will be automatically deleted in a first-in, first-
out manner. If no number is specified — that is, if it is left blank or set to 0 — then history will never be
deleted. There is no limit to how much history you can save, but the more you save, the more disk space it
will take.

3. From the History Format list, select Database.

4. To configure a single, default database to be used for both the alarm history and the event log (as well as
all other runtime tasks), in the Default Database area, click Configure.
The Default Database Configuration dialog is displayed. Use the dialog to configure the database
connection. For more information, see Configuring a default database for all task history.

Alarms, Events, and Trends

Page 395

5. To configure a separate database for either your event log or your alarm history, click Event Database or Alarm
Database, respectively.
In either case, a Database Configuration dialog is displayed. Use the dialog to configure the database
connection. For more information, see Database Configuration.

6. Click OK.

Format of the event history
This topic describes the location and format of the event history that is saved during project run time, if the
event logger is enabled.

By default, a project's alarm and event history is saved in Proprietary format. You can configure your project
settings to save the alarm and event history in Database format. For more information, see Saving your alarm
history / event log to an external database on page 103.

When your project is configured to save the history in Proprietary format (i.e., when History Format is Proprietary),
the event history is saved as sequentially numbered .evt files in your project folder. A new .evt file is created
for each calendar day, and that file is named according to the following syntax:

EVYYMMDD.EVT

For example, the event history for 17 August 2018 is saved in your project folder at: <project name>\Alarm
\EV180817.EVT

All of the event history for a given day is saved in the same file, regardless of whether the project is stopped
and then restarted during that day. (In other words, restarting the project does not create an additional file for
that day.) Each event is appended to the file as a new line, and each line comprises tab-separated values that
describe the event. You can open the file with a text editor or spreadsheet program.

Tip: To change the location where your project saves its alarm and event history files, use the
SetAppAlarmPath function.

When your project is configured to save the history in Database format (i.e., when History Format is Database),
the event history is saved in a table in the external database. All of the event history for the entire project is
saved in a single table named EVENTHISTORY by default, although you can change that name in your project
settings. Each event is inserted into the table as a new row.

The fields/columns of the event history are described below:

Proprietary Database

Field Number Column Name Data Type

Description

P1 — Integer (int) Internal version number of the event history format.

This information is saved only when History Format is Proprietary. You can
use this information to differentiate between .evt files that were created by
previous and current versions of this software.

P2 Ev_Type Integer (int) Type of event:

• 1 = Security System

• 2 = Display

• 3 = Recipe

• 4 = Report

• 5 = Custom Message

• 6 = System Warning

• 7 = Tag

P3 Ev_Time Timestamp (datetime) Timestamp that indicates when the event occurred.

Alarms, Events, and Trends

Page 396

Proprietary Database

Field Number Column Name Data Type

Description

When History Format is Proprietary, the event time is saved in the local time
zone (i.e., in the time zone that is selected in the computer's settings) and in the
following format:

MM/DD/YYYY HH:MM:SS.mmm

When History Format is Database, the event time is saved in Coordinated
Universal Time (UTC) by default and in the database's native datetime format.
If the database does not support milliseconds in its datetime format, the
milliseconds portion is saved in Ev_Time_ms.

— Ev_Time_ms Integer (int) The milliseconds portion of Ev_Time.

This information is saved only when History Format is Database and the
database does not support milliseconds in its datetime format.

P4 Ev_Info String (varchar) Name of the project tag that is associated with the event.

P5 Ev_Value Real (varchar) Value of the project tag when the event occurred.

P6 Ev_Source String (varchar) Reserved.

P7 Ev_User String (varchar) User who was logged on to the station when and where the event occurred.

P8 Ev_User_Full String (varchar) Full name of the user who was logged on to the station when and where the
event occurred.

P9 Ev_Message String (varchar) Event message.

P10 Ev_Station String (varchar) Name of the station where the event occurred.

P11 Ev_Comment String (varchar) Comment entered by the user when the event occurred. User comments are
optional.

P12 Ev_Prev_Value Real (varchar) Value of the project tag before the event occurred.

— Ev_Deleted Boolean (int) A numeric flag that indicates whether the user deleted the event message:

• 0 = FALSE; event message was not deleted.

• 1 = TRUE; event message was deleted.

This information is saved only when History Format is Database, and it causes
a new update time to be saved in Last_Update.

P13 Bias Integer (int) Difference (in minutes) between the local time zone and UTC, when the event is
logged and the event time is saved.

When History Format is Proprietary, this information is always saved because
the event time is always saved in the local time zone.

When History Format is Database, this information is saved only if the Local
Time + Time Difference option (in your project settings) is also selected.

P14 … P23 Ev_Custom1 …
Ev_Custom10

String (varchar) Up to 10 user-defined custom fields.

— Last_Update Timestamp (datetime) Timestamp that indicates when the database entry was created or last updated.

This information is saved only when History Format is Database. The update
time is saved in Coordinated Universal Time (UTC) and in the database's native
datetime format. If the database does not support milliseconds in its datetime
format, the milliseconds portion is saved in Last_Update_ms.

This information is used to synchronize databases when the project is
configured to use the Secondary Database in addition to the Primary Database.

— Last_Update_ms Integer (int) The milliseconds portion of Last_Update.

Alarms, Events, and Trends

Page 397

Proprietary Database

Field Number Column Name Data Type

Description

This information is saved only when History Format is Database and the
database does not support milliseconds in its datetime format.

Tip:

To customize the column names in the database table, manually edit your project file (<project
name>.APP) as follows:

[EventLogger]
<default column name>=<custom column name>

For example:

[EventLogger]
Ev_Info=TagName
Ev_Message=Message

Alarms, Events, and Trends

Page 398

Alarm/Event Control object
Use the Alarm/Event Control tool to add an Alarm or Event Control object to a project screen.

To create and configure an Alarm/Event Control object:

1. On the Draw tab of the ribbon, in the Data Objects group, click Alarm/Event Control.
2. Click in the display, and drag the mouse to create and adjust the object's shape.

3. Double-click on the object to open the following Object Properties dialog box.

Object Properties: Alarm/Event Control

You can use this dialog box to specify the following parameters:

• Select an alarm object mode in the Type group:

• Alarm Online: Display only current alarm messages, as configured in your Alarm worksheets.

• Alarm History: Display only alarm messages from the Alarm History database.

• Alarm History + Event: Display both alarm messages from the Alarm History database and logged events
from the Event History database.

• Event: Display only logged events from the Event History database.

• E-Sign checkbox: When this option is checked, the user will be prompted to enter the Electronic
Signature before executing the animation.

• Click (enable) the Enable translation checkbox to enable the external translation of messages using the
Translation Table. (For more information, see Project Localization on page 694.)

• VK: Virtual Keyboard type used for this object. You need to select the Virtual Keyboard option in the
Viewer settings (Viewer on the Project tab of the ribbon) before configuring the Virtual Keyboard for this
interface.

Tip:

By default, an Alarm/Event Control object can display up to 16,000 messages at the same time in
projects that are configured to run on the Windows target platform. If necessary, however, you can
increase the maximum number of messages. To do this, manually edit your project file (<project
name>.app) to add the following setting:

[Objects]
MaxMessagesAlarmControl=<number of messages>

Alarms, Events, and Trends

Page 399

We have successfully tested projects with Alarm/Event Control objects that display up to 30,000
messages at the same time, but you can specify any number as long as the target device has
sufficient system resources to run your project.

Filters
To filter alarm messages during runtime, click the Filters button. The Filters dialog box displays so you can
specify filtering parameters for the Alarm Control object.

Filters dialog box

• Use the Group field to filter messages by the Alarm group/worksheet number. The worksheets are organized
in the Alarms folder, in the Tasks tab of the Project Explorer, starting with 1. If you specify a Group of 0,
then all of the worksheets will be displayed. You can use commas and/or dashes to specify a range of
groups (e.g.,1,3,5-6).

• Use the Selection field to filter messages by the Selection text configured on the Alarm worksheet.

• In the Priority group, use the From and To fields to filter messages by the Priority configured on the Alarm
worksheet. Type numerical values into the these fields to delimit the priority range.

• Use the Type field to filter messages by the alarm type (e.g., HiHi, Hi, Lo, LoLo, Rate, Dev+, Dev-). You can
use commas to specify more than one type; for example,HiHi,LoLo.

• Use the State field to filter messages by the alarm status:

Value Description

0 All alarms (default)

Alarms, Events, and Trends

Page 400

Value Description

1 All active and unacknowledged alarms

2 All active and acknowledged alarms

3 All inactive and acknowledged alarms

4 All inactive and unacknowledged alarms

Leaving this field blank is effectively the same as entering a value of 0.

• In the Search in columns group, use the Tagname, Message, and/or Username text fields to specify criteria for
filtering messages. Type a tagname, message, and/or user name into the text field for which you want BOS
to search.

• Use the settings in the Interval group to filter messages by the last x messages (Latest) or based on a period
of time (Period). If you do not specify any interval at all, then only the alarms for the current day will be
displayed.

Note:

• You can specify String tags in curly brackets (e.g.{tagname}) in the Group, Selection, Tagname,
Message, and Username fields, to change these values during runtime.

• You must specify String tags without curly brackets (e.g.tagname) in the Type field and the
Period fields of the Interval group. These fields cannot take values directly.

• You can specify Integer tags in the From and To fields Priority group, the State field, and the
Latest field from the Interval group.

• You can use wildcards (* and ?) when specifying values for the Selection, Tagname, Message, and
Username fields.

• Use the Filter Expression to configure an expression that will filter unwanted messages out of the display.
Only messages that satisfy the expression will be shown.

To enter a filter expression, click Edit; the Alarm Filter Expression dialog box is displayed. The filter
expression must follow the basic syntax of…

[columnname]operator'value'

…where the columnname is the name of a column in the Alarm/Event Control object and operator is any of
the standard relational operators (e.g., =, <, >, <=, >=, <>). For example:

[Activation Time]>'08/17/2007 15:00'

This filter will only show alarm messages with activation times greater (later) than 15:00 on 08/17/2007.

Note: The Display Value and State columns are not supported in the filter expression.

Tip: It is not necessary to use square brackets when columnname is one word (e.g., Value), but
doing so can make the filter expression easier to read.

You can combine several conditions simultaneously by using the logical operators AND, OR, and NOT. You
can also use parentheses to establish the order of operations. For example:

[Type]='HiHi' OR [Type]='LoLo' AND [Activation Time]>'08/17/2007 15:00'

([Tag Name] Like 'Tag1') AND ([Tag Name] NOT Like 'Tag2') AND
 [Custom1]='MyCustomArea'

Alarms, Events, and Trends

Page 401

You can use wildcards (* and ?) in the filter expression. You can also change the filter expression during
run time by specifying project tags and/or built-in functions in curly brackets. For example:

[Value]='{AlarmFilterValue}'

[ActivationTime]<='{DateTime2UTC(Date + " " + Time)}'

Please note that filtering by time works only if the Alarm/Event Control object is configured to show alarm
history, and all times should be specified in Coordinated Universal Time (UTC), because that is how the
alarm history is saved. If you need to convert between local time and UTC, you can use the Date & Time
functions.

The Alarm Filter Expression dialog box has a limit of 1024 characters. You can configure a filter expression
of up to 2048 characters, however, by using the curly brackets syntax described above. The contents of
the brackets will be evaluated during run time. So, for example, you can specify two or more project tags
(String type) that contain parts of the overall expression and then use AND operators to combine the parts:

{MyFilterExpression1} AND {MyFilterExpression2}

Note: If your filter expression includes any dates, they must be in the current date format. If
they are not, you might see unexpected behavior during run time. For more information, see
About the date format and how to change it on page 707.

• Use the settings in the Initial Sort group to set the default sorting order. Select a sort type from the Column
combo-box, and then select Asc or Desc to sort in ascending or descending order. You can configure up to
three levels of sorting.

Note: If you configure all three levels with sort types other than Activation Time, then the project
will automatically sort on a fourth level according to Activation Time, in descending order.

You cannot change the type of this fourth-level sort, but you can toggle its default order — from
descending to ascending — by manually editing your project file (<project name>.app) to
change the following setting:

[Objects]
DescendingAlarmListTime=TRUE or FALSE

TRUE sorts in descending order, FALSE sorts in ascending order.

Click the Allow sort in runtime checkbox if you want to allow the user to change the sort order during runtime.

Alarms, Events, and Trends

Page 402

Columns
Click the Columns button to open the Columns dialog box where you can specify display properties for columns
in the object.

Columns dialog box

• The Available list contains all of the column types available for this object. The Visible list contains all of
the column types currently in use for the object.

Click the » and « buttons to move selections between the two lists.

Tip: You can configure an Alarm Control object to display recently replaced values together with
their new values. To do so, move both Value and Previous to the Visible list.

Click the Move Up or Move Down buttons to rearrange the order of columns in the Visible list.

• Use the Label and Width fields in the Properties group to change the default column labels and widths at
runtime.

• Use the Align combo box to specify alignment (Left, Center, or Right) for the alarm message text within a
specified column.

• Click (enable) the Available during runtime checkbox to allow the user to add selected columns to the visible list
during runtime.

• Use the Key box to assign a shortcut to each column. This allows you to sort the information on the Alarm
Control object by any column, using keyboard keys instead of the mouse cursor.

When you are finished, click OK to close the Column dialog box.

Tip: You can associate text labels with priority values, so that more meaningful information is
displayed in the Priority column of the Alarm Control. To do this, manually edit your project file
(<project name>.APP) to add the following entries:

[Alarm]
PriorityLabelCount=N (total number of labels)
PriorityValue1=value
PriorityLabel1=label

Alarms, Events, and Trends

Page 403

...
PriorityValueN=value
PriorityLabelN=label

Here is an example:

[Alarm]
PriorityLabelCount=3
PriorityValue1=490
PriorityLabel1=ALMTest
PriorityValue2=480
PriorityLabel2=Test2
PriorityValue3=470
PriorityLabel3=Test100

Alarms, Events, and Trends

Page 404

Advanced
Click the Advanced button to open the Advanced dialog box where you can specify advanced properties for the
Alarm Control object.

Advanced dialog box

• Use the settings in the Date & Time Format group to control which date and time information displays in
the alarm message. Click (enable) a checkbox to include that element in the display. Note: MS stands for
milliseconds.

Tip: Watch the Sample text to preview how the information will look in the alarm message.

• Use the settings in the Delete Message group to control who can delete alarm messages from the Alarm
History:

• Security: Use this field to specify which security level can delete alarm messages. Only those users with
the specified security level will be allowed to delete an alarm message.

Alarms, Events, and Trends

Page 405

• Confirm: Select this option to require the user to confirm a message deletion before BOS actually deletes
the selected alarm message.

• Use the settings in the Acknowledgement group to control how alarms are acknowledged:

• Ack All trigger box: Type a tag to receive a value. When the tag value changes, it indicates that all
messages in the alarm object have been acknowleged.

• Ack trigger box: Type a tag to receive a value. When the tag value changes, it indicates that the message
at the top of the alarm object has been acknowleged.

• Ack comment list: Select Disabled, Optional, or Mandatory to determine whether the user can or must enter
comments after acknowledging alarms.

• Disable ack on double click box: Type either a numeric value or a tag/expression. When it evaluates as TRUE
(non-zero), the user cannot acknowledge alarms by double-clicking (or double-tapping) them. This
option may be used, for example, either to force the operator to click another button to acknowledge the
alarm or to prevent alarms from being acknowledged on thin clients.

• Security box: Type a numeric value to specify which security level can acknowlege an alarm message.
Only those users with the specified level can respond.

• Require confirmation checkbox: Select this option to display a confirmation dialog when the user tries to
acknowledge a single alarm.

• Use the settings in the Run-time returned values group to get information about the alarms during run time:

• Total items box: Type an integer tag to see how many alarms remain after BOS filters the alarm object
using parameters specified on the Filters dialog box.

• Selected tag box: Type a string tag to enable the end user to click on an alarm message to see the name of
the tag associated with that message.

• First Row Text box: Type the name of a project tag or array (String type). That tag or array will receive the
contents of the columns of the first row of the Alarm/Event Control. If you specify a tag, the columns
will be separated by tabs. If you specify an array, the array elements will each receive one column. If
the array is not large enough to receive all of the columns, the remaining columns will be discarded.
Whenever the first row changes — either due to a new Alarm/Event, or simply because the rows are
reordered — the specified array is updated.

• Selected Row Text box: Type the name of a project tag or array (String type). That tag or array will receive
the contents of the columns of the selected row (i.e., the row that the user has clicked/tapped) of the
Alarm/Event Control. If you specify a tag, the columns will be separated by tabs. If you specify an
array, the array elements will each receive one column. If the array is not large enough to receive all of
the columns, the remaining columns will be discarded. Whenever the selected row changes — that is,
whenever the user clicks/taps another row — the specified array is updated.

• Summary Changes box: Type the name of a project tag (Integer type). That tag will receive a running count
of the number of changes in the Alarm/Event Control. For example, when a new Alarm occurs or when
an Alarm is acknowledged, the value of the configured tag will be incremented. Reordering the rows is
not counted as a change.

• Use the settings in the Run-time dialog triggers group to allow the user to customize the object during run time:

• Columns box: Type a tag name. When the tag value changes, it opens a dialog box allowing the user to
customize the columns visible in the object.

• Filters box: Type a tag name. When the tag value changes, it opens a dialog box allowing the user to filter
the columns visible in the object.

• Auto Format checkbox: When checked, decimal values in the Display Value, Previous and Value columns of the
object will be formatted according to the virtual table created by the function SetDecimalPoints.

• Use the Save / Print group to control the printing of alarms during run time:

• Print Trigger: When the tag configured in this field is toggled, the current state of the Alarm/Event Control
object is sent to the default printer.

• PDF Trigger box: When the tag configured in this field is toggled, the current state of the Alarm/Event
Control object is saved as a PDF file at the location specified by PDF Filename.

Alarms, Events, and Trends

Page 406

• PDF Filename box: Enter a complete file path and name where the PDF file is to be saved. You can also
enter a tag name using the {tag} syntax.

Note: PDF Trigger and PDF Filename are not supported in projects running on Windows
Embedded or Thin Client.

• Multiline checkbox: When this option is checked, the print output or PDF will be formatted according to
the available column space, and the text within each cell will be wrapped so that all of it is shown.

• Click the Navigation Triggers button to open the following dialog box:

Navigation Triggers dialog box

You can make the on-screen Alarm Control object scroll up, scroll down, page up, page down, go to home
(beginning) of page, or go to end of page by configuring tags in the corresponding fields. Whenever the
values of the configred tags change, the Alarm Control object will navigate that way. This is useful for
adding navigation controls to the screen; for example, if you configure the same tag to the Up field in this
dialog box and a Pushbutton object, then the Alarm Control object will scroll up whenever the Pushbutton
object is pressed.

When you are finished, click OK to close the Advanced dialog box.

Fonts
Click the Fonts button to open a standard Fonts interface where you can specify display properties for the
message text.

Format
Use the Format area of the object properties to configure the appearance of the Alarm/Event Control object
during run time:

Alarms, Events, and Trends

Page 407

• Select Show header to show a header on the object. The header displays the column labels.

Showing the header
• Select Show gridlines to show gridlines in the object. Gridlines can make it easier to distinguish individual

rows and columns in the object.

Showing the gridlines
• Use the Background color box to select a background color for the object. Click the box to open the color

palette pop-up, then click a color to select it.

Alarms, Events, and Trends

Page 408

• Click Colors to open the Colors dialog box, which you can use to select background and foreground
colors for specific alarms. These colors will override the default colors that you selected in your Alarm
worksheet(s). This is useful for highlighting special alarms.

Colors dialog box

Note: This feature is not supported in projects running on Windows Embedded target systems.

In each row of this table, you can configure a subset of alarms using similar criteria as in the Filters dialog
box, and then for that subset you can select custom background and foreground colors:

1. In the Group box, type the number of the Alarm group/worksheet. You may use commas and/or dashes
to specify a range of groups.

2. In the Active box, select All (both active and normalized alarms), Active (active alarms only), or Norm
(normalized alarms only).

3. In the Ack box, select All (both acknowledged and unacknowledged alarms), Acked (acknowledged alarms
only), or Unacked (unacknowledged alarms only).

4. In the Selection box, type the selection text that you configured in the Alarm worksheet. You may leave
this box empty.

5. In the Priority box, type the priority number that you configured in the Alarm worksheet. You may leave
this box empty.

6. Click the BG Color box to open a color picker, and then select the color that you want to be the
background color of the alarm message.

7. Click the FG Color box to open a color picker, and then select the color that you want to be the
foreground color of the alarm message.

8. Select Blink if you want the alarm message to blink. This will make it more noticeable.

Please note that the subsets you configure here must pass any filters that you previously configured in the
Filters dialog box. For example, if you configured the filters to show groups 1-6 in the Alarm/Event Control
object, then configuring a subset of group 7 here will have no effect.

Also, the colors that you select will be used to indicate all possible alarm states (i.e., activation,
acknowledgement, and normalization), if you configure the subset to include all of those states. Therefore,
if you want different colors for different alarm states, then you must configure additional subsets.

Customize the audible alarm
You can customize the sound and frequency of the audible alarm that is played on thin clients when an alarm
is active.

Before you begin this task, your custom alarm sound should be saved as a .wav file in your project's Web
folder. For example: <project folder>\Web\CustomAlarm.wav

By default, the audible alarm is a standard system beep that is played once per second (1000 milliseconds).
This is determined by settings in your project file, which you can manually edit. You can also completely
disable the audible alarm.

Note: This feature is currently supported only on Thin Clients (including the project runtime's local
Viewer module). It is not supported on Mobile Access.

To customize the audible alarm:

Alarms, Events, and Trends

Page 409

1. Save and close your project, and then exit the project development software.
You should not manually edit your project file while it is open in the software.

2. Use a text editor to open your project file, which should be located at: <project folder>\<project
name>.app

3. In your project file, locate the following settings:

[Alarm]
AlarmBeep=1
AlarmBeepTime=1000
AlarmSound=

4. Edit the settings as needed:
AlarmBeep

A boolean flag that enables the audible alarm. The default value is 1 for new projects. If you
change this setting to 0, the audible alarm will be disabled on all thin clients.

AlarmBeepTime
The frequency of the audible alarm, in milliseconds. The default value is 1000 for new projects.
If you change this setting, make sure the time is long enough to allow your custom alarm sound
to play properly.

AlarmSound
The name of the .wav file that contains your custom alarm sound (e.g., CustomAlarm.wav).
The default value is empty for new projects, and if it is empty, the standard system beep will be
played instead. The specified file must be located in your project's Web folder.

5. Save and close your project file.

Alarms, Events, and Trends

Page 410

Trend worksheet
The Trend folder enables you to configure history groups that store trend curves. You can use the Trend
worksheet to declare which tags must have their values stored on disk, and to create history files for trend
graphs. The project stores the samples in a binary history file (*.hst), and shows both history and on-line
samples in a screen trend graph.

The Trend worksheet is executed by the Background Task module (see Runtime Tasks on page 134). It
handles the saving of trend data to the history, but it does not display that data to the operator; the Trend
Control screen object, available on the Graphics tab of the ribbon, must be created and configured in a screen
in order to display trend data.

To create a new Trend worksheet, do one of the following:

• On the Insert tab of the ribbon, in the Task Worksheets group, click Trend;

• Right-click the Trends folder in the Project Explorer, and then click Insert on the shortcut menu; or

• Click New on the File menu, click the File tab, and then select Trend Worksheet.
To edit an existing Trend worksheet, double-click it in the Project Explorer.

Trend worksheet

The Trend worksheet is divided into two areas:

• Header area (top section), which contains information for the entire group

• Body area (bottom section), where you define each project tag in the group. This section contains several
columns (only two are shown in the preceding figure).

Header
Configure the following settings in the worksheet header:

Alarms, Events, and Trends

Page 411

Description
Type a description of the worksheet for documentation purposes.

History Format

Click the arrow button to select a trend history format from the list. The available options are:

Proprietary

Save trend history in a proprietary, binary file. The file is saved in your project folder (on the
project runtime server) at: […]\<project name>\Hst\GGYYMMDD.hst

• GG = Trend worksheet number

• YY = Last two digits of the year

• MM = Month

• DD = Day

A new history file is created for each calendar day that the project runs.

The utility programs HST2TXT.EXE and TXT2HST.EXE are provided in order to convert history
files from binary (*.hst) to plain text (*.txt) and vice versa. For more information, see
Converting Trend History Files from Binary to Text on page 418 and Converting Trend History
Files from Text to Binary on page 419.

Database

Save trend history in an external SQL database of your choice. After you select this format, click
Database Configuration to open the Database Configuration dialog box, where you can configure the
connection to the database. For more information, see Database Configuration on page 106 and
Database Interface on page 828.

By default, the history is saved in the table TRENDGGG (GGG = Trend Worksheet Number; e.g.,
TREND001 for the Trend Worksheet 001).

Historian
Save trend history to a Historian database or AVEVA Insight. After you select this format, click
Historian Configuration to open the Historian dialog box, where you can configure the connection
to the database. The trend history for each project tag is saved separately in the Historian
database, but you can use Prefix in the database connection settings in order to keep the tags
grouped together. For more information, see Support for AVEVA Insight and Historian on page
849.

Note:

You can specify String tags in many fields of the Trend worksheet, to change
those values during run time, but doing so may affect how those values are saved
in the trend history:

• When the history format is Proprietary, the value of the String tag is converted
to a numeric value (if possible) and then saved in the history file. If numeric
conversion is not possible, then a value of 0 is saved.

• When the history format is Database or Historian, the actual value of the String
tag is saved in the database.

Save On Trigger
Click (enable) and type a tag name to save trend samples when someone changes the specified
tag. (Tag change can be an event from the Scheduler.)

Save On Tag Change

Click (enable) to always save the trend sample when a value change occurs in any of the tags
from that group.

Alarms, Events, and Trends

Page 412

When the history format is Proprietary or Database, all of the tags in the group are saved after each
change. When the history format is Historian, only the tag that changed is saved.

Advanced
Click to display the Trend Advanced Settings dialog. For information about completing the fields
in this window, see Batch History Configuration.

Body
For each project tag, configure the following settings in the worksheet body:

Tag Name
The name of the project tag for which trend history will be saved.

Dead Band
Type a value to filter acceptable changes when Save on Tag Change is used. For example, Dead
Band has value = 5. If the tag value is 50 and changes to 52, the system will not register this
variation in the database, because it is less than 5. If the change is equal to or greater than 5,
the new value will be saved to the history file.

Field

When History Format is Database, this is the name of the field (in the SQL database table) where the
trend history will be saved. If this field is left blank, the project tag name will be used.

For array tags and classes, special characters ([].) will be replaced by underscores (_), as
shown in the examples below:

Tag Name Field Name

MyArray[1] MyArray_1

MyClass.Member1 MyClass_Member1

MyClass[3].Member2 MyClass_3_Member2

Historian Tag
When History Format is Historian, this is the name of the tag (in the Historian database) where the
trend history will be saved. If this field is left blank, the project tag name will be used.

When you save a Trend worksheet, only the header settings are saved as part of the worksheet file. All of the
trend configurations that make up the body of the worksheet are actually saved as tag properties. The next
time you open that worksheet, the tags database is scanned for all trend configurations that belong to the
worksheet (i.e., the trend group), and then that information is used to recreate the body of the worksheet. This
happens quickly and automatically every time you open the worksheet, so it might seem like you are opening
a static file but that is not the case.

You may think of the Trend worksheet as an editor for those tag properties that are related to history. If you
use either the Tag Properties dialog box or the TagsDBSetTrend function to edit the same properties, the
updated trend configurations will be included in the body of the worksheet the next time you open it. In fact,
you can set trends on tags before you create any Trend worksheets at all; when you do create the worksheets,
they will be automatically populated with trend configurations according to their group numbers.

You cannot configure more than one trend on a given tag, and each trend configuration cannot belong to more
than one group/worksheet.

If you make extensive changes to the tags database after you save an Trend worksheet, it might not be
possible to recreate the body of the worksheet the next time you open it. For example, if you copy all of the
tags from the tags database (in Datasheet View) to a spreadsheet program, use that program to sort the tags,
and then copy the tags back to the tags database, most or all of the tag properties will be reset in the process.

Note: The Trend task can accept only up to 1000 tags in a single worksheet. If you manually
configure more than 1000 tags in the same worksheet, the Trend task will generate an error during
project run time.

Alarms, Events, and Trends

Page 413

Sort or filter the rows in a worksheet
Sort or filter the rows in a worksheet in order to make it easier to browse the rows or find a specific item.

Before you begin this task, you must have already inserted a worksheet and opened it for editing. You should
also be familiar with how sorting and filtering is done in general-purpose spreadsheet applications.

Please note that you can sort or filter rows only in the following types of worksheets:

• The Project Tags, Shared Tags, and System Tags datasheets;

• The Translation Table worksheet;

• All task worksheets except Report and Script, which do not have rows; and

• All communication worksheets.

None of the other worksheets have rows to sort or filter.

Alarms, Events, and Trends

Page 414

Sorting is done alphanumerically, by the selected column, in either ascending (0–9, A–Z) or descending (Z–A,
9–0) order.

Alarm worksheet rows in their original order

Alarm worksheet rows sorted by Type

Alarms, Events, and Trends

Page 415

Filtering is done according to whatever string you enter in the selected column. Only the rows that match the
string will be displayed.

Alarm worksheet rows filtered where Tag Name is "Tag3"

Alarm worksheet rows filtered where Type is "Lo"

Tip: You can still delete rows while they are sorted or filtered.

To sort or filter rows:

1. To sort the rows, click the header of the column by which you want to sort. Click once to sort in ascending
order, and then click again to sort in descending order.
The current order (i.e., the direction of the sort) is indicated by the arrow to the right of the column name.

Note: You cannot sort by multiple columns.

2. To undo the sorting and restore the rows to their original order, click the header of the first (numbered)
column.

3. To filter the rows, type the string that you want to match in the top (zero) row of the worksheet and then
press either Tab or Return.

You may include * and ? as wildcard characters in your string:

• * matches any number of characters, including none. For example, Tag* would match Tag, Tag3,
Tag34567, TagA, and Tag_TEMP.

• ? matches exactly one character. For example, Tag? matches Tag3 and TagA, while Tag????? matches
Tag34567 and Tag_TEMP.

Also, you may filter by multiple columns. Only the rows that match the filter strings in all columns will be
displayed.

4. To undo the filtering and restore the rows to their original order, delete the string that you typed and then
press either Tab or Return.

Alarms, Events, and Trends

Page 416

Please keep in mind that sorting or filtering the rows of a worksheet only helps you to edit that worksheet. It
does not change how the worksheet is executed during run time. The rows will be executed in their original
numbered order (i.e., the leftmost column) unless you actually move or delete a row.

Creating Batch History
BOS provides powerful tools that enable the user to create and manage batch historical information. The user
is able to create batches by using the following formats:

• Proprietary: When using the proprietary format, each batch will be stored on a different historical file. The
user can save historical data in both the normal historical file and batch files at the same time (see Trend
Folder for more information about these files).

• Database: The historical data used for the batch is saved in the same table as the normal historical data; an
additional table called BatchHistory keeps registers with the information about the batches. The list below
describes the fields on the BatchHistory table:

Field Name Data Type Description

Group_Number Integer Trend group number. This is the number of the worksheet that you are creating to specify the
tags that will be stored on your batch history.

Batch_Name String Name of the batch

Start_Time TimeStamp Date and Time that the batch was started.

End_Time TimeStamp Date and Time that the batch was finished

Pri_Table String Reserved

Sec_Table String Reserved

Description String Batch description

Deleted Boolean 0: Batch has not been deleted

1: Batch has been deleted

Tip: You can customize the name of the table and the name of the columns created in the database
by editing the <project name>.APP file, as follows:

[Trend]
DefaultName=NewName

[TrendGroupPRI|SEC]
BatchHistory=TableName

For example:

[TREND001PRI]
BatchHistory=MyTableForPrimaryDB

[TREND001SEC]
BatchHistory=MyTableForSecondaryDB

[Trend]
Group_Number=Trend_Worksheet
Batch_Name=Load_Number

Alarms, Events, and Trends

Page 417

Batch History Configuration
When you add a Trend worksheet (see Trend folder) and click the Advanced button, the following window will
display:

Trend Advanced Settings

In the Batch pane, you can configure the saving of the batch history:

• Start/Stop (input): Enter the tag that will start/stop your batches. When the tag in this field is set to TRUE
(different from 0), BOS will either start saving data to your batch file (if you are using proprietary format),
or add a new register to the BatchHistory table on your database, indicating that a batch has been started.
Note that historical data will be saved according to the configuration in the fields Save Trigger and Save On Tag
Change options on the Trend Worksheet.

• Name (input): This field represents the batch name; its meaning depends on the format selected on the Trend
Worksheet:

• If you selected Proprietary in the Type field, the Name should comply with the format [Path]<FileName>,
where:

• Path: An optional field. If the path is not specified, the batch history file will be stored in the same
path as the <project name>.app file.

• FileName: Name of the batch history file.

• If you selected Database in the Type field, the value in this field will be stored in the Batch_Name field of the
BatchHistory table.

Tip: You can enter tag names between curly brackets in this field (e.g., C:\MyBatches
\{MyTagWithName}{MyTagWithNumber}.hst).

• Delete (input): When the tag specified in this field changes its value, the batch will be deleted. With the
Proprietary format, the batch history file will be removed. With the Database format, it will set the Delete field
in the BatchHistory table to true, but the saved historical data will remain. The Trend object only sees
batches that have the delete field set to 0 (zero).

• Existent (output): The tag entered on this field will receive the value 1 if the batch specified in the Name field
already exists; otherwise the tag will receive the value 0.

Alarms, Events, and Trends

Page 418

• Description (output): This field is available only when using the Database format. When the tag in the Start/Stop
field changes to TRUE, the register that is added to the BatchHistory table will display the string in this
field.

Tip: You can enter tag names between curly brackets in this field (e.g., {MyTag})

• Save data even if batch is not running: If this field is unchecked, the historical data will be saved only when the
tag in the Start/Stop field is TRUE.

Tip: The Batch Historical data can be displayed to the user in either Graphical or Table format.
See Trend Folder or Grid Object to display information in these formats.

In the Disk Space Control area, you can control disk usage:

• History Life Time (days) field: Specify how many days to keep the history file on the disk. After the specified
period, BOS automatically erases the file. Use this option only for files based on a date.

• Compress After (days) field: Specify how many days to keep the trend history file (*.hst) on the disk before
compressing the file. After the specified period, BOS automatically compresses the file. Use this option only
for files based on a date.

In the Bad Quality area, you can determine what value will actually be saved in the batch history when the tag
quality is BAD:

Type Description

Tag Value The actual value of the project tag when the tag quality was BAD, plus the specified Offset (if any).

Min Value The minimum historical value of the project tag, minus the specified Offset (if any).

Max Value The maximum historical value of the project tag, plus the specified Offset (if any).

Value The specified Value only.

NaN Not a number.
Please note that when History Format is Database and Bad Quality is NaN, all of the database fields will be saved as Float type.

Also, if a Trend Control screen object is configured to use the history generated by this Trend worksheet, then NaN entries are counted
as 0 for the purpose of calculating a trend's statistical average and deviation.

Finally, in the Disable All Data Saving box, type the name of a project tag. When the value of the tag is TRUE (non-
zero) during runtime, all data saving is disabled for this worksheet. Other Trend worksheets are not affected.

Converting Trend History Files from Binary to Text
By default, BOS saves trend history files in a binary format (.hst). Because you may want to have these files
in .txt format, BOS provides the HST2TXT.EXE program to convert trend history files from binary into text
format.

To convert a file, use the following procedure:

1. At the command prompt, change directory (cd) to the Bin sub-folder of the Studio program folder, typically
at:

cd C:\Program Files (x86)\Pro-face\BLUE Open Studio 2020\Bin

2. At the command prompt, copy the Hst2txt.exe into the same directory where the .hst file is located.

3. At the command prompt, type Hst2txt.exe and specify the following parameters:

• filename: Name of the trend history file to convert

• [separator]: Data separator character (default is <TAB>)

• [/e]: Extended functionality (convert data with more than 10 characters)

• [/i:HH:MM:SS]: Start time in hours (HH), minutes (MM), and seconds (SS)

Alarms, Events, and Trends

Page 419

• [/f:HH:MM:SS]: Finish time in hours (HH), minutes (MM), and seconds (SS)

• [/m]: Include milliseconds in the Time column (Type 1 to print the milliseconds value in the text file
created from the .hst file.)

For example:

Hst2txt.exe 01952010.hst

The program creates a .hdr (header) file and the .txt file, which are both plain text files that can be
viewed using any text editor (for example, Notepad).

• The .hdr file contains the name of the tags configured in the Trend Worksheet.

• The .txt file contains the tag values saved in the history file.

4. After the program converts the file, type Exit to close the DOS window.

Note: Alternatively, you can use the HST2TXT math script in a Math worksheet to convert binary
files into text format automatically without having to use a DOS window.

See also:

• Converting Trend History Files From Text to Binary

• Creating Batch History

• Configuring a Default Database for All Task History

Converting Trend History Files from Text to Binary
Use the TXT2HST.exe program to convert text-based history files back into binary format.

Before you begin this task, you must have both of the following:

• The text file (e.g., 02950201.txt) that contains the historical data; and

• The corresponding header file (e.g., 02950201.hdr) that provides the column numbers and names.

To convert a file, use the following procedure:

1. At the command prompt, change directory (cd) to the Bin sub-folder of the Studio program folder, typically
at:

cd C:\Program Files (x86)\Pro-face\BLUE Open Studio 2020\Bin

2. At the command prompt, copy the TXT2HST.exe into the same directory where the text and header files
are located.

3. At the command prompt, type TXT2HST.exe and specify the following parameters:

• filename: Name of the text file

• [separator]: Data separator character (default is <TAB>)

• [/e]: Extended functionality (data value with more than 10 characters)

• [/i:HH:MM:SS]: Start time of data value in hours (HH), minutes (MM), and seconds (SS)

• [/f:HH:MM:SS]: Finish time of data value in hours (HH), minutes (MM), and seconds (SS)

For example:

TXT2HST.exe 02950201.txt

The program combines the text file and header file in order to create a binary file with the same name
(e.g., 02950201.hst).

4. When the program is finished, type exit to close the command prompt.

Alarms, Events, and Trends

Page 420

Note: You cannot create a math script for the TXT2HST.exe program and use it in a Math
worksheet in order to convert text files into binary format, as you can for the HST2TXT.exe program.
The math script shortcut is available for binary files only.

Make trend history accessible through OPC HDA
Use the built-in OPC HDA server to make historical data generated by Trend worksheets accessible to other
computers.

The OPC Historical Data Access (OPC HDA) specification is used to exchange archived process data, such
as the historical data generated by Trend worksheets in your project. This is in contrast to other OPC
specifications — for example, OPC DA (also known as OPC Classic) and OPC UA — that are used to exchange
real-time data.

The project runtime software for Windows includes a built-in OPC HDA server that you can use to make your
project's trend history accessible to OPC HDA clients. The server only works with trend history that has been
saved in the Proprietary format, as opposed to the Database and Historian formats. When the server is enabled, it
automatically scans the project folder for all saved history files (.hst) and then makes the contents of those
files accessible.

There are no user-configurable settings for the OPC HDA server itself, but to enable the server, you must
ensure the HDA OPC Server task is started during project run time. You can configure the task to start
automatically when the project is run, or you can manually start the task after the project is running. For
more information, see Runtime Tasks on page 134.

Once your project is running and the task is started, you should be able to use any compatible OPC
HDA client program to access the historical data. The OPC HDA server address is the same as your
project's data server address, its port number is 135 (DCOM), and it should appear to the client as
"Studio.Scada.HDA.OPC".

This feature only supports the 1.0 version of the OPC HDA specification.

Alarms, Events, and Trends

Page 421

Trend Control object
The Trend Control object displays data points (values) from different data sources in a graphic format.

The main features provided by the Trend Control object are:

• Display of multiple pens simultaneously

• Support for different Data Sources, such as Tag, Batch, Database and Text File

• Capability to generate X/Y graphs from the configured data sources (please refer to Appendix A for an
example of an X/Y chart).

• Simultaneous display of an unlimited number of data points. This feature might be limited by the
hardware used since available memory and performance will vary.

• Built-in toolbar, which provides interfaces for the user to interact with the Trend Control object during
runtime

• Built-in legend, which displays the main information associated to each pen linked to the object

• Zooming and auto-scaling tools

• Horizontal and vertical orientation

About the trend control runtime interface
During project runtime, a trend control has its own built-in interface that the operator can use to change how
trends are displayed. This section describes the major parts of the interface and how they are used.

Trend control runtime interface

Toolbar

Command/Tool Icon Description Activation Tag

Run Sets the trend control to Run Mode (a.k.a. Online Mode). In this mode, the X-
axis continues to scroll with the passage of time and the trends are updated
with current tag values.

0 = stop trend

1 = run trend

The Activation Tag is only one for both Run
and Stop commands and it is configured on
the "Run/Stop" field

Stop Sets the trend control to Stop Mode (a.k.a. Historical Mode). In this mode, the
X-axis is stopped and the trends display only historical data.

0 = stop trend

1 = run trend

Alarms, Events, and Trends

Page 422

Command/Tool Icon Description Activation Tag
If decimation is enabled for one or more trends, the calculation and redrawing
is done only in this mode.

The Activation Tag is only one for both Run
and Stop commands and it is configured on
the "Run/Stop" field

Period Opens a dialog which can be used to modify the X-axis scale main settings. 1 = open dialog
Resets to 0 after open.

Window Zoom Allows the user to click on the trend graph and drag the cursor to select the
area that must be visible when the cursor is released.
This option is disabled when the Multiple Section option (for the Y scale) is
active.

Horizontal Zoom Allows the user to click on two points in the trend graph, defining the
horizontal scale that must be available.

Vertical Zoom Allows the user to click on two points in the trend graph, defining the vertical
scale that must be available.
This option is disabled when the Multiple Section option (for the Y scale) is
active.

0 = disable zoom
1 = enable zoom

Resets to 0 after user input.

Zoom In Zooms in (i.e., halves the current X and Y scales) each time the user clicks
the tool.

Zoom Out Zooms in (i.e., doubles the current X and Y scales) each time the user clicks
the tool.

Cancel Zoom Cancels the current zoom and returns the trend graph to its original scale.

Legend Properties Opens a dialog which can be used to modify the Legend main settings.

Pen Style Opens a dialog which can be used to modify the pen style of the selected
trend.

Add Pen Opens a dialog which can be used to add a new trend to the trend control.

Remove Pen Removes the selected trend from the trend control.

1 = execute command
Resets to 0 after execution.

Multiple Sections Switches the Y scale between Multiple Sections (a section for each trend) and
Single Section (all trend share the same Y scale section).

0 = Single Section

1 = Multiple Sections

Cursor Switches the cursor (ruler) between visible and hidden. 0 = Cursor hidden

1 = Cursor visible

Auto Scale Changes the Y axis scale to fit all values from the trends that are currently
being monitored.

Print Prints the current state of the trend control. (Historical data are not printed.)

1 = execute command
Resets to 0 after execution.

Alarms, Events, and Trends

Page 423

Command/Tool Icon Description Activation Tag

SPC Opens a dialog which can be used to show the statistical process control
(SPC) information for the selected trend:

• Draw Mode…

• Shade: Draws the average value as a dashed line, and draws the
min/max values and standard deviation as shaded areas.

• Line: Draws the average value and standard deviation as dashed
lines, and draws the min/max values as solid lines.

• Show average: Show the calculated average of all of the trend's
historical values.

Note: When a value is not a number (NaN) — for
example, when a tag is flagged as BAD quality — it is
counted as 0 for the purpose of calculating the average.

• Show min/max: Show the minimum and maximum historical values of
the trend.

• Show standard deviation: Show the standard deviation of the trend. A
low standard deviation indicates that the actual value tends to stay close
to the average; a high standard deviation indicates that the actual value
tends to vary greatly from the average.

The tag's Bit properties (B0–B4) can be
used to open the dialog and pre-select
options:

• tagname->B0

• 1 = open dialog
Resets to 0 after open.

• tagname->B1

• 0 = Draw Mode: Line selected

• 1 = Draw Mode: Shade selected

• tagname->B2

• 0 = Show average cleared

• 1 = Show average selected

• tagname->B3

• 0 = Show standard deviation
cleared

• 1 = Show standard deviation
selected

• tagname->B4

• 0 = Show min/max cleared

• 1 = Show min/max selected

Note: Activation tags are configred in the trend control's object properties.

For more information, see Toolbar dialog on page 437.

Time bar
The time bar displays the start date/time and end date/time of the graph, or in other words, the period of the
X axis. For more information, see Axes dialog on page 433.

If you have configured the trend control to display historical data from a batch file, you can change these
dates and times during project run time and therefore increase or decrease the period of the graph. The longer
the period, the more data the graph will display but at lower resolution. The shorter the period, the less data
the graph will display but at higher resolution. This is similar to using the Horizontal Zoom tool.

Note: If you enter a date (start or end) before 01/01/2000, it will be automatically adjusted to
01/01/2000. And if you enter a date (start or end) after the current date, it will be automatically
adjusted to the current date.

All dates must be formatted according to the current date format. For more information, see About the date
format and how to change it on page 707.

Alarms, Events, and Trends

Page 424

Legend

Command Icon Description

Selection Launches a dialog, where the user can replace the data point associated with the selected trend on the legend

Remove Removes the selected trend from the trend control

Hide When checked, the selected trend is visible; otherwise, it is hidden.

Pen Style Launches an embedded dialog, where the user can modify the pen style of the selected trend.

Scale When this box is checked, the Y axis scale is visible; otherwise, it is hidden. The scale can be hidden only when the
Multiple Sections option is off.

For more information, see Legend dialog on page 440.

Object Properties: Trend Control dialog
The Object Properties: Trend Control dialog is used to configure the basic properties of a Trend Control screen
object.

Accessing the dialog box
To access the Object Properties dialog box for a screen object, do one of the following:

• Select the screen object, and then on the Draw tab of the ribbon, in the Editing group, click Properties;

• Right-click the screen object, and then click Properties on the shortcut menu; or

• Double-click the screen object.

The dialog box in detail

Object Properties: Trend Control dialog

In addition to the elements that are common to all Object Properties dialog boxes, the Object Properties: Trend
Control dialog box contains the following elements:

Area / Element Name Description

Type Sets the type of border around the graph area of the trend control. (There are no borders around the trend
control's legend or toolbar.)

Border

Color Sets the color of the border, if the border type is Solid. For more information, see Selecting colors and fill
effects.

Alarms, Events, and Trends

Page 425

Area / Element Name Description

No Fill / Fill Enables the background fill for the graph area of the trend control. (There are no backgrounds for the trend
control's legend or toolbar.) If the fill is not enabled, then the graph is transparent to whatever other screen
objects are behind the trend control.

Background

Color Sets the color and fill effect of the background fill, if it is enabled. For more information, see Selecting colors
and fill effects.

Points Opens the, which allows configuration of the trend control's data points (or pens). For more information, see
Trend Control: Points dialog.

Axes Allows configuration of the trend control's X and Y axes, as well as its horizontal or vertical orientation. For
more information, see Trend Control: Axes dialog.

Toolbar Allows configuration of the user toolbar that is displayed above the trend control. For more information, see
Trend Control: Toolbar dialog.

Data Sources Allows configuration of multiple data sources for the trend. For more information, see Trend Control: Data
Sources dialog.

Legend Allows configuration of the legend that is displayed below the trend control. For more information, see Trend
Control: Legend dialog.

Advanced Allows configuration of the trend control's advanced properties, such as runtime options and tag triggers.
For more information, see Trend Control: Advanced dialog.

Although the Trend Control object supports flexible configurations to meet the specific needs of your project,
most of the settings are set by defaults based on the most common interfaces. Therefore, in many cases, you
will only configure data points (displayed during runtime), which can be done easily by clicking the Points
button from the Object Properties window.

POINTS
The Points dialog is used to configure the data points for a Trend Control screen object. The value of each data
point is represented as a pen in the trend display. You can dynamically change which data points are visible
during run time, regardless of how many data points are associated with the screen object.

Accessing the dialog
To access the Points dialog for a specific Trend Control screen object, first access the Object Properties dialog
for that screen object and then click Points.

The dialog in detail

Points dialog

The following table summarizes the properties of each data point:

Column Name Description

Point A unique ID number for the point, which is assigned automatically when the point is created in this interface.

Label The label associated with the Point can be displayed on the Legend, during run time, providing a short reference to the user for each
Point.

Color The color of the pen usedColor of the pen used to draw the values of the Point on the Trend Control object.

Data Source The data source for this point. Tag is available by default, but all other sources must be configured in the Data Sources dialog.

Tag/Field The meaning of this parameter depends on the Data Source type associated with the data point:

• If Data Source is Tag, type the name of the tag with values to be displayed. If the tag is configured in a Trend task worksheet, its
history will be automatically retrieved and displayed. Otherwise, only the tag's online values — that is, the tag's actual values during

Alarms, Events, and Trends

Page 426

Column Name Description
run time — will be displayed. (Please note this means that the tag's trend line cannot be redrawn after zooming; only new values
can be drawn as they are received. For more information about zooming, see About the trend control runtime interface on page
421.)

• If Data Source is Batch, type the name of the tag with values to be retrieved from the Batch History file that is generated by the
Trend task worksheet.

• If Data Source is Database, type the name of the field (column) in the SQL Relational Database that contains the point's values.
For more information, see Using the Data Source Database on page 449.

• If Data Source is Text File, type the number of the column in the text file that contains the point's values. The number 0 refers
to the first column, 1 refers to the second column, and so on. For more information, see Using the Data Source Text File on page
446.

Min Scale / Max Scale The scale of the Y-axis for this point. This overrides the default scale that is set in the Axes dialog.

Note: The Min Scale and Max Scale properties can hold real numeric values up to six decimal places. If you need
more precision than that, you must configure the Min Scale and Max Scale properties with Real tags and then store the
values in those tags.

Style The line and marker styles for this point; click the button to open the Pen Style dialog.

Options Additional options for this point; click the button to open the Options dialog.

SPC Calculated statistics to be used in statistical process control (SPC); click the button to open the SPC dialog.

Hide Tag trigger — when the value is TRUE, the data point is hidden in the trend display.

Pen Style dialog box
Use the Pen Style dialog box to customize the style of the pen that draws the point's values during run time.

Accessing the dialog box
To access the Pen Style dialog box for a specific point, do the following:

1. In the screen editor, select the Trend Control object, and then open its object properties.

2. In the object properties, click Points.

3. In the Points dialog box, select a point, and then click the Style column for that point.

This dialog box can also be opened on the client during project run time, by clicking the Pen Style tool in
either the toolbar or the legend of the trend control. For more information, see About the trend control
runtime interface on page 421. Please note, however, that the full range of settings is available only when
the runtime is SCADA for Windows and the client is the local Viewer. In all other combinations of runtimes
and clients, the Pen Style tool can be used only to change the pen color.

Alarms, Events, and Trends

Page 427

The dialog box in detail

Pen Style dialog box

The table below descibes the elements in the Pen Style dialog box.

Elements in the Pen Style dialog box

Area / Element Name Description

State You have the option of defining a Hi Limit and a Lo Limit for each data Point, with the Options dialog. The
Pen Style Dialog allows you to configure different settings for the pen (e.g., color), both when its values are
within the limits (Normal State) and not within the limits (Out of Limits state).

Use Normal Settings Available only for the Out of Limits state. When checked, the pen will always be displayed with the settings
for the Normal state, even if the data point values are not within the limits configured for it.

Type The type of line (e.g., solid, dashed, dotted) that connects the data points.

Weight The weight of the line that connects the data points.

Expansion The algorithm used to connect the points, as follows:

• : Consecutive points are directly connected to each other by an analog line. This option is
suitable for numerical values.

• : Consecutive points are connected only through horizontal or vertical steps (depending on the
orientation of the trend display). This option is suitable for Boolean values.

Marker The shape used to mark each data point. If no shape is selected, then only the connecting line between
points is displayed.

Marker size The size of the data point marker.

Line Settings

Color The color of the trend line and data point markers.

Fill Type The type of fill between the trend line and the number line.Fill

Pattern File The graphic file used to fill the trend area. Available only Fill Type is set to Custom Pattern.

Alarms, Events, and Trends

Page 428

Area / Element Name Description
Click the browse button to open a Windows file browser and then select the desired graphics file. The file
should be located in your project folder.

See the figure below this table for an example of trends with custom fill patterns.

Note: This feature should be used only with small images that can be tiled to fill the trend
area. If you select a large image instead, with the intent of having it fill the entire trend area
by itself, you might see unexpected behavior during project run time — for example, the
image might not align properly within the trend area or it might ovelap itself in strange ways,
depending on the size and position of the Trend Control object in the screen.

Color The color used to fill the trend area. Available only when Fill Type is set to Solid Color.

Fill Transparency (%) The transparency level of the fill. (If the fill is transparent, then other trends behind it can be seen through it,
making the entire graph easier to read.) Available for both Custom Pattern and Solid Color.

Example of trends with custom fill patterns

Tip: To programmatically modify these pen style settings during project run time, go to the Options
dialog box and then specify an appropriate value for Style Modifer. For more information, see Modify
the pen style of a point during run time on page 431.

Options
Use the Options dialog box to configure additional options for a specific point in a Trend Control object.

Accessing the dialog box
To access the Options dialog box for a specific point: first access the Points dialog box, where all of the
points in a Trend Control object are configured, and then click the Options column for that point. For more
information, see Trend Control object on page 421.

Alarms, Events, and Trends

Page 429

The dialog box in detail

Options dialog box

The Options dialog box includes the following settings:
Description

This text can be displayed in the legend of the Trend Control object during run time, providing a
brief description of the trend.

If you specify a tag name in curly brackets (e.g., {MyTag}), that tag's Description property is
used.

Eng. Unit
This text can be displayed in the legend of the Trend Control object during run time, providing
the engineering unit (i.e., the unit of measurement) associated with the trend.

If you specify a tag name in curly brackets (e.g., {MyTag}), that tag's Engineering Unit property
is used.

Lo Limit
Type a tag name or numerical value. When the trend falls below this value during run time, it
can be drawn in a different style (e.g., color). For more information, see Pen Style dialog box on
page 426.

If you specify a tag name in curly brackets (e.g., {MyTag}), that tag's LoLimit property is used.

Hi Limit
Type a tag name or numerical value. When the trend rises above this value during run time, it
can be drawn in a different style (e.g., color). For more information, see Pen Style dialog box on
page 426.

If you specify a tag name in curly brackets (e.g., {MyTag}), that tag's HiLimit property is used.

Alarms, Events, and Trends

Page 430

Hide Scale
Type a tag name or numerical value. When the value is TRUE (i.e., not zero), the Y-axis scale
associated with this trend is hidden during run time.

Note: This setting applies only when the Trend Control object is configured to
display a single section in the Y axis. In other words, the Multiple Section option in
the Axes dialog box must be cleared. For more information, see Axes dialog on
page 433.

Break Interval
Type a numerical value (default is 7200). This is the maximum interval allowed between two
consecutive points in a trend. If the interval between the two points is greater than this value,
the Trend Control object assumes that no data were collected during the interval and it does not
draw a line connecting the two points.

If the X axis is configured to be numeric, the value specified here is taken as a numeric scalar
value. If the X axis is configured to be date/time, the value specified here is taken as seconds.

This setting accepts some special values:

Value Description

-1 Do not connect any points.

-2 Connect only points that have ascending values.

X Axis Offset
Type a tag name or numerical value. The value is the offset from the X-axis scale configured for
the Trend Control object. This setting is useful when you want to display data from two or more
trends using a different scale for each trend, so that you can compare them.

If the X axis is configured to be numeric, the value specified here is taken as a numeric scalar
value. If the X axis is configured to be date/time, the value specified here is taken as seconds.

Cursor Value
Type the name of a project tag. During run time, the tag is continuously updated with the value
of the trend where it is intersected by the vertical cursor (if any) in the Trend Control object.

Y-Axis Log Base
Type a tag name or numerical value. If the value is 0 (or the box is left empty), the Y axis of the
trend is a normal linear scale. If the value is anything other than 0, the Y axis is a logarithmic
scale with a log base equal to that value. The most common log base is 1, which gives a scale of
1, 10, 100, 1000, and so on, but you can specify any log base.

Annotation ID
Type a unique ID with which annotations can be associated. This setting is optional;
annotations can also be associated with the point's tag/field, but it is better to associate them
with the annotation ID in case the tag/field is changed. For more information, see Display text-
and image-based trend annotations in a trend control on page 456.

Style Modifier
Modify the pen style's expansion, line color, line weight, or line type. For more information, see
Modify the pen style of a point during run time on page 431.

Draw Mode
Type a tag name or numerical value. If the value is 1, the historical data for this trend are
decimated before the trend is drawn in the Trend Control object. That means the trend's X axis
is divided into a number of intervals (as determined by Max Points in the Advanced settings), and
then all of the data points within each interval are averaged together to be drawn as a single
point.

This is similar to the Decimation option in the Advanced settings, except that the decimation is
done only for this trend rather than for all trends in the Trend Control object.

Alarms, Events, and Trends

Page 431

Note: If decimation is enabled and the X axis is configured to be numeric rather
than date/time, the data used in the X axis must be properly sorted. For more
information, see the Data Sources settings.

Note: If the data source for the point is a tag from a Trend worksheet that has
been configured to save to a Historian database or AVEVA Insight, decimation
must be enabled.

Modify the pen style of a point during run time
Use Style Modifier to modify the pen style of a point in a trend control.

By default, the data points in a trend control are drawn with a solid, black line. You can change the style
of the line — more specifically, you can change the style of the pen that draws the line — by changing the
settings in the Pen Style dialog box. The user can also open the Pen Style dialog box during run time and
change the settings then. For more information, see Pen Style dialog box on page 426

Alternatively, you can use Style Modifier (in the Options dialog box) to programmatically modify some of the pen
style settings during run time. In other words, you can specify project tags that will determine the pen style
settings, and then you can use scripts or user input to change the tag values during run time.

Options dialog box

The Style Modifier box accepts a text string that includes one or more parameters, and each parameter modifies
one element of the pen style. The text string must have this basic format:

<Parameter1>=<Value1>;<Parameter2>=<Value2>;…;<ParameterN>=<ValueN>

The following table lists the supported parameters and their accepted values:

Alarms, Events, and Trends

Page 432

Parameter Description Accepted Values

Expansion The method or algorithm used to connect the data points. • 0 (smooth/analog)

• 1 (squared/digital)

Type The type of line (e.g., solid, dashed, dotted) that connects the
data points.

• 0 (solid)

• 1 (dashed)

• 2 (dotted)

• 3 (dash-dot)

• 4 (dash-dot-dot)

Weight The weight (i.e., thickness) of the line, in pixels. from 0 to 10

Color The color of the line.
For more information about colors in BOS, see Color Interface
on page 73.

a 24-bit color value from 0 to 16777215

Note: These parameters are the same as the settings in the Pen Style dialog box.

You could specify literal values for any or all of the parameters, but that is effectively the same as using
the Pen Style dialog box to configure those settings. The key to programmatically modifying the pen style is
specifying tag names or expressions enclosed in curly brackets ({}) for the parameter values. Then, whenever
the value of a specified tag/expression changes, the pen style is modified.

For example, in the Style Modifier box, type the following string:

Expansion={ExpansionTag};Color={RGBColor(0,0,ColorTag)}

For the parameter Expansion, you specified the project tag ExpansionTag enclosed in curly brackets.
There are only two accepted values (0 and 1) for Expansion, so ExpansionTag could be Boolean type. Then,
whenever the value of ExpansionTag changes during run time, the expansion method is modified accordingly.

For the parameter Color, you specified an expression that calls the function RGBColor to convert RGB color
values to a 24-bit color value. The red and green color values remain constant at 0, but the blue color value is
determined by the project tag ColorTag. Then, whenever the value of ColorTag changes during run time, the
value returned by the function also changes and the line color is modified accordingly.

Following this example, you can specify any project tags or expressions for the parameters as long as their
returned values are within the accepted values for the parameters.

SPC
Use the SPC dialog box to specify project tags that will receive certain statistical values that are calculated
from the entire history of a trend. These statistics are used in statistical process control (SPC), which is a
method for monitoring processes and ensuring that they operate efficiently.

Accessing the dialog box
To access the SPC dialog box for a specific point: first access the Points dialog box, where all of the points in a
Trend Control object are configured, and then click the SPC column for that point. For more information, see
Trend Control object on page 421.

Note: If the data source for the point is a tag in a Trend worksheet that has been configured to save
to a Historian database or AVEVA Insight, SPC is not supported.

Alarms, Events, and Trends

Page 433

The dialog box in detail

SPC dialog box

The SPC dialog box includes the following settings:
Average

Type the name of a project tag (Real type) that will receive the calculated average of all of the
data point's historical values.

Note: When a value is not a number (NaN) — for example, when a tag is flagged
as BAD quality — it is counted as 0 for the purpose of calculating the average.

Minimum Value
Type the name of a project tag (Real type) that will receive the minimum historical value of the
data point.

Maximum Value
Type the name of a project tag (Real type) that will receive the maximum historical value of the
data point.

Standard Deviation
Type the name of a project tag (Real type) that will receive the standard deviation of the data
point. A low standard deviation indicates that the value of the data point tends to stay close to
the average; a high standard deviation indicates that the value tends to vary greatly from the
average.

Count
Type the name of a project tag (Integer or Real type) that will receive the total number of
historical values, or samples, for the data point. The count will increase as the project runs and
the historical database grows.

AXES DIALOG

Accessing the dialog
To access the Axes dialog for a specific Trend Control screen object, first access the Object Properties dialog for
that screen object and then click Axes.

Alarms, Events, and Trends

Page 434

The dialog in detail

Axes dialog

The Axes dialog contains the following elements:

Group / Setting Description

Date/Time

Numeric

Data Type

Scale Format

Type • Auto: When this option is selected, the Trend Control object works with
Start Date/Time when is it triggered to Pause Mode, and it works with
Time Before Now when it is triggered to Play Mode.

• Start Date/Time: When this option is selected, the value of the tag
configured in the Time field defines the starting Date/Time for the data
displayed on the object.

• Time Before Now: When this option is selected, the value of the tag
configured in the Time field defines the amount of time before the current
Date/Time, which will be used as the starting Date/Time for the data
displayed on the object.

Duration Defines the Period of data displayed on the object. You can configure a string
tag in this field, so you can change the duration dynamically during runtime
by changing the value of this tag. The format of the value supported by this
property is HH:MM:SS. For example, 36:00:00 (thirty six hours).

X Axis

Period (when Data
Type is Date/Time)

Time This field is optional. The value of the tag configured in this field represents a
period of time, rather than a specific date or time. The meaning of this value
depends on the option set for the Type property.

• When the Type is set as Start Date/Time, the value of the tag configured
in this field must comply with the format Date Time. For example,
02/10/2005 18:30:00.

Alarms, Events, and Trends

Page 435

Group / Setting Description
• When the Type is set as Time Before Now, the value of the tag configured

in this field must comply with one of the following formats:

1. Time (string value). For example, 48:00:00 (forty eight hours).

2. Number of hours (real value). For example, 2.5 (two hours and thirty
minutes).

If the Time field is left blank (or if the tag configured in this field has the value
0), the object displays data up to the current Date/Time.

Min / Max Minimum and maximum values displayed on the X axis.
The Min and Max properties can hold real numeric values up to six decimal
places. If you need more precision than that, then you must configure the Min
and Max properties with Real tags and then store the values in those tags.

Period (when Data
Type is Numeric)

Eng. Units Engineering Unit (e.g., Kg, BTU, psi) that is associated with the X axis during
runtime.

Divisions You can configure the number of divisions (vertical or horizontal lines) drawn on
the object for the X and/or Y axis respectively, as well as the color of these lines.

Grid

Color The color of the vertical grid lines.

Time Bar When checked, the Time bar is displayed below the X axis during runtime;
otherwise, it is hidden. The time bar is a standard interface that can be used by
the operator to change the X axis scale during runtime.

Scroll Bar When checked, the Scroll bar is displayed below the X axis during runtime;
otherwise, it is hidden. The time bar is a standard interface that can be used by
the operator to navigate through the X axis scale during runtime. Optionally, you
can configure a tag in the Scroll bar field, which defines the period for the scroll
bar. If this field is left empty, the period is equal to the current value for Duration
of the X axis.

Cursor The cursor is an optional ruler orthogonal to the X axis, which can be used
during runtime to obtain the value of any pen at a specific point (intersection of
the pen with the cursor). When you click this button, the Cursor dialog launches,
where you can configure the settings for the optional vertical cursor as follows:

Positon Defines the position of the X axis, as well as its direction and orientation, as
follows:

Divisions You can configure the number of divisions (vertical or horizontal lines) drawn on
the object for the X and/or Y axis respectively, as well as the color of these lines.

Grid

Color The color of the horizontal grid lines.

Min / Max Default minimum and maximum values displayed in the Y axis. Used when
more than one pen shares the same scale (Multiple Sections disabled), and/or
for the points whose Min and Max fields are not configured (left blank).
Please note that if you configure a trend point to have a logarithmic scale (see
Points - Options), then the value configured here for Min should be greater
than 0. Even if you configure a minimum value less than or equal to 0 (which is
impossible for a logarithm), a minimum value of 0.00000000000000000000001
will be used automatically during run time. This will not change any of the object
properties that you have configured.

Multiple Selections When checked, the Y scale is divided automatically into one section for each
pen; otherwise, all pens share the same Y scale.

Y Axis

Scale

Format Launches a dialog for configuring the format of the labels displayed by the Y
axis.

Note: The tags configured in the Period/Range fields are automatically updated when the user
changes the X scale dynamically during runtime, using the Time bar embedded in the object.

• Data Type: The X axis can display either Date/Time values or numeric values, according to this setting.

Alarms, Events, and Trends

Page 436

Data Type Scale Format

Date/Time

Numeric

Note: The number of decimal points for the X or Y scale (Decimals) can be configured with a tag.
Therefore, this setting can be modified dynamically during runtime.

• Cursor: The cursor is an optional ruler orthogonal to the X axis, which can be used during runtime to
obtain the value of any pen at a specific point (intersection of the pen with the cursor). When you click this
button, the Cursor dialog launches, where you can configure the settings for the optional vertical cursor as
follows:

Cursor Dialog

Property Description

Enable When checked, the vertical cursor is visible during runtime.

Color Color of the line drawn for the cursor.

Position (0#100) You can configure a numeric tag in this field, which is proportional to the position of the cursor on the X axis, from 0 to 100%.
When this value is changed, the position of the cursor is automatically modified.

Value Output You can configure a string tag in this field that returns the value of the X axis in which the cursor is currently positioned.

Alarms, Events, and Trends

Page 437

• Position: Defines the position of the X axis, as well as its direction and orientation, as follows:

Position Dialog

Property Description

Placement Side of the trend control on which the X axis will be placed.

Direction Direction of the X axis.

Orientation Orientation of the X axis.

Vertical Label Orientation The orientation of the text labels on the vertical axis, regardless of whether the vertical axis is X or Y.

TOOLBAR DIALOG
The Toolbar dialog is used to customize the toolbar on the Trend Control screen object.

Accessing the dialog
To access the Toolbar dialog for a specific Trend Control screen object, first access the Object Properties dialog
for that screen object and then click Toolbar.

The dialog in detail

Toolbar dialog

The Show toolbar option controls whether the entire toolbar is shown during runtime. You may hide the toolbar
to save space or to prevent users from changing the trend display.

Alarms, Events, and Trends

Page 438

Also, each command/tool in the toolbar has the following properties:

Column Name Description

Command The name of the command/tool. For more information about each tool, see

Show The option to show the tool on the toolbar.

Activation Tag An optional tag trigger — when the value of the tag changes from FALSE (0) to TRUE (any non-zero value), the command is activated
as if the operator clicked the tool.
This can be used to script changes in the trend display during runtime.

Tooltip The tooltip that is displayed when the mouse cursor hovers over the tool.

For more information, see About the trend control runtime interface on page 421.

DATA SOURCES
Use the Data Sources dialog box to configure one or more data sources for a Trend Control object.

Accessing the dialog box
To access the Data Sources dialog box for a specific Trend Control object, first access the Object Properties
dialog for that object and then click Data Sources.

The dialog box in detail

Data Sources dialog

The data source defines the location of the values from the data point(s) associated with it. Many points can
share the same data source — you do not need to create one data source for each data point.

The data source tag is available by default to the Trend Control object. You can add additional data sources
with the New button. The name you enter will be used as an alias to link the data points to this new data
source.

For more information about adding data sources, see:

• Using the Data Source Text File on page 446

• Using the Data Source Database on page 449

The other fields in this dialog allow you to edit the data source settings:

Alarms, Events, and Trends

Page 439

Source Type
Select the source type of the location of the data point values. For more information about the
different types of sources, see the table below.

X Axis field

If the X axis of the trend graph is set to be numeric instead of date/time (in the Axes settings),
then enter the name of the field (column) of the data source that holds the data for the X axis.

Note: If you have enabled decimation (either in the Advanced settings for all
trends or in the Options settings for a single trend), then the field that you have
specified here must be sorted in ascending order. The procedure to do this varies
by source type (e.g., text editor, spreadsheet application, external database, etc.),
so for more information, see the documentation for your specific type.

Max. Buffer
The maximum amount of data (in bytes) that will be held in runtime memory.

Load Progress
The tag in this field will receive a real value (0-100) that represents the percentage of the Data
Source load progress.

Ann. Source
The name of the database table that contains text and image annotations to be displayed in
the trend control. This must be a table in the same database that is configured to be the trend
control's data source. Annotations are not supported for other types of data sources. For more
information, see Display text- and image-based trend annotations in a trend control on page
456.

Sort
This option is useful for plotting data from a text file. When enabled (checked), it sorts the data
and shows the Cursor column value until the Max. Buffer is filled. When disabled (unchecked), the
data are not sorted and the Cursor column value is not shown.

Keep Open
This option keeps the data source open as long as the screen that contains the Trend Control
object is open. This improves the performance of the runtime project, but keeping the data
source open may cause other problems like database connection errors (when Source Type is
Database) and file write conflicts (when Source Type is Batch or Text File). To close the data source
after the data has been loaded, clear (uncheck) this option.

Data Source Settings
Click to define the settings for the selected Source Type

The following table summarizes the settings for each Source Type:

Source Type Description X-Axis field Data Source Settings

Batch Batch generated by the Trend
task of BOS

Disabled. The X-Axis data will
be retrieved automatically on
the correct position from the
proprietary Batch file generated
by BOS.

Enter the data point values in Batch Name for their retrieval. You
can configure a tag between curly brackets in this field to change
this setting dynamically during runtime.

Database SQL Relational Database The name of the field that
contains the X-axis data.

Configure the settings to link this Data Source to the SQL Relational
Database that holds the data point values. For more information,
see Using the Data Source Database on page 449.

Text File Text file (e.g., CSV file) with
data point values separated by
a specific delimiter

Number of the column that
holds the X-Axis data. The
number 0 refers to the first

Enter the name of the text file that holds the data points. The default
path is the current project folder. You can configure a tag between
curly brackets in this field to change this setting dynamically during
runtime.

Alarms, Events, and Trends

Page 440

Source Type Description X-Axis field Data Source Settings
column, 1 refers to the second
column, and so on.

You can also choose one or more delimiters for the data stored in
the text file. The value of each row is written in the text file between
two delimiters. When using a comma as a delimiter, the grid object
is able to read data from CSV files. You can even choose a custom
delimiter by checking the Other option. For more information, see
Using the Data Source Text File on page 446.

Note:

There is a default query timeout of 120 seconds, to prevent the project client from hanging on an
unusually long data source query. To adjust the timeout period, manually edit your project file
(<project name>.APP) and change the following setting:

[Trend]
QueryTimeout=120

If you change the value to 0, then there will be no timeout at all; data source queries will always
continue until they are completed.

LEGEND DIALOG

Accessing the dialog
To access the Legend dialog for a specific Trend Control screen object, first access the Object Properties dialog
for that screen object and then click Legend.

Alarms, Events, and Trends

Page 441

The dialog in detail

Legend dialog

The Legend dialog contains the following elements:

• Show: When checked, the embedded legend is displayed during runtime. This interface provides useful
information associated with the pens currently linked to the object.

• Available / Visible: The items in the Visible box are displayed in the legend during runtime. You can add items
to and remove them from the Visible box using the » and « buttons respectively. Moreover, you can use the
Move Up and Move Down buttons to change the order in which the items are displayed in the legend during
runtime.

The following table lists the available legend items:

Item Legend Icon Description

Eng Units The tag/pen's Engineering Units.

Min The tag/pen's minimum possible value.

Max The tag/pen's maximum possible value.

Selection Press button to select another tag for this pen.

Remove Press button to completely remove this pen from the legend and the Trend chart.

Hide Select (check) option to hide this pen in the Trend chart.

Pen Style Press button to change the pen's line style, weight, color, markers, and so on.

Alarms, Events, and Trends

Page 442

Item Legend Icon Description

Scale Select (check) option to show the pen's scale on the Trend chart.

Description Description of the tag/pen.

Current The current value of the tag configured to the pen.

Cursor The value of the pen where it intersects the cursor line.

• Properties: Allows you to configure the properties for the field highlighted in the Available or Visible box:

Property Description

Label Label for the field displayed during runtime

Width Width for the field (in pixels) during runtime.

Align Alignment of the data displayed in the field.

Available during runtime When this option is checked, the user can show or hide the field during runtime.

• Maximum size: Defines the size of the legend in terms of number of rows. For instance, the user might have
8 points being displayed in the trend object, if the maximum size is set to two, the legend will have a scroll
bar to allow the user to scroll to the other points.

• Number of items: Number of points (default) displayed on the legend. You can allow the user to add/remove
points during runtime regardless of the value in this field.

• Selected Item: You can configure a numeric tag in this field. The object writes in this tag the number of the
selected row. In addition, you can select different rows by writing their values in this tag.

• Fonts: Sets the font for the text displayed in the legend.

For more information, see About the trend control runtime interface on page 421.

ADVANCED
Use the Advanced dialog box to configure advanced settings for a Trend Control object.

Accessing the dialog box
To access the Advanced dialog box for a Trend Control object, first access the object properties for that object
and then click Advanced. For more information, see Trend Control object on page 421.

Alarms, Events, and Trends

Page 443

The dialog box in detail

Advanced dialog box

The Advanced dialog box includes the following settings:

Group Setting Description

Update trigger When the tag configured in this field changes value, the trend object is updated (refreshed).

Update interval When the update trigger is issued and the X Axis if of type numeric, the value on this field will be added to
the minimum and maximum values of the X Axis.

Load indicator Type the name of a project tag. While the trend control is loading external data, the tag receives a value of
1, and when the trend control has finished loading the data, the tag receives a value of 0.

Move to current time
on run

When this box is checked, X axis shifts to the current time automatically when the object is triggered to Play
mode, during runtime.

Run Mode Options

Retrieve bounding
samples

When this box is checked, the object retrieve the data outbound the object (first points only). Uncheck this
option can improve the performance, since the points outbound the object will not be retrieved from the
history. On the other hand, the object will not draw lines linking the first and last samples to the extremities
of the object.

Run-Time Config Save trigger The configuration of a Trend Control object can be changed during run time, using the object's on-screen
tools. You can then save the new configuration and load it again at a later time. This allows you to do things
like:

• Keep the configuration consistent when the user closes and then reopens a project screen, even after
restarting the project; or

• Create standard configurations for different situations and then load the appropriate configuration
during run time, based on a predefined condition or the user's selection.

Alarms, Events, and Trends

Page 444

Group Setting Description

Note: This feature is not available on Mobile Access.

When the tag configured in the Save trigger box is toggled (i.e., changes value), the current configuration
of the Trend Control object is saved to an external file (as specified in the File Name box). The following
settings are saved:

• Points: Color, Tag/Field (in case you are using indirect tags), Min Scale, Max Scale, Hide

• Axes: Period (start time, end time, etc.), Grid Divisions, Number of Labels, Enable Cursor, and the
current zoom

• Toolbar: Show/hide state of all commands that do not have activation tags configured

• Legend: Visible columns with widths, Maximum Size, Number of Items, Selected Item

Load trigger When the tag configured in the Load trigger box is toggled (i.e., changes value), the previously saved
configuration will be loaded from the external file (as specified in the File Name box) and then applied to the
Trend Control object.

File Name The name of the external file that will be saved and loaded. If you do not specify a file extension, the default
extension is .stmp. If you do not specify any file name at all (i.e., if you leave this box empty), the default
name is:

<screen name><object ID>TrendControl.stmp

For the local Viewer running on the project runtime server, the file is saved in the project's Web folder. For
example:

<project name>\Web\MyScreen10TrendControl.stmp

For Thin Clients running on all other stations, the file is saved in the standard Temp directory. For example:

C:\Users\<current user>\AppData\Local\Temp
\MyScreen10TrendControl.stmp

To change the file name during run time, type an appropriate tag/expression enclosed in curly brackets (e.g.,
{UserName}TrendControl). The current value of the tag/expression will be used whenever
Save trigger or Load trigger is activated.

Note: If you specify a file extension other than .stmp, the resulting save files will not be
recognized or converted when you upgrade to a newer version of BLUE Open Studio 2020.
To ensure the files are converted, manually change the extensions on all of the files to .stmp
before you upgrade. Then, after you upgrade the software and your project, you may change
the extensions back to what they were before.

Auto Save If this option is selected, the current configuration of the Trend Control object is automatically saved when
the project screen is closed. If this option is cleared, the configuration is saved only when Save trigger is
activated.

Screen This interface allows you to create your custom dialog to modify or insert pens to the object.
Name of the screen which must be launched when the user triggers a command to modify or insert a new
pen to the object during runtime.

Point Number Point number (from the Points dialog), indicating the point associated to the pen that will be inserted or
modified during runtime.

Custom Point
Selection

Add Indicator Flag that indicates that the user triggered an action to insert a new pen (value 1) instead of modifying a pen
that is already been visualized (value 0).

Trigger When the project tag specified in this box changes value (i.e., toggles), the current state of the trend control
is exported to an image file. In other words, a screen shot is taken, but only of the trend control. The toolbar,
scroll bar, legend and time display are not included.

Export to File

File Name The file path and name of the exported file.

Alarms, Events, and Trends

Page 445

Group Setting Description
If no path is specified, the file is saved in the Web sub-folder of the project folder. If no extension is
specified, it is determined by Format (see below).

To programmatically change the file name during run time, specify a project tag or expression enclosed in
curly brackets (e.g., {MyFileName}). The value of the specified tag/expression is used.

Status The project tag specified in this box receives a status code that indicates the success or failure of the most
recent export.
The status code can be one of the following possible values:

Value Description

-2 Out of memory. The specified image size is too
large. See Size below.

-1 Error during export. Either the specified image
size is invalid (e.g., 0) or the file could not be
saved.

0 Export has started.

1 Image file exported successfully.

Format The graphic format of the exported image file.
If you select Auto, the format is determined by the file extension specified in File Name (see above). If you
select Auto but do not specify a file extension, the default format is BMP.

Size The image file is exported at full size by default. However, you can specify the Width and Height (in pixels).

Enable When this option is selected, the trends in the Trend Control object that are configured to show historical
data will have their data decimated before the trends are drawn. This means that for each trend, the X
axis is divided into a number of intervals (determined by Max Points) and all of the data points within each
interval are averaged together to be drawn as a single point. This can improve runtime performance when
there is a large amount of historical data to display, and it can make the trends easier to read.
Decimation only works when the trend control is in Stop Mode (a.k.a. Historical Mode).

Please note that when this option selected, decimation is done for all trends that are configured to show
historical data. To do it for only for a single trend, use Draw Mode in the Points – Options settings.

Note: If decimation is enabled and the X axis is set to be numeric rather than date/time,
then the data used in the X axis must be properly sorted. For more information, see the Data
Sources settings.

Note: If the data sources for one or more points are tags from a Trend worksheet that has
been configured to save to a Historian database or AVEVA Insight, decimation must be
enabled at least for those points.

Decimation

Max Points The maximum number of data points used to draw each trend. Default is 2048.

VK (Virtual Keyboard) Virtual Keyboard type used for this object.

Ignore X Filter When this box is checked, the X Filter is ignored to avoid adding the WHERE or querying clause to the Data
Sources.

Enable translation Enable the external translation for the text displayed by this object.

Options

Auto Format When checked, decimal values in the Current, Cursor, Max, Min and Scale columns will be formatted
according to the virtual table created by the function SetDecimalPoints.

Note: For the Auto Format to work, decimals formatting on the X axis must be disabled —
that is, the Decimals box in the Axes settings must be left empty.

Alarms, Events, and Trends

Page 446

Using the Data Source Text File
The Trend Control can generate trend charts from any Text File that has the values organized in columns and
rows. The columns should be separated from each other by special characters (usually the comma). Each
sample (pair of values representing a point in the graph) is represented by a row (a line in the file). Suppose
that the user wants to display a chart with the information in the following table:

X Value Y1 Value Y2 Value

0 0 10

1 1 20

2 2 30

3 3 40

We have one variable that represents the X Axis and two variables (Y1 and Y2) that will represent different
lines in the chart. The first step is to convert the data into a text file. If we adopt the comma as our separator
the file will be as shown below:

We strongly recommend that you save the file in the same folder where the project is. By doing so, you do not
have to specify the entire path and your project will still work, even if it is copied to a different computer.

Alarms, Events, and Trends

Page 447

Once you have added the Trend Control to your screen, double-click on the object to open the Object
Properties and click on Axis…. Change the Data Type of the X Axis to Numeric, and set the ranges as shown in
the picture below:

Click OK on this window and then, in the Object Properties window, click on the Data Sources… button. The
following window will display:

Trend Control – Data Sources dialog

Alarms, Events, and Trends

Page 448

We need to create a data source in order to access to the text file. Click on the New… button, specify the Data
Source name MyTextFile and then click Create. You should see the following information now:

Setting X Axis field to 0

On the X Axis field we need to indicate which column in our text file represents the X Axis. In our example
we are using column zero, so enter 0 for this field, then click Data Source Settings…. The following window will
display:

Selecting the text file

If you have copied the text file to the project folder, you only have to specify the file name, otherwise, enter
with the complete path where the file is located (use the browse button as needed). Click OK on this window
and OK again to finish the data source configuration and close the Data Source configuration Window.

Now we need to define our Y1 and our Y2. They will be represented by points on our Trend Control. Double-
click on the Trend Control again to access the Object Properties window and then click on Points…. Your next
step is to define the points according to the following figure:

Alarms, Events, and Trends

Page 449

After following these steps, run your project and you should see something similar to the figure below:

Using the Data Source Database
The Trend Control can generate trend charts from any Relational Database that can be accessed through
the ADO.Net technology. This Appendix illustrates how to access a Microsoft Access Database; if you are
using another type of database, almost all the definitions will apply, however you will need to configure
your connection on a different way. For information on how to configure other databases, please refer to the
Appendixes in the Database Interface section of this manual.

Alarms, Events, and Trends

Page 450

Suppose that you have an access database at your C drive named mydata.mdb and that you want to generate
a chart based on the information in the following table:

Alarms, Events, and Trends

Page 451

The first step is to add the Trend Control to your screen. Now double-click on the object to open then Object
Properties and click on Data Sources…. The following window will display:

Trend Control – Data Sources dialog

We need to create a data source in order to access to the database. Click the New… button, specify the Data
Source name MyDB and then click Create. You should see the following information now:

Setting X Axis field to Time_Stamp

Alarms, Events, and Trends

Page 452

Change the Source Type to Database and specify Time_Stamp in the X Axis field. Then click on the Data Source
Settings… button, the following window will display:

Clearing the Use project default option

Alarms, Events, and Trends

Page 453

Uncheck the checkbox Use project default and click on the browse button … in order to configure the connection
string. The following window will display:

Selecting the OLE DB Provider

Alarms, Events, and Trends

Page 454

Select the Microsoft Jet 4.0 OLE DB Provider and click Next ». In the following window, you should specify the
database path:

Selecting the database file

Alarms, Events, and Trends

Page 455

Click OK to finish the Connection String configuration. Now uncheck the option Use default name and select the
table from your database as shown below:

Selecting the table in the database

Click OK on this window and OK again to finish the data source configuration and close the Data Source
configuration window.

Now we need to define Temperature and Pressure. They will be represented by points on our Trend Control.
Double-click on the Trend Control again to access the Object Properties window and then click Points…. Your
next step is to define the points according to the following figure:

Alarms, Events, and Trends

Page 456

If you run the trend, it will start with the current date/time. In order to see the data in the chart you will have
to properly configure the start date/time as shown below:

Display text- and image-based trend annotations in a trend control
Use trend annotations to display additional text and images in a trend control during project run time. The
annotations' content and settings are stored in the same database that stores the historical data.

When you configure the data source for a Trend Control object, you can connect to an external database
that stores the historical data that you want to display. The historical data might be generated by a Trend
worksheet in the same project, or they might be provided by some other source, but in either case, they are
typically stored in a single database table with one field (column) for each trend point.

A database can have many tables, however, so you can create another table to store your trend annotations.
The table can be named anything (e.g., TrendNotes), but it must have the following fields (columns):

Field Description

Type The type of annotation:

• 0 = Image

• 1 = Text

AnnotationID The annotation ID for the specific trend point with which the annotation should
be associated. Multiple annotations can be associated with the same point.
Associating an annotation with a point ensures that the annotation will be
displayed correctly in the trend control. If the trend control is configured to
display multiple sections, the annotations associated with each point will be
displayed in that point's section. Also, if a point is hidden or removed from the
trend control during run time, its associated annotations will also be hidden or
removed.

The annotation ID for a point can be configured in that point's options. For
more information, see Options on page 428. If no annotation ID has been

Alarms, Events, and Trends

Page 457

Field Description
configured for a point, you can associate annotations with the point's tag/field
instead.

AnnotationContent The content of the annotation:

• If the value in the Type field is 0, the value in this field should be the
name of the image file (e.g., image.jpg). The file should be located
Web sub-folder of your project folder (e.g., <project name>/
Web/image.jpg), on the computer that hosts your project runtime
server.

• If the value in the Type field is 1, the value in this field should be a plain
text comment.

X1 The left border of the annotation box, specifed in the same units as the trend
control's X axis. If the X axis is set to Date/Time, the value in this field should be
an appropriate time stamp (e.g., 10/10/2009 10:00:00). For more
information, see Axes dialog on page 433.

X2 The right border of the annotation box, specified in the same units as the trend
control's X axis. If the X axis is set to Date/Time, the value in this field should be
an appropriate time stamp (e.g., 10/10/2009 10:00:00). For more
information, see Axes dialog on page 433.

Y1 The top border of the annotation box, specified in the same units as the trend
control's Y axis. For more information, see Axes dialog on page 433.

Y2 The bottom border of the annotation box, specified in the same units as the
trend control's Y axis. For more information, see Axes dialog on page 433.

Z The Z-index of the annotation box, which determines whether it is drawn in
front of or behind other annotation boxes. The greater the Z-index, the more
"forward" the annotation box will be.

Note: If the value of Z is negative, the annotation box will be
drawn behind the trend control.

ImageFitMode How the image should fit in the annotation box:

• 0 = Use the specified image as a fill pattern.

• 1 = Scale the specified image to fit the annotation box.

• 2 = Resize the annotation box to fit the specified image. The bottom-
left corner defined by X1 and Y2 remains fixed, while the top and right
borders defined by X2 and Y1 are moved as needed.

The value in this field is significant only if the value in the Type field is 0.

TextBaseWidth The width of the text label (in pixels). If this value is not the same as the width
of the annotation box (which is X2 minus X1), the text label will be scaled
horizontally to fit.
The value in this field is significant only if the value in the Type field is 1.

TextBaseHeight The height of the text label (in pixels). If this value is not the same as the height
of the annotation box (which is Y1 minus Y2), the text label will be scaled
vertically to fit.
The value in this field is significant only if the value in the Type field is 1.

Font The font settings, in the following format:
size:color:alignment

size is the font size in points. The default font size is the same as the size
specified for the Y-axis labels.

color is the font color, specified as an RGB code (e.g., 0,128,128). For
more information about RGB codes, see Color Interface on page 73. The default
font color is the same as the color specified for the Y-axis labels.

alignment is the alignment of the text within the text label:

• 0 = Top-left (default)

Alarms, Events, and Trends

Page 458

Field Description
• 1 = Top-center

• 2 = Top-right

• 3 = Middle-left

• 4 = Middle-center

• 5 = Middle-right

• 6 = Bottom-left

• 7 = Bottom-center

• 8 = Bottom-right

Note: The font style cannot be specified separately. It will be the
same as the style specified for the Y-axis labels.

The value in this field is significant only if the value in the Type field is 1.

With the table's fields (columns) configured like this, each record (row) in the table can store the content and
settings for an single annotation. Then, in the trend control's Data Source settings, in the Ann. Source box, type
the name of this table (e.g., TrendNotes). For more information, see Data Sources on page 438.

With everything properly configured, the project runtime server will get the data stored in this table and use
them to display your annotations in the trend control during project run time. For example, given a record
(row) with the following values:

Field (Column) Value

Type 1

AnnotationID SimulSin

AnnotationContent This is an example of a text annotation.

X1 01/29/2015 10:23:36

X2 01/29/2015 10:24:45

Y1 81

Y2 62

Z 1

ImageFitMode 0

TextBaseWidth 381

TextBaseHeight 87

Font 11:0,0,0:4

Alarms, Events, and Trends

Page 459

…the annotation will be displayed in the trend control like this:

An example of a text-based trend annotation displayed in a trend control

Please note that the red lines and captions in the example above are included only to highlight the borders
(X1, X2, Y1, Y2) of the annotation box. They would not actually be displayed like this during project run time.

Alarms, Events, and Trends

Page 460

Grid object
The Grid object allows you to read/write data in a tabular format from the data source configured in the
object.

To draw one, do the following:

1. On the Draw tab of the ribbon, in the Data Objects group, click Grid.

2. Click on the screen worksheet, and then draw a box of the desired size (while holding down the mouse
button).

3. Release the mouse button, and the Grid Object will display.

Sample Grid Object
Right-click on the Grid Object, and select Properties from the menu. The Object Properties dialog will open. Use
this dialog to configure the Grid Object's parameters:

Object Properties: Grid

• Data Source: Select the data source type. The object supports three data sources:

Data Source Description

Text File Displays data from a text file in the ASCII or Unicode format (e.g., CSV text files).

Class Tag Displays values from a Class Tag, where the members of the tag are fields (columns) of the grid object, and each array
position is one row of the grid object.

Database Displays data from an SQL Relational Database, using ADO (ActiveX Database Object) to exchange data with the database.

• Data source settings: Click to launch the Data dialog, where you can specify a data source for the Grid object.

Alarms, Events, and Trends

Page 461

• Columns: Click to launch the Columns dialog, where you can configure the settings (such as label, column,
width, etc.) for the columns of the Grid object.

• Advanced: Click to launch the Advanced dialog, where you can configure several settings for the Grid object.

• Fonts: Click to launch the Fonts dialog, where you can configure the font settings for the text displayed in
the Grid object.

Tip: By default, the same text color is used for both the header and the body of the grid. If you
want to set a different text color for the header, then manually edit the project file (<project
name>.APP) to add the following setting:

[Objects]
GridHeaderTextColor=value

value must be a hexadecimal RGB color value, such as FF0000 for red. Please note that this
setting will apply to all grid headers in your project.

• Highlight: Select a background color for the selected row, during runtime.

• Text: Select a text color for the selected row, during runtime.

• Odd lines: Select a background color for the odd rows.

• Even lines: Select a background color for the even rows.

• Disable: You can enter an expression in this field to disable data input or action by the user.

• E-Sign: When you check this option, the user will be prompted to enter an electronic signature before
entering or modifying data on the object.

• Security: Enter the security system access level required for the object/animation.

• Virtual keyboard: Select a Virtual Keyboard type used for this object. The option <Use Default> selects the
default Virtual Keyboard configured in the Viewer settings (Viewer on the Project tab of the ribbon). You can
also specify a different Virtual Keyboard for this Grid object.

Data dialog
This dialog allows you to configure the data source for a Grid object.

Grid Data – Text File
When the Data Source type is set to Text File, you can configure the following settings:

• File: Enter the name of the text file source. You can either type the file name and its path or click the …
button to browse for it. (If the file is stored in your project folder, you can omit the path in the name.)

Alarms, Events, and Trends

Page 462

Tip: You can configure tag names between curly brackets {TagName} in the File field.

• Delimiters: Set the delimiter(s) used in the data source file. For instance, if the data will be read from a CSV
(comma separated values) file, you would select the Comma option. You can even choose a custom delimiter
by checking the Other option and typing the custom delimiter in the field beside it.

• Read only checkbox: When this option is checked, the Grid object will only read data from the specified file.
The object will not write anything to the file.

Grid Data – Class Tag
When the Data Source type is set to Class Tag, you can configure the following interface:

• Class Tag: Enter the name of the main class tag source. (Do not specify a specific member of the class tag.)
You can specify the initial array position in this field (e.g., Mytag[10]); otherwise, 0 (zero) will be used as
the initial position by default.

• Number of Items: Enter the number of array positions from the Class Tag that should be displayed.

• View: When the tag configured in the optional field changes value (e.g., toggles) during runtime, the grid
object launches a dialog, allowing the user to show/hide each column or modify their positions.

Alarms, Events, and Trends

Page 463

Grid Data – Database Configuration
When the Data Source type is set to Database, you can configure the following settings:

Please refer to the Database Configuration dialog for further information about this dialog.

Note: Configuring a secondary (redundant) database for a Grid object will make the content of
the object read-only — that is, the object can read and display data from the primary or secondary
database, as needed, but changes made in the object cannot be written to either database. This also
means that the options Insert Trigger and Save on data change will have no effect. For more information
about those options, see Advanced dialog on page 468.

Alarms, Events, and Trends

Page 464

Columns dialog
This topic describes the Columns properties of the Grid object.

Column properties for a Grid object

Column
This number indicates the order of the columns in the grid, from left to right. To reorder the
columns, use the Move Up and Move Down buttons at the bottom of the dialog box.

Label
Type a label for the column, which will be displayed in the header row of the grid.

You can type a string expression for this setting (e.g., {MyLabel}). When the value of the
expression changes during project run time, the label is changed to match.

When the label is blank, the width of the entire column is set to 0. You can do this to hide
columns during project run time.

This option is not available if the Show header option in the Advanced settings is not selected.

Member
Enter the name of the class member to which this column will be linked. If this field is left in
blank, the text configured in the Label field will be used as a default member name.

This setting is available only when the Grid object's data source is set to Class Tag.

Field
Enter the name of the field (column) in the database table to which this column will be linked. If
this field is left in blank, the text configured in the Label field will be used as a default field name.

Alarms, Events, and Trends

Page 465

You can configure valid SQL statements directly in the field (e.g., List(DISTINCT
[Cell_Name]) AS [Cell Name]). You can also type a string expression that provides the SQL
statement.

This setting is available only when the Grid object's data source is set to Database.

Type
Select the data type of the values that will be displayed in the column. In particular, when the
Grid object's data source is set to Database, make sure the Type configured for each column of the
grid matches the data type of the corresponding field in the database. The following types are
available:

Type Description

Text Display string values (i.e., alphanumeric text).

Numeric Display numeric values.

Picture Display the specified image file (.bmp or .ico) located in the Web sub-
folder of your project folder. For example, if the value from the data
source is MyFile.bmp, the Grid object will display the image file
located at <project name>/Web/MyFile.bmp.

If it is a .bmp file, the image may be resized or stretched to fit the
column. If it is an .ico file, which can contain several scaled versions
of the same image, the version that best fits the column will be
automatically selected and then resized if necessary. In both cases,
resized images cannot be aligned in the column (i.e., the Align
setting for the column will have no effect).

If the specified image file cannot be found during project run time,
a default image is displayed instead. To change the default image,
manually edit your project file (<project name>.APP) to
change the following property:

[Objects]
GridDefaultPicture=<file name>

Check-box Display the values, typically Boolean, as check boxes. While a value
is TRUE (i.e., non-zero), the check box is selected. While a value is
FALSE (i.e., zero) or NULL, the check box is cleared.

If the Input option is selected for the column, and the user selects
or clears the check box during project run time, the value is set to
1 or 0, respectively. This is true even if the value is not Boolean.
Therefore, it is possible for a large numeric value (e.g., 1000) or even
a string value to be reset to 1 when the check box is cleared and then
selected again.

Time Display the values in the time format (e.g., HH:MM:SS).

This type is available only when the Grid object's data source is set
to Database, because each value is assumed to be a database
timestamp that can be parsed to get the actual time.

Date Display the values in the date format (e.g., MM/DD/YYYY).

This type is available only when the Grid object's data source is set
to Database, because each value is assumed to be a database
timestamp that can be parsed to get the actual date.

Date/Time Display the values in the date/time format (e.g., MM/DD/YYYY
HH:MM:SS).

This type is available only when the Grid object's data source is set
to Database, because each value is assumed to be a database
timestamp that can be parsed to get the actual date and time.

Time – UTC Display the values in the time format (e.g., HH:MM:SS).

Alarms, Events, and Trends

Page 466

Type Description
This type is available only when the Grid object's data source is set
to Database, because each value is assumed to be a database
timestamp that can be parsed to get the actual time. Also, the
timestamp is assumed to be in Coordinated Universal Time (UTC),
and it is automatically converted to the local time zone in the project
viewer / thin client.

Date – UTC Display the values in the date format (e.g., MM/DD/YYYY).

This type is available only when the Grid object's data source is set
to Database, because each value is assumed to be a database
timestamp that can be parsed to get the actual date. Also, the
timestamp is assumed to be in Coordinated Universal Time (UTC),
and it is automatically converted to the local time zone in the project
viewer / thin client.

Date/Time – UTC Display the values in the date/time format (e.g., MM/DD/YYYY
HH:MM:SS).

This type is available only when the Grid object's data source is set
to Database, because each value is assumed to be a database
timestamp that can be parsed to get the actual date and time. Also,
the timestamp is assumed to be in Coordinated Universal Time
(UTC), and it is automatically converted to the local time zone in the
project viewer / thin client.

For more information about the date format, see About the date format and how to change it on
page 707.

Width
Enter the width of the column, in pixels.

You can type the name of an Integer tag for this setting (e.g., Column1Width). When the value of
the tag changes during project run time, the width is changed to match.

Note: When the Grid object's data source is set to Class Tag, if the Label field is
configured but the Member field is not, then the Width setting is ignored and the
column is auto-sized to fit its contents.

Align
Select the horizontal alignment for the data displayed in the column. There are three options:
Left, Right, or Center.

Input
Select this option to allow the user to enter data in the column during project run time.

Key
Click the More button (…) and then use the Key Modifier dialog box to define a shortcut key
for the column. When the user presses the shortcut key during project run time, the rows of
the grid are sorted according to the values in the column. This is an alternative to clicking or
tapping the column's label, so it is especially useful if you are developing your project for a
device that has a keyboard but not a mouse or touchscreen.

The shortcut key is useful only if Allow sorting columns option is selected (see below).

Unit
Enter the name of the engineering unit (i.e., the unit of measurement), if any, that applies to the
data to be displayed in the column.

You can type a string expression for this setting (e.g., {MyUnit}). When the value of the
expression changes during project run time, the engineering unit is changed to match.

Decimal Points

Alarms, Events, and Trends

Page 467

Enter the number of decimal places to be displayed in the column, if the column is configured to
display numeric values.

You can type the name of an Integer tag for this setting (e.g., Column1Decimals). When the
value of the tag changes during project run time, the number of decimal places is changed to
match.

Show ID Column
This option, which is selected by default, displays an additional column of ID numbers for the
rows of the grid.

Allow sorting columns
This option, which is selected by default, allows the user to sort the rows of the grid according to
the values in a selected column. To select a column during project run time, the user can either
click/tap the column's label or press the column's shortcut key.

Note:

When the Grid object's data source is set to Class Tag, if the entire Columns dialog box is left blank,
then the grid automatically displays the values from all class members with the following default
settings:

Setting Value

Label The name of the class member.

Type Text

Width The minimum size to display the name of the class member on the
header row of the grid.

Align Center

Input Enabled (selected).

Key None.

Unit The engineering unit of the class member.

Alarms, Events, and Trends

Page 468

Advanced dialog
This dialog allows you to configure the advanced settings for a Grid object.

Advanced dialog

User Enable
If the value of this tag is TRUE (different from 0), the user can select different rows of the object
by clicking on them during run time. This box can be configured with a tag or with a numeric
value.

Selected Values
The values from each column of the selected row are written to each position of the array tag
configured in this box. Moreover, you can modify the value of the cells currently selected in the
Grid object by changing the value of array tag configured in this box. The initial array position
(offset) can be configured in this box.

Number of Rows
The grid object writes the number of rows currently available in the grid object to the tag
configured in this box.

Row Number
The Grid object writes the number of the row currently selected during run time. In addition,
you can select different rows by writing their values in this tag.

Condition

Alarms, Events, and Trends

Page 469

Enter an expression to filter the grid data; only rows that match the expression will be
displayed. The expression must use the following syntax:

[Column] Operator Value

For example…

[ColumnX] > 200

When Data Source (in the Grid Object Properties dialog) is set to Text File or Class Tag, the Column
is the value specified in the Label. When Data Source is set to Database, the column is the value
specified in the Field. (In this case, if the Field is left blank, then the column value specified is
the Label.)

Also, expressions for Database must be formatted like a SQL Where statement. The following
table shows which operators should be used:

Condition Expression Operators

Comparison Data Source is Text File… Data Source is Database…

equal to = LIKE

not equal to <> NOT LIKE

wildcard, single character ? _

wildcard, unlimited characters * %

As such, the following expression for Text File…

[C1] = 'ab?d'

…means the same as the following expression for Database…

[C1] LIKE 'ab_d'

Finally, you can combine several expressions simultaneously in the Condition box, using the logic
operators AND, OR, and NOT. For example:

[ColumnAge] > '10' OR [ColumnName] = 'John' AND [ColumnDate] > '05/20/2003'

Note: If you have configured multiple columns to contain date/time values
but each column is of a different type (i.e., a different time zone), the filter will
convert the values in all of the columns to match the type of the last column.
For example, if columns 2 and 3 are configured as Date/Time but column 4 is
configured as Date/Time - UTC, the values in columns 2 and 3 will be converted to
UTC for the purposes of filtering.

Tip: You can configure tags between curly brackets {TagName} in the Condition
box to change the filtering condition during run time.

Print Trigger
When the tag configured in this box is toggled, the current state of the Grid object is sent to the
default printer.

PDF Trigger

Alarms, Events, and Trends

Page 470

When the tag configured in this box is toggled, the current state of the Grid object is saved as a
PDF file at the location specified by PDF Filename.

PDF Filename
Enter a complete file path and name where the PDF file is to be saved. You can also enter a tag
name using the {tag} syntax.

Multiline
When this option is selected, the print output or PDF will be formatted according to the available
column space, and the text within each cell will be wrapped so that all of it is shown.

Reload
When the tag configured in this box is toggled, the object reloads the data from the data source
and displays it.

Save Trigger
When the tag configured in this box is toggled, the data source (Text File or Database) is
updated with the current values of the grid object. (This box is not available when the Data
Source type is Class Tag, because the values are automatically updated in the tags as you
change a cell in the grid.)

Insert Trigger
When the Auto refresh after insert trigger option is selected, the tag configured in this box is used as a
trigger to refresh the database table. Whenever the value of the tag changes, a new row is added
to the table and the values of the array configured in the Inserted Values box are automatically
inserted.

Inserted Values
If the Insert Trigger is being used, then the array tag configured in this box provides the values
that will be inserted. This box must only contain an array tag, although it can be of any size.

Save on data change
When this option is selected, the values are updated on the data source (Text File or Database)
as soon as the user enters a new value on the grid, during run time. (This option is disabled
when the Data Source type is Class Tag, because the values are automatically updated in the
tags as the user changes the value of the cells in the grid.)

Enable Slider/Resize
If this box is not checked, the user is unable to scroll the list by dragging the slider button, or to
change the cell's size during run time.

Conditional check-box
When this option is selected, the user cannot check a checkbox on the Grid during run time,
unless all preceding checkboxes in the same column are also checked. This option is especially
useful when you want to oblige the user to follow a pre-defined sequence. This box is not
available when the Data Source type is Class Tag.

Show Header
When this option is selected, the header of the Grid object is visible during run time, displaying
the label of each column.

Show gridlines
When this option is selected, the gridlines of the Grid object are visible during run time.

Enable translation
When this option is selected, the text displayed by the Grid object will be subject to translation
by the Translation Tool during run time.

Note: This does not include columns which have been configured to accept user
input (i.e., for which the Input option in the Columns dialog box has been selected).

Disable TAB to navigate through cells

Alarms, Events, and Trends

Page 471

When this option is selected, the user can only navigate through the cells of the Grid Object with
the arrow keys, rather than the Tab key. You should disable the Tab key for navigation if you
want it to be used for switching to the next object that supports focus on the screen.

Auto refresh after insert trigger
See Insert Trigger above.

Concatenate Label for Picture
When this option is selected, the reference name for the picture is the result of the
concatenation of the name in the Field column with the value of the Label column. The result
will be <Label name>_<Field value>.

Export
This interface allows you to export the data from the grid object to a class-array tag, regardless
of the Data Source selected for the object. The following settings must be configured to support
this feature:

Setting Description

Class tag Type the main tag name of the class-array tag that will receive the
exported values. Each row from the grid object will be exported to one
array position of the array tag, by matching column labels. The initial
array position can be configured in this box; 0 is the default.

Trigger When the tag configured in this box changes value (e.g., toggles), the
data is exported from the Grid object to the class-array tag configured
in the Class tag field.

Tip: The Export feature is an easy and powerful tool to transfer data from
different data sources to tags. After exporting the data to tags, you can use
different tasks to manipulate the data, such as the FileWrite() function, or the
Recipe or Report tasks to save the data in text files (e.g., CSV files).

Auto Format
When this option is selected, decimal values in columns of Numeric type will be formatted
according to the virtual table created by the SetDecimalPoints() function. This option will
work only in columns for which Decimal Points are not already configured. For more information,
please see Grid Object: Columns dialog.

Industrial Graphics

Page 472

Industrial Graphics
This section describes how to use the Industrial Graphics editor and symbol library to create Industrial
Graphics screens that you can use in your projects.

The Industrial Graphics editor works as a companion to the native graphics tools in Studio. It provides new
features and options that were not previously available in Studio, it lets you reuse symbols that you created in
other applications, and it increases interoperability across your entire automation solution.

Industrial Graphics

Page 473

Create a new Industrial Graphics screen
This task describes how to create a new Industrial Graphics screen and then open it for editing.

To create a new Industrial Graphics screen:

1. Do one of the following:

• On the Insert tab of the ribbon, in the Graphics group, click Industrial Graphics Screen; or

• On the Graphics tab of the Project Explorer, right-click Screens, and then on the shortcut menu, select
Insert Industrial Graphics Screen.

The Industrial Graphics Screen Attributes dialog box is displayed.

2. Configure the size and location of the screen when it is opened:
a) Under Size, specify the Width and Height (in pixels) of the screen when it is opened.

The default size is equal to the resolution that you selected when you created your project.

b) Under Location, specify the distances (in pixels) between Top and Left sides of the screen and
corresponding edges of the viewer window.
This is also known as the X/Y position of the screen within the project viewer.

You may choose to let the user resize or move the screen after it is opened, depending on which option you
select for Border below.

3. For Style, choose one of the following:
Option Description

Overlapped Opens the screen without closing any other
screens.

Popup Forces the screen in front of all other screens but
does not close them.

Replace (Partial) Opens the screen and closes all other Replace
screens that it partially covers. This is the default
for all new screens.

Dialog Similar to Popup, except that the other screens are
also disabled until the dialog is closed by the user.

Replace (Complete) Similar to Replace (Partial), except that it closes only
other Replace screens that it completely covers.

4. For Border, choose one of the following:

Industrial Graphics

Page 474

Option Description

None No border; the screen is a flat, immovable rectangle
within the project viewer. This is the default for all
new screens.

Thin A thin border that makes the screen a movable
window within the project viewer. Includes the title
bar.

Resizing A thick border that makes the screen a movable,
resizable window within the project viewer. Includes
the title bar.

5. If you chose either Thin or Resizing for Border, you can now select the Titlebar option to add a title bar to the
screen, and then after you do that, you can do the following:
a) In the box to the right of the option, type the title of the screen.

It is useful to specify a title even if the title bar is not shown, because the title is always included when
the screen is printed. You can also type a string expression for this setting (e.g., {MyScreen}).

b) Configure the remaining options for the title bar:
System Menu

Shows a menu of basic window commands at the left end of the title bar.
Maximize Box

Shows the Maximize button at the right end of the title bar.
Minimize Box

Shows the Minimize button at the right end of the title bar.

6. Click OK.

The new screen is added to the Screens folder in the Project Explorer, and then it is automatically opened for
editing in the Industrial Graphics editor.

For more information about how to use the Industrial Graphics editor to edit your screen, see the help system
that is available within the editor itself: in the editor, go to Help, and then select Help Topics.

When you are done editing the screen, click Save and Close in the editor's toolbar. The screen is saved, and you
are returned to the project development environment where you can proceed to use the screen in your project
as you normally would. The screen is also automatically saved as HTML for run time, so you do not need to do
that manually like you do for native screens.

Note: The Industrial Graphics editor window is modal, which means only one editor window can be
open at a time and while it is open, the rest of the project development environment is disabled.

To edit the screen again, open it from the Project Explorer and then do one of the following:

• On the Draw tab of the ribbon, in the Industrial Graphics group, click Edit Symbol;
• Right-click in the screen, and then on the shortcut menu, select Edit Symbol; or

• Double-click anywhere in the opened screen.

To delete or rename the screen, right-click the screen in the Project Explorer, and then on the shortcut menu,
select the appropriate command.

It is not possible for two or more screens to have the same name, even if they are different types of screens
and have different file extensions in your project folder (e.g., .scc or .scr for native screens, .sca for Industrial
Graphics screens), because all of the screens are eventually saved as HTML for run time. If you want to reuse
screen files from an existing project in your new project, you should rename those screens before you try to
add them to your project folder.

Industrial Graphics

Page 475

Create a new Industrial Graphics symbol
This task describes how to create a new Industrial Graphics symbol and then open it for editing. A symbol is a
premade object or group of objects that can be reused.

If you want to add a symbol to a toolset (i.e., a folder) in the Project Explorer, you must create the toolset first
because symbols and toolsets cannot be moved after they have been created. For more information, see Create
a new Industrial Graphics toolset on page 476.

To create a new Industrial Graphics symbol:

1. On the Graphics tab of the Project Explorer, do one of the following:

• Right-click Industrial Graphics Symbols, and then on the shortcut menu, select New Symbol; or

• Select a toolset under Industrial Graphics Symbols, right-click it, and then on the shortcut menu, select
New > Symbol.

The New Symbol dialog box is displayed.

2. In the Name box, type the name of the symbol, and then click OK.
The name must start with a letter and can contain only letters, numbers, and underscore characters. For
example, Symbol_001.

After you click OK, the new symbol is added to the Industrial Graphics Symbols folder in the Project Explorer, and
then it is automatically opened for editing in the Industrial Graphics editor.

For more information about how to use the Industrial Graphics editor to edit symbols, see the help system
that is available within the editor itself: in the editor, go to Help, and then select Help Topics.

When you are done editing the symbol, click Save and Close in the editor's toolbar. The symbol is saved, and
you are returned to the project development environment where you can proceed to use the symbol in an
Industrial Graphics screen.

Note: The Industrial Graphics editor window is modal, which means only one editor window can be
open at a time and while it is open, the rest of the project development environment is disabled.

To open the symbol again at any time, double-click it in the Project Explorer.

To delete, rename, or duplicate a symbol that you previously created, do the following: right-click the symbol
in the Project Explorer, and then on the shortcut menu, select the appropriate command.

Industrial Graphics

Page 476

Create a new Industrial Graphics toolset
This task describes how to create a new Industrial Graphics toolset and then insert it into your project files.

In the context of Industrial Graphics, a "graphic toolset" is essentially a folder or collection of folders that you
can use to organize your Industrial Graphics symbols.

To create a new Industrial Graphics toolset:

1. On the Graphics tab of the Project Explorer, right-click Industrial Graphics Symbols, and then on the shortcut
menu, select New Graphic Toolset.
The New Toolset dialog box is displayed.

2. In the Name box, type the name of the toolset, and then click OK.
The name must start with a letter and can contain only letters, numbers, and underscore characters. For
example, Toolset_001.

After you click OK, the new toolset is inserted under Industrial Graphics Symbols in the Project Explorer.

You can nest these toolsets as many levels deep as you want. To create a new folder within an existing folder,
do the following: right-click the existing toolset, and then on the shortcut menu, select New > Graphic Toolset.
You cannot move toolsets after they have been created, however; if you accidentally create a toolset in the
wrong location, you need to delete it and then create it again in the right location. As such, we recommend
you outline your entire folder structure before you begin creating toolsets.

To delete or rename a toolset that you previously created, do the following: right-click the folder in the Project
Explorer, and then on the shortcut menu, select the appropriate command.

Industrial Graphics

Page 477

Embed an Industrial Graphics symbol in a screen
This task described how to embed an Industrial Graphics symbol in an Industrial Graphics screen.

Before you begin this task, you must have already created both an Industrial Graphics screen and an
Industrial Graphics symbol. Industrial Graphics symbols cannot be used in native screens, just as native
symbols cannot be used in Industrial Graphics screens.

To embed an Industrial Graphics symbol in a screen:

1. Open the Industrial Graphics screen from the Project Explorer, and then do one of the following:

• On the Draw tab of the ribbon, in the Industrial Graphics group, click Edit Symbol;
• Right-click in the screen, and then on the shortcut menu, select Edit Symbol; or

• Double-click anywhere in the opened screen.

The Industrial Graphics editor is displayed, and the screen is opened for editing.

2. Do one of the following:

• Go to Edit, and then select Embed Graphic; or

•
On the editor's toolbar, click Embed Graphic

The Galaxy Browser dialog box is displayed, and your project's own library of toolsets and symbols is listed
in the Graphic Toolbox pane on the left.

3. In the Graphic Toolbox pane, select a toolset (folder).
The symbols contained in that toolset are displayed in the pane on the right.

Industrial Graphics

Page 478

4. Select a symbol, and then click OK.
The Galaxy Browser dialog box is closed, and then your pointer appears in paste mode.

5. Click anywhere in the open screen.
The selected symbol is pasted into the screen.

Once the symbol is embedded in the screen, you can edit it as you would edit any other element. For more
information about how to use the Industrial Graphics editor, see the help system that is available within the
editor itself: in the editor, go to Help, and then select Help Topics.

Industrial Graphics

Page 479

Using project tags in Industrial Graphics screens
You can use your project tags in Industrial Graphics screens and symbols.

You can do this anywhere in the Industrial Graphics editor that you would normally reference an attribute,
such as when you add an animation to an element.

Technically speaking, your project tags belong to the "HMI" namespace in the Industrial Graphics editor.
What this means in practice is that if you type HMI: first, in the Expression Or Reference box, then a list of
available tags will automatically pop up for you to select from. This is similar to how IntelliSense works in the
VBScript editor. Project and system tags are provided in a combined list.

The "HMI" namespace is the default, however, so you do not need to include the HMI: prefix. Typing the prefix
just helps to pop up the list of available tags. You can instead type the full name of the tag that you want to
use, if you know it.

You can also use the Edge Tag Browser in the Industrial Graphics editor to browse and select project tags. It
is very similar to the Object Finder in the native graphics editor. To access the Edge Tag Browser, do one of
the following: double-click in the Expression Or Reference box; or click the More button (…) to the right of the box.

Example of the Edge Tag Browser

Only project tags (including arrays), classes, and system tags are supported at this time, and the scope of
the project tags must be set to Server. Shared tags (i.e., tags added to the project through tag integration), tag
properties, and built-in functions are not supported at this time. If you need to access an unsupported item
from an Industrial Graphics screen, you can create a Math or Script worksheet that does what you need and
then use a project tag to control the execution of that worksheet.

Industrial Graphics

Page 480

For more information about how to use the Industrial Graphics editor to edit screens and symbols, see the
help system that is available within the editor itself: in the editor, go to Help, and then select Help Topics.

Industrial Graphics

Page 481

Working with Element Styles

Understanding Element Styles
An Element Style defines a set of visual properties that determine the appearance of text, lines, graphic
outlines, and interior fill shown in Industrial Graphics. An Element Style that is applied to a symbol sets pre-
configured visual property values that take precedence over a symbol’s native visual properties.

Element Styles provide the means for developers to establish consistent visual standards in their ArchestrA
applications. An Element Style can define the same visual properties of text, lines, fill, and outlines for all
symbols or graphics that belong to an application.

Likewise, Element Styles can show the current status of an object represented by a symbol. For example, an
Element Style animation can be applied to a symbol when an object transitions to an alarm state.

APPLICATION STYLE LIBRARY
The Application Style Library includes a set of predefined Element Styles.

Industrial Graphics

Page 482

The predefined values of the Element Styles in this library can be changed. However, existing Element Styles
cannot be renamed or deleted. Also, new Element Styles cannot be added to the library.

VISUAL PROPERTIES DEFINED BY ELEMENT STYLES
The following table lists the visual properties of graphic elements defined in an Element Style.

Graphic Element Element Properties

Text • Font family

• Font size

• Font style

• Font color

• Blink On/Off

Fill • Fill color

• Fill gradient

• Fill pattern

• Fill texture

• Blink On/Off

Line • Line pattern

Industrial Graphics

Page 483

Graphic Element Element Properties
• Line weight

• Line color

• Blink On/Off

Outline • Outline Show/Hide

• Outline Pattern

• Outline Weight

• Outline Color

• Blink On/Off

An Element Style may not define every visual property. If a property value is not defined in an applied
Element Style, the element’s native style is used and can be changed. However, if an element’s property value
is defined in an applied Element Style, the element’s native properties are disabled and cannot be changed.

ELEMENT STYLES IN ANIMATIONS
You can configure an element or a group of elements with Boolean or truth table animations that determine
whether Element Styles are applied based on evaluated conditions or expressions. See Configuring an
Animation Using Element Styles on page 491.

PROPERTY STYLE ORDER OF PRECEDENCE
To understand the behavior of an element’s properties when an Element Style is applied, you should
understand the order of precedence for the levels at which property styles are applied.

UPDATING ELEMENT STYLES AT APPLICATION RUN TIME
You can update the Elements Styles applied to symbols or graphics included in a running application.

• Updating Element Styles from the IDE

When an application is deployed and updates were made to the applied Element Styles from the System
Platform IDE, those updates will be propagated to the graphic elements in a running application without
requiring WindowViewer to be closed and re-opened.

• Importing an updated Graphic Style Library

Importing an updated Graphic Style Library that includes different applied Element Styles will propagate
those changes to graphic elements in a running application without requiring WindowViewer to be closed
and re-opened.

Managing Element Styles
In your project, you can import and export Application Style Libraries containing custom Element Styles. This
section describes the tasks to create a set of custom Element Styles that can be used in other HMI/SCADA
applications that support Industrial Graphics.

IMPORT AN INDUSTRIAL GRAPHICS STYLE LIBRARY
You can import an Industrial Graphics style library that you created for another project, or even a style library
that was created in another HMI/SCADA application that supports Industrial Graphics.

When you import a style library, it completely replaces the existing library in your project, so if you have made
changes to the existing library, you should consider exporting it before you import another one. For more
information, see Export an Industrial Graphics style library on page 484.

To import an Industrial Graphics style library

1. In the Project Explorer, go to the Graphics tab.

2. Right-click Industrial Graphics Symbols, and then on the shortcut menu, click Import Application Style Library.
A standard Open File dialog box is displayed.

3. Use the file browser to locate and select the style library that you want to import, and then click Open.

Industrial Graphics

Page 484

Each style library is saved as an .xml file (e.g., ApplicationStyles-20201218.xml).

The selected library is imported into your project, completely replacing the existing library.

If you had already applied styles — especially user-defined styles — to the Industrial Graphics symbols in
your project, you should review those symbols now to see how they look with the imported style properties.

EXPORT AN INDUSTRIAL GRAPHICS STYLE LIBRARY
You can export an Industrial Graphics style library for use in another project, or even in another HMI/SCADA
application that supports Industrial Graphics.

To export an Industrial Graphics style library

1. In the Project Explorer, go to the Graphics tab.

2. Right-click Industrial Graphics Symbols, and then on the shortcut menu, click Export Application Style Library.
A standard Save File dialog box is displayed.

3. Use the file browser to select the location where you want to save the style library, and then click Save.
Each style library is saved as an .xml file. The default file name includes the current date (e.g.,
ApplicationStyles-20201218.xml), but you can rename the file as needed.

The existing library is exported from your project.

Note: Exporting the existing library does not change or reset any of the style properties.

CHANGE THE VISUAL PROPERTIES OF AN ELEMENT STYLE
You can modify the visual properties of any Element Style in the currently loaded Application Styles Library.
You modify properties by setting overrides on the Element Styles tab in the Configure Application Styles
dialog box.

In the Configure Application Styles dialog box, you can:

• Modify the appearance of text by setting overrides for the text font, text size, text style, text color, and
blinking.

• Modify the appearance of graphic fill by setting overrides for fill color and blinking.

• Override the appearance of the line pattern, weight, color, and blinking.

• Override the appearance of the outline line pattern, weight, color, and blinking.

• Preview the appearance of an Element Style.

• Reset Element Style visual properties to their default values.

To show the current Element Styles in a project

1. In the Project Explorer, right-click Industrial Graphics Symbols, and then on the shortcut menu, click Edit
Application Style Library. The Configure Application Styles dialog box appears.

2. Click the Element Styles tab.

The Element Styles tab includes the following fields:

• The Element Style Overrides grid lists the Element Styles included in the library. An X within grid cells
indicates style properties that have been overridden.

• The Preview field shows the appearance of an element when the current Element Style is applied.

• The Reset to Default button returns all modified Element Styles to their default values.

• The property tabs include related fields to set values for each property defined in the selected Element
Style.

Overriding the Element Style Text Properties
You can modify an Element Style’s text visual properties by setting alternative values for text font, text color,
text style, and blink rate.

Industrial Graphics

Page 485

To change the appearance of text in an Element Style

1. In the Project Explorer, right-click Industrial Graphics Symbols, and then on the shortcut menu, click Edit
Application Style Library. The Configure Application Styles dialog box appears.

2. Select an Element Style from the Element Style Overrides list.

3. Click the Text (Ts) tab.

4. To change the font, select Font Override, click the browse button, and select a font from the Font dialog
box.

5. To override the font color:

a. Select Font Color Override.

b. Click the color box.

c. Select a color from the Select Font Color dialog box.

6. To override the text blink behavior:

a. Select Blink.

b. Select a blinking speed from the Speed list.

c. Click the color box to show the Select Blink Color dialog box.

d. Select the color, gradient, pattern, and texture for the blink style.

7. Click OK.

Overriding the Element Style Fill Properties
You can modify an Element Style’s fill visual properties by setting alternative values for fill color and blink
rate.

To override the fill appearance of an Element Style

1. In the Project Explorer, right-click Industrial Graphics Symbols, and then on the shortcut menu, click Edit
Application Style Library. The Configure Application Styles dialog box appears.

2. Select an Element Style from the Element Style Overrides list.

3. Click the Fill tab.

4. To override the fill style:

a. Select Fill Color Override.

b. Click the color box.

c. Select a style from the Select Fill Color dialog box.

5. To override the fill blink behavior:

a. Select Blink.

b. Select a blink speed from the Speed list.

c. Click the color box.

d. Select a style from the Select Fill Color dialog box.

6. Click OK.

Overriding the Element Style Line Properties
You can modify an Element Style’s line visual properties by setting alternative values for line color, line
pattern, and line weight

To override the line appearance of an Element Style

1. In the Project Explorer, right-click Industrial Graphics Symbols, and then on the shortcut menu, click Edit
Application Style Library. The Configure Application Styles dialog box appears.

2. Select an Element Style from the Element Style Overrides list.

Industrial Graphics

Page 486

3. Click the Line tab.

4. To override the line pattern, select Line Pattern Override and select a line pattern from the adjacent list.

5. To override the line weight, select Line Weight Override and enter a new line weight in the adjacent box.

6. To override line color properties:

a. Select Line Color Override.

b. Click the color box.

c. Select a color style from the Select Line Color dialog box.

7. To override the line blink behavior:

a. Select Blink.

b. Select a blinking speed from the Speed list.

c. Click the color box.

d. Select a style from the Select Blink Color dialog box.

8. Click OK.

Overriding the Element Style Outline Properties
You can modify an Element Style’s outline visual properties by setting alternative values for text font, text
color, text style, and blink rate.

To override the outline appearance of an Element Style

1. In the Project Explorer, right-click Industrial Graphics Symbols, and then on the shortcut menu, click Edit
Application Style Library. The Configure Application Styles dialog box appears.

2. Select an Element Style from the Element Style Overrides list.

3. Click the Outline tab.

4. Select Show Outline.

5. To set the line pattern, select Line Pattern and select a line pattern from the adjacent list.

6. To set the line weight, select Line Weight and type a line weight in the adjacent box.

7. To set the line style:

a. Click the color box next to Line Color.

b. Select a style from the Select Line Color dialog box.

8. To set the line blink behavior:

a. Select Blink.

b. Select a blinking speed from the Speed list.

c. Click the color box.

d. Select a blink style from the Select Blink Color dialog box.

Industrial Graphics

Page 487

Previewing an Element Style
The Preview area shows the appearance of an Element Style’s current assigned property values.

To preview an Element Style

1. In the Project Explorer, right-click Industrial Graphics Symbols, and then on the shortcut menu, click Edit
Application Style Library. The Configure Application Styles dialog box appears.

2. Select the Element Styles tab.

3. Select an Element Style from the Element Style Overrides list.

The Preview field updates to show the appearance of the selected Element Style.

Resetting an Element Style to Default Values
You can reset an Element Style to its original default property values.

Note: Resetting an Element Style resets visual properties to their original default values, not to any
previous override settings.

To reset an Element Style to default values

1. In the Project Explorer, right-click Industrial Graphics Symbols, and then on the shortcut menu, click Edit
Application Style Library. The Configure Application Styles dialog box appears.

2. Select the Element Styles tab.

Industrial Graphics

Page 488

3. Select one or more Element Styles from the Element Style Overrides list.

4. Click Reset to Default. The selected Element Style properties are reset to their default values.

CHANGING THE VISUAL PROPERTIES OF USER-DEFINED ELEMENT STYLES
The Application Style Library includes a set of 25 user-defined Element Styles. User-defined Element Styles
appear towards the bottom of the list of the Element Style Overrides field and are named User_Defined_01
to User_Defined_25.

All visual properties of user-defined Element Styles are initially set to default values. Visual properties can be
individually configured for each user-defined Element Style by setting overrides for text, fill, line, and outline
as other predefined Element Styles.

Applying Element Styles to Elements
You can apply Element Styles to one or more graphic elements. Unlike setting Element Style overrides that
change the appearance of an Element Style’s properties, applying an Element Style to a graphic element
overrides the element’s native properties.

Applying Element Styles to elements can help standardize the appearance of those elements in the project and
show the current state of an object represented by a symbol or graphic. For more information, see Change the
Visual Properties of an Element Style on page 484.

USING THE ELEMENT STYLE LIST
The Industrial Graphic Editor menu bar contains an Element Style list to select an Element Style and apply
it to a selected element of a symbol or graphic.

To apply an Element Style to a graphic element

1. Open the symbol or graphic in the Industrial Graphic Editor.

2. Select one or more elements from the graphic or symbol.

3. Select an Element Style from the Element Styles list to apply to the selected elements.

Industrial Graphics

Page 489

USING THE PROPERTIES GRID
The Industrial Graphic Editor Properties view contains an Element Style Appearance item to select an
Element Style and apply it to a selected element of a symbol or graphic.

To apply an Element Style from the Properties Editor

1. Open the symbol or graphic in the Industrial Graphic Editor.

2. Select one or more elements from the graphic or symbol.

3. In the Appearance category of the Properties Editor, select an Element Style from the Element Style list.

Industrial Graphics

Page 490

USING FORMAT PAINTER
You can use the Industrial Graphic Editor’s Format Painter to copy an Element Style from one graphic
element to another.

To apply an Element Style using Format Painter

1. Open a symbol or graphic in the Industrial Graphic Editor.

2. Select the element with the Element Style you want to copy.

3. On the Edit menu, click Format Painter. The pointer appears as the Format Painter cursor.

4. Select the elements you want to apply the Element Style to. The Element Style is applied to the clicked
element.

CLEARING AN ELEMENT STYLE
When an Element Style is applied to an element, you cannot edit the element’s styles that are controlled by
the applied Element Style. However, you can clear the application of the Element Style so that all of the styles
can be edited.

To clear an Element Style

1. Select the element.

2. Select None in the Element Style list.

SELECTING AN ELEMENT STYLE AS A DEFAULT FOR A CANVAS
You can select an Element Style at the canvas level. The selected Element Style is applied to any graphic
element or groups that you create on the canvas.

Industrial Graphics

Page 491

Applying Element Styles to Groups of Elements
You can apply an Element Style on a group of elements in the same way that you apply an Element Style to
an element. However, the group’s run-time behavior must be set to TreatAsIcon.

SETTING A GROUP’S RUN-TIME BEHAVIOR TO TREATASICON
To apply an Element Style to a graphic element group, the group’s TreatAsIcon property must be set to True.
Otherwise, the Element Style lists are disabled when an element group is selected.

To set a group’s TreatAsIcon property to true

1. Select the element group to which the Element Style will be applied.

2. On the Properties menu, click Run-time Behavior and click TreatAsIcon.

3. Select True from the drop-down list.

UNDERSTANDING ELEMENT STYLE BEHAVIOR WITH A GROUP OF ELEMENTS
• The Element Style applied to a group has higher precedence than the property styles applied to individual

graphic elements in the group.

• If the Element Style applied to a group of elements has undefined property styles, then the element
continues to use its Element Style or element-level settings for undefined property styles.

• If the Element Style that is applied to a group of elements has defined property styles, then those property
styles override the property styles defined at the element level for elements in the group.

• An Element Style cannot be applied to a nested element group.

• If you add an element to a group that has a group-level Element Style applied, the group Element Style is
applied to it.

Configuring an Animation Using Element Styles
You can configure an element or a group of elements with a:

• Boolean animation that applies Element Styles based on a binary True/False condition.

• Truth table animation that applies Element Styles based on a range of possible values.

The truth table animation that applies Element Styles:

• Associates expressions of any data type supported by Application Server or InTouch to an Element Style.

• Defines as many conditions as required and applies a separate Element Style for each condition

• Defines the conditions to apply an Element Style by specifying a comparison operator (=, >, >=, <, <=) and
a breakpoint, which itself can be a value, an attribute reference, or an expression.

• Arranges conditions in the order that Element Styles are processed.

CONFIGURING A BOOLEAN ANIMATION USING ELEMENT STYLES
You can configure an element or a group of elements with a Boolean animation that uses only two Element
Styles.

To configure an element or a group of elements with an Element Style that uses Boolean animation

1. Open the symbol or graphic in the IDE Industrial Graphic Editor.

2. Select the element or element group.

3. On the Special menu, click Edit Animations. The Edit Animations dialog box appears.

4. Click the Add icon and select Element Style. The Element Style animation is added to the Animation list
and the Element Style state selection panel appears.

5. Click the Boolean button. The Boolean Element Style configuration panel appears.

6. In the Boolean text box, enter a Boolean numeric value, attribute reference, or an expression.

7. Clear ElementStyle in the True, 1, On area or False, 0, Off area if you do not want a different Element
Style for the true or false condition than the default Element Style that is shown in the Element Style list.

Industrial Graphics

Page 492

8. In the True, 1, On area, select the Element Style in the list to use when the expression is true.

9. In the False, 0, Off area, select the Element Style in the list to use when the expression is false.

10.Click OK.

CONFIGURING A TRUTH TABLE ANIMATION WITH ELEMENT STYLES
You can configure an element or a group of elements with a Truth Table animation that selects multiple
Element Styles based on a set of evaluated values or expressions.

To configure an element or a group of elements with an Element Style that uses Truth Table animation

1. Open the symbol or graphic in the IDE Industrial Graphic Editor.

2. Select the element or group.

3. On the Special menu, click Edit Animations. The Edit Animations dialog box appears.

4. Click the Add icon and select Element Style. The Element Style animation is added to the Animation list
and the Element Style state selection panel appears.

5. Click the Truth Table button. The Truth Table Element Style configuration panel appears. The Element
Style that is applied to the element is shown in the Element Style list at the bottom of the panel.

6. In the Expression Or Reference area:

• Select the data type of the expression from the list.

• Type a value, attribute reference or expression in the text box.

7. If the data type of the expression is string or internationalized string, you can specify to ignore the case by
selecting Ignore Case.

8. In the Truth Table, select the Element Style check box and select the Element Style for one of the
conditions to be defined in the truth table.

9. In the Operator column, select a comparison operator.

10.In the Value or Expression column, type a value, attribute reference, or expression.

11.To add other conditions:

a. Click the Add icon. An additional condition is added to the truth table.

b. Select the Element Style check box, select the Element Style for the condition, select an operator, and
enter the condition value or expression.

12.After adding all truth table conditions, click OK.

Truth Table animation is typically used to set Element Styles to the different states of an object. For example,
you can set Truth Table conditions to show different Element Styles that represent the following alarm
conditions:

• When the attribute TankLevel_001.PV is 0 then no Element Style is applied.

• When the attribute TankLevel_001.PV is less than 20, then the Element Style is Alarm_Minor_Dev.

• When the attribute TankLevel_001.PV is greater than the attribute Standards.TankMax then the Element
Style is Alarm_Major_Dev.

Deleting a Condition from an Animation Truth Table
You can delete a condition from an animation Truth Table to remove the associated Element Style from the
animation.

To delete a condition from a Truth Table animation that uses Element Styles

1. Open the Edit Animations dialog box, Truth Table Element Style panel.

2. Select the condition you want to delete.

3. Click the Remove icon. The condition is removed.

Industrial Graphics

Page 493

Changing the Processing Order of Element Styles in a Truth Table Animation
You can change the processing order of Element Styles by moving the conditions up or down in the Truth
Table list. The Element Style at the top of the Truth Table list is processed first. The remaining Element Styles
are processed in order based on their position from the top of the list.

To change the processing order of Element Style conditions

1. Open the Edit Animations dialog box, Truth Table Element Style panel.

2. Select the condition you want to move up or down the condition list in order for it to be processed sooner
or later.

3. Click the:

• Arrow up icon to move the condition up in the truth table.

• Arrow down icon to move the condition down in the truth table.

Industrial Graphics

Page 494

Import an Industrial Graphics symbol library
This task describes how to import an Industrial Graphics symbol library into your project.

Industrial Graphics symbol libraries are distributed as .aaPKG files.

Two libraries of commonly used symbols are included with this software, and you are free to use these
symbols in your project. Importing a symbol library into a project can significantly increase the size of that
project, however.

To import an Industrial Graphics symbol library:

1. On the Graphics tab of the Project Explorer, right-click Industrial Graphics Symbols, and then on the shortcut
menu, select Import Library.

The Import Library dialog box is displayed.

Studio will automatically detect and list any .aaPKG files that are at the following location on your
computer:

C:\Program Files (x86)\BLUE Open Studio 2020\Bin\GraphicContent

2. Do one of the following:

• Select one of the listed .aaPKG files, and then click OK; or

• Click Select custom file, use the file browser to locate and select an .aaPKG file, and then click Open.

The Importing library dialog box is displayed, and then the selected file is imported into your project. This
can take a long time to finish, depending on the number of symbols in the selected file, and it cannot be
aborted.

3. Click Close to close the Importing library dialog box.

Once the import is finished, the library is shown as a new toolset under Industrial Graphics Symbols in the Project
Explorer.

Industrial Graphics

Page 495

Export an Industrial Graphics symbol library
This task describes how to export an Industrial Graphics symbol library from your project.

Industrial Graphics symbol libraries are distributed as .aaPKG files.

You can select one or more symbols to export from your current project, save them as an .aaPKG file, and
then import that file into your other projects and into other applications that support Industrial Graphics.

To export an Industrial Graphics symbol library:

1. On the Graphics tab of the Project Explorer, right-click Industrial Graphics Symbols, and then on the shortcut
menu, select Export Library.
The Export Library dialog box is displayed, listing all of the symbols and toolsets that are in the current
project.

2. In the list, select the symbols that you want to export.
Selecting a folder/toolset will select all of the items in that folder.

Example of selecting symbols to export
3. Under File for exported library, click the More button (…).

A standard Open dialog box is displayed.

Industrial Graphics

Page 496

4. Use the file browser to select the location in which you want to save the .aaPKG file, and then in the File
name box, type the name of the file.

5. Click Open.
The file path and name are entered in the File for exported library box.

6. Click OK.
The Exporting library dialog box is displayed, and then the selected symbols are exported from your
project. This can take a long time to finish, depending on the number of symbols you selected, and it
cannot be aborted.

7. Click Close to close the Exporting library dialog box.

Once the export is finished, you can use the .aaPKG file as you see fit.

Industrial Graphics

Page 497

Known limitations of Industrial Graphics
This is a list of known limitations on how the Industrial Graphics editor can be used to create screens and
symbols, and on how Industrial Graphics screens can be used in projects.

Runtimes
Industrial Graphics screens can be used only in projects that run in the SCADA runtime edition for Windows
and Windows Server. None of the other runtime editions are supported at this time.

Thin Clients
You cannot use the Thin Client software to view projects that include Industrial Graphics screens. For remote
clients, you must use Mobile Access as your project viewer. Specifically, you must use the Mobile Access add-
on for Internet Information Services (IIS), because the Mobile Access add-on for CGI is not supported. For
more information about how to set it up, see Mobile Access on page 769.

Note: Industrial Graphics screens are automatically saved as HTML for Mobile Access, so you do
not need to do that manually as you would for native screens.

You can use the Viewer runtime task as a local client, to view a project that includes Industrial Graphics
screens while it is running on the same computer. It is especially useful while you are developing and testing
your project, and you may continue to use it afterward if you do not plan to have any remote clients for your
project. If you plan to have both local and remote clients, however, we recommend you use Mobile Access
because it will provide a consistent user experience for all clients.

Classes
You can references classes, including arrays of classes, in Industrial Graphics screens and symbols. However,
you cannot reference a project tag for the array index. You must specify a literal value.

Allowed ArrayOfClasses[1].member

Not allowed ArrayOfClasses[indexTag].member

User Input Animation
Due to how Industrial Graphics screens are displayed in the project viewer, you must make sure any screen
that includes a User Input animation is large enough to display the keypad invoked by that animation. If the
screen is too small, the keypad will not be displayed correctly and the user might not be able to proceed.

Also, if you reference an array on a User Input animation, you cannot reference a project tag for the array
index. You must specify a literal value.

Allowed Array[1]

Not allowed Array[indexTag]

AlarmClient Graphic
The AlarmClient graphic is not supported at this time. In most cases, this is an issue only if you are using an
imported symbol from the Situational Awareness Library.

Embedding Symbols Within Symbols
You can embed a symbol within another symbol, but if you make changes to the embedded symbol, those
changes may not immediately appear in the symbol that contains it. You must save, close, and then reopen
all of the affected symbols to make sure the changes propagate correctly.

Layout Tool
The Layout tool does not support Industrial Graphics screens at this time.

Industrial Graphics

Page 498

If you want to use the tool to lay out native and Industrial Graphics screens together, we recommend you
create additional native screens to serve as placeholders for the Industrial Graphics screens. Then, when you
are done laying out the screens, you can copy the Size and Location attributes from the placeholder screens to
the Industrial Graphics screens.

Translation Tool
The Translation tool does not support Industrial Graphics screens at this time, even if you have configured it
to translate the native screens in your project.

Background Tasks

Page 499

Background Tasks
Background tasks are, as the name implies, project features that run in the background, as opposed to the
graphical screens with which the user interacts.

The background tasks are executed by the Background Tasks module (see Runtime Tasks), and they are
defined by task worksheets in the Project Explorer.

Background Tasks

Page 500

Alarm worksheet
The Alarms folder enables you to configure alarm groups and tags related to each group. The Alarm worksheet
defines the alarm messages generated by the project. The primary purpose of an alarm is to inform the
operator of any problems or abnormal condition during the process so he can take corrective action(s).

The Alarm worksheet is executed by the Background Task module (see Runtime Tasks on page 134). It
handles the status of all alarms and save the alarm messages to the history, if configured to do so, but it
does not display the alarm messages to the operator; the Alarm/Event Control screen object, available on the
Graphics tab of the ribbon, must be created and configured in a screen in order to display alarms.

To create a new Alarm worksheet, do one of the following:

• On the Insert tab of the ribbon, in the Task Worksheets group, click Alarm;

• Right-click the Alarms folder in the Project Explorer, and then click Insert on the shortcut menu; or

• Click New on the File menu, click the File tab, and then select Alarm Worksheet.
To edit an existing Alarm worksheet, double-click it in the Project Explorer.

Alarm worksheet

You can create multiple Alarm groups (worksheets) and each group can be configured with independent
settings, such as message colors, history log enabled/disabled, and so forth.

Each Alarm worksheet is composed of two areas:

• Header: Settings applied to all tags and alarms configured in the same alarm group. These settings allow
you to configure the formatting of the message and the actions that must be triggered based on alarm
events (e.g., print alarms, send alarms by email, and so forth). For more information, see Header Settings.

• Body: Configure alarm messages and associate them to conditions linked to tags. For more information,
see Body Settings.

Note:

Background Tasks

Page 501

The Alarm task has been modified to avoid automatically acknowledging alarms by another alarm.
For example, the Hi (Lo) alarm should not be automatically acknowledged when the HiHi (LoLo)
alarm becomes active. To enable the previous behavior, set the following key in your project (.APP)
file:

[Alarm]
UseLegacyPriorityAck=1

Background Tasks

Page 502

Trend worksheet
The Trend folder enables you to configure history groups that store trend curves. You can use the Trend
worksheet to declare which tags must have their values stored on disk, and to create history files for trend
graphs. The project stores the samples in a binary history file (*.hst), and shows both history and on-line
samples in a screen trend graph.

The Trend worksheet is executed by the Background Task module (see Runtime Tasks on page 134). It
handles the saving of trend data to the history, but it does not display that data to the operator; the Trend
Control screen object, available on the Graphics tab of the ribbon, must be created and configured in a screen
in order to display trend data.

To create a new Trend worksheet, do one of the following:

• On the Insert tab of the ribbon, in the Task Worksheets group, click Trend;

• Right-click the Trends folder in the Project Explorer, and then click Insert on the shortcut menu; or

• Click New on the File menu, click the File tab, and then select Trend Worksheet.
To edit an existing Trend worksheet, double-click it in the Project Explorer.

Trend worksheet

The Trend worksheet is divided into two areas:

• Header area (top section), which contains information for the entire group

• Body area (bottom section), where you define each project tag in the group. This section contains several
columns (only two are shown in the preceding figure).

Header
Configure the following settings in the worksheet header:

Background Tasks

Page 503

Description
Type a description of the worksheet for documentation purposes.

History Format

Click the arrow button to select a trend history format from the list. The available options are:

Proprietary

Save trend history in a proprietary, binary file. The file is saved in your project folder (on the
project runtime server) at: […]\<project name>\Hst\GGYYMMDD.hst

• GG = Trend worksheet number

• YY = Last two digits of the year

• MM = Month

• DD = Day

A new history file is created for each calendar day that the project runs.

The utility programs HST2TXT.EXE and TXT2HST.EXE are provided in order to convert history
files from binary (*.hst) to plain text (*.txt) and vice versa. For more information, see
Converting Trend History Files from Binary to Text on page 418 and Converting Trend History
Files from Text to Binary on page 419.

Database

Save trend history in an external SQL database of your choice. After you select this format, click
Database Configuration to open the Database Configuration dialog box, where you can configure the
connection to the database. For more information, see Database Configuration on page 106 and
Database Interface on page 828.

By default, the history is saved in the table TRENDGGG (GGG = Trend Worksheet Number; e.g.,
TREND001 for the Trend Worksheet 001).

Historian
Save trend history to a Historian database or AVEVA Insight. After you select this format, click
Historian Configuration to open the Historian dialog box, where you can configure the connection
to the database. The trend history for each project tag is saved separately in the Historian
database, but you can use Prefix in the database connection settings in order to keep the tags
grouped together. For more information, see Support for AVEVA Insight and Historian on page
849.

Note:

You can specify String tags in many fields of the Trend worksheet, to change
those values during run time, but doing so may affect how those values are saved
in the trend history:

• When the history format is Proprietary, the value of the String tag is converted
to a numeric value (if possible) and then saved in the history file. If numeric
conversion is not possible, then a value of 0 is saved.

• When the history format is Database or Historian, the actual value of the String
tag is saved in the database.

Save On Trigger
Click (enable) and type a tag name to save trend samples when someone changes the specified
tag. (Tag change can be an event from the Scheduler.)

Save On Tag Change

Click (enable) to always save the trend sample when a value change occurs in any of the tags
from that group.

Background Tasks

Page 504

When the history format is Proprietary or Database, all of the tags in the group are saved after each
change. When the history format is Historian, only the tag that changed is saved.

Advanced
Click to display the Trend Advanced Settings dialog. For information about completing the fields
in this window, see Batch History Configuration.

Body
For each project tag, configure the following settings in the worksheet body:

Tag Name
The name of the project tag for which trend history will be saved.

Dead Band
Type a value to filter acceptable changes when Save on Tag Change is used. For example, Dead
Band has value = 5. If the tag value is 50 and changes to 52, the system will not register this
variation in the database, because it is less than 5. If the change is equal to or greater than 5,
the new value will be saved to the history file.

Field

When History Format is Database, this is the name of the field (in the SQL database table) where the
trend history will be saved. If this field is left blank, the project tag name will be used.

For array tags and classes, special characters ([].) will be replaced by underscores (_), as
shown in the examples below:

Tag Name Field Name

MyArray[1] MyArray_1

MyClass.Member1 MyClass_Member1

MyClass[3].Member2 MyClass_3_Member2

Historian Tag
When History Format is Historian, this is the name of the tag (in the Historian database) where the
trend history will be saved. If this field is left blank, the project tag name will be used.

When you save a Trend worksheet, only the header settings are saved as part of the worksheet file. All of the
trend configurations that make up the body of the worksheet are actually saved as tag properties. The next
time you open that worksheet, the tags database is scanned for all trend configurations that belong to the
worksheet (i.e., the trend group), and then that information is used to recreate the body of the worksheet. This
happens quickly and automatically every time you open the worksheet, so it might seem like you are opening
a static file but that is not the case.

You may think of the Trend worksheet as an editor for those tag properties that are related to history. If you
use either the Tag Properties dialog box or the TagsDBSetTrend function to edit the same properties, the
updated trend configurations will be included in the body of the worksheet the next time you open it. In fact,
you can set trends on tags before you create any Trend worksheets at all; when you do create the worksheets,
they will be automatically populated with trend configurations according to their group numbers.

You cannot configure more than one trend on a given tag, and each trend configuration cannot belong to more
than one group/worksheet.

If you make extensive changes to the tags database after you save an Trend worksheet, it might not be
possible to recreate the body of the worksheet the next time you open it. For example, if you copy all of the
tags from the tags database (in Datasheet View) to a spreadsheet program, use that program to sort the tags,
and then copy the tags back to the tags database, most or all of the tag properties will be reset in the process.

Note: The Trend task can accept only up to 1000 tags in a single worksheet. If you manually
configure more than 1000 tags in the same worksheet, the Trend task will generate an error during
project run time.

Background Tasks

Page 505

Recipes
Use a Recipe worksheet to load tag values from and/or save tag values to an external data file during project
run time. It is typically used to execute process recipes that comprise many predefined settings, but you can
also use it to take snapshots of the project state or store other types of data.

The external data file can be one of two file types: a standard .xml file or a space-separated .dat file. Each
type of file has its own benefits and limitations. The .xml file stores the data in an easy-to-read XML format
that can be processed by other programs or viewed in a web browser. (An .xsl file is saved and associated with
the .xml file, and the web browser uses that .xsl file to style the data as a web page.) Furthermore, the .xml
file can handle large arrays of values without issues. The tag names are saved with the tag values, however,
so the values can only be loaded back into the same tags.

In contrast, the .dat file stores the tag values as raw data, without tag names. (An .rcp file that contains the
recipe configuration is saved and associated with the .dat file.) That means you can configure one Recipe
worksheet to save tag values to the file and then configure another Recipe worksheet to load the saved values
into different tags. You must be careful about how the project tags are ordered in their respective worksheets,
however, or else the worksheets will conflict with each other over how they parse the data. Furthermore,
because of how the raw data is saved line-by-line, the .dat file cannot handle large arrays of values.

In both cases, the files for all recipes should located in the Web sub-folder of your project folder (e.g.,
<project name>\Web\Recipes).

To create a new Recipe worksheet:

1. Do one of the following:

• On the Insert tab of the ribbon, in the Task Worksheets group, click Recipe;

• Right-click the Recipes folder in the Project Explorer, and then click Insert on the shortcut menu; or

• Click New on the File menu, click the File tab, and then select Recipe Worksheet.
A new Recipe worksheet is opened for editing in the Screen/Worksheet Editor.

Recipe worksheet
2. In the Description box, type a description of the recipe.

This is for documentation purposes only and does not affect the execution of the worksheet.

3. In the File Name box, type the name of the external file that will store the data.
You can type either a specific file name (e.g., Recipe001) or the name of a project tag enclosed in curly
brackets (e.g., {MyFileName}), so that the file name can be programmatically changed during project run
time. Do not include the file extension (.xml or .dat), because that will be automatically determined by
whether the Save As XML option is selected.

Background Tasks

Page 506

4. In the Register Number box, type a tag to define the register number to be read from or written to a database
file.

Note: This setting is for legacy purposes only, and it should not be used in a new Recipe
worksheet.

5. Select the Save As XML option to save the data to a standard .xml file, or clear the option to save the data to
a space-separated .dat file.
This option is selected by default.

6. Select the Unicode option to save the data in Unicode format (two bytes per character), or clear the option to
save the data in ANSI format (one byte per character).
This option is selected by default.

7. In the body of the worksheet, configure a row for each project tag that you want to include in the recipe:
a) In the Tag Name column, type the name of the project tag.

If the tag is an array, a class, or both, then all of its array elements and class members are included by
default. To include only a specific element and/or member, type the full name including array position
and/or member name (e.g., MyArray[3].MyMember).

b) In the Number of Elements column, type the number of elements that you want to include from the
specified tag.
This is starting from the array position that you specified in the Tag Name column, or from position 0
if you did not specify a position. You can type either a literal value (e.g., 10) or the name of a project
tag enclosed in curly brackets (e.g., {MyNumberOfElements}), so that the number of elements can be
programmatically changed during project run time.

8. When you are done, save and close the worksheet.

To execute a Recipe worksheet during project run time, call the Recipe function. Unless you are using an
existing data file that has been copied from another project, you must call the function at least once to create
a new data file and save the initial values of the included tags.

Background Tasks

Page 507

Report worksheet
A Report worksheet is used to design a report that is dynamically generated during runtime (using the current
values of the included tags) and then either sent to a printer or saved to a file.

To create a new Report worksheet, do one of the following:

• On the Insert tab of the ribbon, in the Task Worksheets group, click Report;
• Right-click the Reports folder in the Project Explorer, and then click Insert on the shortcut menu; or

• Click New on the File menu, click the File tab, and then select Report Worksheet.
To edit an existing Report worksheet, double-click it in the Project Explorer.

Report worksheet

The Report worksheet is divided into two areas:

• Header area (top section), which contains information for the whole group; and

• Body area (bottom section), where you define each tag in the group.

Use the Header parameters on this worksheet as follows:

• Description field: Type a description of the worksheet for documentation purposes.

• Output File field: Type a tag name for the output file (using the {tag} syntax) where data is stored when you
are printing to a file. Where the tag value is part of the file name.

For example: report{Day}.out. Where the generated file might be report1.out, report2.out,
report3.out, and so on, according to the tag day value.

Note: A report configuration file uses .RCP as the default extension. The Output File field is the file
where data is stored.

• Edit RTF file button: Click to access the report as an RTF file, which you can edit for layout modification and
so forth.

• Disk Append checkbox: When printing to a file

• Check the box to add (amend) the new report to the end of an existing file

• Uncheck the box to replace the existing report in that file with the new report

• Unicode checkbox: Click (enable) to save the report in Unicode format (two bytes per character) or (disable)
to save the report in ASCII format (one byte per character).

• Lock Value into the {Tag/Exp} length checkbox: Click (enable) to automatically truncate the values of Tags/
Expressions in the report to fit between the curly brackets, as they are positioned in the Body of the report

Background Tasks

Page 508

(see below). This helps to preserve the layout of the report. If this option is left unchecked, the full values of
Tags/Expressions in the report will be displayed.

Use the Body portion of this worksheet for report formatting. You can configure a report using data in the
system and indicating where to print the tag values. Each tag name will replace the {tag_name} tag name.
For Real type tags, use the following syntax: {tag_name n}, where n is the number of decimal places you
want printed.

If you are using the standard report editor (text only: ASCII or Unicode), the number of characters reserved for
the tag value will be equal to the number of characters used to type the tag name (including the two "curly"
brackets). For example, if you configure {TagA} in the report body, reserve six characters for the tag value in
the report file. This behavior is not valid for reports in RTF format.

To execute a Report worksheet, use the Report function anywhere an expression is allowed.

Note: After you create and edit a Report worksheet, you can save it with a custom name. The name
should not contain spaces, however, because if it does, the Report function will not be able to
execute it.

Background Tasks

Page 509

Create a new Math worksheet
Create a Math worksheet to implement program logic that should be executed periodically in the background
during project run time, rather than on a specific action or event like opening a screen or clicking a button.

This worksheet is functionally similar to the Script worksheet, except that it uses the built-in scripting
language instead of VBScript.

To create a new Math worksheet:

1. Do one of the following:

• On the Insert tab of the ribbon, in the Task Worksheets group, click Math;

• On the Tasks tab of the Project Explorer, right-click the Math folder, and then click Insert on the shortcut
menu; or

• Click New on the File menu, click the File tab, select Math Worksheet, and then click OK.

A new Math worksheet is opened for editing in the Screen/Worksheet Editor.

Math worksheet
2. In the Description box, type a description of the worksheet.

This is for documentation purposes only and does not affect the execution of the worksheet.

3. In the Execution box, type a tag/expression that will control the execution of the worksheet during project
run time.

The worksheet is scanned periodically as part of the Background Task module. Each time the worksheet is
scanned, if the specified tag/expression evaluates as TRUE (i.e., non-zero), then the worksheet is executed.
In practice, this means the worksheet is executed continuously while the tag/expression evaluates as
TRUE.

To ensure the tag/expression always evaluates as TRUE, so that the worksheet is executed continuously
without exception or interruption, type a literal value of 1.

4. Complete the body of the worksheet, which uses the Built-in Language interface.

5. Save and close the worksheet.

When you save a new worksheet for the first time, you will be prompted to assign it a unique sheet
number. This number determines the order in which the worksheet will be scanned relative to all other
worksheets of the same type. For example, if you assign a new Math worksheet the sheet number 5, it will
be scanned after sheet numbers 1–4 and before sheet numbers 6–n.

The completed Math worksheet is saved in the Math folder in the Project Explorer.

To open an existing Math worksheet for further editing, double-click it in the Project Explorer.

Background Tasks

Page 510

You can also execute a Math worksheet on demand, independent of whatever is configured in the Execution box
of that worksheet, by calling the Math function anywhere an expression is allowed. Using this method, you
can even call other Math worksheets like sub-routines from within a Math worksheet.

About the Built-in Language interface
The Built-in Language interface is a standard tool for developing program logic that uses our Built-in
Language. It is offered as an alternative to the VBScript interface.

The Built-in Language interface is available in the following places in the project development environment:

Interface Is Executed…

Math worksheet …periodically, while the worksheet's execution condition is TRUE.

Scheduler worksheet …at a specified date/time, at a specified time interval, or when the value of a
specified tag changes.

Screen Logic (in Screen Attributes) …when the screen is opened, while the screen is open, and/or when the screen
is closed.

ActiveX or .NET Control object …when a selected event on that object is triggered.

Command animation …when the underlying screen object (typically a Button object) is clicked.

In some of these places, you will be prompted to select the type of interface. Remember to select Built-in or Built-
in Language, as opposed to VBScript or others.

The interface itself is arranged as a two-column table. Each row of the table is essentially a line of code, and
the rows are executed sequentially from first to last.

When a row is executed, the expression in the Expression column is evaluated, and if it returns a value, that
value is written to the project tag in the Tag Name column.

Background Tasks

Page 511

An expression can be almost anything, from a simple arithmetic or logic operation to a series of nested
function calls, as long as it follows the syntax for our Built-in Language. The following example shows a
variety of expressions.

A variety of expressions in a Math worksheet

Row Tag Name Expression Description

1 MyInteger[0] 1+2 A simple arithmetic operation that returns an integer value. The
value is written to MyInteger[0].

2 MyReal[0] Cos(Pi()*(1/3)) A trigonometric expression, using the Cos and Pi
functions, that returns a real value. The value is written to
MyReal[0].

3 MyString[0] Format("%x",123) An integer value (123) that is reformatted as a string
using the Format function. The string is written to
MyString[0].

4 MyInteger[1] (100*79)/(23*3+10) A more complex arithmetic expression that uses parentheses
to change the order of operations. The resulting value is written
to MyInteger[1].

5 MyInteger[2] 1 A literal value of 1 that is written to MyInteger[2].

6 MyString[1] "Provider=Microsoft.ACE.OLEDB.12.0;Data
Source=C:\MyFolder
\MyAccessFile.accdb;Jet
OLEDB:Database
Password=MyDbPassword;"

A database connection string that is written to
MyString[1].

7 MyString[2] Format("Provider=Microsoft.ACE.OLEDB.
%d.0;Data Source=C:
\MyFolder
\MyAccessFile.accdb;Jet

The same database connection string as above, except
that the Format function is used to get the value of
DBVersion and then insert it into the string. The returned
value — that, is new string — is written to MyString[2].

Background Tasks

Page 512

Row Tag Name Expression Description
OLEDB:Database
Password=MyDbPassword;",DBVersion)

For a list of available functions and a complete description of each function, see Appendix: Built-in Language
on page 917.

In the example above, there is no relationship between the expressions; each row can be executed and
each expression can be evaluated without affecting any of the others. The rows of the Built-in Language
interface are executed sequentially, however, so you can also configure expressions that progress from one
row to the next. Specifically, an expression can use the values of project tags that were set in previous rows.
The example below shows how to populate the elements of an array so that the value of each element is
incrementally greater than the previous one.

Configuring expressions that use tags set in previous rows

Finally, like in traditional code, you can use comments and empty fields to organize the content of the Built-in
Language interface. The following example shows a few different methods for doing this.

Using comments and empty fields to organize the content

A comment can be placed in a row by itself or appended to an expression. The double-slash (//) indicates that
everything following it should not be evaluated.

Empty fields are not evaluated at all, which means the following:

Background Tasks

Page 513

• If the Tag Name column is empty and the Expression column contains an expression, the expression will be
evaluated but the returned value (if any) will be discarded.

• If the Tag Name column contains a project tag and the Expression column is empty, the value of the project
tag will remain unchanged.

• If the Tag Name and Expression columns are both empty, the entire row serves only as blank space to separate
other groups of rows.

Using the Goto…Label structure in a Math worksheet
You can use the Goto and Label system tags to create a Goto…Label structure, which controls the flow of
program logic in a Math worksheet.

Note: The Goto…Label structure can be used only in Math worksheets. It cannot be used in
any other Built-in Language interface, such as an ActiveX or .NET Control object, a Command
animation, or Screen Logic (in Screen Properties).

The rows of a Math worksheet are executed sequentially from first to last. If a Goto tag is encountered,
however, it causes the execution to go to the matching Label tag in the same worksheet. "Matching" in this
case means the Goto and Label tags have the same value at the moment when the Goto tag is encountered.

The Goto and Label tags are somewhat different from other system tags. Their names are reserved by the
system, so that you cannot use the same names for your project tags, but their values are not defined by the
system. Instead, you define their values when you configure them in a Math worksheet.

In their most basic usage, the Goto and Label tags can have the same literal value (either numerical or string).
In the example below, the execution encounters a Goto tag in the first row, evaluates the corresponding
expression to get the literal value "end", and then goes to the matching Label tag in the last row.

GOTO goes directly to the end of the worksheet

Of course, if the execution goes directly from the first row to the last row, all of the rows in between are
ignored and the worksheet serves no real purpose. The key to the Goto…Label structure is to configure the
expression for the Goto tag so that it performs some sort of program logic. In the next example, the first Goto

Background Tasks

Page 514

tag is configured to get the value of a project tag (e.g., MyInteger[0]), and then the execution goes to the
Label tag that has the same value (e.g., either 1 or 2).

GOTO gets the value of a project tag

From there, you can develop the expression further to perform more complex program logic. In the final
example, the If function is used to not only get the value of a project tag but also test it for some condition.

GOTO gets the value of a project tag and then tests it

In this way, using the Goto…Label structure, you can configure multiple sub-routines in a single Math
worksheet and then use program logic to go from one to the next.

Please be aware that if a Goto tag does not have a matching Label tag — that is, if the execution encounters
a Goto tag but cannot find a Label tag that has the same value — then a message will be sent to the project
runtime log and the execution will continue to the next row after the Goto tag. You should thoroughly test
each Goto…Label structure to make sure there is a matching Label tag for every possible value of the Goto
tag.

Note: Technically, the data type of the Goto and Label tags is String, which means they can only
receive string values. If a Goto or Label tag receives a numerical value — either a literal value or a
value returned by evaluating a tag/expression — that value is converted to a string value before
it is actually stored in the tag. This conversion should have no practical effect on the run-time
performance of your project, however, because the Goto and Label tags should not be used in any
other context.

Background Tasks

Page 515

Using the For…Next loop in a Math worksheet
You can use the For function and the Next tag to create a For…Next loop, which repeatedly executes some
part of a Math worksheet.

Note: The For…Next loop can be used only in Math worksheets. It cannot be used in any other
Built-in Language interface, such as an ActiveX or .NET Control object, a Command animation, or
Screen Logic (in Screen Properties).

The rows of a Math worksheet are executed sequentially from first to last. If a For function is encountered,
however, it causes the execution of certain rows — specifically, the rows between the For function and its
associated Next tag — to be repeated a specified number of times. When the Next tag is encountered, the
execution returns to the For function at the start of the loop.

The Next tag is somewhat different from other system tags. Its name is reserved by the system, so that you
cannot use the same name for one of your project tags, but its value is not defined by the system. In fact, the
Next tag cannot receive any value at all. It exists only to be the end of the For…Next loop.

In the example below, a simple For…Next loop populates the elements of an array with values (e.g., multiples
of 10):

A single For…Next loop that sets the values of array elements

Using the Size property of the array ensures the loop will repeat for every element in the array, regardless
of the size of the array. You could also specify a literal value for the second parameter of the For function
in order to limit the number of times the loop will repeat. In either case, remember the array elements are
numbered starting from position 0; for example, For(0,9,1) will cause the loop to repeat ten times for array
positions 0–9.

In the next example, each element of the array is also a class with multiple members, so a second For…Next
loop is nested inside the first in order to populate all of the class members with values:

Nested For…Next loops that set the values of class members

The TagsDBGetClassMemberCount function gets the number of members in the class, just as the Size
property gets the number of elements in the array, and this ensures the second, nested loop will repeat for
every class member of every array element. Also, the second loop uses an indirect tag in order to compose the
name of the class member and then set the value of that member.

Background Tasks

Page 516

Finally, in the last example, a Goto…Label structure is inserted in order to provide an escape from the For…
Next loop(s), such as if the value of the most recently set class member exceeds a specified limit:

A Goto…Label structure inserted into the For…Next loops

For more information about the For function and its syntax, see For…Next on page 1063.

Background Tasks

Page 517

Script worksheet
A Script worksheet is used to implement program logic (using VBScript) that should be continuously executed
during runtime, rather than on specific actions like the user pressing a button on a screen.

Note: The Script worksheet is functionally similar to the Math worksheet, except that it uses
VBScript instead of the Built-in Scripting Language.

To create a new Script worksheet, do one of the following:

• On the Insert tab of the ribbon, in the Task Worksheets group, click Script;
• Right-click the Script folder in the Project Explorer, and then click Insert on the shortcut menu; or

• Click New on the File menu, click the File tab, and then select Script Worksheet.
To edit an existing Script worksheet, double-click it in the Project Explorer.

Script worksheet

The code configured in each Script worksheet is executed by the Background Task. The project scans
the worksheets sequentially (based on the worksheet number) and executes only the groups in which the
condition configured in the Execution field of the worksheet is TRUE (i.e., non-zero).

Note: You must use the syntax supported by the Built-in Scripting Language in the Execution field.
Only the body of the worksheet supports VBScript.

Variables declared in the worksheet have local scope for that specific group only. They are not available for
any other VBScript interface.

You cannot define procedures (i.e., functions and subs) in the Script worksheet. However, you can call
procedures defined in the Global Procedures or in the Startup Script.

Example:

'Variables available only for this group can be declared here
Dim myVar, myTest
myTest = 1

'The code configured here is executed while the condition configured in the Execution
 field is TRUE
myVar = $FindFile("c:*.txt")
If MyVar > 0 Then
 $TagNumOfFiles = myVar

Background Tasks

Page 518

End If

Note: When any Script worksheet is saved during runtime (on-line configuration), the Startup
Script will be executed again and the current value of the local variables of any Script worksheet will
be reset.

Startup Script worksheet
The Startup Script worksheet is a VBScript interface that is automatically executed when the project is run.

To edit the Startup Script worksheet, double-click it in the Project Explorer. (It is located on the Tasks tab, in
the Script folder.) The worksheet is displayed:

Startup Script worksheet

The code configured in this worksheet is executed just once when the Background Task module (BGTask) is
started. This interface is useful for initializing variables or executing logics that must be implemented when
the project is run.

You can declare and initialize variables and define procedures. However, variables or procedures declared in
this interface will be available ONLY to the Script worksheets executed by the Background Task module —
they are not available to any VBScript interface from the Graphic Module.

Example:

'Variables available for all Script groups from the Script task can be declared and
 initialized here
Dim MyVar, Counter
MyVar = 100

'Procedures available for all Script groups from the Script task can be implemented
 here

Function AreaEquTriangle(base, high)
 AreaEquTriangle = (base * high) / 2
End Function

Sub CheckLimits(myValue, myHiLimit, myLoLimit)
 If (myValue > myHiLimit Or myValue < myLoLimit) Then
 MsgBox("Value out of range")
 End If
End Sub

'The code configured here is executed just once when the Background task is started
If $GetOS() = 3 Then
 MsgBox ("Welcome! This project is running under Microsoft Windows Embedded operating
 system.")
Else
 MsgBox("Welcome! This project Is running under Microsoft Windows desktop operating
 system.")
End If

Background Tasks

Page 519

Scheduler worksheet
A Scheduler worksheet is used to execute program logic (using the Built-in Scripting Language) at a specific
date/time, on a regular time interval, or upon a triggering event.

To create a new Scheduler worksheet, do one of the following:

• On the Insert tab of the ribbon, in the Task Worksheets group, click Scheduler;
• Right-click the Scheduler folder in the Project Explorer, and then click Insert on the shortcut menu; or

• Click New on the File menu, click the File tab, and then select Scheduler Worksheet.
To edit an existing Scheduler worksheet, double-click it in the Project Explorer.

Scheduler worksheet

The Scheduler worksheet is divided into two areas:

• Header area (top section), which contains information for the whole group

• Body area (bottom section), where you define each tag, expression, and condition for the group.

Use the parameters on this worksheet as follows:

• Description field: Type a description of the worksheet for documentation purposes.

• Event drop-down list: Click to select an event type from the following:

• Calendar: Generates time bases greater than 24 hours. For example, You can define an event that prints
a report every Friday at a specific time.

Note: Be sure to complete the Date field if you want a specific date for event execution.

• Clock: Generates time bases smaller than 24 hours (intervals in minutes or seconds). This function is
frequently used with trend graphics. For example, you can define a tag that will be incremented each
hour.

• Change: Event related to the change of a tag in the Trigger field.

Note: This only works for tag changes on the project server, regardless of a tag's defined
scope.

Background Tasks

Page 520

• Trigger field: This field is used only with the Change Event type. Type the name of a project tag in this field,
and when the value of the tag changes, the specified Expression is evaluated.

• Time field: This field is used with the Calendar and Clock Event types.

If the Event type is Calendar, then Time is a specific time of the day on Date. When that Date and Time occurs,
the specified Expression is evaluated.

If the Event type is Clock, then Time is a time interval starting from when the project was run. Every time
the interval occurs, the specified Expression is evaluated.

Either way, type a time using the HH:MM:SS.ms format. Valid values are 00 to 23 for hours, 00 to 59 for
minutes, 00 to 59 for seconds, and 1 to 9 for milliseconds. (Milliseconds are optional.) Examples: 03:00:00
is every three hours, 00:00:00.1 is every 100 milliseconds.

• Date field: This field is used only with the Calendar Event type. Type a specific date formatted according to
the current date format on the project runtime server; for more information, see About the date format
and how to change it on page 707. When the specified Date and Time occurs, the specified Expression is
evaluated.

If the field is left blank, then the event occurs daily at the specified Time.

• Tag field: Type a tag that will receive the value returned by Expression (if any).

• Expression field: Type an expression to be evaluated. This field is used by all events.

• Disable field: Contains a disable condition for the specified function. Leave this field blank or use an
expression value equal to zero to execute the function. Use an expression value equal to one and the
function will not execute (Disable = 1).

Background Tasks

Page 521

Database/ERP worksheet
This software uses Microsoft .NET ActiveX Data Objects (ADO.NET) to interface between the project tags
database and other external databases. You can configure a Database/ERP worksheet to associate project
tags with external database fields.

Note: For more information about ADO.NET support in this software — including how to
communicate with remote databases using the Database Gateway — please see Database Interface
on page 828.

To interface with an external database, you must first configure a connection to the database and then build a
worksheet that associates project tags with the database fields.

Database Connections
To create a new connection to a target database:

1. In the Project Explorer, open the Database/ERP folder and then right-click on Connections.

2. Choose Insert from the shortcut menu.

The Database Connection dialog is displayed.

Database Connection dialog
3. In the Name field, enter the name that you want to use to reference the target database. You can create

multiple database connections, but each connection must have a unique name.

4. In the Connection String field, click the browse button … to open a standard Data Link Properties dialog. Use
the dialog to configure a connection string for the target database.

Note: The list of Database Providers shown in the Data Link Properties dialog depends on the
providers actually installed and available in the station where you are running the development
application. For more information about using the Data Link Properties dialog, please refer to
Windows Help.

5. In the User Name and Password fields, enter an appropriate login for the target database. The login should
already be created on the database server, and it should have enough privileges to read from and write to
the database tables.

Background Tasks

Page 522

6. If you are connecting to a remote database through the Studio Database Gateway, then click the Advanced
button to open the advanced settings dialog, as shown below.

Database Connection (Advanced) dialog
7. In the Host field, enter the IP address of the station that is running the Database Gateway software

(STADOSvr.exe). In the Port field, enter the port number on which the software has been configured to run.

Other settings to configure, if necessary:

• Disable Primary Keys checkbox: the project runtime will try to define a primary key to the table in order to
speed up the queries. If you are using a database that does not support primary keys (e.g., Microsoft
Excel), then you should check this box.

• Disable Milliseconds in Date/Time Columns checkbox: the project runtime will try to include milliseconds when
saving a date/time in the database. If you are using a database that does not support milliseconds,
then you should check this box.

8. Click OK to close the dialog and save the connection configuration.

Database connections are saved as XML files in the \<project name>\Config sub-folder. Each file is given
the same name as the name of the connection (as entered in the Name field of the Database Connection dialog),
with the .XDC file extension. For example, the connection configuration DB1 is saved in the file…

\<project name>\Config\DB1.XDC

Database Worksheet

Note: This feature emulates Structured Query Language (SQL) database operations. You should be
familiar with how SQL commands are formed and executed before you use this feature.

Database worksheets allow asynchronous execution of database operations, and they offer a user-friendly
interface for building SQL commands. Use one of the following methods to create a new database worksheet:

• On the Insert tab of the ribbon, in the Task Worksheets group, click Database; or

• Right-click on the Database/ERP folder in the Project Explorer, and then click Insert on the shortcut menu; or

Background Tasks

Page 523

A new worksheet is displayed, as shown below:

Database worksheet

Database worksheets are saved with the .XDB file extension, in the Config sub-folder of your project folder.
Each new worksheet is automatically numbered in the order of its creation. For example, the first worksheet
created is saved in your project folder at: <project name>\Config\DB001.XDB

Database worksheets are executed under the Database Client Runtime task. However, creating a new
worksheet does not automatically enable the task; you must use the Runtime Tasks dialog box (Tasks on the
Home tab of the ribbon) to configure the task to start at runtime. For more information, please see Runtime
Tasks.

Also, database worksheets run only on the server, and all triggers must be configured with server tags.

Worksheet Header

The header of the database worksheet is configured as follows:

• Description field: Enter a description of the worksheet, for documentation purposes.

• Status field: Enter the name of a numeric tag that will receive status codes for database operations during
runtime:

Status codes for external database operations

Status Code Description

4 Result set is empty

3 Cursor released and query successfully closed

2 Beginning of result set reached, usually while moving cursor to previous row

1 End of result set reached, usually while moving cursor to next row

0 No errors; status normal

-1 Error while connecting to specified database (see Connection below)

-2 Error while selecting result set

Background Tasks

Page 524

Status Code Description

-3 Error while moving cursor to next row (see Next trigger below)

-4 Error while moving cursor to previous row (see Previous trigger below)

-5 Error while closing the query (see Close Query trigger below)

-6 Error while inserting rows in result set (see Insert trigger below)

-7 Error while updating result set (see Update trigger below)

-8 Error while deleting result set (see Delete trigger below)

• Completed field: Enter the name of a numeric tag that will be toggled when database commands are
successfully executed.

• Error Message field: Enter the name of a string tag that will receive detailed error messages, if errors occur
during runtime.

• Connection combo-box: Click to select a connection to the target database. All available connections are
listed, as configured with the Database Connection dialog described above.

• Type combo-box: Click to specify how the result set will be selected for the worksheet:

• Table: Enter a table name and an optional filter condition. (The filter condition is equivalent to the SQL
"Where" clause.) All rows of the table that match the filter condition are selected.

• SQL: Enter a custom SQL "Select" statement.

Note: For Table, Condition and SQL Statement, you can enter the names of project tags that contain
the desired information. This lets you programmatically change the selection during runtime.
However, tag names must be enclosed in curly brackets ({}) to distinguish them from literal
strings. Also, you must release an existing selection before you open a new one; see Close Query
below.

• Cursor Triggers area…

• Select field: Enter any tag; when the value of the tag changes, a new cursor opens the first row of the
result set and copies those values to the tags configured in the worksheet body.

• Next field: Enter any tag; when the value of the tag changes, the cursor moves to the next row of the
result set and copies those values to the tags configured in the worksheet body.

• Advanced button: Click to open the Advanced Cursor Options dialog…

Advanced Cursor Options dialog

• Close Query field: Enter any tag; when the value of the tag changes, the cursor releases the result set.

Background Tasks

Page 525

• Previous field: Enter any tag; when the value of the tag changes, the cursor moves to the previous row
of the result set and copies those values to the tag configured in the worksheet body.

• Total number of rows field: Enter a numeric tag that will receive the total number of rows in the result
set.

• Current row number field: Enter a numeric tag that will receive the number of the current row (i.e., the
position of the cursor). When a result set is first opened using the Select trigger, this number is 1.
Each Next trigger increments this number, and each Previous trigger decrements it.

• Table Triggers area…

• Insert field: Enter any tag; when the value of the tag changes, a new row is inserted with the current
values of the tags configured in the worksheet body.

• Update field: Enter any tag; when the value of the tag changes, all rows of the result set are overwritten
with the current values of the tags configured in the worksheet body.

• Delete field: Enter any tag; when the value of the tag changes, all rows of the result set are deleted.

Note: Table triggers are available only when Type is set to Table, because these operations work on
the entire table row.

Worksheet Body

In the body of the worksheet, you can map project tags to the columns (fields) of the result set. For each row
of the body, enter a Tag Name and its corresponding Column. Which columns are available depends on how the
result set is selected, and how it is selected may change during runtime, so be sure to map all necessary
columns.

Note: You may have up to 2048 rows per worksheet. If you need more than that, then try creating
additional worksheets and adjusting the result set for each worksheet.

Background Tasks

Page 526

Sort or filter the rows in a worksheet
Sort or filter the rows in a worksheet in order to make it easier to browse the rows or find a specific item.

Before you begin this task, you must have already inserted a worksheet and opened it for editing. You should
also be familiar with how sorting and filtering is done in general-purpose spreadsheet applications.

Please note that you can sort or filter rows only in the following types of worksheets:

• The Project Tags, Shared Tags, and System Tags datasheets;

• The Translation Table worksheet;

• All task worksheets except Report and Script, which do not have rows; and

• All communication worksheets.

None of the other worksheets have rows to sort or filter.

Background Tasks

Page 527

Sorting is done alphanumerically, by the selected column, in either ascending (0–9, A–Z) or descending (Z–A,
9–0) order.

Alarm worksheet rows in their original order

Alarm worksheet rows sorted by Type

Background Tasks

Page 528

Filtering is done according to whatever string you enter in the selected column. Only the rows that match the
string will be displayed.

Alarm worksheet rows filtered where Tag Name is "Tag3"

Alarm worksheet rows filtered where Type is "Lo"

Tip: You can still delete rows while they are sorted or filtered.

To sort or filter rows:

1. To sort the rows, click the header of the column by which you want to sort. Click once to sort in ascending
order, and then click again to sort in descending order.
The current order (i.e., the direction of the sort) is indicated by the arrow to the right of the column name.

Note: You cannot sort by multiple columns.

2. To undo the sorting and restore the rows to their original order, click the header of the first (numbered)
column.

3. To filter the rows, type the string that you want to match in the top (zero) row of the worksheet and then
press either Tab or Return.

You may include * and ? as wildcard characters in your string:

• * matches any number of characters, including none. For example, Tag* would match Tag, Tag3,
Tag34567, TagA, and Tag_TEMP.

• ? matches exactly one character. For example, Tag? matches Tag3 and TagA, while Tag????? matches
Tag34567 and Tag_TEMP.

Also, you may filter by multiple columns. Only the rows that match the filter strings in all columns will be
displayed.

4. To undo the filtering and restore the rows to their original order, delete the string that you typed and then
press either Tab or Return.

Background Tasks

Page 529

Please keep in mind that sorting or filtering the rows of a worksheet only helps you to edit that worksheet. It
does not change how the worksheet is executed during run time. The rows will be executed in their original
numbered order (i.e., the leftmost column) unless you actually move or delete a row.

Communication

Page 530

Communication
Communication tasks/worksheets are used to exchange tag values with other BOS projects, remote devices
such as PLCs and transmitters, and any other systems that implement supported protocols like OPC.

Communication

Page 531

Configuring direct communication with a remote device
A communication driver is a DLL containing specific information about the remote equipment and implements
the communication protocol. Drivers for dozens of common and not-so-common devices are installed with
BLUE Open Studio 2020.

(Pro-face also provides a toolkit to develop new communication drivers. For more information, please contact
Customer Support.)

The Drivers task/worksheet allows you to define the communication interface (or interfaces) between the
project and remote equipment; such as a PLC, a single-loop, and transmitters.

Note: Consult the Help menu for a description of the functions and characteristics that are standard
for all drivers. When developing a project, you can also refer to the specific documentation provided
with each communication driver. This documentation is usually located in the DRV directory.

To configure a communication driver, you must specify the interface parameters (for example, the station
address and the baud rate), specify the equipment addresses, and then link them to project tags.

Use one of the following methods to add or remove a driver:

• On the Insert tab of the ribbon, in the Communication group, click Add/Remove Driver; or

• Right-click the Drivers folder in the Project Explorer, and then click Add/Remove drivers on the shortcut menu.

Both methods open a Communication Drivers dialog, which displays a list of available drivers.

Communication Drivers dialog

Use the parameters on this dialog, as follows:

• Available Drivers field: Lists all available drivers and a brief description of each.

Communication

Page 532

• Help button: Click to open the Help menu, which contains detailed configuration instructions for the driver
currently highlighted in the Available Drivers field.

• Select button: Click to select the driver currently highlighted in the Available Drivers field.

• Selected Drivers field: Lists all selected drivers and their descriptions (if available).

• Remove button: Click to remove a driver currently highlighted in the Selected Drivers field.

When you click OK in the Communications Driver dialog, you create a subfolder for the selected driver(s) in the
Drivers folder located on the Comm tab.

You can right-click on a driver subfolder to access the Settings option, which opens the Communications
Parameters dialog.

Sample Communications Parameters dialog

Use the parameters on this dialog, as follows:

• Serial Encapsulation field: Enables serial drivers to communicate with modem, TCP/IP or UDP connections.
This setting is supported only for serial drivers developed with the UNICOMM library, which includes most
of the serial drivers available in the product.

Note: The Modem option is not supported for Pocket PC v3.00 or older.

Note: This section covers only the None option, which enables the driver to connect using
a normal serial channel. Please refer to "Using TCP/IP and UDP Encapsulation" and "Using
Modem Connections" below for more information about other encapsulation modes. "Serial
Encapsulation Tests" below lists the drivers that have been tested with modem, TCP/IP and UDP
modes.

• COM field: Click to select a serial communication port.

• Baud Rate, Data Bits, Stop Bits, and Parity fields: Click to select parameters for a serial port configuration.

• Long1, Long2, String1, and String2 fields: These fields are driver custom settings. In the example above, the
driver uses Long1 to set up the error detection method and String1 to define the PLC family type.

Communication

Page 533

• Advanced button: Click to open the Advanced settings dialog. Use this dialog to change the default driver
parameters.

Advanced Settings dialog

Specify or change the default driver parameters as follows:

• Timeout (ms) area:

• Start message field: Specify the timeout for the message start.

• End message field: Specify the timeout for the message end.

• Interval between char field: Specify the timeout between each character.

• Wait CTS field: Specify the timeout for the Clear to Send wait.

• Handshake area:

• Control RTS drop-down list: Specify whether to use the "Request to Send" control.

• Verify CTS drop-down list: Specify whether to use the "Clear to Send" type of verification.

• Disable DTR checkbox: Click (enable) this box to disable the DTR function (the driver will not set the DTR
signal before starting the communication).

• Protocol area:

• Station field: Some slave drivers such as the Modbus Slave (MODSL) require a slave network address.
Use this field to specify the slave address.

• Retries field: Type a numeric value to specify how many times the driver will attempt to execute the same
communication command before considering a communication error for this command.

• Buffers length (bytes) area:

• Tx Buffer field: Specify the transmission buffer length (in bytes).

• Rx Buffer field: Specify the reception buffer length (in bytes).

• Simultaneous Requests area (available only on selected drivers):

• Maximum field: Specify the maximum number of requests that may be sent simultaneously to all
connected devices.

Communication

Page 534

• Maximum per station field: Specify the maximum number of requests that may be sent simultaneously to a
single device.

Note: The maximum number of simultaneous requests depends on the device and protocol
specifications. Please consult the device manufacturer's documentation.

The development application provides two interfaces, which you can use to configure the driver (associating
project tags to device addresses):

• MAIN DRIVER SHEET: Provides the easiest method for configuring communication between project
tags and device addresses. This interface allows you to automatically group tags to provide the best
performance during runtime. You cannot use this interface to control the time needed to scan a group of
tags individually.

• STANDARD DRIVER SHEETS: Allows you to control the time needed to scan a group of tags individually.

You can use both sheets at the same time.

Using TCP/IP and UDP Encapsulation
Most of the serial drivers allow the use of TCP/IP or UDP/IP encapsulation. The encapsulation mode has
been designed to provide communication with serial devices connected to terminal servers on your ethernet
or wireless networks. A terminal server can be seen as a virtual serial port. It converts TCP/IP or UDP/IP
messages on your Ethernet or Wireless network to serial data. Once the message has been converted to a
serial form, you can connect standard devices that support serial communications to the terminal server. The
following diagram provides one example of applying this solution:

TCP/IP Encapsulation

You can enable the encapsulation by following the steps below:

1. Right-click on the driver's folder, and then choose Settings from the shortcut menu.

This will give you access to the communication parameters.

Communication

Page 535

2. In the Serial Encapsulation field, select TCP/IP or UDP/IP:

The following fields are available:

• IP Address field: Specify the IP Address for the Terminal Server. This field accepts tags in curly brackets.

• Port Number field: Enter the TCP/IP or UDP/IP port number.

• Status Tag field: This field is available only when using TCP/IP. The tag on this field receives the value 1
when the TCP/IP connection is established; otherwise, it receives 0.

• Server Mode field: The TCP/IP encapsulation allows the Server Mode, making the remote client responsible
for establishing the connection to enable the communication.

Using Modem Connections
Most of the serial drivers allow the use of modem connections. The modem connection has been designed to
enable communications with remote serial devices connected through a phone line. The following diagram
provides one example of applying this solution:

Modem Connection

You can enable the modem connection by following the steps below:

1. Right-click on the driver's folder, and then choose Settings from the shortcut menu.

This will give you access to the communication parameters.

Communication

Page 536

2. In the Serial Encapsulation menu, select Modem:

Note: The Modem option is not supported for Pocket PC v3.00 or older.

The following fields are available:

• Name drop-down list: Select the modem that the driver will use to establish the connection. If you do not
know the modem name, use the Auto Detect option. The Auto Detect 1 will use the first modem available, Auto
Detect 2 will use the second, Auto Detect 3 will use the third, and Auto Detect 4 will use the fourth.

• Phone field: Enter a phone number that the driver will use to connect to the remote device. This field
accepts tags between curly brackets.

• Settings button: Click on this button to configure the modem settings. The window that displays when you
click on this button depends on the operating system that you are using and on the modem type.

Note: The settings configured by clicking on this button are not saved with your project. The
information is saved on the operating system registry, and they are valid only in the computer
that you are interacting with. If you install your project on another computer, you will have to
reconfigure these settings.

Communication

Page 537

• Connection button: Click to open the Connection Control window. The default connection settings should
suffice for most of the projects. However, you can take full control over the connection, and also enable
incoming calls, by clicking on this button.

Connection Control dialog

• Dial out trigger field: When the value of the tag configured in this field changes, the driver will try to
connect to the remote device. If the connection has already been established, the command is ignored.
You do not have to use this field if you are using Auto Connect.

• Hang up trigger field: When the value of the tag configured in this field changes, the driver will disconnect
from the remote device. If the device is disconnected the command is ignored. You do not have to use
this field if you are using Disconnect call if idle for more than.

• Auto Connect field: When this option is enabled, the driver will try to connect to the remote device before
sending any information. If the connection fails, the next attempt will be made after the Retry Interval
has expired.

• Disconnect call if idle for more than field: When this option is checked, the driver will automatically disconnect
from the remote device if no communication is performed after the time you specified.

• Enable incoming calls field: Check this option if you want to enable the driver to receive calls from the
remote device. You can use the Hang up trigger to drop the call once it has been established. Notice
that one driver can use both incoming calls and outgoing calls.

• Status area

• Code field: Enter with a tag that will receive one of the following codes when the driver is running:

• 0 = Disconnected

• 1 = Connected

• 2 = Dialing

• 3 = Dropping

• 4 = Closing Line

• Description field: Enter with a tag that will receive a complete description of the current status. The
description is associated with the Code field; however, it brings some additional information about the
current status.

Serial Encapsulation Tests
Most of the serial drivers should work with every serial encapsulation mode. However, most of the drivers
were developed before the encapsulation modes had been created. The following table lists the drivers fully
tested with certain encapsulation modes; if the driver that you intend to use is not listed and you are unsure
whether it will work, please contact your distributor.

Driver Modem TCP/IP UDP/IP

MODSL X X X

Communication

Page 538

Driver Modem TCP/IP UDP/IP

ABKE X X X

MODBU X X

OMETH X

X = Item has been tested

Main Driver Sheet
The development application automatically inserts the MAIN DRIVER SHEET into the driver folder as soon as
you add the driver to your project.

Note: The MAIN DRIVER SHEET is not available for all drivers.

To configure the MAIN DRIVER SHEET, right-click on the icon, and select Open from the pop-up or just
double-click on the icon.

The MAIN DRIVER SHEET dialog displays (see the following figure).

Sample MAIN DRIVER SHEET

The MAIN DRIVER SHEET worksheet is divided into two areas:

• Header area (top section), contains parameters that affect the all tags configured in the Body area of this
worksheet; and

• Body area (bottom section), where you define the relationship between tags in the project and their field
equipment address.

Use the Header area parameters as follows:

• Description field: Type a description of the MAIN DRIVER SHEET for documentation purposes.

• Disable field: Type a tag or an expression to enable and disable the communication of each MAIN DRIVER
SHEET on the fly.

• Type a value (or expression result) that is greater than zero to disable the MAIN DRIVER SHEET.

• Type a zero (or leave this field blank) to enable the MAIN DRIVER SHEET.

• Read Completed field: Type in a tag and the communication driver toggles the tag when it completes a read
command.

Communication

Page 539

• Read Status field: Type in a tag, which is updated with the status of the last read command.

• Write Completed field: Type in a tag and the communication driver toggles the tag when it completes a write
command.

• Write Status field: Type in a tag, which is updated with the status of the last write command.

• Min and Max checkbox: Click (check) to specify minimum and maximum values for data from the field
equipment.

• Min and Max fields (become active only when you enable the Min and Max checkbox): Type a range of values,
which can be converted into an engineering format.

The project uses these fields to determine a minimum/maximum range of values for data from the field
equipment. The scaling is done automatically. You must configure the engineering range using the Min and
Max parameters on the Tag Properties dialog. This range affects all tags in the worksheet, except those with
customized Min and Max values, as specified in the Body area of the driver sheet (Min and Max columns).

Use the Body area parameters as follows:

• Tag Name field: Type the name of a project tag to be used by the communication driver.

• Station field: Type the number of the equipment station within the network. The syntax in this field varies
with each communication driver. Refer to the appropriate driver's documentation for further information.

Tip: For some drivers, if you've configured the driver to do serial encapsulation via TCP/IP or
UDP/IP, then the station may be specified using the following format:

IP_address:port_number|station

For example:

10.169.25.18:1234|Station5

To see if this feature is supported on your selected driver, refer to the driver's documentation.

Tip: You can configure a tag name (string) between curly brackets in this field. In this case,
the tag value will be the Station used by the driver. Therefore, you can change the station
dynamically during runtime.

Configuring a string tag between curly brackets in the Station field of the Main Driver Sheet
(MDS) is especially useful when configuring projects for redundant PLCs. Changing the value of
the tag configured in the Station field, you can switch automatically from one PLC to the other in
case of a failure of the primary PLC (hot/Stand-by).

• I/O Address field: Type the address of the field equipment related to the project tag. The syntax in this
field varies with each communication driver. Refer to the appropriate driver's documentation for further
information.

• Action field: Specify the communication direction, using one of the following options:

• Read (the project continuously reads the address from the field device and updates the Tag value.)

• Write (the project writes the tag value to the field device when the tag value changes.)

• Read+Write (Combines the procedures of both the Read and Writeparameters.)

• Scan field: Specify the condition under which the tag value is read from the remote device or server and
then updated in the project database, using one of the following options:

• Always means the tag is read and updated during every scan of the communication worksheet,
regardless of whether the tag is used in any other project screens, scripts, or worksheets.

This option is recommended for tags that must be continuously monitored in the background, such as
tags that trigger alarms, tags used in recipes, tags that are recorded in the historical database, and so
on.

Communication

Page 540

• Screen means the tag is read and updated only if it is being used in at least one open project screen,
either locally or on another client station.

This option is recommended for tags that are used in screen objects, because the project may not
need to update tags that are not being visualized anywhere. Selecting this option can improve project
performance.

• Auto means the project will automatically choose either Always or Screen, depending on where the tag is
used in your project. If the tag is only used in a screen object on a project screen, then the scan will
default to Screen. But if the tag is configured in any other interface (e.g., Script, Math, Alarm, Trend,
Recipe, Report, Scheduler), then the scan will switch to Always and remain there until the project is
stopped.

If you are not sure of which option to select, select Always. This will guarantee the tag is read and updated.

• Div field: Specify the division constant when scale adjustment is required. This value is a division factor in
a read operation and a multiplication factor in a write operation. Do not use this field if you are already
using Min or Max in the configuration body.

• Add field: Specify the addition constant when scale adjustment is required. This value is an addition factor
in a read operation and a subtraction factor in a write operation. Do not use this field if you are already
using Min or Max in the configuration body.

Note: The Main Driver Sheet can have up to 32767 rows. If you need to configure more than
32767 communication addresses, then either configure additional Standard Driver Sheets or create
additional instances of the driver.

Tip: By default, the project will scan the communication worksheet every 600 milliseconds, which is
the rate at which the system tag BlinkSlow toggles. To adjust the rate, manually edit the project file
(i.e., <project name>.APP) to add the following entry:

[Options]
MainDrvAlwaysTrigger=tagname

tagname can be either another system tag (e.g., BlinkFast, Second, Minute) or a tag that you have
created. Whenever the value of the tag changes, the worksheet will be scanned and the tags will be
read.

Standard Driver Sheets
In addition to the unique MAIN DRIVER SHEET that is available for each driver, you can create several
STANDARD DRIVER SHEETS for each driver. The STANDARD DRIVER SHEETS provide additional fields,
which you can use to control communication.

Note: You can have a total of 9,999 Standard Driver Sheets for all drivers in your project.

Communication

Page 541

To open a STANDARD DRIVER SHEET, right-click on a driver subfolder and select Insert from the resulting
popup (see the following figure).

Sample STANDARD DRIVER SHEET

The STANDARD DRIVER SHEET dialog is divided into two areas:

• Header area (top section), contains parameters that affect the all tags configured in the Body area of this
worksheet

• Body area (bottom section), where you define the relationship between tags in the project and their field
equipment address.

Use the Header area parameters as follows:

• Description field: Type a description of the STANDARD DRIVER SHEET for documentation purposes.

• Increase Priority checkbox: Click (check) to keep the reading and writing commands for this sheet on the top
of the communication queue whenever they are triggered.

Note: You must give special attention to this worksheet when you enable the Increase Priority
option. If the worksheet keeps triggering communication commands, the project may never be
able to execute the other driver sheets.

• Read Trigger field: Type a tag that triggers the project to read the worksheet automatically when you change
this tag's value.

• Enable Read when Idle field: Type a tag or constant value. Use a tag (or constant) value greater than zero, to
enable reading from the equipment.

Note: If you use a constant value (other than zero), be sure that your project requires a
continuous reading because this value places a reading request in every communication scan.

• Read Completed field: Type in a tag and the communication driver toggles the tag when it completes a read
command.

Communication

Page 542

• Read Status field: Type in a tag and the communication driver updates the tag with the status of the last
read command.

• Write Trigger field: Type a tag value to activate a group reading. Whenever you change this tag value, the
program writes an equipment worksheet.

• Enable Write on TagChange field: Type a tag or constant value (not zero) to enable the communication driver to
check the worksheet continuously for changes in the tag value. If a change occurs, the project writes this
value to an address in the field equipment.

• Write Completed field: Type in a tag and the communication driver toggles the tag in this field when a write
command completes.

• Write Status field: Type in a tag and the communication driver updates the tag with the status of the last
write command.

• Station field: Type the equipment station number within the network. The syntax in this field varies with
each communication driver. Refer to the appropriate driver's documentation for further information.

Tip: For some drivers, if you've configured the driver to do serial encapsulation via TCP/IP or
UDP/IP, then the station may be specified using the following format:

IP_address:port_number|station

For example:

10.169.25.18:1234|Station5

To see if this feature is supported on your selected driver, refer to the driver's documentation.

• Header field: Specify the data type and/or initial address to be read or written in the equipment. The syntax
in this field varies with each communication driver. Refer to the appropriate driver's documentation for
further information.

Note: You can use text in the Station and Header fields with tag values using the text {tag}
syntax.

• Min and Max checkbox (not labeled): Click (check) to specify the minimum and maximum values for field
equipment data.

• Min and Max fields (become active only when you enable the Min and Max checkbox): Type a range of values
to be converted into an engineering format. These fields determine the minimum and maximum range of
values. These values affect all tags in the worksheet.

For example, Memory holds values from 0 to 4095, which means 0% to 100% in the user interface. So for
this example, you must specify 0 to 100 for the min and max tag parameters.

Use the Body area parameters as follows:

• Tag Name field: Type a tag name for the communication driver to use.

• Address field: Type a field equipment address (or address offset) related to the project tag. The syntax in this
field varies with each communication driver. Refer to the appropriate driver's documentation for further
information.

• Div field: Specify a division constant to use when scale adjustment is required. The project uses this value
as a division factor in a read operation and a multiplication factor in a write operation. Do not use this
field if you are already using Min or Max in the configuration body.

• Add field: Specify an addition constant to use when scale adjustment is required. The project uses this
value as an addition factor in a read operation and a subtraction factor in a write operation. Do not use
this field if you are already using Min or Max in the configuration body.

For read operations:

tag = (value in the equipment) / Div + Add

Communication

Page 543

For write operations:

value in the equipment = (tag - Add) * Div

If you leave the cells empty in the Div and Add fields, this function is ignored.

Notes
Each Standard Driver Sheet can have up to 4096 rows. However, the Read Trigger, Enable Read When Idle, and Write
Trigger commands attempt to communicate the entire block of addresses that is configured in the sheet, so if
the block of addresses is larger than the maximum block size that is supported by the driver protocol, then
you will receive a communication error (e.g., "invalid block size") during run time. Therefore, the maximum
block size imposes a practical limit on the number of rows in the sheet, and that limit varies by driver. For
more information, please refer to the driver documentation for your selected driver.

Also, keep in mind that when you use the Write Trigger feature with memory-based drivers (e.g., MODBU,
MOTCP, ABTCP, OMETH, SIETH), the driver writes to the entire block of registers from the first address
through the last. If a specific register has not been declared in the worksheet but its address is within the
block, the register will receive a zero (0) value. Check the worksheet for gaps in the address range. This does
not apply to name-based drivers (e.g.,TWCAT, COSYS, ABCIP).

Read/write status codes for direct communication drivers
This is a list of common status codes that are generated by communication drivers during read/write
operations.

Status Code Description Possible Causes Procedure To Solve

0 OK Communicating without error. None required.

-1 Invalid serial port • The selected serial port is invalid or
unaccessible.

• The port is already in use

• Select another serial port in driver settings.

• Check the serial port settings.

-2 Invalid baud rate The selected baud rate is invalid. Select a baud rate in the valid range.

-3 Invalid number of bits The selected number of bits for the serial port
is invalid.

Select a number of bits in the valid range.

-4 Invalid number of stop bits The selected number of stop bits for the serial
port is invalid.

Select a number of stop bits in the valid range.

-5 Invalid parity The selected parity for the serial port is invalid. Select a parity in the valid range.

-6 Invalid IRQ The selected IRQ for the serial port is invalid. Select an IRQ in the valid range.

-7 Serial port already in use The selected port is being used by other
process.

Choose another serial port for communication.

-8 Invalid buffer size The buffer size entered is not allowed. Check the documentation for allowed buffer sizes.

-9 Memory not enough Out of memory in the system. Close other processes that may be consuming memory.

-10 Tx buffer empty The CE device was not able to write the
message on the serial port.

Check if the serial port is valid and accessible.

-11 Tx buffer full The TX buffer has more data than allowed. Increase the TX buffer size in driver settings.

-12 Rx buffer empty No data was received. Check if the serial port is valid and the device is sending data.

-13 Rx buffer full The RX buffer has more data than allowed. Increase the RX buffer size in driver settings.

-14 Timeout waiting CTS The CTS was not received in the expected
time.

• Verify if the device should send the CTS, otherwise
disable the Verify CTS option.

• Increase the Wait CTS timeout in Advanced Driver
Settings

Communication

Page 544

Status Code Description Possible Causes Procedure To Solve

-15 Timeout waiting for message
to start

• Disconnected cables.

• PLC is turned off, in stop mode, or in
error mode.

• Wrong station number.

• Wrong parity (for serial communication).

• Wrong RTS/CTS configuration (for serial
communication).

• Check cable wiring.

• Check the PLC mode — it must be RUN.

• Check the station number.

• Increase the timeout in the driver's advanced settings.

• Check the RTS/CTS configuration (for serial
communication).

-16 Timeout waiting for message
to finish

The message took too long to be received as
completed.

Increase the timeout for End message in driver settings.

-17 Timout between rx character The time between charactes is too long. Increase the Interval between char in driver settings.

-18 Timout between tx character • The time to write the buffer has exceeded
the limit.

• The driver was not able to write the buffer

Check the serial port settings. Increase the Interval between
char in driver settings.

-19 No carrier detected Invalid serial port configuration or hardware
fault.

Check the serial port configuration and status.

-20 No DSR detected Invalid serial port configuration or hardware
fault.

Check the serial port configuration and status.

-21 Could not find a 8250 in
address

Invalid serial port configuration or hardware
fault.

Check the serial port configuration and status.

-22 Tx line is busy The TX buffer is full and unable to write to the
serial buffer.

• Check the serial port configuration and status.

• Check the device status.

-23 User abort User has aborted the request. Retry the request without aborting it.

-24 Function not supported Serial port received an unsupported function. Check the serial port configuration and status.

-25 Overrun Invalid serial port configuration or hardware
fault.

Check the serial port configuration and status.

-26 Parity Invalid serial port configuration or hardware
fault.

Check the serial port configuration and status.

-27 Overrun and parity Invalid serial port configuration or hardware
fault.

Check the serial port configuration and status.

-28 Framing Invalid serial port configuration or hardware
fault.

Check the serial port configuration and status.

-29 Framing and overrun Invalid serial port configuration or hardware
fault.

Check the serial port configuration and status.

-30 Framing and parity Invalid serial port configuration or hardware
fault.

Check the serial port configuration and status.

-31 Framing, overrun, and parity Invalid serial port configuration or hardware
fault.

Check the serial port configuration and status.

-32 Timeout waiting for a tx
message to finish

The message could not be sent completely or
partially.

• Check the serial port configuration and status.

• Check the device configurations.

-33 Invalid driver configuration file The driver configuration file
(drivername.ini) is missing or
corrupt.

Reinstall the driver.

-34 Invalid address The specified address is invalid or out of
range.

Check the supported range of addresses described in this
document, and then correct the address.

-35 Driver API not initialized The driver library was not initialized by the
driver.

Contact technical support.

Communication

Page 545

Status Code Description Possible Causes Procedure To Solve

-36 Invalid data type The specified data type is invalid or out of
range.

Check the supported data types described in this document,
and then correct the data type.

-37 Invalid header The specified header in the driver worksheet is
invalid or out of range.

Check the supported range of headers described in this
document, and then correct the header.

-38 Invalid station The specified station in the driver worksheet is
invalid or out of range.

Check the supported station formats and parameters described
in this document, and then correct the station.

-39 Invalid block size Worksheet is configured with a range of
addresses greater than the maximum block
size.

Check the maximum block size number of registers described
in this document, and then configure your driver worksheet
to stay within that limit. Keep in mind that you can create
additional worksheets.

Note: If you receive this error from a Main
Driver Sheet or Tag Integration configuration,
please contact Technical Support.

-40 Invalid bit write Writing to a bit using the attempted action is
not supported.

• Writing to a bit using Write Trigger is not supported in
some drivers. Modify the driver worksheet to use Write On
Tag Change.

• The bit is read-only.

-42 Invalid bit number The bit number specified in the address is
invalid. The limit for the bit number depends
on the registry type.

Check the addresses to see if there are bit numbers configured
outside the valid range for the registry.

-43 Invalid byte number The byte number specified in the address is
invalid. The limit for the byte number depends
on the registry type.

Check the addresses to see if there are byte numbers
configured outside the valid range for the registry.

-44 Invalid byte write Writing to a byte using the attempted action is
not supported.

The byte is read-only or inacessible.

-45 Invalid string size The string is more than 1024 characters. Modify the addresses that have string data type to be less than
1024 characters.

-50 Invalid modem The selected modem name is invalid. Select a valid modem name in driver settings.

-51 Error initializing TCP The TCP library is not available for serial
encapsulation.

Reinstall the driver.

-52 Error listening to port The port selected in serial encapsulation
settings is not available.

• Check for other processes that might be using the same
port number.

• Check the selected port number.

-53 Error initializing UDP The UDP library is not available for serial
encapsulation.

Reinstall the driver.

-54 Error sending data packet
(TCP or UDP)

The TCP/UDP library was not able to send the
packet.

Check the serial encapsulation settings.

-55 Error not connected Modem is not connected. • Check the modem settings.

• Check if the modem dial number is available.

-56 Invalid connection handle The connection is no longer valid. Please contact Technical Support.

-57 Message could not be sent The socket was unable to send the TCP or
UDP message.

• Check the station IP address and port number.

• Confirm that the device is active and accessible. Try to
ping the address.

-58 TCP/IP could not send all
bytes

The TCP/IP stack was not able to send all
bytes to destination.

• Check the station IP address, port number and/or ID
number.

• Confirm that the device is active and accessible.

• Try to ping the address.

Communication

Page 546

Status Code Description Possible Causes Procedure To Solve

-60 Error to establish TCP/IP
connection

Error while establishing a TCP/IP connection
with the slave device. Possibly incorrect
IP address or port number in the specified
station.

• Check the station IP address, port number and/or ID
number.

• Confirm that the device is active and accessible.

• Try to ping the address.

-61 TCP/IP socket error The TCP/IP connection has been closed by
the device.

Confirm that the device is active and accessible. Try to ping the
address.

-62 UDP/IP receive call returned
error

The UDP socket is in error. • Check the station IP address, port number and/or ID
number.

• Confirm that the device is active and accessible.

• Try to ping the address.

-63 UDP/IP error initializing The UDP socket initialization failed. Confirm that the operating system supports UDP sockets.

-64 UDP/IP receive call returned
error

The UDP socket is in error. • Check the station IP address, port number and/or ID
number.

• Confirm that the device is active and accessible.

• Try to ping the address.

-65 UDP/IP bind error, port
number may already be in
use

The driver was not able to bind the UDP port. • Check the port number used by the driver.

• Check for other programs that might be bound to the UDP
port.

-66 Unlicensed driver Your runtime license does not allow you to run
this driver.

Contact your BLUE Open Studio 2020 software distributor.

Notes
For more information about driver-specific status codes, see the documentation for that driver: on the Help tab
of the ribbon, in the Documentation group, click Communication Drivers.

Communication

Page 547

Tag Integration
Tag Integration is an enhanced framework for communication with third-party applications and devices.

Tag Integration is built on the same communication drivers that are described in the Drivers section, but
instead of manually configuring driver worksheets to associate project tags with device registers, you can
use the Object Finder to browse a Tag Integration source and then import device registers directly into your
project.

Device registers imported in this way appear as integrated tags in your project's Shared Database folder, and
they count against your project's tag limit as determined by its target system. Integrated tags are "live", which
means they are continuously and bilaterally updated during project run time as long as the Tag Integration
source is also running and connected. In most cases, you can use integrated tags in the same ways that you
would normally use project tags you created.

Tag Integration is available only for certain applications and devices, because additional work is required to
upgrade a traditional communication driver to support this feature. Many of the drivers included with this
software can be upgraded, however, so if the one you want is not listed in the Tag Integration settings, please
contact your software distributor and ask about custom development.

Tag Integration is configured in the Communication tab of your project settings.

Tip:

By default, the project runtime server will update integrated tags every 600 milliseconds, which is
the rate at which BlinkSlow toggles. To adjust the rate, manually edit your project file (<project
name>.APP) to add the following entry:

[Options]
MainDrvAlwaysTrigger=<tag name>

<tag name> can be either another system tag (e.g., BlinkFast, Second, Minute) or a project tag you
created. Whenever the value of that tag changes, the integrated tags are updated.

This works because the project runtime server automatically creates a virtual Main Driver Sheet to
manage integrated tags. The same trigger updates all Main Driver Sheets in your project, however,
so be careful if you are using both Tag Integration and traditional communication drivers to
communicate with devices. (Standard Driver Sheets have separate, configurable triggers.)

Integrate tags from TwinCAT
This task describes how to add a TwinCAT PLC as a tag integration source in your BOS project. You can use
either online or offline tag retrieval to get the tags from the target PLC. This feature supports all versions of
TwinCAT up to version 3.1.

Before you begin this task, you should do the following:

• Use the TwinCAT project development software to note the AMS Net ID and runtime port number of the
target PLC;

• Install and configure the TwinCAT ADS software on the computer or device that will host your BOS project;
and

• Make sure the target PLC is actually running and available on your network before you try to communicate
with it.

If you plan to use online tag retrieval — that is, if you want to get live tags while the target PLC is running —
you must also install and configure the TwinCAT ADS software on the same computer that you are using to
develop your BOS project. The software makes the computer a node on the TwinCAT AMS network, so that it
can communicate with other nodes including the target PLC. For more information, see Install and configure
the TwinCAT ADS software on page 549.

If you plan to use offline tag retrieval — that is, if you want to browse the tags while the target PLC is not
running — use the TwinCAT project development software to export a symbol file from the TwinCAT project
and then copy that file to your BOS project folder. The file provides essential information about the TwinCAT
project database. BLUE Open Studio 2020 can open TwinCAT Project Symbol files (.tpy), TwinCAT Module

Communication

Page 548

Class files (.tmc), and TwinCAT Module Instance files (.tmi), but .tpy files are preferred because they include
nested structures. For more information about symbol files, see the TwinCAT project development software
documentation.

You can set up both online and offline tag retrieval for the same tag integration source. They should not
conflict with each other. For a large TwinCAT project, however, it is faster to use offline tag retrieval.

To configure TwinCAT tag integration:

1. On the Project tab of the ribbon, in the Settings group, click Communication.
The Project Settings dialog box is displayed, with the Communication tab selected.

2. In the Tag Integration area, click Add.
The Tag Integration Source dialog box is displayed.

3. In the Type list, select Integrated if it is not already selected.

4. In the Provider list, select TwinCAT.

5. In the Name box, type a name for the source.
This name will be added as a prefix to the names of the integrated tags. For more information, see How
integrated tags may be renamed in your project on page 590.

6. Click Add.
The TwinCAT Interface Configuration dialog box is displayed.

TwinCAT Interface Configuration dialog box
7. In the AMS Net ID box, type the AMS Net ID of the target PLC.

For example: 5.0.112.206.1.1

8. Select the port on which the PLC runtime has been configured to run.

For TwinCAT 2.x, you should select one of the standard ports: 801, 811, 821, 831.

For TwinCAT 3.x, select Custom Port and then type the port number. The default for new TwinCAT 3.x
projects is port 851.

9. If you plan to use online tag retrieval, select Online PLC.
The TwinCAT system service must be installed and running on the same computer. If it is not, an alert will
be displayed and you will not be able to finish configuring the tag integration.

10.If you plan to use offline tag retrieval, do the following:
a) To the right of the Symbol File box, click Browse.

A standard Open dialog box is displayed.

Communication

Page 549

b) Use the Open dialog box to locate and select the symbol file that you previously exported from the
TwinCAT project.
If the file does not appear to be available, make sure the correct file type (.tpy, .tmc, .tmi) is selected.

c) Click Open.

The location of the selected file is displayed in the Symbol File box.

11.Click OK to finish the configuration.

If the configuration is successful, the target PLC's tags will be immediately available in the Object Finder.

INSTALL AND CONFIGURE THE TWINCAT ADS SOFTWARE
This section describes how to install and configure the TwinCAT Automation Device Specification (ADS)
software that is required for communication with TwinCAT PLCs and runtimes.

Download and install the ADS software on the local computer
To communicate with TwinCAT PLCs and runtimes, you must have the ADS software installed and configured
on the same computer or device that hosts the BOS project runtime server (hereafter called "the local
computer"). The ADS software allows the local computer to present itself as a TwinCAT node on the network,
and then your project communicates through it.

The ADS software is installed as part of the full TwinCAT software, so if you already have the full TwinCAT
software installed on the local computer, there is nothing more you need to do. Otherwise, you need to install
and configure the ADS software separately.

At the time this document was written, you could download the ADS software installer from the following
location: www.beckhoff.com/english.asp?twincat/tc1000.htm

After you download the installer, run it and follow the instructions. You will need to restart the local computer
to finish the installation, and when you do, the software will run automatically. By default, the software is
installed at: C:\TwinCAT\

Your use of the ADS software is subject to the License Agreement that is installed with the software. For more
information about the License Agreement, please contact Beckhoff.

Add an AMS route between the local computer and the target
To establish communication between the local computer and a target PLC or runtime, you need to add an
AMS route between the two. This can be done on either the local computer or the target, as long as both have
valid AMS Net IDs.

Each TwinCAT node on the network — in other words, each PLC, runtime, or computer that has the ADS
software installed — has a unique AMS Net ID that consists of six numeric values separated by periods (e.g.,
5.7.46.126.1.1). When you install the ADS software on a computer, that computer is given a default AMS
Net ID based on the computer's IP address. The AMS Net ID is separate from the IP address, however, and if
you change the IP address, the AMS Net ID is not updated to match. You can manually change the AMS Net
ID, if necessary.

To add the AMS route on the local computer:

1. In the notification area of the Windows taskbar, right-click the TwinCAT icon, and then on the shortcut
menu, click Router > Edit Routes. (You might need to expand the notification area if the TwinCAT icon is
hidden.) The TwinCAT Static Routes dialog box is displayed.

2. In the TwinCAT Static Routes dialog box, click Add. The Add Route dialog box is displayed.

3. If the target is located on the same network as the local computer, you should be able to select it:

a. Click Broadcast Search to get a list of targets that broadcast their presence on the network.

b. Select your target in the list. The route settings are automatically configured for the selected target.

4. If the target is not located on the same network as the local computer, you need to manually configure the
route settings:

a. In the Route Name (Target) box, type a name for the target. This is the name that will be displayed in the
local computer's list of routes, after you finish adding the route.

http://www.beckhoff.com/english.asp?twincat/tc1000.htm

Communication

Page 550

b. In the Route Name (Remote) box, type a name for the local computer. This is the name that will be
displayed in the target's list of routes, after you finish adding the route. The default name is the local
computer's host name, but you can change it if necessary.

c. In the AmsNetID box, type the target's ID.

If you do not know the target's ID, either use the TwinCAT programming software to get it or use
Broadcast Search on another computer on the target's network.

d. In the Transport Type list, select the network's transport type or protocol. In most cases, you should select
TCP_IP (i.e., TCP/IP). For all other options, please contact Beckhoff.

e. In the Address Info box, type the host name or IP address of the target, and then below the box, make
sure the corresponding option — Host Name or IP Address — is selected.

Tip: You can use the ping command, at the Windows command prompt, to confirm that the
specified host name or IP address is valid and accessible.

5. Click Add Route. The Add Route dialog box is closed, and the route is added to the local computer's list of
routes.

6. Close the TwinCAT Static Routes dialog box.

Alternatively, if you want to add the AMS route on the target, see the manufacturer's documentation for that
PLC or runtime.

Test the AMS route that you added
After you have added the AMS route between the local computer and the target, you should test the route
itself to make sure they can communicate with each other. To test the route:

1. On the local computer, locate and run the ADS test program (TcAdsTest.exe). The TcAdsTest window is
displayed.

Tip: There are three copies of TcAdsTest.exe included in the ADS software. If the software was
installed at its default location, the three copies should be located at:

• C:\TwinCAT\AdsApi\TcAdsDll\TcAdsTest.exe

• C:\TwinCAT\AdsApi\TcAdsTest\TcAdsTest.exe

• C:\TwinCAT\Common32\TcAdsTest.exe

All three copies function the same, so you can use any one of them.

2. In the TcAdsTest window, click AdsPortOpen. An alert message is displayed to inform you that the
computer's ADS port has been opened for communication.

3. In the TcAdsTest window, click Test. The Test window is displayed.

4. In the Test window, in the AmsNetId box, type the ID of the target.

5. Click Start to start the test. The number of successful operations (e.g., n Successful) should be displayed
in the Output box, and the number should keep increasing as long as the test is running.

6. Click Stop to stop the test.

7. Close the Test window, and then close the TcAdsTest window.

If the test results confirm that the local computer and the target can communicate with each other, your
project should also be able to communicate with the target through the ADS software.

Integrate tags from CoDeSys
This task describes how to add a CoDeSys 2.x or CoDeSys 3.x project as a tag integration source in your BOS
project.

Before you begin this task, you must do the following:

• Configure your CoDeSys project to generate a new symbol file with the correct variables. The symbol file is
like an index of the CoDeSys tags that you want to integrate into your project. For more information, see

Communication

Page 551

either Configure your CoDeSys 3.x project for tag integration on page 552 or Configure your CoDeSys 2.x
project for tag integration on page 555.

• Rebuild your CoDeSys project, and then send it to the PLC.

• Make sure the PLC is running and available on your network, and then note its IP address and/or runtime
address.

If you want to be able to browse the CoDeSys tags offline — that is, when the PLC is not running — then you
must also copy the new symbol file to your BOS project folder.

To integrate tags from a CoDeSys project:

1. On the Project tab of the ribbon, in the Settings group, click Communication.
The Project Settings dialog box is displayed, with the Communication tab selected.

2. In the Tag Integration area, click Add.
The Tag Integration Source dialog box is displayed.

3. In the Type list, select Integrated if it is not already selected.

4. In the Provider list, select CoDeSys.

5. In the Name box, type an appropriate name for this tag integration source.
This name will be added as a prefix to the names of the integrated tags. For more information, see How
integrated tags may be renamed in your project on page 590.

6. Click Add.
The CoDeSys Tag Integration dialog box is displayed.

7. In the Runtime version list, click either CoDeSys 3.x or CoDeSys 2.x, depending on the version of your CoDeSys
project.

8. If you selected CoDeSys 3.x, configure the corresponding settings.

CoDeSys Tag Integration dialog box for CoDeSys 3.x

a) In the Runtime Address box, type the address of the CoDeSys runtime.
To find this address, use the CoDeSys programming software to open your CoDeSys project.
A typical runtime address is 0194.

b) If you are using a gateway server to manage communication with the CoDeSys runtime, select the
Gateway IP check box, and then type the IP address and port number of the gateway server.
Please keep in mind that the address of the gateway server is relative to your BOS project runtime
server, so if both of them run on the same computer, you can use the default address 127.0.0.1
(i.e., localhost). Otherwise, if the gateway server and the BOS project runtime server run on different

Communication

Page 552

computers, or if you are testing your BOS project on a development workstation before you send it to
another computer, you should specify the actual address of the gateway server.

9. If you selected CoDeSys 2.x, configure the corresponding settings.

CoDeSys Tag Integration dialog box for CoDeSys 2.x

a) In the PLC IP Address and Port boxes, type the IP address and port number of the PLC that is running your
CoDeSys project.

b) If you are using a gateway server to manage communication with the PLC, select the Gateway IP check
box, and then type the IP address and port number of the gateway server.
Please keep in mind that the address of the gateway server is relative to your BOS project runtime
server, so if both of them run on the same computer, you can use the default address 127.0.0.1
(i.e., localhost). Otherwise, if the gateway server and the BOS project runtime server run on different
computers, or if you are testing your BOS project on a development workstation before you send it to
another computer, you should specify the actual address of the gateway server.

c) In the Level list, select the appropriate protocol to communicate with the PLC.
In most cases, you should select L4 (i.e., Level 4).

10.If you also want to browse the CoDeSys tags when the PLC is not running, enable offline browsing and
locate the symbol file that you copied to your BOS project folder.
a) Select the Symbol file browsing (offline) check box.

b) Click Browse, and then locate the symbol file.

11.Click OK to finish the configuration and close the dialog box.

If the configuration is successful, the CoDeSys tags will be immediately available in the Object Finder. For
more information, see Use the Object Finder to select integrated tags on page 588.

CONFIGURE YOUR CODESYS 3.X PROJECT FOR TAG INTEGRATION
This task describes how to configure a CoDeSys 3.x project to communicate with external programs, such
as BLUE Open Studio 2020, during runtime. It is a prerequisite to integrating CoDeSys tags into your BOS
project.

By default, the CoDeSys 3.x project development software does not generate a symbol file when you rebuild
your CoDeSys project. You must add a Symbol Configuration object to your CoDeSys project and then
configure the object to include the variables that you want to export to the symbol file.

Communication

Page 553

1. Open your CoDeSys 3.x project.

Opening a CoDeSys 3.x project
2. In the project explorer, right-click Application, and then click Add Object on the shortcut menu.

The Add Object dialog is displayed.

Communication

Page 554

3. From the list of objects, select Symbol configuration, and then click Open.
A new Symbol Configuration object is added to your project and it is opened for editing.

4. In the Symbol Configuration object, add the variables you want to communicate with. You need to move
them from the Available variables list on the left to the Selected variables list on the right.

Moving variables in the Symbol Configuration object

Communication

Page 555

If you do not see your variables in the Available variables list, check the following:

• For Local Variables (POU variables), the POU containing them must be called in a Task:

1. Add a Task Configuration object to the application.

2. Add a Task to the Task Configuration object.

3. Add the POU to the Task.

• For Global Variables, at least one of the variables from the Group must be used in at least one POU
that is being called by one Task.

5. Close the Symbol Configuration object.

6. On the Build menu, click Rebuild Application.

Once the CoDeSys project is configured to export the selected variables, the next time you send the project to
the PLC, it will include the new symbol file and your BOS project to be able to communicate with it.

You can also copy the CoDeSys symbol file to your BOS project folder, which will allow you to browse the tags
when the PLC is not running.

CONFIGURE YOUR CODESYS 2.X PROJECT FOR TAG INTEGRATION
This task describes how to configure a CoDeSys 2.x project to communicate with external programs, such
as BLUE Open Studio 2020, during runtime. It is a prerequisite to integrating CoDeSys tags into your BOS
project.

The CoDeSys 2.x project development software automatically exports its project database to a symbol file
every time you rebuild your CoDeSys project. However, CoDeSys exports the entire database by default,
including many system and library variables that BOS cannot import. You must reconfigure your CoDeSys
project options to export only the POUs and Global Variables and then rebuild your CoDeSys project to
generate a fresh symbol file.

1. Open your CoDeSys 2.x project.

Opening a CoDeSys 2.x project
2. In the project explorer on the right, click the Resources tab.

Communication

Page 556

3. In the list of resources, double-click Target Settings.
The Target Settings dialog is displayed.

4. Click the General tab.

General tab of the Target Settings dialog
5. Make sure that Download symbol file is selected.

6. Click OK to close the Target Settings dialog.

7. On the Project menu, click Options.
The Options dialog is displayed.

Communication

Page 557

8. In the Category list, click Symbol configuration.

Selecting "Symbol configuration"
9. Select Dump symbol entries and Dump XML symbol table.

10.Click Configure symbol file.
The Set object attributes dialog is displayed.

11.For the sake of expediency, you should first disable the export of all objects and then reenable only the
objects that you want to export to BOS — typically, the POUs and Global Variables. Select all of the objects
in the tree and then clear all options for them at the bottom of the dialog.

Communication

Page 558

You might need to select Export variables of object in order to activate the other checkboxes before clearing
them.

Clearing the options for all objects
12.Reselect only the POUs and Global Variables that you want to export to BOS. Do not select libraries. With

the objects selected, select all of the options at the bottom of the dialog.

13.Click OK to close the Set object attributes dialog, and then click OK again to close the Options dialog.

14.On the Project menu, click Clean All.
15.On the Project menu, click Rebuild All.

The CoDeSys development software will rebuild the project, generating a symbol file that contains only the
selected POUs and Global Variables.

Once the CoDeSys project is configured to export the selected variables, the next time you send the project to
the PLC, it will include the new symbol file and your BOS project to be able to communicate with it.

You can also copy the CoDeSys symbol file to your BOS project folder, which will allow you to browse the tags
when the PLC is not running.

Integrate tags from RSLogix 5000 Family
This task describes how to add an RSLogix 5000 PLC (from Allen-Bradley and Rockwell Software) as a tag
integration source in your project.

Before you begin this task, you should do the following:

• Review the manufacturer's documentation for your RSLogix 5000 PLC;

Communication

Page 559

• Use the PLC programming software to export a new symbol file (*.L5K) from your PLC program;

• Rebuild your PLC program, and then download it to the PLC; and

• Make sure the PLC is running and available on your network, and note its network address.

To add an RSLogix 5000 PLC as a tag integration source:

1. On the Project tab of the ribbon, in the Settings group, click Communication.
The Project Settings dialog box is displayed, with the Communication tab selected.

2. In the Tag Integration area, click Add.
The Tag Integration Source dialog box is displayed.

3. In the Type list, select Integrated if it is not already selected.

4. In the Provider list, select RSLogix 5000 Family.

5. In the Name box, type an appropriate name for this tag integration source.
This name will be added as a prefix to the names of the integrated tags. For more information, see How
integrated tags may be renamed in your project on page 590.

6. Click Add.

The RSLogix Tag Integration dialog box is displayed.

7. If you want to communicate directly with the PLC using the RSLogix communication driver, then do the
following:
a) In the Connection Type list, click Driver.
b) In the PLC IP Address box, type the address of the PLC.

c) In the CPU Slot Number box, type the number of the PLC slot in which the CPU module is installed.
The default is slot 0.

8. If you want to communicate with the PLC through an OPC server, then do the following:
a) In the Connection Type list, click OPC.

b) In the OPC Server list, select the type of server.
At this time, only two OPC servers support RSLogix 5000 PLCs: Software Toolbox and Rockwell
Automation's own RSLinx.

c) In the CPU Slot Number box, type the number of the PLC slot in which the CPU module is installed.
The default is slot 0.

d) In the Remote Server box, type the address of the OPC server.

9. Select the symbol file that you exported from your PLC program.

Communication

Page 560

a) Click Browse.
A standard Open dialog box is displayed.

b) Locate and select the symbol file (*.L5K).
In most cases, the file should be saved in the Config sub-folder of your project folder.

c) Click Open.

For more information, see Export symbol file for RSLogix 5000 Family on page 560.
The selected file is displayed in the L5K File box.

10.Click OK to finish the configuration and add the source.

If the source is added successfully, then the RSLogix 5000 PLC tags will be immediately available in the
Object Finder.

Note: Some complex tag structures, such as arrays of nested structures and aliases of members of
modules, are not supported.

EXPORT SYMBOL FILE FOR RSLOGIX 5000 FAMILY
This task describes how to export a symbol file from an RSLogix 5000 PLC program.

The symbol file contains information about all of the tags used in the PLC program, and that information is
used to add the PLC as a tag integration source in your project.

Note: The procedure below was written using the original RSLogix 5000 PLC programming software,
which supports up to V20. The specific steps might be different if you are using Studio 5000 Logix
Designer, which currently supports V21 to V32, but the basic procedure should be the same.
For more information, go to: https://www.rockwellautomation.com/rockwellsoftware/products/
studio5000-logix-designer.page

To export the symbol file:

1. Run the PLC programming software, and then open your PLC program.

2. On the File menu, click Save As.
A Save As dialog box is displayed.

3. Use the file browser to locate where you want to save the file.
In most cases, you should save it in the Config sub-folder of your project folder at: BLUE Open Studio
2020 Projects\<project name>\Config\

4. In the File name box, type a name for the file.

5. In the Save as type list, click RSLogix 5000 Import/Export File (*.L5K).
6. Click Save.

The file is saved at the specified location.

Integrate tags from Allen-Bradley PLC5, SLC500
This task describes how to add an Allen-Bradley PLC2, PLC5, or SLC500 as a tag integration source in your
BOS project.

This tag integration is based on the ABTCP driver, which communicates with Allen-Bradley devices (and
others) using the DF1 protocol.

Before you begin this task, you should do the following:

• Review the manufacturer's documentation for your Allen-Bradley device;

• Read the ABTCP driver documentation (on the Help tab of the ribbon, in the Documentation group, click
Communication Drivers, and then select ABTCP);

• Familiarize yourself with how memory areas — that is, groups of memory addresses — are configured on
Allen-Bradley devices; and

https://www.rockwellautomation.com/rockwellsoftware/products/studio5000-logix-designer.page
https://www.rockwellautomation.com/rockwellsoftware/products/studio5000-logix-designer.page

Communication

Page 561

• Make sure the source device is running and available on your network, and note its network address.

To add an Allen-Bradley device as a tag integration source:

1. On the Project tab of the ribbon, in the Settings group, click Communication.
The Project Settings dialog is displayed, with the Communication tab selected.

Communication tab of the Project Settings dialog
2. In the Tag Integration area, click Add.

The Tag Integration Source dialog box is displayed.

3. In the Type list, click Integrated.

4. In the Provider list, click Allen-Bradley PLC5, SLC500.

5. In the Name box, type an appropriate name for this tag integration source.
Note that the name will be used as a prefix on names of the integrated tags.

6. Click Add.

Communication

Page 562

The ABTCP Provider dialog box is displayed.

ABTCP Provider dialog box
7. In the PLC IP Address box, type the network address of the Allen-Bradley device.

By default, port 2222 is assumed. If the device uses another port, then include it in the address.

8. In the PLC Family list, click the device family.
Option Description

PLC2 Allen-Bradley PLC-2 Control System

PLC5 Allen-Bradley PLC-5 Control System

PLC5 as SoftPLC SoftPLC running a converted PLC-5 system

SLC500 Allen-Bradley SLC-500 Control System

9. Check the default memory areas. (The defaults are the same for all device families.) If you need to add
another memory area to match how you have configured your device, then do the following:
a) Click Add.

Communication

Page 563

The Memory Area dialog box is displayed.

Memory Area dialog box
b) In the Type list, click the memory address type.

c) In the Slot Number / File Number box, type the number of the slot (for O, I, S) or file (for B, N, T, C, R, F, ST).

Note: If the family is PLC2 or PLC5 and the type is O, I, or S, then the slot number is
automatically 0.

d) In the Size box, type the size (in bits) of the memory area.

10.Click OK to close the Memory Area dialog box, and then repeat the previous step as needed.

11.Click OK to finish the configuration and add the source.

If the source is added successfully, then the Allen-Bradley PLC tags will be immediately available in the Object
Finder. For more information, see Use the Object Finder to select integrated tags on page 588.

Integrate tags from AutomationDirect Do-more H2 Series
This task describes how to add a Do-more H2 Series PLC (supplied by AutomationDirect) as a tag integration
source in your BOS project.

This tag integration is based on the DOMOR driver, which communicates with Do-more H2 Series PLCs over
Ethernet using the Modbus/TCP protocol.

Before you begin this task, you should do the following:

• Review the manufacturer's documentation for your Do-more H2 Series PLC;

• Download and install the Do-more Designer programming software from AutomationDirect, and then use it
to export your PLC program as a CSV file;

• Read the DOMOR driver documentation (on the Help tab of the ribbon, in the Documentation group, click
Communication Drivers, and then select DOMOR); and

• Make sure the PLC is running and available on your network, and then note its network address.

To add a Do-more H2 Series PLC as a tag integration source:

1. On the Project tab of the ribbon, in the Settings group, click Communication.
The Project Settings dialog box is displayed, with the Communication tab selected.

2. In the Tag Integration area, click Add.
The Tag Integration Source dialog box is displayed.

3. In the Type list, select Integrated, if it is not already selected.

4. In the Provider list, select AutomationDirect Do-more.

5. In the Name box, type an appropriate name for the tag integration source.
This name will be added as a prefix to the names of the integrated tags. For more information, see How
integrated tags may be renamed in your project on page 590.

Communication

Page 564

6. Click Add.
The Tag Integration dialog box is displayed.

Tag Integration dialog box
7. In the IP Address box, type the IP address of the PLC.

8. In the Port Number box, type the port number on which the PLC program is running.
The default port number for programs running on Do-more H2 Series PLCs is 28784, but that can be
changed in the PLC programming software.

9. In the Password box, type the password for the PLC program, if it has been configured to require one.

10.In the Do-more export file box, specify the CSV file that you exported from your PLC program.
a) Click Browse.

A standard Open dialog box is displayed.

b) Locate and select the CSV file (*.CSV).
In most cases, the file should be saved in the Config sub-folder of your BOS project folder at: BLUE
Open Studio 2020 Projects\<project name>\Config\

c) Click Open.

For more information, see Export CSV file for AutomationDirect Do-more on page 564.
The selected file is displayed in the Do-more export file box.

11.Click OK to finish the configuration and add the source.

If the source is added successfully, then the Do-more H2 Series PLC tags will be immediately available in the
Object Finder. For more information, see Use the Object Finder to select integrated tags on page 588.

EXPORT CSV FILE FOR AUTOMATIONDIRECT DO-MORE
Export a CSV file from your Do-more H2 Series PLC program in order to be able to add the PLC as a tag
integration source.

The CSV file (*.CSV) is exported from the Do-more Designer programming software. It contains information
about all of the tags in your PLC program, so that the information can be imported into your BOS project.

Tip: You can download the Do-more Designer programming software from AutomationDirect at:
support.automationdirect.com/products/domore.html

To export the CSV file:

http://support.automationdirect.com/products/domore.html

Communication

Page 565

1. Run the Do-more Designer programming software, and then open the project file (*.DMD) for your PLC
program.

2. Click File, and then on the File menu, click Export > Element Documentation.
The Export Documentation dialog box is displayed.

3. In the Content Format group, click the C-more™ Do-more Driver Format radio button.

Selecting the correct driver format
4. Use the file browser to locate where you want to save the CSV file.

In most cases, you should save it in the Config sub-folder of your BOS project folder at: BLUE Open
Studio 2020 Projects\<project name>\Config\

5. In the File name box, type a name for the CSV file.
By default, this will be the same name as your Do-more Designer project file.

6. Click Save.

The file is saved at the specified location, and the Export Documentation dialog box is closed.

Add a Koyo DirectLOGIC PLC as a tag integration source
Use the Tag Integration feature to add a Koyo DirectLOGIC PLC (supplied by AutomationDirect) as a source
for your project.

This tag integration is based on our KOYO driver, which communicates with Koyo DirectLOGIC PLCs over
both serial and Ethernet communication.

Before you begin, you should do the following:

• Review the manufacturer's documentation for your Koyo DirectLOGIC PLC;

• Read our documentation for the KOYO driver (on the ribbon, go to the Help tab, and then in the
Documentation group, click Communication Drivers);

• Note the Module Name, Module ID and/or IP address of the device; and

• Use AutomationDirect's DirectSOFT software to export the device's program elements as a .csv file. For
more information, see Export .csv file from a Koyo DirectLOGIC PLC program on page 568.

The device does not need to be running when you add it as a tag integration source for your project, because
live browsing of tags is not supported for this type of tag integration. Your project will use the information
contained in the .xml file to reference the device's elements.

The device should be running and accessible during project run time, however, so that your project can
communicate with it.

To add a Koyo DirectLOGIC PLC as a tag integration source:

1. On the ribbon, go to the Project tab, and then in the Settings group, click Communication.

The Project Settings dialog box is displayed, with the Communication tab selected.

Communication

Page 566

2. Under Tag Integration, click Add.

The Tag Integration Source dialog box is displayed.

Communication

Page 567

3. In the Type list, select Integrated (if it is not already selected).

4. In the Provider list, select AutomationDirect Koyo.

5. In the Name box, type an appropriate name for the source.
The value that you type here will be added as a prefix to the names of the tags on the device. This helps
you to distinguish between tags from different sources. The default is DEV, which is short for "device".

6. Click Add.

The Koyo Tag Integration dialog box is displayed.

7. In the Communication Mode list, select the type of communication used by the device.
Option Description

Serial Direct serial communication.

EthernetName Ethernet communication by Module Name, when a
broadcast router is used.

EthernetIP Ethernet communication by IP address.

EthernetID Ethernet communication by Module ID, when a
broadcast router is used.

8. In the Device box, type the Module Name, Module ID or IP address of the device.
The format of this value depends on what you selected for the communication mode.

9. If you selected EthernetIP for the communication mode, you can also specify a custom port in the Port Number
box.
If you do not specify a custom port, the default port is 28784.

10.Select the .csv file that you exported from the device's program.
a) To the right of the CSV File box, click Browse.

A standard Open dialog box is displayed.

b) Use the file browser to locate and select the .csv file.
In most cases, the file should be located in the Config sub-folder of your project folder (e.g., <project
name>\Config\program.csv).

c) Click Open.

The selected file is displayed in the CSV File box.

Communication

Page 568

11.Click OK to finish the configuration and add the source to your project.

If the source is added successfully, the device's tags will be immediately available in the Object Finder. For
more information, see Use the Object Finder to select integrated tags on page 588.

Live browsing is not supported for this type of tag integration, which means that if the device's program is
updated and its elements are changed, those changes will not be reflected in the tag integration. To see the
changes, you will need to export the elements again as a new .csv file. The new file should be saved in the
same location as the old one; if it is not, you will also need to update the CSV File setting in the tag integration.

EXPORT .CSV FILE FROM A KOYO DIRECTLOGIC PLC PROGRAM
In order to add a Koyo DirectLOGIC PLC as a tag integration source, you first need to export the device's
program elements as a .csv file.

You can use AutomationDirect's DirectSOFT software to open the device's program and then export the file.
The file will contain information about all of the elements in your program, and that information can be
imported into your project.

To download the software, go to: http://support.automationdirect.com/products/directsoft.html

To export the .csv file:

1. Run DirectSOFT, and then use it to open the program for the device.

2. Go to File, and then select Export > Element Documentation.
The Export Documentation dialog box is displayed.

3. Use the file browser to locate where you want to save the file.
In most cases, you should save the file in the Config sub-folder of your project folder (e.g., <project
name>\Config\).

4. In the File name box, type a name for the file (e.g., program.csv).

5. Click Save.

The .csv file is saved at the specified location.

Integrate tags from AutomationDirect P Series
This task describes how to add an AutomationDirect Productivity Series (a.k.a. P Series) Programmable
Automation Controller (PAC) as a tag integration source in your project.

This tag integration is based on our ADPRO driver, which communicates with the PAC over Ethernet using
the Modbus Extended protocol.

Before you begin this task, you should do the following:

• Review the manufacturer's documentation for your AutomationDirect P Series PAC;

• Download and install AutomationDirect's Productivity Suite Programming Software, and then use it to
export the PAC program's tag information as a comma-separated values (CSV) file;

• Read the documentation for the ADPRO driver (on the Help tab of the ribbon, in the Documentation group,
click Communication Drivers, and then select ADPRO); and

• Make sure the PAC is running and accessible on your network, and then note its network address.

To add an AutomationDirect P Series PAC as a tag integration source:

1. On the Project tab of the ribbon, in the Settings group, click Communication.

The Project Settings dialog is displayed, with the Communication tab selected.

http://support.automationdirect.com/products/directsoft.html

Communication

Page 569

2. Under Tag Integration, click Add.
The Tag Integration Source dialog box is displayed.

3. In the Type list, select Integrated.

4. In the Provider list, select AutomationDirect P Series.

5. In the Name box, type an appropriate name for the tag integration source.
This name will be added as a prefix to the names of the integrated tags. The default is DEV, which is short
for "device".

6. Click Add.
The P Series Tag Integration dialog box is displayed.

Communication

Page 570

7. In the PLC Station box, type the IP address of the PAC.

8. Select the .csv file that you exported from your PAC program:
a) Click Browse.

A standard Open dialog box is displayed.

b) Locate and select the .csv file.
In most cases, you should select the "basic" file and not the "extended" file, and that file should be
located in the Config sub-folder of your project folder (e.g., <project name>\Config\<PAC program
name>_Basic.csv).

c) Click Open.

For more information, see Export tag information from an AutomationDirect P Series PAC program on page
570.
The selected file is displayed in the CSV File box.

9. Click OK to finish the configuration and add the source.

If the source is added successfully, the PAC's tags will be immediately available in the Object Finder in the
project development environment. For more information, see Use the Object Finder to select integrated tags on
page 588.

EXPORT TAG INFORMATION FROM AN AUTOMATIONDIRECT P SERIES PAC PROGRAM
Export tag information from an AutomationDirect Productivity Series (a.k.a. P Series) PAC program, so that
the PAC can be added as a tag integration source.

The tag information is exported as a comma-separated values (CSV) file, which you will subsequently import
into your project. You can use AutomationDirect's Productivity Suite Programming Software to export the file,
and you can download the software from the AutomationDirect website at: support.automationdirect.com/
products/p3000.html

In fact, the AutomationDirect software will automatically export the same tag information as two separate .csv
files:

• A "basic" file (e.g., <PAC program name>_Basic.csv) which has a format that is easy to import into your
project but that cannot support complex data structures like classes and multi-dimensional arrays. When
you import this file into your project, each item in those structures will be imported as a simple tag.

• An "extended" file (e.g., <PAC program name>_Extended.csv) which has a format that can support
complex data structures but that cannot be imported into your project without additional work. If you
want to use this file, please contact your BLUE Open Studio 2020 software distributor.

To export the tag information from the PAC program:

1. Run the Productivity Suite Programming Software, and then use it to open your PAC program (e.g, <PAC
program name>.adpro).

2. Go to File, and then select Export > Tags.
The Export Tag Database dialog box is displayed.

3. Click Browse, and then use the file browser to specify where you want to save the files.

http://support.automationdirect.com/products/p3000.html
http://support.automationdirect.com/products/p3000.html

Communication

Page 571

In most cases, you should save the files in the Config sub-folder of your project folder (e.g., <project
name>\Config).

4. In the File name box, type a name for the files.
In most cases, you should type the same name as the PAC program itself. That will make it easier to
indentify the files later.

5. Click Select.
The file browser is closed, and the selected location is displayed in the To File box.

6. Select Include I/O Tags.

7. Click Export.

The .csv files are saved at the specified location (e.g., <project name>\Config\<PAC program
name>_Basic.csv).

Integrate tags from AutomationDirect PAC 3000
This task describes how to add an AutomationDirect Productivity3000 Programmable Automation Controller
(a.k.a. PAC 3000) as a tag integration source in your project.

This tag integration is based on our PAC3K driver, which communicates with the PAC over Ethernet using the
Modbus Extended protocol.

Note: This feature has been deprecated and is included only to maintain backward compatibility
with existing projects. For all new projects, please use the ADPRO driver instead. For more
information, see Integrate tags from AutomationDirect P Series on page 568.

Before you begin this task, you should do the following:

• Review the manufacturer's documentation for your AutomationDirect PAC 3000;

• Download and install the Productivity Suite Programming Software from AutomationDirect, and then use it
to export the PAC program's tags as a comma-separated values (CSV) file;

• Read the documentation for the PAC3K driver (on the Help tab of the ribbon, in the Documentation group,
click Communication Drivers, and then select PAC3K); and

• Make sure the PAC is running and accessible on your network, and then note its network address.

To add an AutomationDirect PAC 3000 as a tag integration source:

1. On the Project tab of the ribbon, in the Settings group, click Communication.

Communication

Page 572

The Project Settings dialog is displayed, with the Communication tab selected.

Communication tab of the Project Settings dialog
2. In the Tag Integration area, click Add.

The Tag Integration Source dialog box is displayed.

3. In the Type list, click Integrated.

4. In the Provider list, click AutomationDirect PAC 3000.

5. In the Name box, type an appropriate name for the tag integration source.
This name will be used as a prefix on the names of the integrated tags. The default is DEV, which is short
for "device".

6. Click Add.

Communication

Page 573

The PAC 3000 Tag Integration dialog box is displayed.

PAC 3000 Tag Integration dialog box
7. In the PLC Station box, type the IP address of the PAC.

8. Select the CSV file that you exported from your PAC program:
a) Click Browse.

A standard Open dialog box is displayed.

b) Locate and select the CSV file (.csv).
In most cases, the file should be saved in the Config sub-folder of your project folder (e.g., <project
name>\Config\<PAC program name>.csv).

c) Click Open.

For more information, see Export tag information from an AutomationDirect P Series PAC program on page
570.
The selected file is displayed in the CSV File box.

9. Click OK to finish the configuration and add the source.

If the source is added successfully, the PAC's tags will be immediately available in the Object Finder in the
Studio development environment. For more information, see Use the Object Finder to select integrated tags on
page 588.

EXPORT TAG INFORMATION FROM AN AUTOMATIONDIRECT P SERIES PAC PROGRAM
Export tag information from an AutomationDirect Productivity Series (a.k.a. P Series) PAC program, so that
the PAC can be added as a tag integration source.

The tag information is exported as a comma-separated values (CSV) file, which you will subsequently import
into your project. You can use AutomationDirect's Productivity Suite Programming Software to export the file,
and you can download the software from the AutomationDirect website at: support.automationdirect.com/
products/p3000.html

In fact, the AutomationDirect software will automatically export the same tag information as two separate .csv
files:

• A "basic" file (e.g., <PAC program name>_Basic.csv) which has a format that is easy to import into your
project but that cannot support complex data structures like classes and multi-dimensional arrays. When
you import this file into your project, each item in those structures will be imported as a simple tag.

• An "extended" file (e.g., <PAC program name>_Extended.csv) which has a format that can support
complex data structures but that cannot be imported into your project without additional work. If you
want to use this file, please contact your BLUE Open Studio 2020 software distributor.

To export the tag information from the PAC program:

1. Run the Productivity Suite Programming Software, and then use it to open your PAC program (e.g, <PAC
program name>.adpro).

2. Go to File, and then select Export > Tags.
The Export Tag Database dialog box is displayed.

http://support.automationdirect.com/products/p3000.html
http://support.automationdirect.com/products/p3000.html

Communication

Page 574

3. Click Browse, and then use the file browser to specify where you want to save the files.
In most cases, you should save the files in the Config sub-folder of your project folder (e.g., <project
name>\Config).

4. In the File name box, type a name for the files.
In most cases, you should type the same name as the PAC program itself. That will make it easier to
indentify the files later.

5. Click Select.
The file browser is closed, and the selected location is displayed in the To File box.

6. Select Include I/O Tags.

7. Click Export.

The .csv files are saved at the specified location (e.g., <project name>\Config\<PAC program
name>_Basic.csv).

Add a GE PACSystems or GE Fanuc device as a tag integration source
Use the Tag Integration feature to add a GE PACSystems or GE Fanuc device as a source for your project.

This tag integration is based on our SRTP driver, which communicates with GE PACSystems and GE Fanuc
devices over Ethernet using the Service Request Transfer Protocol (SRTP).

Before you begin, you should do the following:

• Review the manufacturer's documentation for your GE PACSystems or GE Fanuc device;

• Read our documentation for the SRTP driver (on the ribbon, go to the Help tab, and then in the Documentation
group, click Communication Drivers);

• Note the IP address of the device; and

• Use the Proficy Machine Edition software to export the device's variables as an .xml file. For more
information, see Export .xml file from a GE PACSystems or GE Fanuc device on page 576.

The device does not need to be running when you add it as a tag integration source for your project, because
live browsing of tags is not supported for this type of tag integration. Your project will use the information
contained in the .xml file to reference the device's variables.

The device should be running and accessible during project run time, however, so that your project can
communicate with it.

Note: Emerson Electric acquired the GE Intelligent Platforms business in 2019. For more
information, go to: https://www.cimtecautomation.com/parts/c-37-emerson-automation-formerly-
ge-automation.aspx

To add a GE PACSystems or GE Fanuc device as a tag integration source:

1. On the ribbon, go to the Project tab, and then in the Settings group, click Communication.

The Project Settings dialog is displayed, with the Communication tab selected.

https://www.cimtecautomation.com/parts/c-37-emerson-automation-formerly-ge-automation.aspx
https://www.cimtecautomation.com/parts/c-37-emerson-automation-formerly-ge-automation.aspx

Communication

Page 575

2. Under Tag Integration, click Add.

The Tag Integration Source dialog box is displayed.

Communication

Page 576

3. In the Type list, select Integrated (if it is not already selected).

4. In the Provider list, select GE PACSystems SRTP Symbolic Tags.

5. In the Name box, type an appropriate name for the tag integration source.
The value that you type here will be added as a prefix to the names of the tags on the source device.
This helps you to distinguish between tags from different sources. The default is DEV, which is short for
"device".

6. Click Add.

The SRTP Tag Integration dialog box is displayed.

7. In the PLC IP box, type the IP address of the device.

8. Select the .xml file that you exported from the device's program.
a) To the right of the XML File box, click Browse.

A standard Open dialog box is displayed.

b) Use the file browser to locate and select the .csv file.
In most cases, the file should be located in the Config sub-folder of your project folder (e.g., <project
name>\Config\GE_RX3i.xml).

c) Click Open.

The selected file is displayed in the XML File box.

9. Click OK to finish the configuration and add the source to your project.

If the source is added successfully, the device's variables will be immediately available in the Object Finder.
For more information, see Use the Object Finder to select integrated tags on page 588.

Live browsing is not supported for this type of tag integration, which means that if the device's program is
updated and its variables are changed, those changes will not be reflected in the tag integration. To see the
changes, you will need to export the variables again as a new .xml file. The new file should be saved in the
same location as the old one; if it is not, you will also need to update the XML File setting in the tag integration.

EXPORT .XML FILE FROM A GE PACSYSTEMS OR GE FANUC DEVICE
In order to add a GE PACSystems or GE Fanuc device as a tag integration source, you first need to export the
device's program variables as an .xml file.

You can use the Proficy View Machine Edition software to open the device's program and then export the
file. The file will contain information about all of the variables in your program, and that information can be
imported into your project.

Communication

Page 577

To download the software, go to: https://www.cimtecautomation.com/parts/c-44-emerson-proficy-
software.aspx

To export the .xml file:

1. Run Proficy View Machine Edition, and then use it to open the program for the device.

2. On the ribbon, go to the Variables tab, and then in the Variable Tools group, click Export.
A standard Save dialog box is displayed.

3. Use the file browser to locate where you want to save the file.
In most cases, you should save the file in the Config sub-folder of your project folder (e.g., <project
name>\Config\).

4. In the File name box, type a name for the file (e.g., GE_RX3i.xml).

5. Click Save.
The Export Variables dialog box is displayed.

6. In the Target to Export From list, select the device.
For example, GE_RX3i.

7. Review the export options, and then click OK.

The .xml file is saved at the specified location.

Integrate tags from Schneider Unity Modbus
This task describes how to add a Schneider Modicon M340 PAC or Modicon Premium PAC as a tag integration
source in your BOS project.

This tag integration is based on the SCHNE driver, which communicates with Schneider Modicon devices
using the Modbus protocol over Ethernet.

Before you begin this task, you should do the following:

• Review the manufacturer's documentation for your Schneider Modicon device and the Schneider Unity Pro
software;

• Use the Schneider Unity Pro software to export an I/O configuration file (*.XSY) from your PLC program;

• Read the SCHNE driver documentation (on the Help tab of the ribbon, in the Documentation group, click
Communication Drivers, and then select SCHNE); and

• Make sure the source device is running and available on your network, and note its network address.

To add a Schneider Modicon device as a tag integration source:

1. On the Project tab of the ribbon, in the Settings group, click Communication.

https://www.cimtecautomation.com/parts/c-44-emerson-proficy-software.aspx
https://www.cimtecautomation.com/parts/c-44-emerson-proficy-software.aspx

Communication

Page 578

The Project Settings dialog is displayed, with the Communication tab selected.

Communication tab of the Project Settings dialog
2. In the Tag Integration area, click Add.

The Tag Integration Source dialog box is displayed.

3. In the Type list, click Integrated.

4. In the Provider list, click Schneider Unity Modbus.

5. In the Name box, type an appropriate name for this tag integration source.
Note that the name will be used as a prefix on names of the integrated tags.

6. Click Add.

Communication

Page 579

The Schneider Unity Tag Integration dialog box is displayed.

Schneider Unity Tag Integration dialog box
7. In the Platform list, click the platform of the source device.

Option Description

M340 Schneider Modicon M340 PAC

Premium Schneider Modicon Premium PAC

8. In the PLC IP box, type the network address of the source device.

9. In the Port box, type the port number of the source device if it is different from the default port 502.

10.In the Slave ID box, type the Modbus slave ID of the source device if it is different from the default ID 1.

11.Select the I/O configuration file that you exported from your PLC program.
a) Click Browse.

A standard Open dialog box is displayed.

b) Locate and select the I/O configuration file (*.XSY).
In most cases, the file should be saved in the Config sub-folder of your BOS project folder at: BLUE
Open Studio 2020 Projects\<project name>\Config\

c) Click Open.

For more information, see Export I/O configuration file for Schneider Unity Modbus on page 579.
The selected file is displayed in the XSY File box.

12.If you want to get only tags that are flagged as HMI variables, then select HMI Only.

13.Click OK to finish the configuration and add the source.

If the source is added successfully, then the Schneider Modicon device tags will be immediately available in
the Object Finder. For more information, see Use the Object Finder to select integrated tags on page 588.

EXPORT I/O CONFIGURATION FILE FOR SCHNEIDER UNITY MODBUS
Export an I/O configuration file from your Schneider Modicon PLC program in order to be able to add the PLC
as a tag integration source.

The I/O configuration file (*.XSY) is exported from the Schneider Unity Pro development software. It contains
information about all of the tags used in your PLC program, and the information can be imported into your
BOS project.

To export the file:

1. Run the Schneider Unity Pro development software, and then open your PLC program.

Communication

Page 580

2. In the program browser, right-click the Variables & FB Instances file, and then click Export on the shortcut
menu.
A standard Export dialog is displayed.

3. Use the file browser to locate where you want to save the file.
In most cases, you should save it in the Config sub-folder of your BOS project folder at: BLUE Open
Studio 2020 Projects\<project name>\Config\

4. In the File name box, type a name for the file.

5. Click Export.

The file is saved at the specified location.

Integrate tags from Siemens S7-1200/S7-1500
This task describes how to add a Siemens S7-1200 or S7-1500 controller as a tag integration source in your
project.

This tag integration is based on our SITIA driver, which communicates with the Siemens S7-1200 or S7-1500
controller (firmware 4.0 or later) over Ethernet using the SIMATIC protocol.

Before you begin this task, you should do the following:

• Review the manufacturer's documentation for your Siemens S7-1200 or S7-1500 controller;

• Read the documentation for our SITIA driver (on the Help tab of the ribbon, in the Documentation group, click
Communication Drivers, and then select SITIA);

• Make sure the controller is updated to firmware 4.0 or later; and

• Make sure the controller is running and accessible on your network, and then note its network address.

You might also need to update the controller's program to enable it to communicate with your project.
Specifically, use TIA Portal — the programming software for Siemens controllers — to do the following:

• In the controller's Protection settings (General > Protection), make sure the access level is Full access (no protection);
• Also in the controller's Protection settings, make sure Permit access with PUT/GET communication from remote partner

(PLC, HMI, OPC, …) is selected; and

• Make sure the Visible in HMI and Accessible in HMI options are selected for all program tags that you want to
integrate into your project.

Remember that you need to recompile the controller's program and then download it to the controller
whenever you change program settings or create new program tags.

Note: Tag integration does not support password authentication. If you cannot set the controller's
access level to Full access (no protection) as described above, or if the controller is configured with a fail-
safe CPU (also known as a safety CPU or F-CPU, which provides increased protection and always
requires a password to connect), then you cannot add that controller as a tag integration source. As
an alternative, use the SITIA driver to establish direct communication with the controller. For more
information, see Configuring direct communication with a remote device on page 531.

To add a Siemens S7-1200 or S7-1500 controller as a tag integration source:

1. On the Project tab of the ribbon, in the Settings group, click Communication.

Communication

Page 581

The Project Settings dialog is displayed, with the Communication tab selected.

Communication tab of the Project Settings dialog
2. In the Tag Integration area, click Add.

The Tag Integration Source dialog box is displayed.

3. In the Type list, select Integrated.

4. In the Provider list, select Siemens S7-1200/S7-1500.

5. In the Name box, type an appropriate name for the tag integration source.

This name will be used as a prefix on the names of the integrated tags. The default is DEV, which is short
for "device".

6. Click Add.

Communication

Page 582

The Siemens Tag Integration dialog box is displayed.

Siemens Tag Integration dialog box
7. In the PLC IP box, type the IP address of the controller.

8. Click OK to finish the configuration and add the source.

If the source is added successfully, the controller's tags will be immediately available in the Object Finder in
the Studio development environment. For more information, see Use the Object Finder to select integrated
tags on page 588.

Integrate tags from OMRON Sysmac Gateway
This task describes how to add an OMRON PLC as a tag integration source in your project. It is based on our
OMRON driver, which communicates with the PLC over Ethernet using OMRON Sysmac Gateway.

Before you begin this task, you should review the manufacturer's documentation for OMRON Sysmac Studio
(i.e., the programming software for NJ and NX Series), CX-Programmer (i.e., the programming software for
CJ2 Series), OMRON Sysmac Gateway, and your specific OMRON PLC.

You can also read the documentation for our OMRON driver: on the Help tab of the ribbon, in the Documentation
group, click Communication Drivers, and then select OMRON. You do not need to do this, because tag integration
and direct communication are configured differently, but it will help to familiarize you with some of the things
mentioned in this task.

Make sure the OMRON PLC is running and accessible on your network, and then note its IP address. You
might also need to use the programming software to reconfigure the PLC's tags to publish over the network,
because the default configuration for newly created tags is not to publish and that will prevent tag integration.

• For NJ and NX Series, use OMRON Sysmac Studio to change the Network Publish setting for each tag from Do
Not Publish to Publish Only.

• For CJ2 Series, use CX-Programmer to select the Net. Variable > Publication option for each symbol.

To enable your project to communicate with the OMRON PLC, you must have OMRON Sysmac Gateway
installed and running on both your project development workstation and the computer(s) that will host the
project runtime. Our OMRON driver uses the gateway's API to communicate with the PLC. In the gateway
console, start the communication service, and then note the Port ID of the Ethernet interface.

To add an OMRON PLC as a tag integration source in your project:

1. On the Project tab of the ribbon, in the Settings group, click Communication.

Communication

Page 583

The Project Settings dialog is displayed, with the Communication tab selected.

Communication tab of the Project Settings dialog
2. In the Tag Integration area, click Add.

The Tag Integration Source dialog box is displayed.

3. In the Type list, select Integrated.

4. In the Provider list, select OMRON Sysmac Gateway.

5. In the Name box, type an appropriate name for the tag integration source.
This name will be used as a prefix on the names of the integrated tags. The default is DEV, which is short
for "device".

6. Click Add.

Communication

Page 584

The Tag Integration dialog box is displayed.

Tag Integration dialog box
7. In the Model box, select one of the following:

Option Description

CJ2 CJ2 Series

NJ/NX NJ and NX Series (default)

8. In the IP Address box, type the IP address of the PLC.

9. In the Port ID box, type the Port ID of the gateway's Ethernet interface, as it is configured in the gateway
console.

10.If you want to import the PLC's system-defined variables, in addition to the user-created tags, select the
Import PLC System Defined Variables option.

11.Click OK to finish the configuration and add the source.

If the source is added successfully, the PLC's tags will be immediately available in the Object Finder in the
project development environment. For more information, see Use the Object Finder to select integrated tags on
page 588.

Add an OPC DA server as a tag integration source
This task describes how to add an OPC server as a tag integration source in your project. It is based on our
built-in OPC XML/DA client, which can communicate with OPC servers over Ethernet using the OPC Data
Access (OPC DA) specification.

Before you begin this task, you should be familiar with the OPC DA specification (a.k.a. OPC Classic). For
more information, go to: opcfoundation.org/about/opc-technologies/opc-classic/

You should also review the documentation for your specific OPC server software. Make sure the server is
running and accessible on your network, and then note its network address.

Note: This task applies to OPC DA servers only. If you have an OPC UA server, see Add an OPC UA
server as a tag integration source on page 586.

To add an OPC DA server as a tag integration source in your project:

1. On the Project tab of the ribbon, in the Settings group, click Communication.

The Project Settings dialog is displayed, with the Communication tab selected.

https://opcfoundation.org/about/opc-technologies/opc-classic/

Communication

Page 585

2. In the Tag Integration area, click Add.
The Tag Integration Source dialog box is displayed.

3. In the Type box, select Integrated if it is not already selected.

4. In the Provider box, select OPC DA.

5. In the Name box, type an appropriate name for the tag integration source.
This name will be added as a prefix to the names of the integrated tags. The default is DEV, which is short
for "device".

6. Click Add.

The OPC DA Tag Integration dialog box is displayed.

Communication

Page 586

7. In the Server box, select the connection to the OPC server.
OPC DA tag integration is based on our built-in OPC XML/DA client, so you are selecting from the
connections created for that client. You can select a connection that you previously created, or you can
click the "add" button (+) to the right of the Server box in order to create a new connection. For more
information, see Create a new OPC XML/DA connection on page 619. When you create a connection,
make sure you select the appropriate OPC specification — either Data Access 2.XX or Data Access 3.00 — to
match the OPC server configuration.

8. In the Publish rate box, type the frequency (in milliseconds) at which the OPC server should publish updates
to the client (i.e., your project).
The publish rate is actually set when the client establishes its connection to the server.

9. In the Group size box, type the maximum number of items that may be read or written in a single operation.
The default group size is 0, which means there is no limit and changes in item values will be immediately
read and written (according to the publish rate). This is acceptable in most cases, but if you use a
large number of items in your project and the values of those items change frequently, then read/write
operations might overload the project and decrease run-time performance. You can specify a group size
(e.g., 64) in order to moderate those read/write operations and restore run-time performance.

10.If the OPC server is configured to handle array elements as separate items, select the Use array index in browse
path option. Conversely, if the OPC server is configured to handle each array as a single item with multiple
elements, make sure the option is cleared.
You can review the project runtime log (e.g., in the Output window) to see if there are any OPC
communication errors when your project tries to read/write arrays. If there are, you might need to toggle
the Use array index in browse path option.

11.In the Root node or view box, specify the server node that will serve as the root for all items. You can click the
"more" button (…) to the right of the box in order to browse the server and then select a node.
This step is optional, but specifying a root node makes it easier to find items and increases run-time
performance.

12.Click OK to finish the configuration and add the source.

If the OPC server is successfully added as a tag integration source, its items will be immediately available for
selection in the Object Finder. For more information, see Use the Object Finder to select integrated tags on
page 588.

Add an OPC UA server as a tag integration source
This task describes how to add an OPC server as a tag integration source in your project. It is based on
our built-in OPC UA client, which can communicate with OPC servers over Ethernet using the OPC Unified
Architecture (OPC UA) specification.

Before you begin this task, you should be familiar with the OPC UA specification. For more information, go to:
opcfoundation.org/about/opc-technologies/opc-ua/

You should also review the documentation for your specific OPC server software. Make sure the server is
running and accessible on your network, and then note its network address.

https://opcfoundation.org/about/opc-technologies/opc-ua/

Communication

Page 587

Note: This task applies to OPC UA servers only. If you have an OPC DA server, see Add an OPC DA
server as a tag integration source on page 584.

To add an OPC UA server as a tag integration source in your project:

1. On the Project tab of the ribbon, in the Settings group, click Communication.

The Project Settings dialog is displayed, with the Communication tab selected.

2. In the Tag Integration area, click Add.
The Tag Integration Source dialog box is displayed.

3. In the Type box, select Integrated if it is not already selected.

4. In the Provider box, select OPC UA.

5. In the Name box, type an appropriate name for the tag integration source.

Communication

Page 588

This name will be added as a prefix to the names of the integrated tags. The default is DEV, which is short
for "device".

6. Click Add.

The OPC UA Tag Integration dialog box is displayed.

7. In the Server box, select the connection to the OPC server.
OPC UA tag integration is based on our built-in OPC UA client, so you are selecting from the connections
created for that client. You can select a connection that you previously created, or you can click the "add"
button (+) to the right of the Server box in order to create a new connection. For more information, see
Create a new OPC UA connection on page 591.

8. In the Publish rate box, type the frequency (in milliseconds) at which the OPC server should publish updates
to the client (i.e., your project).
The publish rate is actually set when the client establishes its connection to the server.

9. In the Group size box, type the maximum number of items that may be read or written in a single operation.
The default group size is 0, which means there is no limit and changes in item values will be immediately
read and written (according to the publish rate). This is acceptable in most cases, but if you use a
large number of items in your project and the values of those items change frequently, then read/write
operations might overload the project and decrease run-time performance. You can specify a group size
(e.g., 64) in order to moderate those read/write operations and restore run-time performance.

10.In the Root node or view box, specify the server node that will serve as the root for all items. You can click the
"more" button (…) to the right of the box in order to browse the server and then select a node.
This step is optional, but specifying a root node makes it easier to find items and increases run-time
performance.

11.Click OK to finish the configuration and add the source.

If the OPC server is successfully added as a tag integration source, its items will be immediately available for
selection in the Object Finder. For more information, see Use the Object Finder to select integrated tags on
page 588.

Use the Object Finder to select integrated tags
After you add a tag integration source to your project, you can use the Object Finder to browse and select tags
from that source like you would do for any other project tags.

Tip: To open the Object Finder, double-click in any box or field where you would normally insert a
project tag.

Communication

Page 589

Integrated tags are listed under Devices in the Object Finder tree-view, with each device folder being a tag
integration source that you added. The name of the device folder is the name that you specified when you
added the device.

Browsing integrated tags in the Object Finder

A device folder may be marked with a badge that indicates the status of that device, as shown in the following
table:

Folder Icon Description

Device is not "live"; tag information was extracted from a symbol file and then
cached.

Device is "live"; tag information is currently being received from the connected
device.

Connection to the device has failed; tag information might not be up-to-date.

Additional information about connected devices may be shown at the bottom of the dialog box, below the tree-
view.

The sub-folder structure for each device is determined by that device, and it cannot be changed from within
the project development environment. If you need to change it for any reason, you must use the programming
software for that device and you should do so before you use any of that device's tags in your project.

When you select a device folder or sub-folder, its list of available tags is shown to the right.

To use a specific tag in your project, select it in the list of available tags and then click OK. The selected tag is
imported into your project's Shared Database folder, and then it is inserted into the box or field from which
you opened the Object Finder.

Tags listed in black are already imported into your project. Tags listed in gray have not yet been imported. You
can select the Show only imported tags option to filter the list of available tags, if you want to find a tag that has
been imported and you do not want to scroll through the entire list.

To refresh the devices and their tags — either by reconnecting to the devices or by reloading their symbol files
— click Refresh Devices on the right side of the dialog box. All tag integration sources will be refreshed at the
same time, regardless of when or how they were added to the project.

To quickly import multiple tags, select all of them in the list of available tags and then click Import Selected Tags
on the right side of the dialog box. Importing tags in this way does not insert the tags into the box or field

Communication

Page 590

from which you opened the Object Finder; inserting can be done only one tag a time. Nevertheless, imported
tags count against your project's tag limit, so you should not import tags that you do not intend to use later.

Tip: To select multiple items in a list, hold the Control or Shift key while you click the items.

Tag integration does not support non-zero-based arrays (i.e., arrays that start at positions greater than 0)
or pointer variables from devices. Such items will be included in the list of available tags, but they will be
marked with red "X" badges to indicate that they cannot be imported or used.

Any changes in a tag integration source might break tag references in your project. To find broken tag
references, verify your project.

How integrated tags may be renamed in your project
When BOS integrates tags from third-party devices and software, it cannot directly transcribe the tag names.
Some changes are made to improve tag management and to adhere to the local tag name syntax.

Tip: The full, original name of an integrated tag can always be retrieved by referencing the
DeviceTag property on the tag. For example, tagname->DeviceTag.

Inserting the tag prefix
First of all, since your project may connect to multiple devices that have the same control program and device
tags, BOS will automatically insert the tag prefix that you specified when you added the tag integration
source. For example, for an integrated tag named…

MyDeviceTAG[1].ClassMember

…the corresponding BOS project tag will be named…

tagprefix.MyDeviceTAG[1].ClassMember

This allows you to differentiate between similar tags from different sources.

Multidimensional arrays
BOS does not support multidimensional arrays, so for integrated tags that have more than one array index,
each index after the first will be represented with _Index_. For example, for an integrated tag named…

MyDeviceTAG[1][2][3].ClassMember

…the corresponding BOS project tag will be named…

tagprefix.MyDeviceTAG[1]_2__3_.ClassMember

Nested classes
BOS does not support nested classes, so for integrated tags that have more than one class member, each
class member after the first will be represented with _ClassMember. For example, for an integrated tag
named…

MyDeviceTAG.ClassMember.ClassMember2

…the corresponding BOS project tag will be named…

tagprefix.MyDeviceTAG.ClassMember_ClassMember2

Communication

Page 591

OPC Clients and Servers
Open Platform Communications (OPC) is an interoperability standard for exchanging real-time process data.
This software includes a variety of OPC client and OPC server features that you can use to exchange data
between your project and other OPC-compatible systems.

"OPC" originally stood for "OLE for Process Control" because the standard depended on Microsoft's proprietary
DCOM and OLE technologies. As the standard has evolved, however, it has moved from those proprietary
technologies to cross-platform technologies like XML and SOAP for web services. The latest version of the OPC
standard is OPC Unified Architecture (OPC UA).

For more information about OPC, go to: https://opcfoundation.org/

OPC UA Client
Use the OPC UA Client worksheet and runtime task to establish communication between your project and a
data exchange server that supports the OPC UA interoperability standard.

This OPC UA Client feature uses the new OPC Unified Architecture standard introduced by the OPC
Foundation. According to the foundation:

The OPC Unified Architecture (UA), released in 2008, is a platform
independent service-oriented architecture that integrates all the
functionality of the individual OPC Classic specifications into one extensible
framework.

This multi-layered approach accomplishes the original design specification
goals of:

• Functional equivalence: all COM OPC Classic specifications are mapped
to UA

• Platform independence: from an embedded micro-controller to cloud-
based infrastructure

• Secure: encryption, authentication, and auditing

• Extensible: ability to add new features without affecting existing
applications

• Comprehensive information modeling: for defining complex information

In other words, OPC UA is intended to be a platform- and language-independent standard. For more
information, go to: opcfoundation.org/about/opc-technologies/opc-ua/

Note: This feature includes cryptographic software written by Eric Young (eay@cryptsoft.com).

CREATE A NEW OPC UA CONNECTION
When you configure an OPC UA Client worksheet, you must select the connection that the client will use. This
task describes how to create that connection.

Before you begin this task, you should know the communication and security settings for the OPC server to
which you want to connect. If you do not, contact the server administrator.

To create a new connection to an OPC UA server:

1. Do one of the following:

• On the Insert tab of the ribbon, in the Communication group, click OPC Client, and then select OPC UA
Connection from the drop-down list; or

• In the Comm tab of the Project Explorer, expand the OPC UA folder, right-click the Connections folder, and
then click Insert on the shortcut menu.

The Server Configuration dialog box is displayed.

https://opcfoundation.org/
https://opcfoundation.org/about/opc-technologies/opc-ua/
mailto:eay@cryptsoft.com

Communication

Page 592

2. In the Connection Name box, type a name for the connection.
This name will be displayed in the OPC UA > Connections folder in the Project Explorer, and it is the name you
will look for when you configure the OPC UA Client worksheet.

3. In the End point box, do one of the following:

• If you know the URL of the OPC server to which you want to connect, type it in the box.

• If you do not know the URL, click the More button (…) to open the Discovery dialog box, use it to find
a discovery server that publishes a list of OPC servers on your network, and then select the server to
which you want to connect.

• If you want to be able to change the URL during project run time, type an appropriate string expression
(e.g., {MyEndpointUrl}). When the OPC UA Client Runtime task is started, it will get the value of the
string expression and then connect to that URL. This happens only when the task is started, which
typically happens when the project itself is run. If the value of the string expression changes after the

Communication

Page 593

task is started, the task must be restarted in order to get the new value and then connect to the new
URL. To restart the task while the project is running, use either the Runtime Tasks dialog box or the
EndTask and StartTask functions.

Note: At this time, the OPC UA Client feature in this software supports only binary
communication with OCP.TCP end points (e.g., opc.tcp://<host name or IP
address>:8000/<server name>). SOAP-based communication with HTTP and HTTPS end points
is not supported.

4. In the User Name and Password boxes, type your credentials for the OPC server.
You can leave these boxes empty if you want to connect anonymously and the server is configured to
accept anonymous connections.

5. If your OPC server is configured to require secure communication (also called a "SecureChannel" in
the OPC UA specification), you must take extra steps to configure the security settings and program
certificates. The steps differ somewhat depending on whether you are using self-signed certificates or
certificates signed by a certificate authority (CA):

• Configure an OPC UA connection to use self-signed certificates on page 594

• Configure an OPC UA connection to use CA-signed certificates on page 598

6. Click Test Connection.
If the program can successfully connect to the OPC server using these settings, a confirmation message is
displayed.

7. Click OK to save your changes and close the Server Configuration dialog box.
The connection is saved in the OPC UA > Connections folder in the Project Explorer.

In certain situations, if the connection does not behave as expected during project run time — and especially
if you see OPC communication errors in the runtime log — you might need to adjust the connection's
advanced settings: in the Server Configuration dialog box, click Advanced, and then in the Advanced dialog box,
review and configure the settings.

Communication

Page 594

Session

Various session timeouts for the connection itself:

Session Timeout
The session timeout (in milliseconds) for the connection. If a session times out from inactivity, a
new session must be started to resume communication.

SecureChannel Lifetime

The time (in milliseconds) after which the SecureChannel between the client and server is
automatically renewed.

For more information about the SecureChannel Services, see the OPC UA specification.

Watchdog Time
The time (in milliseconds) between watchdog checks.

Watchdog Timeout
The timeout (in milliseconds) for a specific watchdog check.

Server Calls

Advanced settings that control individual calls to the OPC server:

Call Timeout
The timeout (in milliseconds) for individual server calls.

Verify time synchronization

When this option is selected, the time stamp on each value received from the server is compared
against the system time on the client, and if the difference between the times is equal to the
specified number of hours (i.e., the number of time zones between the server and client),
the server and client are deemed to be synchronized and the value is accepted. Otherwise,
if the difference is not equal to the specified number of hours, the value is rejected and
communication is interrupted.

The default number of hours is 25, which is a special setting that means the hours portion of
the time stamp should be disregarded and only the minutes and seconds portions should be
compared. This enables the client to receive values from the server without knowing the server's
time zone.

When this option is cleared, the time stamp on each value received from the server is ignored
and the client's system time is used instead to save the value in the project database.

Browse

Advanced settings that control how you browse server items/nodes on the OPC server as you
configure an OPC UA Client worksheet:

Max nodes per call
When browsing for an item/node on the server, the maximum number of nodes to be returned
per server call.

Check node type

When browsing for an item/node on the server, check the node's data type. In some situations,
the OPC server might not be able to get data types from field devices, and that might cause
browsing to become slow and unusable. If that happens, clear the Check node type option.

This option can also interfere with tag expansion, so if tag expansion is used in any of the OPC
UA Client worksheets that depend this connection, clear the Check node type option.

CONFIGURE AN OPC UA CONNECTION TO USE SELF-SIGNED CERTIFICATES
You can configure an OPC UA connection to communicate securely using self-signed certificates.

This task is a supplement to another task, Create a new OPC UA connection on page 591. It assumes you
have already created a new connection and are now configuring the security settings for that connection.

Communication

Page 595

A certificate is used to identify a program that is trying to communicate securely. If another program is
configured to trust the certificate, it accepts that the first program is what it claims to be and agrees to
communicate with it. Therefore, when two programs trust each other's certificates, they can establish secure,
two-way communication with each other.

There are two ways to configure a program to trust a given certificate. First, you can manually add the
certificate to the program's trust list, so that when the certificate is presented during communication, the
program can check it against the list. Second, you can instruct the program to trust the certificate authority
(CA) that signed the certificate, so that when the certificate is presented during communication, the program
automatically trusts it.

A self-signed certificate is a certificate signed by the program that created it, rather than by a certificate
authority, so it must be manually added to the other program's trust list. Self-signed certificates are safe and
convenient to use as long as you control both programs — for example, both the OPC UA client in your project
and the OPC UA server itself.

There are some potential issues with using self-signed certificates, however:

• If you do not control both programs, you do not control their respective trust lists;

• If you have many programs that all communicate with each other, you must add each program's certificate
to every other program's trust list; and

• If any program's certificate changes or expires, you must renew it and then add it again to every other's
program's trust list.

In other words, self-signed certificates are only suitable for limited use among a handful of programs that you
control. If you think you will encounter any of the issues listed above, consider using CA-signed certificates
instead. For more information, see Configure an OPC UA connection to use CA-signed certificates on page
598.

OPC UA uses a file-based certificate store, which means that the certificates are saved as files in folders rather
than as entries in a database or system registry. This is important to know because this task involves copying
certificate files from one folder to another. For more information, see "Certificate Management" in OPC Unified
Architecture Specification, Part 2: Security Model. You can download that document from the OPC Foundation
website at: opcfoundation.org/developer-tools/specifications-unified-architecture/part-2-security-model/

In this task, "OPC UA server" is a generic reference to any of the available hardware or software products
that can run as an OPC UA server. For more information about how to complete certain steps, consult the
manufacturer's documentation for your specific server. We have provided examples based on the free UA
Sample Server and UA Configuration Tool that are offered by the OPC Foundation (opcfoundation.org), but
these examples should be used only as a guide. The UA Configuration Tool is sometimes redistributed by
other manufacturers with their own products, so these examples might appear to apply to your specific
server, but you should still review each example before you proceed.

To configure an OPC UA connection to use self-signed certificates:

1. In your OPC UA server, create a new, self-signed certificate for the server.
Example using UA Sample Server and UA Configuration Tool:
a) In the UA Configuration Tool, click the Manage Application tab.

b) In the Application To Manage list, make sure Opc.Ua.SampleServer is selected, and then click Create Application
Certificate.
The Create Certificate dialog box is displayed.

c) In the Store Type list, make sure Directory is selected.

d) In the Store Path box, make sure UA Applications is selected.

e) Complete the certificate information (e.g., Application Name, Organization, etc.) as needed, but leave
the CA Key File and CA Password boxes empty.

https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-2-security-model/
https://opcfoundation.org/

Communication

Page 596

That is what will make the certificate self-signed.

Example of self-signed certificate settings for UA Sample Server running on localhost
f) Click OK.

The server certificate is created. If there is an old certificate in the certificate store, you might be
prompted to overwrite or delete it. It should be safe to do so as long as there are no clients connected to
the server.

g) Restart the UA Sample Server to make sure it uses the new certificate.

2. In BLUE Open Studio 2020, in the Server Configuration dialog box, click Security.

The Security Settings dialog box is displayed.

Communication

Page 597

3. If the OPC UA server is configured to broadcast the security modes and policies that it supports, a list of
those will be displayed in the Endpoints box and you can select the server configuration that you want to
use. Otherwise, you need to manually select the security mode and policy in the Message Security Mode and
Security Policy boxes, respectively. These settings must match the server configuration.
In a typical server configuration, the security mode might be Sign and Encrypt and the security policy might
be Basic128Rsa15.

4. After you select the security mode, BLUE Open Studio 2020 checks whether an appropriate client
certificate exists in the project folder. If it does not, you are asked if you want to create it and its associated
key. Click Yes.
The Certificate Creation dialog box is displayed.

5. In the Certificate Creation dialog box, complete the certificate information (e.g., Application Name,
Organization, etc.) as needed, and then click Generate.
A new client certificate is created for your project, and the certificate and key files are saved in your project
folder at: <project name>\Config\

6. If your project will run on Windows, do the following:
a) Click Trust server certificate.

BLUE Open Studio 2020 attempts to connect to the specified OPC UA server, and if it is successful, it
imports the certificate into the client's trust list. A warning message is displayed, asking you to confirm
that you trust the certificate.

b) Click OK to confirm.
The certificate file is copied to your project folder at: <project name>\Config\TrustList\Certs
\<connection name>.der

Communication

Page 598

Note: In most cases, you do not need to change the Trust List or Issuer Certificate List settings. These
are the default locations in your project folder where certificate files are stored. You may change
the locations if, for example, you have a single folder where you store certificates for several
different projects, but we do not recommend it.

The server certificate file is now part of your project files, so it will be copied with the rest of the project
files whenever you download your project to a target device.

7. As an alternative to clicking Trust server certificate, you may select the Automatically add server certificate to certificate
store on next connection option in order to have the project to automatically get the certificate when it runs and
then connects to the OPC UA server.
The advantage of doing this is that your project will always have the latest server certificate, if that
certificate is ever changed or renewed. The limitation of doing this is that it is less secure than manually
adding the certificate, especially when you do not control the server and/or the network. In most cases, we
do not recommend selecting this option.

8. Click OK to close the Security Settings dialog box and return to the Server Configuration dialog box.

9. In your OPC UA server, import the client certificate into the server's trust list.
Example using UA Sample Server and UA Configuration Tool:
a) In the UA Configuration Tool, click the Manage Security tab.

b) Click Import Certificate to Trust.
A standard Open File dialog box is displayed.

c) Use the dialog box to locate and select the client certificate file.

For projects running on Windows, the file is located in yout project folder at: <project name>\Config
\UAClientCertificate.der

d) Click Open.
You will be asked to confirm the import.

e) Click Yes.
The selected file is imported into the server's UA Applications certificate store.

When the certificates have been exchanged — that is, when the server certificate is in the client's (i.e., your
project's) trust list and the client certificate is in the server's trust list — the OPC UA connection should be
properly configured for secure, two-way communication.

CONFIGURE AN OPC UA CONNECTION TO USE CA-SIGNED CERTIFICATES
You can configure an OPC UA connection to communicate securely using certificates signed by a certificate
authority (CA).

This task is a supplement to another task, Create a new OPC UA connection on page 591. It assumes you
have already created a new connection and are now configuring the security settings for that connection.

A certificate is used to identify a program that is trying to communicate securely. If another program is
configured to trust the certificate, it accepts that the first program is what it claims to be and agrees to
communicate with it. Therefore, when two programs trust each other's certificates, they can establish secure,
two-way communication with each other.

There are two ways to configure a program to trust a given certificate. First, you can manually add the
certificate to the program's trust list, so that when the certificate is presented during communication, the
program can check it against the list. Second, you can instruct the program to trust the certificate authority
(CA) that signed the certificate, so that when the certificate is presented during communication, the program
automatically trusts it.

You can buy CA-signed certificates from commercial certificate authorities such as VeriSign, DigiCert, and
GeoTrust. We do not recommend that, however, because such certificates are intended for public-facing
applications in which you control one program but not the other.

In this application, as long as you control both programs — that is, both the OPC UA client in your project
and the OPC UA server itself — you can create your own certificate authority to sign both programs'
certificates and then instruct both programs to trust the same certificate authority. It is more complicated
than using self-signed certificates, but it helps you to avoid other potential issues with using self-signed

Communication

Page 599

certificates. For more information, see Configure an OPC UA connection to use self-signed certificates on page
594.

OPC UA uses a file-based certificate store, which means that the certificates are saved as files in folders rather
than as entries in a database or system registry. This is important to know because this task involves copying
certificate files from one folder to another. For more information, see "Certificate Management" in OPC Unified
Architecture Specification, Part 2: Security Model. You can download that document from the OPC Foundation
website at: https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-2-security-
model/

In this task, "OPC UA server" is a generic reference to any of the available hardware or software products
that can run as an OPC UA server. For more information about how to complete certain steps, consult the
manufacturer's documentation for your specific server. We have provided examples based on the free UA
Sample Server and UA Configuration Tool that are offered by the OPC Foundation (opcfoundation.org), but
these examples should be used only as a guide. The UA Configuration Tool is sometimes redistributed by
other manufacturers with their own products, so these examples might appear to apply to your specific
server, but you should still review each example before you proceed.

To configure an OPC UA connection to use CA-signed certificates:

1. In BLUE Open Studio 2020, in the Server Configuration dialog box, click Security.

The Security Settings dialog box is displayed.

2. If the OPC UA server is configured to broadcast the security modes and policies that it supports, a list of
those will be displayed in the Endpoints box and you can select the server configuration that you want to
use. Otherwise, you need to manually select the security mode and policy in the Message Security Mode and
Security Policy boxes, respectively. These settings must match the server configuration.

https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-2-security-model/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/part-2-security-model/
https://opcfoundation.org/

Communication

Page 600

In a typical server configuration, the security mode might be Sign and Encrypt and the security policy might
be Basic128Rsa15.

3. After you select the security mode, BLUE Open Studio 2020 checks whether an appropriate client
certificate exists in the project folder. If it does not, you are asked if you want to create it and its associated
key. Click Yes.
The Certificate Creation dialog box is displayed.

4. In the Certificate Creation dialog box, complete the certificate information (e.g., Application Name,
Organization, etc.) as needed, and then click Generate.

Note: Although you are creating a self-signed certificate here, you will reissue it as a CA-signed
certificate later in this procedure.

A new client certificate is created for your project, and the certificate and key files are saved in your project
folder at: <project name>\Config\

5. Click OK to close the Security Settings dialog box and return to the Server Configuration dialog box.

6. In your OPC UA server, create your certificate authority.
Example using UA Sample Server and UA Configuration Tool:
a) In the UA Configuration Tool, click the Manage Certificates tab.

b) Click Create Certificate Authority.
The Create Certificate Authority dialog box is displayed.

c) In the Store Type list, make sure Directory is selected.

d) In the Store Path box, make sure UA Certificate Authorities is selected.

e) Complete the certificate authority information (e.g., Authority Name, Organization, etc.) as needed, but
leave the CA Key File and CA Password boxes empty.
That is what will make the certificate authority self-created. You can use one certificate authority to
sign another certificate authority and thus give it the same credentials, but that is not necessary in this
situation.

f) In the Password and Verify Password boxes, type a password that you will remember.

Example of certificate authority settings for UA Sample Server

Communication

Page 601

g) Click OK.
The certificate authority is created, and the certificate authority's certificate and key files are saved in
the UA Certificate Authorities store.

7. In your OPC UA server, add the certificate authority to your server's trust list.
Even though you just used the server to create the certificate authority, the server will not trust it unless
you specifically instruct it to.
Example using UA Sample Server and UA Configuration Tool:
a) In the UA Configuration Tool, click the Manage Security tab.

b) In the Application To Manage list, make sure Opc.Ua.SampleServer is selected, and then click Select Certificate to
Trust.
The Manage Certificates in Certificate Store dialog box is displayed.

c) In the Store Type list, make sure Directory is selected.

d) In the Store Path box, make sure UA Certificate Authorities is selected.

e) In the list of certificates, select the certificate authority that you created in the previous step, and then
click OK.
The selected certificate is added to the server's trust list. Or more accurately, the certificate authority's
certificate file is copied to the UA Applications store.

8. In your OPC UA server, create a new, CA-signed certificate for the server.
Example using UA Sample Server and UA Configuration Tool:
a) In the UA Configuration Tool, click the Manage Application tab.

b) In the Application To Manage list, make sure Opc.Ua.SampleServer is selected, and then click Create Application
Certificate.
The Create Certificate dialog box is displayed.

c) In the Store Type list, make sure Directory is selected.

d) In the Store Path box, make sure UA Applications is selected.

e) In the CA Key File box, make sure the certificate authority's key file is selected.

If it is not selected, you can browse for it. It should be located at:

C:\ProgramData\OPC Foundation\CertificateStores\UA Certificate Authorities\Private
\<authority name> [<ID string>].pfx

f) In the CA Password box, type the password for the certificate authority.

Communication

Page 602

g) Complete the remaining certificate information (e.g., Application Name, Organization, etc.) as needed.

Example of CA-signed certificate settings for UA Sample Server running on localhost
h) Click OK.

The server certificate is created, and the certificate file is saved in the UA Applications store. If there is
an old certificate file in the store, you might be prompted to overwrite or delete it. It should be safe to do
so as long as there are no clients connected to the server.

i) Restart the UA Sample Server to make sure it uses the new certificate.

9. In your OPC UA server, import the client's self-signed certificate into the server's certificate store.
Example using UA Sample Server and UA Configuration Tool:
a) In the UA Configuration Tool, click the Manage Certificates tab.

b) In the Store Type list, make sure Directory is selected.

c) In the Store Path box, make sure UA Applications is selected.

d) Click Import Certificate to Store.
A standard Open File dialog box is displayed.

e) Use the dialog box to locate and select the client's certificate file.

For projects running on Windows, the file is located in your project folder at: <project name>\Config
\UAClientCertificate.der

f) Click Open.
You will be asked to confirm the import.

g) Click Yes.
The selected file is imported into the UA Applications store.

10.In your OPC UA server, reissue the client's self-signed certificate as a CA-signed certificate.
Example using UA Sample Server and UA Configuration Tool:
a) In the UA Configuration Tool, click the Manage Certificates tab.

b) Click Select and Issue Certificate.

Communication

Page 603

The Manage Certificates in Certificate Store dialog box is displayed.

c) In the Store Type list, make sure Directory is selected.

d) In the Store Path box, make sure UA Applications is selected.

e) In the list of certificates, select the client certificate, and then click OK.
The Create Certificate dialog box is displayed with the client certificate's existing settings.

f) In the Store Type list, make sure Directory is selected.

g) In the Store Path box, make sure UA Applications is selected.

h) In the CA Key File box, make sure the certificate authority's key file is selected.

If it is not selected, you can browse for it. It should be located at:

C:\ProgramData\OPC Foundation\CertificateStores\UA Certificate Authorities\Private
\<authority name> [<ID string>].pfx

i) In the CA Password box, type the password for the certificate authority.

j) In the Key Format list, select the format for the client's key file.

For projects running on Windows, select PEM.

k) Click OK.
You are asked if it is okay to delete the original certificate.

l) Click Yes.
The reissued, CA-signed certificate and key files are saved in the UA Applications store.

11.Copy the client's CA-signed certificate and key files from the server's certificate store to the client's
certificate store in your project folder.
These files should replace the existing, self-signed certificate and key files that you created earlier.
a) Locate the client's CA-signed certificate file in the server's certificate store.

For UA Sample Server and UA Configuration Tool, the file should be located at:

C:\ProgramData\OPC Foundation\CertificateStores\UA Applications\Certs\<application
 name> [<ID string>].der

Please note the certificate file has a new ID string that was generated by the OPC UA server when it
signed and reissued the certificate. A certificate store uses these ID strings to manage its own certificate
files, and the same file may have a different ID string in each store (e.g., server store versus client
store).

b) Copy (not move!) the CA-signed certificate file to the client's certificate store in your project folder, and
then rename it so that it replaces the existing, self-signed certificate file there.

For projects running on Windows, copy the file to: <project name>\Config
\UAClientCertificate.der

The name of the CA-signed certificate file must match the name of the self-signed certificate file that it
is replacing. If it does not, the client will not be able to see the file. You might need to copy the file name
and then delete the existing file before you can rename the new file.

c) Locate the client's CA-signed key file in the server's certificate store.

For UA Sample Server and UA Configuration Tool, the file should be located at either…

C:\ProgramData\OPC Foundation\CertificateStores\UA Applications\Private
\<application name> [<ID string>].pem

…or…

C:\ProgramData\OPC Foundation\CertificateStores\UA Applications\Private
\<application name> [<ID string>].pfx

Communication

Page 604

…depending on the key format you selected in the previous step.

Again, please note the key file has a new ID string that was generated by the OPC UA server when it
signed and reissued the key.

d) Copy (not move!) the CA-signed key file to the client's certificate store in your project folder, and then
rename it so that it replaces the existing, self-signed key file there.

For projects running on Windows, copy the file to: <project name>\Config
\UAClientCertificatePrivateKey.pem

The name of the CA-signed key file must match the name of the self-signed key file that it is replacing.
If it does not, the client will not be able to see the file. You might need to copy the file name and then
delete the existing file before you can rename the new file.

12.If your project will run on Windows, add the certificate authority to your project's issuer and trust lists:
a) Locate the certificate authority's certificate file.

For UA Sample Server and UA Configuration Tool, the file should be located at:

C:\ProgramData\OPC Foundation\CertificateStores\UA Certificate Authorities\Certs
\<authority name> [<ID string>].der

b) Copy (not rename or move) the certificate file to: <project name>\Config\IssuerList\Certs\

c) Copy (not rename or move) the certificate file to: <project name>\Config\TrustList\Certs\

Note: These are the default locations in your project folder where certificate files are stored. You
can change these locations by changing the Trust List or Issuer Certificate List settings in the Security
Settings dialog box, as shown above, and you may do this if, for example, you have a single folder
where you store certificates for several different projects. In most cases, however, we do not
recommend it.

When the client and server both have CA-signed certificates, and when the certificate authority that signed
the certificates has been added to both programs' trust lists, the OPC UA connection should be properly
configured for secure, two-way communication.

CREATE A GROUP OF REDUNDANT OPC CONNECTIONS
Create a group of redundant connections that your OPC UA or OPC XML/DA client worksheet can use instead
of an individual connection.

Before you begin this task, you should have two or more OPC connections that you can group together. You
can create a group of only one connection, but it would serve no purpose other than to get the status of the
connection.

A redundancy group consists of individual connections arranged in order. If the first connection in the
group fails (due to BAD status) or times out (due to inactivity), the OPC client worksheet will use the second
connection instead. Then, if the second connection fails or times out, the worksheet will use the third
connection, and so on until the worksheet reaches the last connection in the group. If the last connection also
fails or times out, the client will start over with the first connection in the group.

A properly configured redundancy group also provides continuously updated status information about each
connection in the group. That allows you to monitor the connections during project run time.

After you create a redundancy group, you can select it in your OPC client worksheet in the same way that you
would select an individual connection.

Keep in mind that if you configure several different worksheets to use the same redundancy group, they will
all use the same connection at the same time during project run time. That might put too much load on a
single connection and cause it to fail when it would not otherwise. To avoid that, create multiple groups —
each with the connections arranged in a different order (e.g., ABC, CAB, BCA) — and then select a different
group for each worksheet. This will provide rudimentary load balancing.

Note: The OPC DA 2.05 client in BLUE Open Studio 2020 does not support redundancy groups at
this time.

Communication

Page 605

To create a redundancy group:

1. In the Comm tab of the Project Explorer, expand the folder for the type of OPC that you are using, either OPC
UA or OPC XML/DA.

2. In that folder, right-click the Redundancy Group folder, and then on the shortcut menu, click Insert.
The Redundancy Group dialog box is displayed.

Example of redundancy group settings
3. In the Group Name box, type a unique name for the group.

This name will be displayed in the list of available connections in your OPC client worksheet.

4. In the Active Connection box, type the name of a project tag of String type.
The specified tag will receive the name of the connection that is currently being used during project run
time. In other words, when the connection changes for any reason, the tag value changes to match. You
can also change the tag value yourself, to control which connection is used. In both cases, the tag value is
the full name of the connection (e.g., Connection 1). This setting is optional.

5. If you want a connection to automatically time out after a period of inactivity, rather than wait for it to
actually fail (with BAD status), select the Watchdog timeout option.
The default timeout is 60 seconds after the last change reported by the OPC Server. If the field device has
less frequent changes, you need to either increase the timeout or set up a "heartbeat" on the field device to
keep the connection active.

Communication

Page 606

Note: This watchdog can only watch the connection between the OPC Client (i.e., your project)
and the OPC Server. It cannot watch the connection between the OPC Server and the field device.
The OPC Server itself is responsible for monitoring that connection.

6. If you want the client to automatically return to the first connection in the group when it is possible to do
so, rather than continue through all of the connections in the group, select the Auto return option.
The default return time is 5 minutes, which means the client will try to return to the first connection
every 5 minutes after the connection was lost. If the client cannot reestablish the first connection, it will
continue with its current connection and try again later.

7. In the Connections area, in the Available list on the left, select a connection that you want to include in the
group, and then click >>.
There is no limit on the number of connections that you can include in a group.
The connection is added to the Selected list on the right.

8. Repeat the previous step for each connection that you want to include in the group.

9. Select a connection in the Selected list on the right, and then do the following:
a) Use the Move Up and Move Down buttons to move the selected connection to the desired position in the

list.

b) In the Code box, type the name of a project tag of Integer or String type.
The specified tag will receive a continuously updated status code for the selected connection during
project run time.

c) In the Message box, type the name of a project tag of String type.
The specified tag will receive a continuously updated status message for the selected connection during
project run time.

d) In the Disable box, type a tag name, expression, or literal value.
When it evaluates as TRUE (i.e., non-zero) during project run time, the selected connection will be
disabled and therefore skipped.

Note: The Code, Message, and Disable settings are all optional and unique for each connection.

10.Repeat the previous step for each connection in the group.

11.Click OK to save your changes and close the dialog box.

The new group is saved in the appropriate Redundancy Group folder in the Project Explorer, and it becomes
available for selection in the corresponding client worksheets.

During project run time, each connection in the redundancy group can have one of the following statuses:

Code Message

1 The connection to the OPC Server is
established, and it is running in normal
mode.

1 The connection to the OPC Server has been
reestablished, and the watchdog has been
reset.

-1 [Any of the BAD messages that are described in List of read/write status codes
and messages for OPC UA on page 613.]

-2 The OPC Server stopped reporting changes
from the field device (e.g., the PLC), and
the watchdog timeout has elapsed.

-3 Trying to establish connection to the OPC
Server.

Communication

Page 607

CREATE A NEW OPC UA CLIENT WORKSHEET
Create and configure an OPC UA Client worksheet to associate project tags with OPC server items.

Before you begin this task, you must have created at least one OPC UA server connection that the client
worksheet can use. For more information, see Create a new OPC UA connection on page 591.

You should also be familiar with how to edit worksheets in the project development environment.

Tip: You can create multiple worksheets and then configure them to have different settings, so you
do not need to make any single worksheet unnecessarily large or complicated.

To configure a new OPC UA Client worksheet:

1. Do one of the following:

• On the Insert tab of the ribbon, in the Communication group, click OPC Client, and then select OPC UA Client
from the drop-down list; or

• In the Comm tab of the Project Explorer, right-click the OPC UA folder, and then on the shortcut menu,
click Insert.

A new OPC UA Client worksheet is displayed.

2. In the Description box, type a description of the worksheet.
This is for documentation purposes only and does not affect the execution of the worksheet.

3. In the Connection list, select the connection or redundancy group that you created earlier.

4. In the Status box, type the name of a project tag (Integer type) that will receive connection status codes
during project run time, and then in the Status Message box, type the name of a project tag (String type) that
will receive the corresponding status messages.

5. In the Publish Rate box, type the frequency (in milliseconds) at which the client will request updates from the
server.

Communication

Page 608

6. In the Disable box, type a tag/expression.
While this tag/expression evaluates as TRUE (non-zero), the worksheet will not be executed and it will not
use the specified connection. If any other OPC UA Client worksheets share the same connection, however,
the connection will remain open and active unless those worksheets are also disabled.

7. In the Root node or view box, specify a server node that will serve as the root for all browse paths in the
worksheet body.
Specifying a root node makes it easier to find items and improves run-time performance.

8. For each project tag that you want to associate with an OPC server item/node, complete a row in the
worksheet body:
a) In the Tag Name field, type the name of a project tag.

You can type a string expression in this field (e.g., {MyTagName}), but if you do, make sure you have
also configured the Reload trigger setting in the advanced settings.

b) In the Browse Path field, do one of the following: type the full path of the server item; or right-click in this
field, and then on the shortcut menu, click Browse in order to browse the server's list of items.

Note: If you have selected the Enable bit notation option in the advanced settings, you can select
a specific bit of a server node value by appending the bit number to the item name (e.g., <node
path>.<bit>). This is supported only for unsigned variables and 32-bit signed variables; if
you try to do it with 16-bit or 8-bit signed variables, the most significant bit (MSB) will not
work properly.

c) In the Scan field, select either Always to have the row continuously scanned (i.e., processed) during
project run time or Screen to have the row scanned only when a project screen that uses the specified
tag is open.

d) In the Div field, type a number to be used for scaling during project run time. This is optional.
When a value is read from the server, it is divided by this number. When a value is written to the
server, it is multiplied by this number.

e) In the Add field, type a number to be used for scaling during project run time. This is optional.
When a value is read from the server, this number is added to it. When a value is written to the server,
this number is subtracted from it.

f) In the Node Id field, a node ID is automatically generated from the browse path.

The node ID is the actual value that your project will use to subscribe to the item during run time. If
your project runtime log contains errors indicating that

You can type a string expression in this field (e.g., {MyNodeId}), but if you do, make sure you have also
configured the Accept tag name in the Node Id column and Reload trigger settings in the advanced settings.

Both tag expansion and array distribution are enabled by default for all OPC UA Client worksheets. You
can disable tag expansion for this worksheet by clearing the Enable Tag Expansion option in the advanced
settings. You cannot disable array distribution.

9. When you are done, save and close the worksheet.
The worksheet is saved in the OPC UA folder in the Project Explorer.

In order for your OPC UA Client worksheet(s) to be scanned during project run time, the OPC UA Client
Runtime task in your project must be started. As such, the first time you configure and save a worksheet,
the task's startup mode is set to Automatic. This is done for your convenience, and it means that when you
run your project, the task will be started and the worksheet(s) will be scanned. You can set the task's startup
mode back to Manual, however, if you want more control over how your project runs. For more information, see
Runtime Tasks on page 134.

The worksheet is continuously scanned during project run time, so that the configured project tags and server
items are updated as needed. Also, the project tags that you specified for the Status and Status Message settings
in the worksheet header will receive the following possible values:

Status Status Message

0 The connection to the server is deactivated by the user of the client API.

1 The connection to the server is established and is working in normal mode.

Communication

Page 609

Status Status Message

2 The monitoring of the connection to the server indicated a potential connection
problem.

3 The monitoring of the connection to the server detected an error and is trying to
reconnect to the server.

4 The server sent a shutdown event and the client API tries a reconnect.

5 The client was not able to reuse the old session and created a new session
during reconnect. This requires to redo register nodes for the new session.

6 The server time is two hours or more different from the client time.

7 Timeout connecting to the server.

8 Connecting to the server.

9 Host Unknonwn

10 The requested protocol is not supported, please check your connection URL.

Tip: As long as the client is communicating normally with the server, the read/write status codes
and messages (as configured in the advanced settings) will provide more information about each
operation.

In certain situations, if the worksheet does not behave as expected during project run time — and especially if
you see OPC communication errors in the runtime log — you might need to adjust the worksheet's advanced

Communication

Page 610

settings: in the worksheet header, click Advanced, and then in the Advanced dialog box, review and configure
the settings.

Advanced settings for the OPC UA Client worksheet

Read actions

Advanced settings that control how values are read from the OPC UA server.

Enable subscription

While this value is TRUE (non-zero), the client will subscribe to the server nodes so that it can
receive notifications when the node values change.

This setting has a default value of 1, which indicates it is always enabled. If it is disabled, or if
you type a tag/expression that will cause it to be disabled during project run time, you might
need to use read triggers instead (see below).

Maximum group size

The maximum number of server nodes that may be read in a single read operation.

For example, if you have 1000 items/rows configured in the worksheet and Maximum group size is
set to 100, 10 read operations will be performed when a read is triggered.

Communication

Page 611

Synchronous read trigger
When the value of this tag/expression changes, the client reads all of the node values from the
server. The read operation is performed synchronously, which means all other client operations
are blocked until the read operation is finished. When the read operation is finished, the client
increments the tag configured in Read count.

Asynchronous read trigger
The same as Synchronous read trigger except that the read operation is performed asynchronously,
which means that other client operations may continue while the read operation is being
performed.

Read count
The name of a project tag (Integer type) that will receive a count of the number of read
operations performed since the project was run.

Status
The name of a project tag (Integer type) that will receive a status code for the last read operation
performed by a trigger. If the status code is 0, the read operation finished successfully. For all
other status codes, see List of read/write status codes and messages for OPC UA on page 613.

Status message
The name of a project tag (String type) that will receive the corresponding status message.

Maximum aging
The maximum age (in milliseconds) of values that will be accepted from the server's cache. If a
value is older than this, the server will be forced to get the latest value from the field device.

Sampling rate
When this option is selected, you can change the rate (in milliseconds) at which the OPC server
reads from field devices. By default, the sampling rate is half the publishing rate.

Queue size

Write actions

Advanced settings that control how values are written to the OPC UA server.

Enable write on tag change

While this value is TRUE (non-zero), an asynchronous write operation will be performed
automatically whenever the value of a project tag changes. All tag changes that occured since
the last scan of the worksheet will be written in a single write operation, or in multiple write
operations if the number of tag changes exceeds the maximum group size.

This setting has a default value of 1, which indicates it is always enabled. If it is disabled, or if
you type a tag/expression that will cause it to be disabled during project run time, you might
need to use write triggers instead (see below).

Maximum group size

The maximum number of tag changes that may be written in a single write operation.

For example, if you have 1000 items/rows configured in the worksheet and Maximum group size is
set to 100, 10 write operations will be performed during each scan of the worksheet.

Synchronous write trigger
When the value of this tag/expression changes, the client writes all of the tag values to the
server. The write operation is performed synchronously, which means all other client operations
are blocked until the write operation is finished. When the write operation is finished, the client
increments the tag configured in Write count.

Asynchronous write trigger

Communication

Page 612

The same as Synchronous write trigger except that the write operation is performed asynchronously,
which means that other client operations may continue while the write operation is being
performed.

Write count
The name of a project tag (Integer type) that will receive a count of the number of write
operations performed since the project was run.

Status
The name of a project tag (Integer type) that will receive a status code for the last write operation
performed by a trigger. If the status code is 0, the write operation finished successfully. For all
other status codes, see List of read/write status codes and messages for OPC UA on page 613.

Status message
The name of a project tag (String type) that will receive the corresponding status message.

Other

Other settings that control how this worksheet communicates with the OPC UA server.

Reload trigger
The name of a project tag (Boolean, Integer, or Real type) that can be used as a trigger. When
the value of this tag changes, the worksheet is reloaded. String expressions configured in the
body of the worksheet are reevaluated only when the worksheet is reloaded. After the worksheet
is reloaded, the value of this tag will be reset to 0.

Refresh IDs on startup

When this option is selected, the node IDs in the worksheet will be automatically refreshed from
the specified browse paths every time the project is run. This might resolve any node IDs that
are missing or invalid.

Refreshing IDs like this can cause the project to take longer to run, however, so if you select
this option, you should also specify a root node (i.e., in the Root node or view box in the worksheet
header) to restrict the list of server items that must scanned.

The OPC server software might not support this option, depending on how it has implemented
the OPC standard. For more information, see the documentation for that software.

Ensure cache synchronization
When this option is selected, the client will wait after each write operation for confirmation from
the server that the node values actually changed. If the client does not receive confirmation, it
will restore the previous tag values.

Enable bit notation
When this option is selected, bit notation is allowed in the Item column of the worksheet body.

Accept tag name in the Node Id column
When this option is selected, you can type string expressions in the Node Id column of the
worksheet, but if you do, make sure you have also configured the Reload trigger setting (see
above).

Enable Tag Expansion
When this option is selected, tag expansion is enabled for this worksheet. You can disable it for
this worksheet without affecting any other OPC client worksheets, and you may choose to do so
if you want more control over how OPC server items are associated with your project tags.

Note: This software does not normally use the Triggering Mode that is defined the OPC standard.
Instead, it allows any change in any tag/expression to be used as a trigger. If you want to use
Triggering Mode, configure one worksheet to read the trigger values, and then configure another
worksheet that specifies the read values as triggers.

Communication

Page 613

LIST OF READ/WRITE STATUS CODES AND MESSAGES FOR OPC UA
This is a list of the possible status codes and messages that might be generated by read/write operations in
OPC UA.

Status Code Status Message

-2159476736 Bad – Max Connections Reached

-2159411200 Bad – Syntax Error

-2159345664 Bad – Would Block

-2159280128 Bad – Expected Stream To Block

-2159214592 Bad – Operation Abandoned

-2159149056 Bad – Waiting For Response

-2159083520 Bad – No Data Available

-2159017984 Bad – End Of Stream

-2147352576 Bad – Internal Error

-2147287040 Bad – Out Of Memory

-2147221504 Bad – Resource Unavailable

-2147155968 Bad – Communication Error

-2147090432 Bad – Encoding Error

-2147024896 Bad – Decoding Error

-2146959360 Bad – Encoding Limits Exceeded

-2146893824 Bad – Unknown Response

-2146828288 Bad – Timeout

-2146762752 Bad – Service Unsupported

-2146697216 Bad – Shutdown

-2146631680 Bad – Server Not Connected

-2146566144 Bad – Server Halted

-2146500608 Bad – Nothing To Do

-2146435072 Bad – Too Many Operations

-2146369536 Bad – Data Type Id Unknown

-2146304000 Bad – Certificate Invalid

-2146238464 Bad – Security Checks Failed

-2146172928 Bad – Certificate Time Invalid

-2146107392 Bad – Certificate Issuer Time Invalid

-2146041856 Bad – Certificate Host Name Invalid

-2145976320 Bad – Certificate Uri Invalid

-2145910784 Bad – Certificate Use Not Allowed

-2145845248 Bad – Certificate Issuer Use Not Allowed

-2145779712 Bad – Certificate Untrusted

-2145714176 Bad – Certificate Revocation Unknown

-2145648640 Bad – Certificate Issuer Revocation Unknown

-2145583104 Bad – Certificate Revoked

Communication

Page 614

Status Code Status Message

-2145517568 Bad – Certificate Issuer Revoked

-2145452032 Bad – User Access Denied

-2145386496 Bad – Identity Token Invalid

-2145320960 Bad – Identity Token Rejected

-2145255424 Bad – Secure Channel Id Invalid

-2145189888 Bad – Invalid Timestamp

-2145124352 Bad – Nonce Invalid

-2145058816 Bad – Session Id Invalid

-2144993280 Bad – Session Closed

-2144927744 Bad – Session Not Activated

-2144862208 Bad – Subscription Id Invalid

-2144731136 Bad – Request Header Invalid

-2144665600 Bad – Timestamps To Return Invalid

-2144600064 Bad – Request Cancelled By Client

-2144272384 Bad – No Communication

-2144206848 Bad – Waiting For Initial Data

-2144141312 Bad – Node Id Invalid

-2144075776 Bad – Node Id Unknown

-2144010240 Bad – Attribute Id Invalid

-2143944704 Bad – Index Range Invalid

-2143879168 Bad – Index Range No Data

-2143813632 Bad – Data Encoding Invalid

-2143748096 Bad – Data Encoding Unsupported

-2143682560 Bad – Not Readable

-2143617024 Bad – Not Writable

-2143551488 Bad – Out Of Range

-2143485952 Bad – Not Supported

-2143420416 Bad – Not Found

-2143354880 Bad – Object Deleted

-2143289344 Bad – Not Implemented

-2143223808 Bad – Monitoring Mode Invalid

-2143158272 Bad – Monitored Item Id Invalid

-2143092736 Bad – Monitored Item Filter Invalid

-2143027200 Bad – Monitored Item Filter Unsupported

-2142961664 Bad – Filter Not Allowed

-2142896128 Bad – Structure Missing

-2142830592 Bad – Event Filter Invalid

-2142765056 Bad – Content Filter Invalid

-2142699520 Bad – Filter Operand Invalid

Communication

Page 615

Status Code Status Message

-2142633984 Bad – Continuation Point Invalid

-2142568448 Bad – No Continuation Points

-2142502912 Bad – Reference Type Id Invalid

-2142437376 Bad – Browse Direction Invalid

-2142371840 Bad – Node Not In View

-2142306304 Bad – Server Uri Invalid

-2142240768 Bad – Server Name Missing

-2142175232 Bad – Discovery Url Missing

-2142109696 Bad – Sempahore File Missing

-2142044160 Bad – Request Type Invalid

-2141978624 Bad – Security Mode Rejected

-2141913088 Bad – Security Policy Rejected

-2141847552 Bad – Too Many Sessions

-2141782016 Bad – User Signature Invalid

-2141716480 Bad – Application Signature Invalid

-2141650944 Bad – No Valid Certificates

-2141585408 Bad – Request Cancelled By Request

-2141519872 Bad – Parent Node Id Invalid

-2141454336 Bad – Reference Not Allowed

-2141388800 Bad – Node Id Rejected

-2141323264 Bad – Node Id Exists

-2141257728 Bad – Node Class Invalid

-2141192192 Bad – Browse Name Invalid

-2141126656 Bad – Browse Name Duplicated

-2141061120 Bad – Node Attributes Invalid

-2140995584 Bad – Type Definition Invalid

-2140930048 Bad – Source Node Id Invalid

-2140864512 Bad – Target Node Id Invalid

-2140798976 Bad – Duplicate Reference Not Allowed

-2140733440 Bad – Invalid Self Reference

-2140667904 Bad – Reference Local Only

-2140602368 Bad – No Delete Rights

-2140536832 Bad – Server Index Invalid

-2140471296 Bad – View Id Unknown

-2140340224 Bad – Too Many Matches

-2140274688 Bad – Query Too Complex

-2140209152 Bad – No Match

-2140143616 Bad – Max Age Invalid

-2140078080 Bad – History Operation Invalid

Communication

Page 616

Status Code Status Message

-2140012544 Bad – History Operation Unsupported

-2139947008 Bad – Write Not Supported

-2139881472 Bad – Type Mismatch

-2139815936 Bad – Method Invalid

-2139750400 Bad – Arguments Missing

-2139684864 Bad – Too Many Subscriptions

-2139619328 Bad – Too Many Publish Requests

-2139553792 Bad – No Subscription

-2139488256 Bad – Sequence Number Unknown

-2139422720 Bad – Message Not Available

-2139357184 Bad – Insufficient Client Profile

-2139291648 Bad – Tcp Server Too Busy

-2139226112 Bad – Tcp Message Type Invalid

-2139160576 Bad – Tcp Secure Channel Unknown

-2139095040 Bad – Tcp Message Too Large

-2139029504 Bad – Tcp Not Enough Resources

-2138963968 Bad – Tcp Internal Error

-2138898432 Bad – Tcp Endpoint Url Invalid

-2138832896 Bad – Request Interrupted

-2138767360 Bad – Request Timeout

-2138701824 Bad – Secure Channel Closed

-2138636288 Bad – Secure Channel Token Unknown

-2138570752 Bad – Sequence Number Invalid

-2138505216 Bad – Configuration Error

-2138439680 Bad – Not Connected

-2138374144 Bad – Device Failure

-2138308608 Bad – Sensor Failure

-2138243072 Bad – Out Of Service

-2138177536 Bad – Deadband Filter Invalid

-2137587712 Bad – Refresh In Progress

-2137522176 Bad – Condition Already Disabled

-2137456640 Bad – Condition Disabled

-2137391104 Bad – Event Id Unknown

-2137325568 Bad – No Data

-2137194496 Bad – Data Lost

-2137128960 Bad – Data Unavailable

-2137063424 Bad – Entry Exists

-2136997888 Bad – No Entry Exists

-2136932352 Bad – Timestamp Not Supported

Communication

Page 617

Status Code Status Message

-2136276992 Bad – Invalid Argument

-2136211456 Bad – Connection Rejected

-2136145920 Bad – Disconnect

-2136080384 Bad – Connection Closed

-2136014848 Bad – Invalid State

-2135425024 Bad – Request Too Large

-2135359488 Bad – Response Too Large

-2135228416 Bad – Event Not Acknowledgeable

-2135097344 Bad – Invalid Timestamp Argument

-2135031808 Bad – Protocol Version Unsupported

-2134966272 Bad – State Not Active

-2134835200 Bad – Filter Operator Invalid

-2134769664 Bad – Filter Operator Unsupported

-2134704128 Bad – Filter Operand Count Mismatch

-2134638592 Bad – Filter Element Invalid

-2134573056 Bad – Filter Literal Invalid

-2134507520 Bad – Identity Change Not Supported

-2134376448 Bad – Not Type Definition

-2134310912 Bad – View Timestamp Invalid

-2134245376 Bad – View Parameter Mismatch

-2134179840 Bad – View Version Invalid

-2134114304 Bad – Condition Already Enabled

-2134048768 Bad – Dialog Not Active

-2133983232 Bad – Dialog Response Invalid

-2133917696 Bad – Condition Branch Already Acked

-2133852160 Bad – Condition Branch Already Confirmed

-2133786624 Bad – Condition Already Shelved

-2133721088 Bad – Condition Not Shelved

-2133655552 Bad – Shelving Time Out Of Range

-2133590016 Bad – Aggregate List Mismatch

-2133524480 Bad – Aggregate Not Supported

-2133458944 Bad – Aggregate Invalid Inputs

-2133393408 Bad – Bound Not Found

-2133327872 Bad – Bound Not Supported

-2133196800 Bad – Aggregate Configuration Rejected

2949120 Good – Subscription Transferred

3014656 Good – Completes Asynchronously

3080192 Good – Overload

3145728 Good – Clamped

Communication

Page 618

Status Code Status Message

9830400 Good – Local Override

10616832 Good – Entry Inserted

10682368 Good – Entry Replaced

10813440 Good – No Data

10878976 Good – More Data

10944512 Good – Communication Event

11010048 Good – Shutdown Event

11075584 Good – Call Again

11141120 Good – Non Critical Timeout

12189696 Good – Results May Be Incomplete

14221312 Good – Data Ignored

1080819712 Uncertain – Reference Out Of Server

1083113472 Uncertain – No Communication Last Usable Value

1083179008 Uncertain – Last Usable Value

1083244544 Uncertain – Substitute Value

1083310080 Uncertain – Initial Value

1083375616 Uncertain – Sensor Not Accurate

1083441152 Uncertain – Engineering Units Exceeded

1083506688 Uncertain – Sub Normal

1084489728 Uncertain – Data Sub Normal

1086062592 Uncertain – Reference Not Deleted

1086324736 Uncertain – Not All Nodes Available

ENABLE THE OPC UA TRACE LOG
If you are having problems with OPC UA communications during project run time, you can have the project
runtime server generate an OPC UA trace log.

This trace log is in addition to the project runtime log that is displayed in the Output window and LogWin
tool. It contains much of the same information as the project runtime log (assuming the project runtime log is
configured to include OPC UA messages), but it is saved to an external file and it can be configured to capture
even more detailed information.

To enable the OPC UA trace log:

1. Stop your project if it is running, and then exit the software.

2. Use a text editor (e.g., Notepad) to open your project file (<project name>.APP) and add the following
properties:

[OPC]
UaLogPath=<file path and name>
UaTraceLevel=<level>

For UaLogPath, the file path is relative to your project folder. As such, if you specify only a file name
(e.g., opcualog.txt), the file will be saved in your project folder. Keep in mind that the file path should
be appropriate for the computer or device that hosts the project runtime server, not necessarily for the
computer that you are using to develop your project.

For UaTraceLevel, select one of the following values:

Communication

Page 619

Level Description

0 NoTrace – Disables the trace.
This is the default if UaLogPath is not configured.

1 Errors – Internal system errors that require bug fixing.

2 Warnings – Internal system warnings and external errors.
This is the default if UaLogPath is configured.

3 Info – More detailed information about system events.

4 InterfaceCall – Information needed for debugging.

5 CtorDtor – Information needed for debugging.

6 Program – All message content.

7 FlowData – All messages.

Note: The trace levels are cumulative, which means Level 2 includes Level 1, Level 3 includes
Levels 1 and 2, and so on.

3. Save and close your project file.

The next time you run your project, the log file is saved at the specified location. The file will continue to grow
as long as the project runs and the trace log is enabled, and the higher the trace level, the more quickly the
file will grow.

OPC XML/DA Client
Use the OPC XML/DA Client worksheet and runtime task to establish communication between your project
and a data exchange server that supports the OPC DA (a.k.a. OPC Classic) or OPC XML-DA interoperability
standard.

OPC XML-DA is an improvement on OPC DA because it uses cross-platform technologies like XML and SOAP
for web services. It also standardizes the SOAP messages exchanged between clients and servers, which
allows the OPC standard to be implemented on different operating systems.

In this software, the OPC XML/DA Client feature uses an updated toolkit that can communicate with both
OPC DA servers and OPC XML-DA servers. It can automatically detect which standard is supported by the
connected server. If you are creating a new project and you need to configure it to communicate with an
existing OPC DA server, we recommend you use OPC XML/DA Client instead of OPC DA 2.05 Client.

CREATE A NEW OPC XML/DA CONNECTION
When you configure an OPC XML/DA Client worksheet, you must select the connection that the client will
use. This task describes how to create that connection.

Before you begin this task, you should know the communication and security settings for the OPC XML/DA
server to which you want to connect. If you do not, contact the server administrator.

To create a new connection to an OPC XML/DA server:

1. Do one of the following:

• On the Insert tab of the ribbon, in the Communication group, click OPC Client, and then select OPC XML/DA
Connection from the drop-down list; or

• In the Comm tab of the Project Explorer, expand the OPC XML/DA folder, right-click the Connections folder,
and then click Insert on the shortcut menu.

The Server Connection dialog box is displayed.

Communication

Page 620

2. In the Connection Name box, type a name for the connection.
This name will be displayed in the OPC XML/DA > Connections folder in the Project Explorer, and it is the name
you will look for when you configure the OPC XML/DA Client worksheet.

3. In the Specification list, select the specific OPC specificiation that is used by the OPC Server:

• Data Access 2.XX
• Data Access 3.00
• XML Data Access 1.00

4. In the Host Name box, do one of the following:

• Select the name or address of the computer that hosts the OPC Server. Hosts should broadcast their
availability on the network. If the host you want does not appear in the list, click Refresh to update the
list.

• If you want to be able to change the host name during project run time, type an appropriate string
expression (e.g., {MyEndpointUrl}). When the OPC XML/DA Client Runtime task is started, it will
get the value of the string expression and then connect to that host. Please note this happens only
when the task is started, which typically happens when the project itself is run. If the value of the
string expression changes after the task is started, the task must be restarted in order to get the new
value and then connect to the new host. To restart the task while the project is running, either use the
Runtime Tasks dialog box or call the EndTask and StartTask functions.

5. In the Server Url list, select a specific OPC Server process on the selected host. If the process you want does
not appear in the list, click Refresh to update the list from the host.

6. In the User Name and Password boxes, type your login credentials for the selected OPC Server.

7. In the Ping Rate box, type the frequency (in milliseconds) at which the client should ping the server to make
sure the connection is still active.
By default, the client pings the server once per minute.

8. Click OK to save your changes and close the Server Configuration dialog box.
The connection is saved in the OPC XML/DA > Connections folder in the Project Explorer.

Communication

Page 621

CREATE A GROUP OF REDUNDANT OPC CONNECTIONS
Create a group of redundant connections that your OPC UA or OPC XML/DA client worksheet can use instead
of an individual connection.

Before you begin this task, you should have two or more OPC connections that you can group together. You
can create a group of only one connection, but it would serve no purpose other than to get the status of the
connection.

A redundancy group consists of individual connections arranged in order. If the first connection in the
group fails (due to BAD status) or times out (due to inactivity), the OPC client worksheet will use the second
connection instead. Then, if the second connection fails or times out, the worksheet will use the third
connection, and so on until the worksheet reaches the last connection in the group. If the last connection also
fails or times out, the client will start over with the first connection in the group.

A properly configured redundancy group also provides continuously updated status information about each
connection in the group. That allows you to monitor the connections during project run time.

After you create a redundancy group, you can select it in your OPC client worksheet in the same way that you
would select an individual connection.

Keep in mind that if you configure several different worksheets to use the same redundancy group, they will
all use the same connection at the same time during project run time. That might put too much load on a
single connection and cause it to fail when it would not otherwise. To avoid that, create multiple groups —
each with the connections arranged in a different order (e.g., ABC, CAB, BCA) — and then select a different
group for each worksheet. This will provide rudimentary load balancing.

Note: The OPC DA 2.05 client in BLUE Open Studio 2020 does not support redundancy groups at
this time.

To create a redundancy group:

1. In the Comm tab of the Project Explorer, expand the folder for the type of OPC that you are using, either OPC
UA or OPC XML/DA.

2. In that folder, right-click the Redundancy Group folder, and then on the shortcut menu, click Insert.

Communication

Page 622

The Redundancy Group dialog box is displayed.

Example of redundancy group settings
3. In the Group Name box, type a unique name for the group.

This name will be displayed in the list of available connections in your OPC client worksheet.

4. In the Active Connection box, type the name of a project tag of String type.
The specified tag will receive the name of the connection that is currently being used during project run
time. In other words, when the connection changes for any reason, the tag value changes to match. You
can also change the tag value yourself, to control which connection is used. In both cases, the tag value is
the full name of the connection (e.g., Connection 1). This setting is optional.

5. If you want a connection to automatically time out after a period of inactivity, rather than wait for it to
actually fail (with BAD status), select the Watchdog timeout option.
The default timeout is 60 seconds after the last change reported by the OPC Server. If the field device has
less frequent changes, you need to either increase the timeout or set up a "heartbeat" on the field device to
keep the connection active.

Note: This watchdog can only watch the connection between the OPC Client (i.e., your project)
and the OPC Server. It cannot watch the connection between the OPC Server and the field device.
The OPC Server itself is responsible for monitoring that connection.

Communication

Page 623

6. If you want the client to automatically return to the first connection in the group when it is possible to do
so, rather than continue through all of the connections in the group, select the Auto return option.
The default return time is 5 minutes, which means the client will try to return to the first connection
every 5 minutes after the connection was lost. If the client cannot reestablish the first connection, it will
continue with its current connection and try again later.

7. In the Connections area, in the Available list on the left, select a connection that you want to include in the
group, and then click >>.
There is no limit on the number of connections that you can include in a group.
The connection is added to the Selected list on the right.

8. Repeat the previous step for each connection that you want to include in the group.

9. Select a connection in the Selected list on the right, and then do the following:
a) Use the Move Up and Move Down buttons to move the selected connection to the desired position in the

list.

b) In the Code box, type the name of a project tag of Integer or String type.
The specified tag will receive a continuously updated status code for the selected connection during
project run time.

c) In the Message box, type the name of a project tag of String type.
The specified tag will receive a continuously updated status message for the selected connection during
project run time.

d) In the Disable box, type a tag name, expression, or literal value.
When it evaluates as TRUE (i.e., non-zero) during project run time, the selected connection will be
disabled and therefore skipped.

Note: The Code, Message, and Disable settings are all optional and unique for each connection.

10.Repeat the previous step for each connection in the group.

11.Click OK to save your changes and close the dialog box.

The new group is saved in the appropriate Redundancy Group folder in the Project Explorer, and it becomes
available for selection in the corresponding client worksheets.

During project run time, each connection in the redundancy group can have one of the following statuses:

Code Message

1 The connection to the OPC Server is
established, and it is running in normal
mode.

1 The connection to the OPC Server has been
reestablished, and the watchdog has been
reset.

-1 [Any of the BAD messages that are described in List of read/write status codes
and messages for OPC UA on page 613.]

-2 The OPC Server stopped reporting changes
from the field device (e.g., the PLC), and
the watchdog timeout has elapsed.

-3 Trying to establish connection to the OPC
Server.

CREATE A NEW OPC XML/DA CLIENT WORKSHEET
Create and configure an OPC XML/DA Client worksheet to associate project tags with OPC server items.

Before you begin this task, you must have created at least one OPC XML/DA server connection that the client
worksheet can use. For more information, see Create a new OPC XML/DA connection on page 619.

You should also be familiar with how to edit worksheets in the project development environment.

Communication

Page 624

Tip: You can create multiple worksheets and then configure them to have different settings, so you
do not need to make any single worksheet unnecessarily large or complicated.

To configure a new OPC XML/DA Client worksheet:

1. Do one of the following:

• On the Insert tab of the ribbon, in the Communication group, click OPC Client, and then select OPC XML/DA
Client from the drop-down list; or

• In the Comm tab of the Project Explorer, right-click the OPC XML/DA folder, and then on the shortcut
menu, click Insert.

A new OPC XML/DA Client worksheet is displayed.

2. In the Description box, type a description of the worksheet.
This is for documentation purposes only and does not affect the execution of the worksheet.

3. In the Connection list, select the connection or redundancy group that you created earlier.

4. In the Status box, type the name of a project tag (Integer type) that will receive connection status codes
during project run time.

5. In the Status Message box, type the name of a project tag (String type) that will receive the corresponding
status messages.

6. In the Publish Rate box, type the frequency (in milliseconds) at which the client will request updates from the
server.

7. In the Disable box, type a tag/expression.

Communication

Page 625

While this tag/expression evaluates as TRUE (non-zero), the worksheet will not be executed and it will not
use the specified connection. If any other OPC XML/DA Client worksheets share the same connection,
however, the connection will remain open and active unless those worksheets are also disabled.

8. In the Percent Deadband box, type a value between 0.0 and 100.0, as a percentage of the full engineering
units scale. (The scale is calculated using the specified minimum and maximum values of the server item.)

This tells the server to publish only changes in item values that are greater than the specified deadband.
For example, if the minimum value is 1000, the maximum value is 5000, and the deadband is 0.1, only
changes greater than 4 (i.e., 0.1% of 4000) will be published by the server.

If you do not specify a deadband, the default is 0.0, which means the server will publish all changes in
item values.

Percent Deadband only applies to server items that have the Engineering Units Type attribute (dwEUType) set
to Analog (1). For more information about this attribute, see either the OPC XML-DA specification or the
documentation for your OPC server.

If Ensure cache synchronization (in the advanced settings) is selected, Percent Deadband should not be used.

9. In the Root node or view box, specify a server node that will serve as the root for all browse paths in the
worksheet body.
Specifying a root node makes it easier to find items and improves run-time performance.

10.For each project tag that you want to associate with an OPC server item/node, complete a row in the
worksheet body:
a) In the Tag Name field, type the name of a project tag.

You can type a string expression in this field (e.g., {MyTagName}), but if you do, make sure you have
also configured the Reload trigger setting in the advanced settings.

b) In the Browse Path field, do one of the following: for DA, type <item name>; or for XML, type <item
path>//<item name>. To browse the server's list of items, right-click in this field, and then on the
shortcut menu, click Browse.

Note: If you selected the Enable bit notation option in the advanced settings, you can select
a specific bit of a server node value by appending the bit number to the item name (e.g.,
<browse path>.<bit>). Please note that this is supported only for unsigned variables and
32-bit signed variables; if you try to do it with 16-bit or 8-bit signed variables, the most
significant bit (MSB) will not work properly.

c) In the Scan field, select either Always to have the row continuously scanned (i.e., processed) during
project run time or Screen to have the row scanned only when a project screen that uses the specified
tag is open.

d) In the Div field, type a number to be used for scaling during project run time. This is optional.
When a value is read from the server, it is divided by this number. When a value is written to the
server, it is multiplied by this number.

e) In the Add field, type a number to be used for scaling during project run time. This is optional.
When a value is read from the server, this number is added to it. When a value is written to the server,
this number is subtracted from it.

Both tag expansion and array distribution are enabled by default for all OPC XML/DA Client worksheets.
You can disable tag expansion for this worksheet by clearing the Enable Tag Expansion option in the advanced
settings. You cannot disable array distribution.

If your project was created with a previous version of this software and then upgraded to the latest version,
the worksheet body might include an additional Array Index field. That field has been deprecated in favor of
array distribution.

11.When you are done, save and close the worksheet.
The worksheet is saved in the OPC XML/DA folder in the Project Explorer.

In order for your OPC XML/DA Client worksheet(s) to be scanned during project run time, the OPC XML/
DA Client Runtime task in your project must be started. As such, the first time you configure and save a
worksheet, the task's startup mode is set to Automatic. This is done for your convenience, and it means that
when you run your project, the task will be started and the worksheet(s) will be scanned. You can set the

Communication

Page 626

task's startup mode back to Manual, however, if you want more control over how your project runs. For more
information, see Runtime Tasks on page 134.

The worksheet is continuously scanned during project run time, so that the configured project tags and server
items are updated as needed. Also, the project tags that you specified for the Status and Status Message settings
in the worksheet header will receive appropriate values.

Tip: As long as the client is communicating normally with the server, the read/write status codes
and messages (as configured in the advanced settings) will provide more information about each
operation.

In certain situations, if the worksheet does not behave as expected during project run time — and especially if
you see OPC communication errors in the runtime log — you might need to adjust the worksheet's advanced
settings: in the worksheet header, click Advanced, and then in the Advanced dialog box, review and configure
the settings.

Advanced settings for the OPC XML/DA Client worksheet

Read actions

Advanced settings that control how values are read from the OPC UA server.

Communication

Page 627

Enable subscription

While this value is TRUE (non-zero), the client will subscribe to the server nodes so that it can
receive notifications when the node values change.

This setting has a default value of 1, which indicates it is always enabled. If it is disabled, or if
you type a tag/expression that will cause it to be disabled during project run time, you might
need to use read triggers instead (see below).

Maximum group size

The maximum number of server nodes that may be read in a single read operation.

For example, if you have 1000 items/rows configured in the worksheet and Maximum group size is
set to 100, 10 read operations will be performed when a read is triggered.

Synchronous read trigger
When the value of this tag/expression changes, the client reads all of the node values from the
server. The read operation is performed synchronously, which means all other client operations
are blocked until the read operation is finished. When the read operation is finished, the client
increments the tag configured in Read count.

Asynchronous read trigger
The same as Synchronous read trigger except that the read operation is performed asynchronously,
which means that other client operations may continue while the read operation is being
performed.

Read count
The name of a project tag (Integer type) that will receive a count of the number of read
operations performed since the project was run.

Status

The name of a project tag (Integer type) that will receive a status code for the last read operation
performed by a trigger:

Status Code Description

0 Bad

1 Good

Status message
The name of a project tag (String type) that will receive a status message for the last read
operation performed by a trigger. For more information, see List of read/write status messages
for OPC XML/DA on page 629.

Maximum aging
The maximum age (in milliseconds) of values that will be accepted from the server's cache. If a
value is older than this, the server will be forced to get the latest value from the field device.

Sampling rate
When this option is selected, you can change the rate (in milliseconds) at which the OPC server
reads from field devices. By default, the sampling rate is half the publishing rate.

Queue size

Write actions

Advanced settings that control how values are written to the OPC UA server.

Enable write on tag change

While this value is TRUE (non-zero), an asynchronous write operation will be performed
automatically whenever the value of a project tag changes. All tag changes that occured since

Communication

Page 628

the last scan of the worksheet will be written in a single write operation, or in multiple write
operations if the number of tag changes exceeds the maximum group size.

This setting has a default value of 1, which indicates it is always enabled. If it is disabled, or if
you type a tag/expression that will cause it to be disabled during project run time, you might
need to use write triggers instead (see below).

Maximum group size

The maximum number of tag changes that may be written in a single write operation.

For example, if you have 1000 items/rows configured in the worksheet and Maximum group size is
set to 100, 10 write operations will be performed during each scan of the worksheet.

Synchronous write trigger
When the value of this tag/expression changes, the client writes all of the tag values to the
server. The write operation is performed synchronously, which means all other client operations
are blocked until the write operation is finished. When the write operation is finished, the client
increments the tag configured in Write count.

Asynchronous write trigger
The same as Synchronous write trigger except that the write operation is performed asynchronously,
which means that other client operations may continue while the write operation is being
performed.

Write count
The name of a project tag (Integer type) that will receive a count of the number of write
operations performed since the project was run.

Status

The name of a project tag (Integer type) that will receive a status code for the last write operation
performed by a trigger:

Status Code Description

0 Bad

1 Good

Status message
The name of a project tag (String type) that will receive a status message for the last write
operation performed by a trigger. For more information, see List of read/write status messages
for OPC XML/DA on page 629.

Other

Other settings that control how this worksheet communicates with the OPC UA server.

Reload trigger
The name of a project tag (Boolean, Integer, or Real type) that can be used as a trigger. When
the value of this tag changes, the worksheet is reloaded. String expressions configured in the
body of the worksheet are reevaluated only when the worksheet is reloaded. After the worksheet
is reloaded, the value of this tag will be reset to 0.

Read upon connection
When this option is selected, the worksheet will read the current values of all configured items
immediately after the client connects to the server, regardless of any other settings that control
read actions.

Ensure cache synchronization

Communication

Page 629

When this option is selected, the client will wait after each write operation for confirmation from
the server that the node values actually changed. If the client does not receive confirmation, it
will restore the previous tag values.

Enable bit notation
When this option is selected, bit notation is allowed in the Browse Path column of the worksheet
body.

Enable Tag Expansion
When this option is selected, tag expansion is enabled for this worksheet. You can disable it for
this worksheet without affecting any other OPC client worksheets, and you may choose to do so
if you want more control over how OPC server items are associated with your project tags

Note: This software does not normally use the Triggering Mode that is defined the OPC standard.
Instead, it allows any change in any tag/expression to be used as a trigger. If you want to use
Triggering Mode, configure one worksheet to read the trigger values, and then configure another
worksheet that specifies the read values as triggers.

LIST OF READ/WRITE STATUS MESSAGES FOR OPC XML/DA
This is a list of the possible status messages that might be generated by read/write operations in OPC XML/
DA.

Status Message Hexadecimal Description

S_OK 0x00000000 Success

S_FALSE 0x00000001 Failure

OPC_E_INVALIDHANDLE 0xC0040001 The value of the handle is invalid.

OPC_E_BADTYPE 0xC0040004 The server cannot convert the data between the
specified format and/or requested data type and the
canonical data type.

OPC_E_PUBLIC 0xC0040005 The requested operation cannot be done on a
public group.

OPC_E_BADRIGHTS 0xC0040006 The item's access rights do not allow the operation.

OPC_E_UNKNOWNITEMID 0xC0040007 The item ID is not defined in the server address
space or no longer exists in the server address
space.

OPC_E_INVALIDITEMID 0xC0040008 The item ID does not conform to the server's syntax.

OPC_E_INVALIDFILTER 0xC0040009 The filter string was not valid.

OPC_E_UNKNOWNPATH 0xC004000A The item's access path is not known to the server.

OPC_E_RANGE 0xC004000B The value was out of range.

OPC_E_DUPLICATENAME 0xC004000C Duplicate name not allowed.

OPC_S_UNSUPPORTEDRATE 0x0004000D The server does not support the requested data rate
but will use the closest available rate.

OPC_S_CLAMP 0x0004000E A value passed to write was accepted but the output
was clamped.

OPC_S_INUSE 0x0004000F The operation cannot be performed because the
object is bering referenced.

OPC_E_INVALIDCONFIGFILE 0xC0040010 The server's configuration file is an invalid format.

OPC_E_NOTFOUND 0xC0040011 The requested object was not found.

OPC_E_INVALID_PID 0xC0040203 The specified property ID is not valid for the item.

Communication

Page 630

Status Message Hexadecimal Description

OPC_E_READONLY 0xC0048006 The item is read only and cannot be written to.

OPC_E_INVALIDCONTINUATIONPOINT0xC0040403 The continuation point is not valid.

OPC_E_WRITEONLY 0xC0048007 The item is write only and cannot be read or
returned in a Write response.

E_NOTIMPL 0x80004001 Not implemented.

E_NOINTERFACE 0x80004002 No such interface supported.

E_ABORT 0x80004004 Operation aborted.

E_FAIL 0x80004005 Unspecified error.

E_OUTOFMEMORY 0x8007000E Out of memory.

E_INVALIDARG 0x80070057 One or more arguments are invalid.

CONNECT_E_NOCONNECTION 0x80040200 Advise cannot find Connection point or Unable to
impersonate DCOM client.

CONNECT_E_ADVISELIMIT 0x80040201 Unable to obtain server's security context.

OPC DA 2.05 Client
Use the OPC DA 2.05 Client worksheet and runtime task to establish communication between your project
and a data exchange server that supports the OPC DA (a.k.a. OPC Classic) interoperability standard.

Note: OPC DA 2.05 Client is a legacy feature that is included in this release of BLUE Open
Studio 2020 only to maintain backward compatibility with existing projects. OPC DA depends on
Microsoft's proprietary DCOM and OLE technologies, which have been superseded by cross-platform
technologies like XML and SOAP for web services. If you are creating a new project, we strongly
recommend you use either OPC UA Client or OPC XML/DA Client, depending on the configuration of
your data exchange server.

Before you begin this task, make sure the OPC DA server software is properly installed and configured on the
computer to which you want to connect.

Communication

Page 631

To configure a new connection, insert a new OPC DA 2.05 Client worksheet on the Comm tab of the Project
Explorer.

Sample OPC DA 2.05 Client worksheet

Configure the following settings for the worksheet:

• Description text box: Type a description of the worksheet for documentation purposes only. (The OPC DA
2.05 Client Runtime task ignores this information.)

• Server Identifier: Type the name of the server you want to connect. If the server is already installed on the
computer, you can select the server name from the list.

• Disable: Type a tag/expression. While it evaluates as TRUE (non-zero), the subscription of the items
configured in the OPC DA 2.05 Client worksheet will be disabled, which means the server will no longer
send messages to update the values of those items. However, disabling the worksheet will not disconnect
the client from the server; the client will still be able to write values to the server.

• Read Update Rate: Specify how often the server should update this group (in milliseconds). Specify 0 to
indicate the server should use the fastest practical rate.

• Percent Deadband (valid for analog items only): Specify how much percent change in an item value should
cause a notification by the server.

• Status: Type the name of a tag to receive the status of the connection. Good status is 1.

• Remote Server Name: Node name or IP address of server on node network.

• Read before writing checkbox: Check this option to force your project to read the original values of items on
the OPC server just before writing new values to the server. The project does this by first buffering the
new values to be written and then reading the original values from the server. Only after the project is
synchronized with the server are the new values written from the buffer to the server.

• Read after writing checkbox: Check this option to force your project to read back the new values of items on
the OPC server just after the project has written those values.

Note:

The Read before writing and Read after writing options are offered because the OPC Client/Server
specification says that the value of an item on the client — in this case, your project — should

Communication

Page 632

not change unless the server sends the change. That way, the client always stays in sync with the
server.

Your project, however, may be designed to change those values according to runtime processes or
user input. Therefore, the best way to change the values while staying in sync with the server is
to make it seem like the changes originate on the server. With both options enabled, the following
sequence of events happens on every scan of the OPC worksheet:

1. The new values on the client are buffered.

2. The original values on the server are read to the client — that is, the client is synchronized
with the server.

3. The new values are written from the buffer to the server.

4. The new values on the server are read to the client — that is, the client is again synchronized
with the server.

At the end of each scan, the values reflect what's happening in your project even though,
technically speaking, the project is merely staying in sync with the server.

Both options should be enabled in most projects. In some projects, however, this may cause
items to bounce between the original values and the new values. If this is a problem, try moving
those items to another OPC worksheet where the Read before writing and Read after writing options are
disabled.

• Accept Tag Name in the Item column checkbox: When this option is checked, the text configured between curly
brackets in the Item field is resolved as a Tag Name (string tag). In this case, the value of this tag is used
as the name of the item from the server, allowing the user to point to different item names during runtime,
by changing the value of the tag(s) configured in the worksheet (Item column).

When the Accept Tag Name in the Item column option is unchecked, all characters configured in the Item column
are considered part of the Item name (including the curly brackets).

• Tag Name: Type the names of tags linked to the server items.

Note: Both tag expansion and array distribution are enabled for all OPC DA 2.05 Client
worksheets.

• Item: Enter the name of the server's items. After selecting a server, you can select items from that server
using the OPC Browser. Right-click in the Item field and select the OPC Browser option.

Tip: You can configure a tag name between curly brackets (e.g., {TagName}) in this field,
allowing the user to change the item names dynamically, during runtime.

• Scan field: Specify the condition under which the tag value is read from the remote device or server and
then updated in the project database, using one of the following options:

• Always means the tag is read and updated during every scan of the communication worksheet,
regardless of whether the tag is used in any other project screens, scripts, or worksheets.

This option is recommended for tags that must be continuously monitored in the background, such as
tags that trigger alarms, tags used in recipes, tags that are recorded in the historical database, and so
on.

• Screen means the tag is read and updated only if it is being used in at least one open project screen,
either locally or on another client station.

This option is recommended for tags that are used in screen objects, because the project may not
need to update tags that are not being visualized anywhere. Selecting this option can improve project
performance.

• Auto means the project will automatically choose either Always or Screen, depending on where the tag is
used in your project. If the tag is only used in a screen object on a project screen, then the scan will
default to Screen. But if the tag is configured in any other interface (e.g., Script, Math, Alarm, Trend,
Recipe, Report, Scheduler), then the scan will switch to Always and remain there until the project is
stopped.

If you are not sure of which option to select, select Always. This will guarantee the tag is read and updated.

Communication

Page 633

• Div field: Specify the division constant when scale adjustment is required. This value is a division factor in
a read operation and a multiplication factor in a write operation.

• Add field: Specify the addition constant when scale adjustment is required. This value is a addition factor
in a read operation and a subtraction factor in a write operation.

Note: The OPC DA specification supports custom item qualities using the high byte of the two-
byte quality field. However, such qualities are often vendor-specific or even hand-coded, so it is not
possible for BLUE Open Studio 2020 to interpret them. All item qualities other than GOOD (192) will
be ignored.

To run the OPC DA 2.05 Client Runtime task, you can choose to run it automatically on start up, or run
the task manually by clicking Tasks (either local or remote) on the Home tab of the ribbon. After running this
program, a small icon displays in your system tray.

To close the OPC DA 2.05 Client Runtime task, right-click the icon in the system tray, and click Exit.

Troubleshooting
When you are using an OPC DA 2.05 Client worksheet and have problems establishing communication, you
should first verify the messages in the LogWin. For information about using these logs, see About the LogWin
tool on page 725.

If you find error messages in the log, look them up in this manual/help system, and follow the documented
steps for solving the problems. (Use Ctrl+F to find them in the manual; use the Index to find them in the
context sensitive help system.)

If you feel that you need to contact your distributor for technical support, make sure that you provide them
with the following information:

1. Log file

2. Software vendor and product name of the OPC Server/Client that you are using

3. If possible, a copy or an evaluation version of the OPC Server for testing purposes

4. The contact information for your OPC Server/Client technical support

Three possible errors and their resolutions are listed below…

Security

Error Code: 0x80070005 or -2147024891

Reason for error: When the client tries to connect to the server, the DCOM layer usually requires
authentication. The computer that is running the server needs to recognize the user logged on to the client
computer, and such a user needs to have privileges to access the server.

Solution: The first step is to create a single user on both computers that has Administrator privileges and the
same password. Log on with this user to both ends, and then try to establish the connection.

Name Resolution

Error: Couldn't create connection with advise sink, error: -2147022986 (0x80070776)

Reason for error: There is a problem resolving the computer name.

Solution: This problem can be solved by specifying the IP address of the server instead of specifying the
computer name.

Tag Expansion for OPC Clients
Tag expansion is the method by which a group of items on the OPC server are automatically associated with
similarly named class members in your project.

An OPC server acts as a container for OPC groups, and in turn, each OPC group acts as a container for OPC
items. The OPC group is roughly equivalent to a class tag in your project, and the OPC items are roughly
equivalent to class members.

If you create a class tag in your project that has class members with the same names as the OPC items, it
is possible to automatically associate those class members with the OPC items. You need to configure only
a single row in the OPC client worksheet that associates the class tag with the OPC group, and then tag

Communication

Page 634

expansion will manage the associations between the individual class members and OPC items during project
run time.

You can disable tag expansion for a single OPC client worksheet without affecting any other worksheets, and
you may choose to do so if you want more control over how your project tags are associated with OPC items.
To disable tag expansion, clear the Enable Tag Expansion option in the worksheet's advanced settings.

The following illustrations provide an example of how tag expansion works. (This is only an example; you do
not need to use these exact names nor follow these exact steps.)

First, on the OPC server, you can create a group of three items.

Creating a group of three items on the OPC server

Then, in your project, you can create a class with similarly named members.

Creating a class with three members in your project

The class serves only as a sort of template for project tags, so you need to create a new project tag and then
set its type to the appropriate class, thereby making it a class tag.

Creating a project tag of the appropriate class

Note: Multi-dimensional or "nested" classes are not supported.

Finally, when you create your OPC client worksheet, you can configure a single row of the worksheet to
associate the class tag with the OPC group.

Associating the class tag with the OPC group

Communication

Page 635

You do not need to configure any additional rows, because the one-to-one associations between the class
members and the OPC items will be managed automatically during project run time, thanks to tag expansion.

Taking this a step further, you can create an array of classes in your project by increasing the Array property
of the class tag. In this example, increasing the Array property to 3 creates an array of four classes in
positions 0 through 3.

Creating an array of classes by increasing the size of the tag

It is technically not possible to create an array of OPC groups on the server, but it is possible to create a
series of OPC groups that are sequentially numbered like array elements, using the standard syntax for array
indices ([n]).

Creating sequentially numbered groups on the OPC server

Tag expansion will detect the numbering of the OPC groups, so that when you create your OPC client
worksheet, you can configure a single row of the worksheet to associate the array of classes with the series of
OPC groups.

Associating the OPC groups with the array of classes

Again, you do not need to configure any additional rows, because all twelve associations (i.e., four classes/
groups, each with three members/items) will be managed automatically during project run time, thanks to tag
expansion.

Note: Make sure the size of the array in your project is equal the number of OPC groups on
the server. If it is not equal, you might see unexpected behavior during project run time as tag
expansion tries to make invalid associations between class members and OPC items.

Note: The Check node type option, in the advanced settings for OPC UA connections, can interfere with
tag expansion. Therefore, if you are using tag expansion in an OPC UA Client worksheet, you might
need to clear the option for the connection used by that worksheet.

Communication

Page 636

Array Distribution for OPC Clients
Array distribution is the method by which the elements of an array item on the OPC server are automatically
associated with various types of project tags.

The OPC clients in this software are capable of reading array items on the OPC server, but they cannot read
only certain elements of those array items. Each array item is read in its entirety during every scan of an OPC
client worksheet. In other words, it is not possible to associate a single project tag with a single element of an
array item.

Instead, when an array item on the OPC server is read, the elements of that array item are automatically
distributed to a group of project tags. You need to configure only a single row in the OPC client worksheet that
associates the array item with the "first" tag in the group. What qualifies as the "first" tag, however, depends
on how you have created and organized your project tags.

The following scenarios describe how array distribution works with different types of project tags.

Elements of an Array Item → Elements of an Array Tag
In this scenario, you can create an array tag in your project by increasing the Array property of a regular
project tag, and then you can associate the array tag with the array item on the OPC server. The elements
of the array item are distributed one-for-one to the elements of the array tag. If you specify an array index
(e.g., MyArrayTag[3]), the distribution will begin at that position. If you do not specify an array index, the
distribution will begin at position 0 by default.

Examples of array tags

When Tag Name is… …the elements of the OPC array item are distributed to:

MyArrayTag MyArrayTag[0], MyArrayTag[1], MyArrayTag[2]

MyArrayTag[3] MyArrayTag[3], MyArrayTag[4], MyArrayTag[5]

Make sure the array tag in your project is large enough to accomodate the elements of the array item on the
OPC server. If it is not large enough, elements will be lost.

Elements of an Array Item → Sequentially Numbered Project Tags
In this scenario, you can create a series of sequentially numbered project tags, and then you can associate
just the first tag in the series with the array item on the OPC server. The elements of the array item are
distributed one-for-one to the project tags in the series.

Examples of sequentially numbered project tags

When Tag Name is… …the elements of the OPC array item are distributed to:

MyTag1 MyTag1, MyTag2, MyTag3

MyTag3 MyTag3, MyTag4, MyTag5

MyTag001 MyTag001, MyTag002, MyTag003

Make sure you create enough project tags to accomodate the elements of the array item on the OPC server. If
there are not enough tags, elements will be lost.

Elements of an Array Item → Sequentially Numbered Members of a Class Tag
This scenario is similar to the previous scenario: you can create a class tag that consists of sequentially
numbered members, and then you can associate just the member in the series with the array item on the
OPC server. The elements of the array item are distributed one-for-one to the members in the series.

Examples of sequentially numbered class members

When Tag Name is… …the elements of the OPC array item are distributed to:

MyClass.Member1 MyClass.Member1, MyClass.Member2, MyClass.Member3

Communication

Page 637

When Tag Name is… …the elements of the OPC array item are distributed to:

MyClass.Member3 MyClass.Member3, MyClass.Member4, MyClass.Member5

MyClass.Member001 MyClass.Member001, MyClass.Member002, MyClass.Member003

Make sure you create enough members to accomodate the elements of the array item on the OPC server. If
there are not enough members, elements will be lost.

Elements of an Array Item → An Array of Class Tags
This scenario is a combination of the previous scenarios in that you can create an array of class tags,
and then the elements of the array item on the OPC server will be distributed amongst all of the members
depending on which one you associate with the array item.

Examples of members in an array of class tags

When Tag Name is… …the elements of the OPC array item are distributed to:

MyArrayClass.Member MyArrayClass[0].Member, MyArrayClass[1].Member,
MyArrayClass[2].Member

MyArrayClass[3].Member MyArrayClass[3].Member, MyArrayClass[4].Member,
MyArrayClass[5].Member

MyArrayClass[3].Member1MyArrayClass[3].Member1, MyArrayClass[3].Member2,
MyArrayClass[3].Member3

MyArrayClass[3].Member3MyArrayClass[3].Member3, MyArrayClass[3].Member4,
MyArrayClass[3].Member5

MyArrayClass[3].Member001MyArrayClass[3].Member001, MyArrayClass[3].Member002,
MyArrayClass[3].Member003

OPC UA Server
OPC Unified Architecture (OPC UA) is an interoperability standard for exchanging real-time data between
clients and servers. This software includes an OPC UA Server module that you can use to make your project
tags available to OPC UA clients on the network.

The OPC UA Server module is turned off by default. In order to use the server, you need to configure its
communication settings, select the project tags that you want to make available to clients, and then start the
OPC UA Server Runtime task. You might also need to manage program certificates so that the server and its
clients can communicate securely with each other. This section describes how to do all of these things.

For more information about OPC UA, go to: opcfoundation.org/about/opc-technologies/opc-ua/

CONFIGURE THE COMMUNICATION SETTINGS FOR OPC UA SERVER
The communication settings for the OPC UA Server module are located in the Project Settings dialog box.
These settings determine how the server will appear on the network, as well as how OPC UA clients may
communicate with it. You need to review and configure these settings before project run time.

Before you begin this task, you should be familiar with the OPC United Architecture (OPC UA) specification
and how OPC UA servers and clients communicate with each other. In particular, you should understand how
servers and clients use certificates to identify each other and communicate securely.

To configure the communication settings for the OPC UA Server module:

1. On the Project tab of the ribbon, in the Settings group, click Communication.

https://opcfoundation.org/about/opc-technologies/opc-ua/

Communication

Page 638

The Communication tab of the Project Settings dialog box is displayed.

Project Settings > Communication
2. In the Endpoint URL boxes, type the node name and port number for the OPC UA server endpoint.

The default node name is [NodeName]. This is a special string that automatically gets the host name of the
actual computer or device that hosts the project, so that you do not need to change the node name each
time you download your project to another computer.

The default port number is 48010, which is the standard port number for OPC UA communication.

In most cases, you should keep the default node name and port number. If you think you need to change
either of them, ask your network administrator.

3. In the Identity area, select the identity types that will be allowed to log on to the OPC UA server.
You must select at least one of the available options. If you do not, the OPC UA Server Runtime task will
not be able to start during project run time. The options are not exclusive; you can select more than one
option.

Communication

Page 639

Option Description

Enable anonymous login Allow clients to log on to the server without entering
a username or password.

Enable Username/Password Require clients to enter a username and password
that a match a user in your project's security
system. This option is available only if the security
system has been enabled.

4. In the Security Policies area, select the policies that the OPC UA server may use to communicate with OPC
UA clients.
In order for a server and client to communicate with each other, they must have at least one security
policy in common.

First, select the encryption types. You must select at least one of the available options. If you do not,
the OPC UA Server Runtime task will not be able to start during project run time. The options are not
exclusive; you can select more than one option.

Option Description

None Communication between server and client does not
need to be encrypted.

Basic256 The server will use and recognize 256-bit AES
encryption. (This option is selected by default in
new projects.)

Basic128Rsa15 The server will use and recognize 128-bit AES
encryption.

Then, for each encryption type you have selected, select its messaging mode.

Option Description

Sign Messages between server and client must be signed.

Sign and Encrypt Messages between server and client must be signed
and encrypted.

Sign, Sign and Encrypt Messages between server and client may be either
signed, or signed and encrypted. (This option is
selected by default in new projects.)

For more information about these options and how the OPC UA clients might be configured, ask your
network administrator.

5. In the Certificates area, review the information that will be included in the OPC UA server's self-signed
certificate.
This is the certificate that the server will present to clients in order to identify itself. It is signed by the
software itself, as opposed to being signed by a Certificate Authority (CA).
a) Click Self-Signed Certificate Information.

Communication

Page 640

The OPC UA Server Self-Signed Certificate Information dialog box is displayed.

OPC UA Server Self-Signed Certificate Information
b) In the Common Name box, type the common name of the OPC UA server itself.

This is the name that is broadcast to the discovery server and other OPC UA clients on the network.
The default common name is [ServerName]. This is a special string that includes [NodeName] (see
above), which automatically gets the host name of the actual computer or device that hosts the project.
The value of [ServerName] is:

StudioOpcUaServer@[NodeName]

c) In the Machine box, type the name of the computer or device that will host the project runtime server.
The default machine name is [NodeName] (see above).

d) In the Organization, Organization Unit, Location Name, State/Province, and Country boxes, type the appropriate
information for your project.

e) In the Years Valid For box, type the number of years for which the certificate will be valid, starting from the
date it is issued.
The default number of years is 5. When a certificate expires, you must delete it and then issue a new
one.

f) In the IP Addresses box, type all of the addresses that may be used by the actual computer or device that
will host the project and present this certificate.
You may leave this box empty. Doing so will not prevent the server certificate from being issued or
make it not valid.

g) In the DNS Names box, type the names of the domain name servers that will administer the project
runtime server.
The default DNS name is [NodeName] (see above).

h) Click Delete server certificate.
This is to make sure the existing certificate (if any) is deleted from the project files, so that a new
certificate can be issued with the updated information.

i) Click OK to close the OPC UA Server Self-Signed Certificate Information dialog box.

Communication

Page 641

Note: The values of [ServerName] and [NodeName] are determined when the server certificate
is issued, and the server certificate is issued when the project is run and the OPC UA Server
Runtime task is started. As such, if you test your project on your development workstation, the
certificate will be issued using the host name of that computer. You should delete the certificate
— by clicking Delete server certificate — before you download your project to another computer. If
you do not, you will need to manually delete the certificate files on that computer so that a new
certificate can be issued with the correct information. For more information, see How to manage
OPC UA Server during project run time on page 644.

6. If you want to accept the certificates of all OPC UA clients that try to connect to the OPC UA server, select
Automatically trust client certificates.

Note: The Automatically trust client certificates option is cleared by default, for security reasons. If you
do not select this option, you will need to manually add client certificates to the server's "trusted"
list. For more information, see How to manage OPC UA Server during project run time on page
644.

7. In the Stack trace level list, select the level of trace messages that you want to be saved in the OPC UA
communication log.
Option Description

Disabled Logging is disabled for OPC UA communication; no
messages will be saved in the communication log.

Error Critical issues that have caused OPC UA
communication to fail. These issues must be
resolved before communication can resume. (This
level is selected by default in new projects.)

Warning Non-critical issues that affect run-time performance
or might cause OPC UA communication to fail
under other conditions. These issues should be
resolved as soon as possible.

This level includes Error (see above).

Info Informational messages generated by normal OPC
UA communication.

This level includes Error and Warning (see above).

Verbose All trace messages generated by the OPC UA
communication stack. This can be extremely
verbose, and it will generate a very large log
file over time. Select this level only if you are
troubleshooting serious issues.

8. Click OK to close the Project Settings dialog box.

MAKE PROJECT TAGS AVAILABLE IN OPC UA SERVER
By default and for security reasons, project tags are not made available to OPC UA clients until you make
them so, regardless of how you have configured the OPC UA server to run in your project. You must
specifically select the tags in the Project Tags datasheet and then set the necessary tag property.

You can perform this task at any time — for example, as you create your project tags — but keep in mind
that you also need to configure the communication settings and runtime task for OPC UA Server before you
actually run your project.

To make project tags available in OPC UA Server:

1. In the Global tab of the Project Explorer, expand the Project Tags folder and then double-click Datasheet View.

Communication

Page 642

The Project Tags datasheet is displayed.

Project Tags datasheet
2. For each project tag that you want to make available to OPC UA clients, select the appropriate option in

the UA External Availability column.
Option Description

Disabled The project tag is not available to OPC UA clients.
(This option is selected by default for all new tags.)

Read Only OPC UA clients can subscribe to and read the value
of the project tag.

Read/Write OPC UA clients can subscribe to, read, and write
the value of the project tag.

Changes to the project tags are saved immediately; you do not need to close the Project Tags datasheet.

For more information, see Set tag properties using the Project Tags datasheet on page 145.

CONFIGURE THE OPC UA SERVER RUNTIME TASK TO START AUTOMATICALLY
The OPC UA Server Runtime task is one part of the project runtime server. You must configure the task to
start automatically with the rest of the project runtime server, when your project is run.

Before you begin this task, you should have configured the communication settings for OPC UA Server and
selected the project tags that you want to make available to OPC UA clients.

To configure the OPC UA Server Runtime task:

1. On the Home tab of the ribbon, in the Local Management group, click Tasks.

The Runtime Tasks dialog box is displayed.

Communication

Page 643

2. Select OPC UA Server Runtime in the list of tasks, and then click Startup.
The Startup dialog box is displayed.

Startup
3. Select Automatic, and then click OK to close the Startup dialog box.

The startup mode for the OPC UA Server Runtime task is changed to Automatic.

Communication

Page 644

4. Click OK to close the Runtime Tasks dialog box.

For more information, see Runtime Tasks on page 134.

HOW TO MANAGE OPC UA SERVER DURING PROJECT RUN TIME
These are tips and tricks for managing the OPC UA Server module during project run time.

Deleting and recreating the server certificate files
When the project is run and the OPC UA Server Runtime task is started, it checks whether the server
certificate files exist and are located in the project folder at:

<project name>\Config\uaserver\own\studio.der
<project name>\Config\uaserver\own\studio.pem

(The .der file is the certificate itself, and the .pem file is the associated key. Both files must be present for the
certificate to be valid.)

If the files do exist, the project uses them as is. If the files do not exist, the OPC UA server creates them using
the certificate information you entered when you configured the OPC UA Server communication settings.

It is important to remember the certificate information can include the special strings [ServerName] and
[NodeName], which automatically get the host name of the actual computer or device that hosts the project.
As such, if you test your project on your development workstation, the certificate files will be created using
the host name of that computer, and then those files may be included with the rest of the project files
when you download your project to another computer. When the OPC UA server tries to use those files, the
certificate information may be incorrect for that computer and the server may not be able to establish secure
communication with clients.

You should delete the existing certificate files — by clicking Delete server certificate, in the OPC UA Server
communication settings — before you download your project from your development workstation to another
computer. If you do not, you will need to manually delete the files on that computer so that the OPC UA server
can recreate them with the correct certificate information.

Trusting and rejecting client certificates
Each OPC UA client that attempts to connect to and communicate with the OPC UA server will present its
own client certificate. Your project will automatically trust or reject those certificates depending on whether
you selected or cleared the Automatically trust client certificate option, in the OPC UA Server communication
settings. The certificate files are saved in the appropriate folders in your project's certificate store at:

<project name>\Config\uaserver\rejected\
<project name>\Config\uaserver\trusted\

In many cases, you will want to manage the certificates on a client-by-client basis, trusting some and
rejecting others. This software includes a small utility program called OPC UA Server Certificate Store
Management (OPCUAServerCertStore.exe), which helps you to view client certificates and move them
between folders in the certificate store. If you have the full SCADA software installed, you can open the

Communication

Page 645

program by clicking Certificate Store Management in the OPC UA Server communication settings. The program will
automatically open the certificate store for the current project:

OPC UA Server Certificate Store Management

Trusted, Rejected
These lists display the respective contents of the trusted and rejected folders in your project's
certificate store. To move a certificate from one list to the other, select it and then click > or < as
needed.

Issued To, Client URI
Certificate information extracted from the selected certificate. This information cannot be edited.

Add New Certificate
Click to add a new certificate to the Trusted list. You will be asked to locate and open the
certificate file. You should be familiar with certificate file names and extensions, as defined by
the X.509 standard, so that you can locate the correct file. The file will be copied to the trusted
folder in your project's certificate store.

Remove
Click to remove the selected certificate; the certificate file will be deleted from your project's
certificate store, regardless of which list/folder it is in. Be aware that removing a certificate does
not prevent a client from presenting the same certificate again in the future. If you want to reject
the certificate, move it to the Rejected list.

Tip: It is often useful to add client certificates to your project's certificate store while you are still
developing your project, so that they can be downloaded with the rest of the project files. However,
this assumes you know in advance which clients will try to connect to the server.

If the SCADA software is licensed for Runtime only — that is, if it is installed on another computer
and running only as a project runtime server — you might not be able to access the OPC UA Server

Communication

Page 646

communication settings in order to open the Certificate Store Management program. In this case, you can
manually run the program by locating it in the SCADA application folder and then double-clicking it. The
program file should be located at:

C:\Program Files (x86)\Pro-face\BLUE Open Studio 2020\Bin\OPCUAServerCertStore.exe

When you open the Certificate Store Management program in this way, it will first ask you to locate and open
your project file (<project name>.app). Otherwise, the program behaves the same as if you opened it from
the OPC UA Server communication settings.

Regardless of how you move the certificate files, you should restart the OPC UA Server Runtime task after
you make any changes. This is to make sure rejected clients that were previously trusted are properly
disconnected from the server. You do not need to restart the entire project, thanks to the project runtime
server's task-based architecture.

Connecting to the server and browsing for tags
When a project is running and the OPC UA Server Runtime task is started, OPC UA clients should be able to
find the server on the network at the endpoint URL that is configured in the OPC UA Server communication
settings. If you kept the default node name and port number, that URL should be:

opc.tcp://<host name>:48010

Clients should also be able to find the server at its IP address instead of its node name. For example:

opc.tcp://192.168.0.15:48010

Communication

Page 647

Assuming the endpoint URL is valid, the server and client have a security policy in common, and the server
trusts the client certificate, the client should be able to connect to the server and then browse tags in the
project tags database.

Example of an OPC UA client connected to your project's OPC UA server

For more information, see the documentation for your OPC UA client software.

Communication and server logs
The OPC UA communication stack can generate trace messages, which are saved in a log file in the project
folder at:

<project name>\Config\uaserver\uaserver.log

These trace messages comprise errors, warnings, and other information generated during normal OPC
UA communication. The level of verbosity is determined by the Stack trace level option in the OPC UA Server
communication settings. Be aware that the log file can become very large over time, depending on the level
you select.

The OPC UA Server Runtime task can also generate its own messages, separate from the OPC UA
communication stack. These messages comprise errors, warnings, and other information about the
performance of the task itself as a part of the project runtime server. The messages are included with the
rest of the project runtime server's log messages, in the Output/LogWin module. For more information, see
Configure the log settings for the Output window on page 716.

Communication

Page 648

OPC DA 2.05 Server
OPC Data Access (OPC DA) is an interoperability standard for exchanging real-time data between clients
and servers. The project runtime software includes a built-in OPC DA server that you can use to make your
project tags accessible to OPC DA clients on the network.

Before you try to use the OPC DA server, you should be familiar with the OPC DA specification (a.k.a. OPC
Classic). For more information, go to: opcfoundation.org/about/opc-technologies/opc-classic/

There are no user-configurable settings for the OPC DA server itself, but to enable the server, you must
ensure the Studio Scada OPC Server task is started during project run time. You can configure the task to start
automatically when the project is run, or you can manually start the task after the project is running. For
more information, see Runtime Tasks on page 134.

Once your project is running and the task is started, you should be able to use any compatible OPC DA client
program to access your project tags. The OPC DA server address is the same as your project's data server
address, its port number is 135 (DCOM), and it should appear to the client as "Studio.Scada.OPC.4".

Array Distribution for OPC Clients
Array distribution is the method by which the elements of an array item on the OPC server are automatically
associated with various types of project tags.

The OPC clients in this software are capable of reading array items on the OPC server, but they cannot read
only certain elements of those array items. Each array item is read in its entirety during every scan of an OPC
client worksheet. In other words, it is not possible to associate a single project tag with a single element of an
array item.

Instead, when an array item on the OPC server is read, the elements of that array item are automatically
distributed to a group of project tags. You need to configure only a single row in the OPC client worksheet that
associates the array item with the "first" tag in the group. What qualifies as the "first" tag, however, depends
on how you have created and organized your project tags.

The following scenarios describe how array distribution works with different types of project tags.

Elements of an Array Item → Elements of an Array Tag
In this scenario, you can create an array tag in your project by increasing the Array property of a regular
project tag, and then you can associate the array tag with the array item on the OPC server. The elements
of the array item are distributed one-for-one to the elements of the array tag. If you specify an array index
(e.g., MyArrayTag[3]), the distribution will begin at that position. If you do not specify an array index, the
distribution will begin at position 0 by default.

Examples of array tags

When Tag Name is… …the elements of the OPC array item are distributed to:

MyArrayTag MyArrayTag[0], MyArrayTag[1], MyArrayTag[2]

MyArrayTag[3] MyArrayTag[3], MyArrayTag[4], MyArrayTag[5]

Make sure the array tag in your project is large enough to accomodate the elements of the array item on the
OPC server. If it is not large enough, elements will be lost.

Elements of an Array Item → Sequentially Numbered Project Tags
In this scenario, you can create a series of sequentially numbered project tags, and then you can associate
just the first tag in the series with the array item on the OPC server. The elements of the array item are
distributed one-for-one to the project tags in the series.

Examples of sequentially numbered project tags

When Tag Name is… …the elements of the OPC array item are distributed to:

MyTag1 MyTag1, MyTag2, MyTag3

MyTag3 MyTag3, MyTag4, MyTag5

https://opcfoundation.org/about/opc-technologies/opc-classic/

Communication

Page 649

When Tag Name is… …the elements of the OPC array item are distributed to:

MyTag001 MyTag001, MyTag002, MyTag003

Make sure you create enough project tags to accomodate the elements of the array item on the OPC server. If
there are not enough tags, elements will be lost.

Elements of an Array Item → Sequentially Numbered Members of a Class Tag
This scenario is similar to the previous scenario: you can create a class tag that consists of sequentially
numbered members, and then you can associate just the member in the series with the array item on the
OPC server. The elements of the array item are distributed one-for-one to the members in the series.

Examples of sequentially numbered class members

When Tag Name is… …the elements of the OPC array item are distributed to:

MyClass.Member1 MyClass.Member1, MyClass.Member2, MyClass.Member3

MyClass.Member3 MyClass.Member3, MyClass.Member4, MyClass.Member5

MyClass.Member001 MyClass.Member001, MyClass.Member002, MyClass.Member003

Make sure you create enough members to accomodate the elements of the array item on the OPC server. If
there are not enough members, elements will be lost.

Elements of an Array Item → An Array of Class Tags
This scenario is a combination of the previous scenarios in that you can create an array of class tags,
and then the elements of the array item on the OPC server will be distributed amongst all of the members
depending on which one you associate with the array item.

Examples of members in an array of class tags

When Tag Name is… …the elements of the OPC array item are distributed to:

MyArrayClass.Member MyArrayClass[0].Member, MyArrayClass[1].Member,
MyArrayClass[2].Member

MyArrayClass[3].Member MyArrayClass[3].Member, MyArrayClass[4].Member,
MyArrayClass[5].Member

MyArrayClass[3].Member1MyArrayClass[3].Member1, MyArrayClass[3].Member2,
MyArrayClass[3].Member3

MyArrayClass[3].Member3MyArrayClass[3].Member3, MyArrayClass[3].Member4,
MyArrayClass[3].Member5

MyArrayClass[3].Member001MyArrayClass[3].Member001, MyArrayClass[3].Member002,
MyArrayClass[3].Member003

Communication

Page 650

Communicate with another project runtime server
You can configure a TCP/IP Client worksheet to communicate and exchange data with another project
runtime server.

The TCP/IP Client Runtime and TCP/IP Server Runtime tasks enable two or more projects to keep their
databases synchronized. These tasks use the TCP/IP protocol to provide communication between projects.
Before using the tasks, you must make sure that TCP/IP (Ethernet) communication is properly configured
and running on both servers.

• To configure the server: You do not have to configure anything on the server itself. You just have to run the
TCP/IP Server Runtime task. You can choose to run it automatically on start up, or run the task manually
by clicking Tasks (either local or remote) on the Home tab of the ribbon. After you start the task, a small icon
displays in your system tray.

• To stop the TCP/IP Server Runtime task: Right-click the TCP/IP Server icon in the system tray, and then click
Exit on the shortcut menu.

• To configure the client: You must use the TCP/IP Client worksheet to specify the server IP address and the
tags you want to share with the server.

The TCP/IP Client worksheet is located on the Comm tab of the Project Explorer, and it uses the same
commands as the Driver worksheet.

TCP/IP Client worksheet
Use the following parameters to complete the TCP/IP Client configuration:

• Description box: Type a description of the TCP/IP Client worksheet, for documentation purposes only. The
TCP/IP Client task ignores this information.

• Send Fields option: When this option is selected, the tag properties/fields (i.e., Min, Max, Ack, Unit,
LoLoLimit, LoLimit, HiLimit, HiHiLimit, RateLimit, DevSetPoint, DevPLimit, and DevMLimit) are sent
with the tag values to the specified server. When this option is cleared, only the tag values (including
TimeStamp and Quality, which are required) are sent.

Note: It is possible to add or remove fields in the list of fields sent. For more information, contact
Support.

Communication

Page 651

• Read Only option: When this option is selected, all communication is one-way and no tag values are written
back to the specified server. This is useful when you only need to use the TCP/IP Client to retrieve data
from other projects, and it can improve runtime safety and stability.

• Send Values On Connection box: When this option is selected and the project is run, the client will ignore the
first tag values that it receives from the specified server and instead send its own tag values to the server.

• Connection Status box: Type a tag name and the TCP/IP Client Configuration task will update this tag
according to its connection status. A tag value of zero indicates the connection is okay. Any other tag value
indicates an error code returned by the Windows Socket library.

• Disable box: Type a tag name in this field. When this tag has any value other than 0, this TCP/IP worksheet
will be disabled. Using this field, you can enable/disable the TCP/IP Client worksheet during runtime.

• Server IP Address box: Type the IP address and Port (optional) of the target server — for example,
169.254.182.158:123. The Port should be the same on both the Client and Server stations.

You can also specify a String tag enclosed in curly brackets (e.g., {tagname}) if you want to dynamically
change this address during runtime.

• User Name and Password boxes: Type the credentials for the user account that will be used to log on to the
server. That user account must be created in the other project, and it must belong to a group that has
the Enable Remote Security System and Remote Debugging Tools option selected. For more information, see Group
Account dialog on page 677.

• Security button: Opens the TCP/IP Client Security Settings dialog box, which you can use to enable
encrypted communication with the server:

• Enable Encrypted Channel option: Force the client to connect to the server using encrypted communication
instead of standard, unencrypted communication. This option is selected by default. For more
information about the Encrypted Channel feature, see Communication tab on page 120.

• Automatically trust server certificate option: Have the client automatically trust and save the certificiate
presented by the server. For more information, see Managing your project's certificate store on page
124.

• Tag Name field: Type the tags you want to share with the server.

If the tag is an array or a class (or both), the project automatically enables every array position and class
member for TCP/IP communication by default.

To configure a specific array position and/or a specific class member, type the array position and/or class
member in square brackets following the tag name. For example,level[3].member.

• Remote Tag field (optional): Type the name of a tag to be linked with the tag you specified in the Tag Name field.
If you leave this field blank, the project uses the same tag name used in the client and in the server.

Note: If you need to share an array, the tag in the server should contain the same number of
elements as the tag in the client. If the tag is a class, the class definition should be the same in both
server and client programs. If you do not follow these rules, unpredictable results can occur.

Note: If your project acting as a client cannot connect to the specified server, there might be an
incompatibility between the client's project runtime software and the server's project runtime
software. Check the version number of the project runtime software on each station. (For software
running on the local computer, click About on the Help tab of the ribbon. For software running on
a remote station, use the Remote Management tool to connect to that station and then check the
version displayed in the Status box.) If the versions are not the same, you might need to upgrade the
software on one or both of the stations. For more information, contact your BLUE Open Studio 2020
software distributor.

Project Security

Page 652

Project Security
BLUE Open Studio 2020 includes a project security system that manages how users and user groups can
access a project, during both development and runtime.

Project Security

Page 653

About security modes
In addition to managing users and groups locally, entirely within a single project, you can also get pre-defined
users and groups from other projects or from an LDAP-compliant domain server.

Studio supports four security modes:
Local Only

This is the standard mode for most projects: users and groups are created in the project
development environment, and they apply only to the project for which they are created.

Distributed – Server
This is similar to Local Only, except that the project's security system configuration is also made
available to other projects (that are set to Distributed – Client) on the same network. Furthermore,
if the project loses its security system configuration for some reason, it can reimport the
configuration from one of its client projects.

Distributed – Client
When this mode is selected, the project gets its entire security system configuration from
another project (that is set to Distributed – Server) on the same network. The project caches this
configuration and can continue to run even if it loses communication with the server project.

Domain (LDAP)
The Lightweight Directory Access Protocol (LDAP) is a recognized standard for managing users
and groups across many different applications on a network. When this mode is selected, the
project gets its users and groups from an LDAP-compliant domain server, such as Microsoft
Active Directory for Windows or OpenLDAP for Linux. However, only the user names, passwords,
and group memberships are taken from the domain; specific rights for each group must still be
configured within the project.

Project Security

Page 654

About security access levels
Almost every item in a project — screen object, object animation, project screen, task worksheet — can be
assigned a security access level. That access level determines which user groups can edit the item during
development and/or use the item during runtime.

There are 255 possible access levels, allowing a large amount of granularity. Each user group is configured
with ranges of levels for both development and runtime, and the groups' ranges may overlap.

Example of security access levels

This means that for a user to be able to edit and/or use an item, the item's access level must fall within the
range specified for that user's group.

For example, UserA of GroupA has a security access level range of 1-10 and UserB of GroupB has a security
access level range of 5-15. To continue the example:

• Item #1 has Access Level = 1

• Item #2 has Access Level = 7

• Item #3 has Access Level = 12

• Item #4 has Access Level = 20

Consequently,

• Only UserA can access Item #1

• Both users can access Item #2

• Only UserB can access Item #3

• Neither user can access Item #4

Note: The default access level for all items is 0, and all users can use all items at that level.

Project Security

Page 655

Setting access levels for different types of items
For project screens, the access level can be set in the Screen Attributes dialog.

Security (access level) setting in Screen Attributes dialog

For screen objects and object animations, the access level can be set in the individual Object Properties dialog.
(If the option is not available in the main dialog, then it should be available in one of the sub-dialogs.)

Security (access level) setting in Object Properties dialog

For task worksheets, do the following:

1. Open the worksheet for editing.

2. Click anywhere in the body of the worksheet. The Access Level control, on the Project tab of the ribbon, is
enabled.

3. Click Access Level. The Security dialog is displayed.

Security dialog
4. In the Access Level box, type an access level for editing the worksheet.

5. Click OK.

Project Security

Page 656

Using the Security System Configuration Wizard
The Security System Configuration Wizard helps you through the steps to configure the security system for
your project.

1. Do one of the following in order to start the wizard:

• Create a new project. The wizard starts automatically as part of that procedure, because the security
system is enabled by default for new projects.

• If you are configuring the security system for the first time in an existing project, do one of the
following:

• On the Project tab of the ribbon, in the Security System group, click Configure; or

• In the Global tab of the Project Explorer, right-click Security, and then click Settings on the shortcut
menu.

After the first time, doing either of these will open the Security System dialog box instead.

• If you have already configured the security system for your project, open the Security System dialog box
as described above and then click Run Wizard.

The first page of the wizard is displayed.

This page always shows how the security system is currently configured.

2. Click Next.
The second page of the wizard is displayed.

Project Security

Page 657

3. Select the Enable Security System option, if it is not already selected.
The security system is enabled by default for new projects.

4. Set the Main Password for your project:
a) Click Main Password.

The Security System Main Password dialog box is displayed.

b) In the New Password box, type a password for the security system itself.

c) In the Confirm Password box, type the password again.

d) Click OK to save the password and close the dialog box.

The Main Password is separate from the passwords for individual user accounts, including any accounts
that you create for yourself and then use to develop and test your project. Record the Main Password
somewhere safe, because you will need it in order to make further changes to the security system.

5. Click Next.
The third page of the wizard is displayed.

Project Security

Page 658

6. Select the security mode for your project.
For more information about security modes, see About security modes on page 653.

7. If you selected either Distributed – Client or Domain (LDAP), click Server Settings and then configure the settings as
needed.
For more information, see Configuring server settings for security modes on page 662.
When you are done, it will return you to this page of the wizard. Keep in mind that you can make further
changes later.

8. Click Next.
The fourth page of the wizard is displayed.

Project Security

Page 659

9. If you want to create or configure groups, click Create/Configure Groups and then configure the settings as
needed.
For more information about group accounts, see Group Account dialog on page 677.
When you are done, it will return you to this page of the wizard. Keep in mind that you can make further
changes later.

10.Click Next.
The fifth page of the wizard is displayed.

Project Security

Page 660

11.If you want to create or configure users, click Create/Configure Users and then configure the settings as
needed. At a minimum, you should either set a password for the default user Guest or limit its access
privileges.
For more information about user accounts, see Creating and configuring users on page 684.
When you are done, it will return you to this page of the wizard. Keep in mind that you can make further
changes later.

12.Click Next.
The sixth page of the wizard is displayed.

Project Security

Page 661

13.Review your configuration, and then click Finish to close the wizard.

Project Security

Page 662

Configuring server settings for security modes
If you set your project's security mode to either Distributed – Client or Domain (LDAP), you must also configure the
server settings for that mode.

When you click Server Settings in either the security system configuration wizard or the main Security System
dialog box, the appropriate Server Settings dialog box is displayed.

Security Mode: Distributed – Client

To configure the server settings:

1. In the Server IP and Server Port boxes, enter the IP address and port number of the project runtime server
that is configured as Distributed – Server.

2. If the Encrypted Channel feature has been enabled in that server's communication settings, you can select
the Encrypted Channel option here to force the client to connect to the server using encrypted communication
instead of standard, unencrypted communication. Selecting this option will automatically change the port
number (in the Server Port box) to the default port number for the Encrypted Channel feature, so if that
is not the correct port number for that server, correct it now. For more information about the Encrypted
Channel feature, see Communication tab on page 120.

3. If you want the client (i.e., your project) to automatically trust and store the certificiate presented by the
server, select the Automatically trust server certificate option. For more information, see Managing your project's
certificate store on page 124.

4. Review the advanced settings.

Connection timeout
The duration (in seconds) after which the client will stop trying to connect to the server. The
default is 3 seconds. A connection can time out if the server is slow to respond or not available
at the specified address.

Synchronization Period
The period (in seconds) at which the client will try to synchronize with the server and update the
local cache. The default is 10 seconds.

Project Security

Page 663

Force Cache Reload
If you want to force the local cache to reload, enter the name of a project tag (Integer or Boolean
type) in this box. When the tag value is TRUE (non-zero), the client will reload the local cache
with the server's current information regardless of whether the server cache is outdated (i.e., the
timestamp on the server cache is older than the timestamp on the local cache).

Status Tag
If you want to monitor the status of the security system during project run time, enter the name
of a project tag (Integer type) in this box. The specified tag will receive continuously updated
values that indicate the status of the client's connection to the server. The possible values are:

Value Description

0 No cache

1 Updated cache

2 Outdated local cache

3 Outdated server cache

4 Disconnected from server

For more information, see GetSecuritySystemStatus on page 1120.

5. In the User Name and Password boxes, enter the credentials for the user account that will be used to log on
to the server. That user account must be created in the server's project, and it must belong to a group
that has the Enable Remote Security System and Remote Debugging Tools option selected. For more information, see
Group Account dialog on page 677.

6. Click OK.

Security Mode: Domain (LDAP)

Project Security

Page 664

To configure the server settings:

1. In the Domain box, enter the domain or host name of the LDAP server.

2. Under LDAP Server Credentials, in the User and Password boxes, enter your credentials for the LDAP server. You
must have sufficient privileges to get the server's list of users and groups, because your project will use
that list to validate other users' attempts to log on.

The format of your user name is determined by the server configuration (e.g., username,
domain\username, username@domain). If you are not sure, ask your LDAP server administrator.

You can enter string expressions for these settings (e.g., {MyUser}, {MyPassword}). When the values of
the expressions change during project run time, the credentials are changed to match and will be used the
next time your project tries to get the server's list of users and groups.

3. Under Connection Settings, review the following settings:

Connection timeout
The duration (in seconds) after which the project runtime will stop trying to connect to the LDAP
server. The default is 10 seconds. A connection can time out if the server is slow to respond or
not available at the specified address.

Retry interval

Project Security

Page 665

The interval (in seconds) between attempts to connect to the LDAP server, after the connection
has timed out or failed. The default is 120 seconds. The project runtime will keep trying to
connect until either the connection is established or the project is stopped.

Status tag
If you want to monitor the status of the security system during project run time, enter the name
of a project tag (Integer type) in this box. The specified tag will receive continuously updated
values that indicate the status of the client's connection to the LDAP server. The possible values
are:

Value Description

0 Connection timeout

1 Bind timeout

2 Query timeout

3 Disconnected

4 Connected

5 No users or groups returned by query

6 Invalid user or group

For more information, see GetSecuritySystemStatus on page 1120.

Reload LDAP settings upon LogOn
This option is selected by default. It means your project will reload the list of users and groups
from the LDAP server each time a user attempts to log on to the project, and that can make it
easier for the user to select their name and then log on.

Reloading the LDAP settings might take some time, however, especially if the list is long or the
server is slow to respond. That can affect your project's run-time performance, so you may
choose to clear this option and have more control over when your project reloads the settings.

If this option is cleared, your project will load the LDAP settings once when the project is run,
and then it will reload the settings only when the GetSecuritySystemStatus function is
executed.

4. Click Check Connection to confirm that your project can connect to the LDAP server using the specified
settings. If it cannot, review and correct the settings.

5. Under Offline Cache Settings, review the settings for the offline cache of recent users. Users are cached when
they successfully log on to the project, and cached users can log on even when the LDAP server is not
available. The cache is a "first in, first out" (FIFO) list, which means old users are removed when new users
are added. There are two exceptions to this rule: the project's default user (e.g., "Guest") and the user that
you specified under LDAP Server Credentials are always kept in the cache.

Cache size
The number of most recent users that are kept in the offline cache. The default is 3 users. To
keep an unlimited number of users in the cache, enter 0 for this setting.

Cache expiration
The number of days after which the offline cache will expire, starting from the most recent user
logon. The default is 60 days. To make the cache never expire, enter 0 for this setting, but we do
not recommended this.

Hours until cache expiration
If you want to monitor the offline cache during project run time, enter the name of a project tag
in this box. The specified tag will receive a value equal to the number of hours remaining until
the cache expires.

Mixed mode cache
If you want to allow users to log on as local users when the LDAP server is not available, select
this option. Local users can be created while Security Mode is set to Local Only, but they typically
cannot be selected while Security Mode is set to Domain (LDAP) and the LDAP server is available.
When the LDAP server is not available, however, users can select from both the previously

Project Security

Page 666

created local users and the cached users from the LDAP server. In short, the Mixed mode cache
option serves as a sort of backup when the LDAP server is not available, in case someone needs
to log on as a user that was not cached.

6. Click OK.

Tip:

If you want the project security system to generate a log message each time it updates the offline
cache, manually edit your project file (<project name>.APP) to add the following setting:

[Options]
EnableSecuritySystemTraceLdapOfflineCache=1

There are additional settings in the LDAP Advanced Settings tab of the dialog box. These settings should be
configured only by experienced LDAP server administrators.

Server Address Manual Configuration

Project Security

Page 667

If for some reason the LDAP server cannot be accessed using its domain or host name, you can
manually configure the server address: select Enable, and then enter the IP address and port
number of the LDAP server. The default port for LDAP is 389, but it can be changed on the
server so you should confirm it before you configure these settings.

Allow simple bind (ADAM)
LDAP normally requires secure binding for authentication, but Active Directory Application
Mode (ADAM) in Windows Server 2003 does not fully support secure binding. To allow simple
binding with an ADAM server, select this option. Simple binding means that user credentials are
sent in clear text, so you should secure the connection by other means such as VPN, TLS/SSL,
or proxies.

Save Rights to Server

By default, group and user rights are saved entirely within your project. You can save those
rights back to the LDAP server, however, either to make them available to other projects that
use the same LDAP server or for simple redundancy.

To make this option work, you must first extend the server's LDAP schema to contain additional
information about the project security system. See Extending the LDAP schema to allow saving
of security rights on page 669.

Once that is done, click Modify to provide your LDAP server credentials, and then select Enable.

Enable SSL

To enable a Secure Sockets Layer (SSL) connection between the the project runtime server and
the LDAP server, select this option. An SSL connection is required for users to be able to change
their passwords on the LDAP server during project run time. Otherwise, changes can be made
only outside the project through other LDAP clients.

If you select this option and you have also manually configured the server address, make sure
the address you configured matches the address on the server's certificate.

The default port for LDAP via SSL is 636, but it can be changed on the server so you should
confirm it before you select this option.

Include local users

Local users can be created while Security Mode is set to Local Only, but they typically cannot be
selected for logon while Security Mode is set to Domain (LDAP) and the LDAP server is available.
Select this option to allow users to select from both the local users and the server accounts
when they log on.

This option was introduced after the Mixed mode cache option (in the basic settings; see above),
and it is being kept separate in order to maintain reverse compatibility with existing projects
that already have the Mixed mode cache option selected. Selecting this option should not affect
the performance of your project, and if this option is selected, the Mixed mode cache option is also
selected automatically and cannot be cleared.

In the LDAP Query Customization tab of the dialog box, you can customize your project's query to the LDAP
server.

Project Security

Page 668

By default, the LDAP server provides a list of all registered users and groups, so in a large or complex network
environment, this can result in an impractically long list to manage when you are configuring your project
security system. To shorten the list, customize the query to filter any users who should never have access to
your project: click Modify to provide your LDAP server credentials, select Enable, and then configure the Search
Base and Filter Query settings. For the proper syntax, consult the LDAP server documentation.

Note: The Filter Query string is limited to 2048 characters.

Also, some non-standard LDAP implementations — such as Linux-based LDAP servers and Active Directory
Application Mode (ADAM) in Windows Server 2003 — use different entity identifiers and attributes. Those can
be customized in this dialog box, but again, it should be done only by an experienced LDAP administrator. For
example:

LDAP Server User name attribute Group name attribute User lock attribute

Active Directory sAMAccountName sAMAccountName userAccountControl

Active Directory Application Mode
(ADAM)

Name Name userAccountControl

Project Security

Page 669

Extending the LDAP schema to allow saving of security rights
In order to save BOS project security rights back to a Domain (LDAP) server, the server's LDAP schema must
be extended to contain the additional information.

The server must already be configured and running on your network, and you must have sufficient privileges
to make changes to the server configuration.

In this procedure, you will create a new attribute called "proprietarySCADAInfo" to contain the BOS project
security rights, and then you will add the attribute to the "person" and "group" classes in the server
configuration. These classes correspond to users and groups in the project security system.

Please note this procedure only shows how to extend the schema in Microsoft Active Directory running on
Windows Server 2003. The exact procedure is different for other LDAP servers and operating systems, but the
basic steps should be essentially the same. Please consult your LDAP server documentation.

Note: Extending a server's LDAP schema cannot be undone.

1. Register the schema management DLL.
a) Click Start > Windows System > Command Prompt.

A Command Prompt window is displayed.

b) At the prompt, type cd %SystemRoot%\System32 and then press Return.
The working directory is changed.

c) Type regsvr32 schmmgmt.dll and then press Return.
If the DLL is successfully registered, then a confirmation message is displayed.

d) Click OK to dismiss the message.

e) Close the Command Prompt window.

2. Add the Active Directory Schema snap-in to the console root.
a) Click Start > Windows System > Run.

A Run dialog is displayed.

b) In the Open box, type mmc, and then click OK.

(If you have User Access Control (UAC) enabled, then you will be asked if you want to allow Microsoft
Management Console to make changes. Click Yes.)
A console window is displayed.

Project Security

Page 670

c) In the console window, click File > Add/Remove Snap-in.

The Add/Remove Snap-in dialog is displayed.

d) In the Snap-ins added to list, select Console Root, and then click Add.
The Add Standalone Snap-in dialog is displayed.

Project Security

Page 671

e) In the list of available snap-ins, select Active Directory Schema, and then and click Add.

The snap-in is added to Console Root.

f) Click OK to close the Add/Remove Snap-in dialog.

3. Create the proprietarySCADAInfo attribute in the Active Directory Schema snap-in.

Project Security

Page 672

a) In the Console Root tree-view, expand Active Directory Schema.

b) Right-click Active Directory Schema > Attributes, and then click Create Attribute on the shortcut menu.
A message is displayed explaining that your schema will be permanent changed.

c) Click Continue.
A Create New Attribute dialog is displayed.

d) In the dialog, complete the fields as follows.

• Common Name: proprietarySCADAInfo

• LDAP Display Name: proprietarySCADAInfo

• Unique X500 Object ID: 0.7.7777.77777777.777.7.7

Note: An unique Object ID should be used.

• Description: proprietarySCADAInfo

• Syntax: Octect String

• Minimum: 0

Project Security

Page 673

• Maximum: 10240

e) Click OK to close the dialog.

The proprietarySCADAInfo attribute is added to the list.

4. Add the proprietarySCADAInfo attribute to the person and group classes.

Project Security

Page 674

a) In the Console Root tree-view, select Active Directory Schema > Classes

b) In the list of classes, right-click person, and then click Properties on the shortcut menu.
The Properties dialog is displayed.

Project Security

Page 675

c) In the dialog, click the Attributes tab.

d) Click Add.
The Select Schema Object dialog is displayed.

Project Security

Page 676

e) In the list of schema objects, select proprietarySCADAInfo, and then click OK.

The attribute is added to the class properties.

f) Click OK to close the Properties dialog.

g) Repeat steps b through f for the group class.

5. In the Console Root tree-view, right-click Active Directory Schema, and then click Refresh on the shortcut menu.

6. Click File > Exit to close the console window.

7. Restart the server.

Project Security

Page 677

Group Account dialog
The Group Account dialog is used to create and delete user groups, as well as to configure the access privileges
for a selected group.

Accessing the dialog
Assuming the project security system has already been enabled (i.e., you have used the security system
configuration wizard at least once), you can access this dialog by doing one of the following:

• Open the Security System dialog, and then click Groups; or

• In the Global tab of the Project Explorer, right-click Groups and then click Groups properties on the shortcut
menu.

The dialog in detail
Please note that if a user is assigned to more than one group (see Creating and configuring users), the groups'
settings may conflict with each other. How the settings are resolved depends on which settings they are:

• The settings in the Group Account dialog below are permissive, which means the most permissive setting
from all of a user's groups applies to the user. For example, if any of the groups can create and modify
tags, the user can create and modify tags.

• The settings in the Group Account Advanced dialog (both tabs) are restrictive, which means the most
restrictive setting from all of a user's groups applies to the user. For example, if one group has a minimum

Project Security

Page 678

password size of 8 and another group has a minimum password size of 12, the user's minimum password
size is 12. (For Auto Log Off in particular, Counting from logon overrides Counting from user's last action.)

Group Account dialog

Group Account

The user group that you are currently configuring.

Note: There are two default groups for all projects: Guest and (Default Rights).

Note: If the security mode is set to Domain (LDAP), please note that the built-in
groups in Microsoft Active Directory will not appear in this list of groups and
cannot be added to the project.

New
Creates a new group. In the New Group Account dialog, type the name of the new group and
then click OK.

Delete

Project Security

Page 679

Deletes the currently selected group.

Reset

Resets the privileges of the currently selected group to match the (Default Rights) group.

This does not lock the group to the default; you can make further changes. To lock the group,
see Use Default Rights below.

Advanced
Opens the Group Account Advanced dialog (see below).

Runtime Access

The specific rights that a member of the group has when they use a project thin client to access
your project during run time:

Security Rights
Locks the run-time privileges of the currently selected group to those configured for the (Default
Rights) group. If changes are made to the (Default Rights) group, they also apply to this group.

Security Level
The range of access levels that this group may access in the project.

Start Project
Members of the group may run the project.

Close Project
Members of the group may stop the project.

Watch Window (write)

Members of the group may write values to the project database using the Watch window.

Note: This only applies to projects running locally. For projects running
remotely, see Enable Remote Debugging Tools below.

Task switch enabled

Members of the group may switch away from the project runtime client to another Windows
task.

Edit Security System

Members of the group may make changes to the project security system during run time.

Note: Be careful not to clear this option for your own group, or you may not be
able to undo your own changes.

Windows Task Manager

Members of the group may open the Windows Task Manager.

Note: Clearing this option means disabling the Task Manager during run time,
which requires Administrator privileges. You will need to run the client as an
administrator.

Enable Remote Security System and Remote Debugging Tools

Members of the group may:

• Configure the security system in another project (running in Distributed - Client mode) in order
to use the settings in the current project (running in Distributed - Server mode);

Project Security

Page 680

• Configure a TCP/IP Client worksheet in another project in order to connect it to the current
project; and

• Use Watch and LogWin tools to debug the project while it is running on remote station.

Runtime group
If this option is selected, the group will be available for new users created during run time. For
example, if the CreateUser function is called during run time in order to create a new user,
the new user can be assigned only to groups that have this option selected. This can prevent an
existing user with limited privileges from creating a new user and then assigning it to a group
with more privileges.

Secure Viewer Access

Members of the group may use Secure Viewer to connect to the project runtime server.

This option does not affect the user's ability to use Mobile Access.

Engineering Access

The specific rights that a member of the group has when they use the project development
software to open and edit your project:

Security Rights
Locks the development privileges of the currently selected group to those configured for the
(Default Rights) group. If changes are made to the (Default Rights) group, they also apply to this group.

Security Level
The range of access levels that this group may access in the development application.

Project Settings
Members of the group may modify the project settings and the Mobile Access configuration .

Drivers, Data Sources
Members of the group may create, modify device drivers and external data sources.

Network Configuration
Members of the group may create, modify TCP/IP Client worksheets.

Create, modify tags
Members of the group may create, modify project tags.

Create, modify screens
Members of the group may create, modify project screens.

Create, modify task sheets

Project Security

Page 681

Members of the group may create, modify task worksheets.

Advanced dialog – Password Options

Min password size
Min number of special characters
Min number of numeric characters
Min number of alpha characters

To make user passwords more complex and therefore more secure, you can require that
they contain a certain number of alpha (A-Z, a-z), numeric (0-9), and special (punctuation)
characters. When the user is prompted to change their password — for example, when their old
password expires (see Password aging below) — the new password will not be accepted unless it
meets these requirements.

Case-sensitive
If this option is selected, passwords are case sensitive — that is, passwords created with both
upper and lowercase characters must be entered the same way by the user.

Password aging

The number of days that a password can be used before it expires. When a user's password
expires, that user will be forced to change it: when they try to log on to the project, the Change
Password dialog box will be automatically displayed and the user cannot complete the logon
process until they provide a new password.

This setting applies to all users in the group, although the actual aging is counted separately for
each user. The aging is restarted after the password is changed, either by the Change Password
dialog box as described above or by the SetPassword function.

By default, the user must choose a new password that is different from the old password. To
disable this requirement, so that users can re-use the same passwords, use a text editor to
manually edit your project file (<project name>.app) to include the following setting:

[Security]

Project Security

Page 682

ChangePasswordMode=1

To make passwords never expire, set Password aging to 0.

E-signature time-out
Timeout period (in minutes) of the E-Sign dialog box for all users in this group. The user must
enter their user name and password before the specified timeout to use project features that
require an e-signature.

Disable e-signature

When the value in this box is TRUE (non-zero), users in this group can ignore the e-signature
requirement on any screen objects that have the E-Sign option selected and on any scripts that
call the CheckESign function. Using the object or triggering the script still sends an event to the
Event Log, but it is automatically signed on behalf of the user.

To change this setting during run time, type the name of a project tag (e.g., DisableESign). The
value of the tag will be used.

Advanced dialog – Auto LogOff/LockUp

Auto Log Off
Log Off after
Number of minutes after which the current user must be logged off automatically. If this field is
left in blank (or with the value 0), the current user is never logged off automatically.

Counting from logon
When this option is selected, the current user is automatically logged off after the period of time
configured in the Log Off after field elapsed since when the current user was logged on the system.

Counting from user's last action
When this option is selected, the current user is automatically logged off after the period of time
configured in the Log Off after field elapsed since the last action (mouse, touchscreen, or keyboard
action) was performed by the current user.

Project Security

Page 683

Auto Lock-up
Enable
Enables the auto lock-up features described below.

Lock up account after
Maximum number of times a user can try to log on to an account. If the user exceeds the
specified maximum number of attempts (provides an invalid password) within the period of time
specified in the Reset counter after field, the project will automatically block the user.

Reset counter after
Defines how long after an invalid log-on attempt the project will wait (in minutes) until it resets
the log-on attempts counter.

Note: If VBScript debugging is enabled, the Auto Log Off feature cannot be used; the normal
execution cycle is suspended during debugging, so it is not possible to accurately measure the time
elapsed without user input. For more information, see Debugging VBScript on page 1275.

Project Security

Page 684

Creating and configuring users
To create and maintain accounts for project users, click the Users button on the Security System dialog.
(Alternately, to configure a user, open the Users folder located in the Security folder.)

The User Account dialog displays.

User Account dialog

After the project initializes, if no users log on (or when the current user logs off), then the project
automatically logs on the default user (Guest). In addition to the default Guest user, there is a Guest group,
which has default privileges that enable all tasks. We recommend that you evaluate and edit the Guest group's
privileges to specify a minimal amount of privileges for the start up procedure.

To create a new user, click New to open the New User Account dialog.

To delete a user, click the User combo-box button, select the user name from list, and then click Delete.

To configure a user, use the following procedure:

1. Click the User combo-box button and then select a user from the list.

2. To block the user from logging onto the project at all, select User is blocked. This allows you to disable a user
account without deleting it.

Tip: To select and clear this option during run time, use the BlockUser and UnblockUser
functions, respectively.

3. To flag the user so that it can be affected during run time by any of the Security functions, select Runtime
user. If this option is not selected, the user cannot be changed, blocked, or removed except through this
dialog. This allows you to protect certain users.

Users that are actually created during run time — for example, by calling the CreateUser function — have
this option automatically selected.

Project Security

Page 685

4. Click the new Settings button to open the User Settings dialog:

User Settings dialog
5. Configure the parameters on this dialog as follows:

• User Full Name text box (optional): Type the user's full name.

• New Password text box: Type the user's password.

• Confirm Password text box: Re-type the user's password.

Tip: In most cases, user names and passwords can include spaces. However, if you plan to
enable Mobile Access for your project, make sure the user names and passwords do not include
spaces. For more information, see Link directly to a project screen or screen group on page 814.

6. In the Available Groups list, select the group(s) to which the user should be assigned, and then click > to move
those group(s) to the Assigned Groups list.

7. When you are finished, click OK to apply the changes and close the Settings dialog.

Project Security

Page 686

Security System dialog
The main Security System dialog is used to manage the project security system after it has been initially
configured.

Accessing the dialog
Assuming the project security system has already been enabled (i.e., you have used the security system
configuration wizard at least once), then you can access this dialog by doing one of the following:

• On the Project tab of the ribbon, in the Security group, click Configure; or

• In the Global tab of the Project Explorer, right-click Security and then click Settings on the shortcut menu.

If you do either of these before the security system has been enabled, then the security system configuration
wizard will open automatically.

If you've already configured the security system and set a main password, then you'll be prompted to enter it.

The dialog in detail

Security System dialog

Area / Element Description

Enable Security System Indicates whether the project security system is currently enabled. If it is, then the users and groups'
specified access privileges are enforced.

Main Password Opens a dialog where you can specify a main administrative password for the entire project.

Mode The current security mode of the project.Security Mode

Server Settings Opens the Server Settings dialog, where you can configure the server settings for Distributed – Client or
Domain (LDAP).

Run Wizard Opens the security system configuration wizard.

Backup Opens the Import/Export dialog, where you can export or import the security system configuration.

Groups Opens the Group Account dialog, where you can create and configure groups.

Users Opens the User Account dialog, where you can create and configure users.

Display list of users at
logon

Displays a list of available users (in the Log On dialog) when a user is prompted to log on. The user may
select from this list rather than type his user name.
If Security Mode is Domain (LDAP) and the offline cache is enabled, only the currently cached users will be
displayed.

Log On on E-
Signature

Forces a user to log on with their own user account when they're prompted to e-sign an event. If this is not
selected, then the current user account remains logged on regardless of who e-signs the event.

Accounts
Management

Default User This user is automatically logged on when no other user is logged on, such as when the previous user times
out or manually logs off.

Project Security

Page 687

Area / Element Description

Note: This user's privileges should be heavily restricted, to prevent your project from being
left vulnerable.

Virtual Keyboard The type of virtual keyboard that is displayed on the client when the user is prompted to log on.

Project Security

Page 688

Backing up the security system configuration
You can back up your project's security system configuration by exporting it to a file. You can also import a
configuration either from a file or from another runtime project.

Exporting the configuration to a file
To export the security system configuration:

1. In the main Security System dialog, click Backup. The Import/Export dialog is displayed.

2. Click Export to file. A standard Save As dialog is displayed.

3. Specify a file name and location for the file, and then click OK.

The exported file is encrypted, using the main password configured in the Security System dialog.

Tip: You can also export the configuration during runtime by calling the ExportSeruritySystem
function.

Importing the configuration from a file
If your project's security mode is set to Local Only, then you can import a configuration from a previously
exported file.

To import the security system configuration:

1. In the main Security System dialog, click Backup. The Import/Export dialog is displayed.

2. Click Import from file. A standard Open dialog is displayed.

3. Locate the configuration file (*.dat) that you want to import, and then click OK. You will be prompted for
the configuration's main password.

4. Type the password, and then click OK. The Import from File dialog is displayed.

5. Select an import method:

• Import only settings that do not conflict: Merge the imported settings with the current project settings. In the
case of conflicts, keep the current settings.

• Import all settings and replace conflicts: Merge the imported settings with the project settings. In the case of
conflicts, use the imported settings.

• Replace the current settings: Completely replace the current project settings with the settings imported from
the file.

6. Click OK.

Tip: You can also import the configuration during runtime by calling the ImportSecuritySystem
function.

Importing the configuration from another project
If your project's security mode is set to Distributed – Server, then you can import a configuration from another
project if:

• The other project's security mode is set to Distributed – Client, and its server settings are configured to use
your project as the server; and

• The other project is currently running on the same network.

To import the security system configuration:

1. In the main Security System dialog, click Backup. The Import/Export dialog is displayed.

2. Click Import from client station. The Import Security from Client Station dialog is displayed.

Project Security

Page 689

The dialog shows a list of runtime projects that are using your project as their security system server.
Each project/client listing includes a time stamp that shows when it last cached the security system
configuration.

3. Select a client station, and then click Import from client. You will be prompted for the configuration's main
password.

4. Type the password, and then click OK.

Project Security

Page 690

Logging on/off
If the project security system has been enabled and the default "Guest" user's privileges have been restricted,
then you must log on to fully use the development application and/or the runtime project.

Note: The project security system must be enabled before you can use this feature.

To log on to the development application, click Log On on the Project tab of the ribbon.

To prompt a user to log on to the runtime project, do one of the following:

• Call the LogOn function somewhere that an expression can be configured — for example, draw a Button
object in a screen and then apply the Command animation to it, so that pressing the button shows a logon
prompt; or

• Select the Log On on E-Signature option (in the main Security System dialog), which forces the user to log on
whenever he performs some action that requires an e-signature.

In either the development application or the runtime project, the Log On dialog is displayed:

Log On dialog

Use this dialog as follows:

• To log on as yourself, type your user name and password in the appropriate boxes and then click OK.

• To log on as the default "Guest" user, type guest in the User Name box and then click OK.

Note: By default, "Guest" has no password, so you can leave the Password box empty. However,
if you've changed the password or you're getting your security settings from a server (either
Distributed or Domain), then you will need to enter a password for "Guest."

• To log off, simply click Log Off. The default user (typically "Guest," but this may be changed in the main
Security System dialog) is automatically logged on to replace you.

Note: If the security mode is set to Domain (LDAP) and a user created on the LDAP server is required
to change his password the first time he logs onto the domain, then he must do that before he will
be able to log onto the BOS project.

Project Security

Page 691

Blocking or unblocking a user
An individual user in the project security system may be completely blocked from accessing the project, and a
blocked may subsequently be unblocked.

A user may be blocked in the following ways:

• By manually selecting the User is blocked option in the User Account dialog;

• By calling the BlockUser function during runtime; or

• Automatically if the user enters the wrong password too many times. (The number of attempts allowed is
configured in the Group Account dialog.)

To check whether a user is blocked, do one of the following:

• Look at their user icon in the Project Explorer, which will be marked with a red circle; or

• Call the GetUserState function during runtime.

User is blocked

To unblock a blocked user, do one of the following:

• Clear the User is blocked option in the User Account dialog; or

• Call the UnblockUser function during runtime.

Project Security

Page 692

Password-protecting screens, symbols, and worksheets
Screens, symbols, and worksheets in the Project Explorer can be password-protected. You can assign
individual passwords to each file, or you can assign a single password to all files in the project

Almost all project files are encrypted as a matter of course, to prevent unauthorized analysis by third-party
tools. (Screen files are not encrypted, because decrypting them during runtime would decrease performance.)
However, you can take the extra step of password-protecting your files to prevent unauthorized changes or re-
use by other BOS project developers.

Note: These passwords are always case sensitive.

Assigning a password to a single file
To assign a password to a single project file:

1. In the Project Explorer, find and right-click the desired file, and then click Password Protection on the
shortcut menu. The Edit Protection dialog is displayed.

2. Type the new password, and then type it again to confirm.

3. Click OK to close the dialog.

The file is now protected. The next time you try to open it, you will be prompted for the password.

Clearing the password from a single file
To clear a password from a single project file:

1. In the Project Explorer, find and double-click the desired file to open it. You will be prompted for the
password.

2. With the file open for editing, right-click the file in the Project Explorer and then click Password Protection on
the shortcut menu. The Edit Protection dialog is displayed.

3. Leave the New password and Confirm password boxes empty.

4. Click OK to close the dialog.

The file is no longer protected. You can open the file without being prompted for the password.

Assigning a password to all files
To assign a single password to all files in your project:

1. On the Home tab of the ribbon, in the Tools group, click Verify. The Verify Project dialog is displayed.

2. Click Set password for all files. The Edit Protection dialog is displayed.

3. Type the current password for your project, if any.

4. Type the new password, and then type it again to confirm.

5. Click OK. The verification routine proceeds.

6. Click Close to close the Verify Project dialog.

All files in your project are now protected. The next time you try to open one, you will be prompted for the
password.

Clearing the password from all files
To assign a single password to all files in your project:

1. On the Home tab of the ribbon, in the Tools group, click Verify. The Verify Project dialog is displayed.

2. Click Set password for all files. The Edit Protection dialog is displayed.

3. Type the current password for your project.

4. Leave the New password and Confirm password boxes empty.

Project Security

Page 693

5. Click OK. The verification routine proceeds.

6. Click Close to close the Verify Project dialog.

Your project files are no longer protected.

Project Localization

Page 694

Project Localization
You can quickly translate your project's user interface to multiple languages, using either machine translation
(e.g., Google Translate) or a human translator, and then you can switch your project's language during
runtime with a simple function call.

The Translation Table is a worksheet that you can use to create a multilingual user interface (MUI) for your
project. (This is different from changing the language of the development environment itself; that is done with
the Language command on the View tab of the ribbon.) The worksheet is divided into a Source column, which
contains original pieces of text from your project screens, and a Target column, which contains the translated
equivalents of the items in the Source column.

Note:

Google has made the Google Translate API a paid service, so automatic translation of project texts is
not available. You can still use the Google Translate website to translate project texts, but doing so
requires additional steps.

It is our goal to ensure that the functionality of BLUE Open Studio 2020 continues to evolve and
grow around emerging technology. We are pursuing alternatives for automatic translation, and we
hope to offer this feature again in the near future.

Project Localization

Page 695

Add a target language to the Translation Table
The Translation Table is used to manage the languages into which you want to translate your project. Adding
a language to the table can be as simple as selecting it from a list and then automatically translating your
project texts.

Note: By default, the source language of a project is the language of the development environment
itself. In other words, it is assumed that when you create a new project, it is for the same
language that you work in. For more information about changing the language of the development
environment, see Language.

In some cases, however, you might work in one language but develop your project for another — for
example, you might work in Portuguese but develop your project for English. If that is the case, you
must remember to set the source language in Step 3 below, to associate the correct language with
the Source column of the worksheet.

To add a target language to the Translation Table:

1. Open the Translation Table worksheet by doing one of the following:

• On the Insert tab of the ribbon, in the Global group, click Translation; or

• In the Global tab of the Project Explorer, double-click Translation.

The Translation Table worksheet is opened for editing.

2. Make sure the Enable Translation option is selected.
If this option is cleared, the entire Translation Table worksheet is disabled and the language cannot be
changed during run time.

3. If the source language of your project is other than the language of the development environment itself, set
the source language:
a) To the right of the Source language box, click the browse button.

The Languages dialog box is displayed.

b) In the Languages dialog box, select the language for which your project was originally developed, and
then click OK.

The selected language is set in the Source language box.

4. Set the target language:
a) In the Target languages group, click Add.

The Languages dialog box is displayed.

b) In the Languages dialog box, select the language to which you want to translate your project, and then
click OK.

The selected language is added to the Select list, and a new worksheet is created for the language. The
Source column of the worksheet is automatically populated with all of the translatable text strings in your
project, and the Target column is blank.

5. Configure Date order and Date separator as needed for the target language.
For example, for English-United States (i.e., American English), Date order is typically MDY and Date
separator is typically /, resulting in a date format of MM/DD/YYYY. In many European languages, however,
Date order is typically YMD and Date separator is typically ., resulting in a date format of YYYY.MM.DD.
For more information, see About the date format and how to change it on page 707.
The language is added to the Select list, and a new worksheet is created for the language. The Source column
of the worksheet is automatically populated with all of the translatable text strings in your project, and the
Target column is blank.

6. Use the Filters to search the worksheet for specific text items; as you type a few characters, the list is
dynamically filtered to show only the items that match.

Project Localization

Page 696

Note: The ampersand character (&) is ignored when filtering rows. This is to improve the
handling of text in program dialogs, where ampersands are used to indicate keyboard
accelerators.

7. For each text item in the Source column, enter the translation in the Target column.
You can manually translate the items one by one, or you can use a translation service such as Google
Translate to automatically translate multiple items.
a) Highlight the cells in the Source column to select them, and then press Ctrl+C to copy those items to the

clipboard.
You can also click the column header to select the entire column.

b) In your web browser, go to: translate.google.com

c) Select the From and To languages.

d) Click in the text box on the left, and then press Ctrl+V to paste the items from the clipboard.
The items are pasted as separate lines.

e) Click Translate.
The translation appears on the right. Again, the items are displayed as separate lines.

f) Highlight the translated items to select them, and then press Ctrl+C to copy the items to the clipboard.

g) In BLUE Open Studio 2020, highlight the empty cells in the Target column to select them.
You can also click the column header to select the entire column.

h) Press Ctrl+V to paste the translated items from the clipboard into the Target column.
Because the translated items were copied as separate lines, they should be correctly pasted into the
rows of the worksheet.

8. Review the translated items in the Target column in order to confirm the translations and make sure they
corespond with the untranslated items in the Source column.
If you want to keep the original, untranslated text for a specific item, leave the Target column blank.

9. Save and close the worksheet.

The translation table is saved as a tab-separated text file in your project folder at: <project name>\Web
\Translation.trn

You can use a spreadsheet application such as Microsoft Excel to open and directly edit this file, if you want
to do so.

Changes made to the translation table will not take effect until you either call the SetLanguage function
during run time or restart the project runtime server itself.

http://translate.google.com

Project Localization

Page 697

Configure fonts for a target language
Configure the fonts for a target language so that translated text items are displayed in another font, size, and/
or style that is more appropriate to the language.

Before you begin this task, you should have already added one target language to your project's Translation
Table.

By default, when you change your project's runtime appearance to one of the target languages in the
Translation Table, the translated text items are still displayed in their original font, size, and style. This can
cause many different problems, depending on the target language. For example, if the target language uses a
non-Roman character set, or it typically has longer or shorter words, or it is read right-to-left instead of left-
to-right, then the screen objects with translated text items may not be displayed correctly.

You can use the Font Configuration tool on the Translation Table worksheet to configure new fonts, sizes,
and styles for the translated text items. When you set your project's interface to the target language, the
translated text items will be changed to the new configuration. The configuration can be either very general or
very specific — just add more rows for more specific changes.

If you have two or more rows that conflict with each other — for example, if one row applies to all objects and
another row applies only to Button objects — then the row that most specifically matches a given text item is
the one that is applied.

For more information, see "Examples" below.

To configure fonts:

1. Open the Translation Table worksheet by doing one of the following.

• On the Insert tab of the ribbon, in the Global group, click Translation; or

• In the Global tab of the Project Explorer, double-click Translation.

The Translation Table worksheet is opened for editing.

2. In the Target languages area, select the language for which you want to configure fonts, and then click Fonts.
This font configuration applies only to the selected target language.

The Font Configuration dialog box is displayed.

3. In the Object column, select the type of screen objects that the configuration will apply to. To have it apply
to all types, select (All).

4. In the Source Font column, select the font that the configuration will apply to. To have it apply to all fonts,
select (All).
The list of selectable fonts includes all fonts that are installed on your computer, not just the fonts that are
used in your project.

5. In the Source Size column, type the font size (in points) that the configuration will apply to. To have it apply
to all sizes, type (All).

6. In the Source Style column, select the font styles that the configuration will apply to. To have it apply to all
styles, select (All).

7. In the Source RTL column, select the reading direction (left-to-right or right-to-left) that the configuration will
apply to. To have it apply to both, select (All).

8. In the Target Font column, select the font to which the Source Font should be changed. If you want to leave the
Source Font unchanged, select *.

Project Localization

Page 698

The list of selectable fonts includes all fonts that are installed on your computer.

Make sure the font you select is also installed on any computers or devices that will run as project runtime
clients. If you cannot do this — in other words, if you do not control all of the potential clients — then
select a "standard" font that is commonly installed on all platforms.

9. In the Target Size column, type the font size (in either percentage or points) to which the Source Size should be
changed. If you want to leave the Source Size unchanged, type *.

Keep in mind that percentage size is relative while point size is absolute. If you repeatedly change the same
text item to new percentage sizes, those changes will be cumulative. For example, if you change the font
size of a text item to 80%, then to 100%, then to 80% again, the end result will be 64% of the original size.
Therefore, if you plan to switch back and forth between languages, you should specify point sizes instead
of percentage sizes.

10.In the Target Style column, select the font style to which the Source Style should be changed. If you want to
leave the Source Style unchanged, select *.

11.In the Target RTL column, select the reading direction (left-to-right or right-to-left) to which the Source RTL
should be changed. If you want to leave the Source RTL unchanged, select *.

12.Repeat this procedure for additional rows, if necessary.

13.Click OK to save the configuration and close the dialog box.

When you set your project's interface to the target language, the translated text items will be changed to the
new configuration.

Examples of font configuration
The Font Configuration tool included in the Translation Table worksheet

Example #1
You are using ten different fonts in your project and they all have different font sizes. You have added Chinese
as a target language in your Translation Table, so when you set it as the language for your project interface,
you also want to convert all text items to a font that supports the Chinese character set.

You would create the following configuration using the Font Configuration tool:

Object Source Font Source
Size

Source
Style

Source
RTL

Target Font Target
Size

Target
Style

Target
RTL

(All) (All) (All) (All) (All) Arial
Unicode MS

* * *

The * configured in the Target columns means that the original settings should be kept. In other words, if you
have two texts with different sizes, then the font type will be changed to Arial Unicode MS (a general-purpose
font that includes all Unicode character sets, including Chinese) but the font sizes will not be changed.

Example #2
You are using a single font type in your project, but it has different font sizes depending on where and how
it is used. You have added German as a target language in your Translation Table; words tend to be much
longer in German, so you when you set it as the language for your project interface, you also want to decrease
the font sizes to make sure the translated text items fit within their screen objects.

You would create the following configuration using the Font Configuration tool:

Object Source Font Source
Size

Source
Style

Source
RTL

Target Font Target
Size

Target
Style

Target
RTL

(All) (All) (All) (All) (All) * 80% * *

Under this configuration, it does not matter how many fonts you are using or what their specific sizes are.
They will all be proportionately decreased to 80% of their original sizes.

Project Localization

Page 699

Example #3
You have added Arabic as a target language in your Translation Table, but you have also decided not to
translate your button labels. Therefore, you want to convert all objects except buttons to a font that supports
the Arabic character set, and you also want to change the reading direction from left-to-right (default) to right-
to-left.

You would create the following configuration using the Font Configuration tool:

Object Source Font Source
Size

Source
Style

Source
RTL

Target Font Target
Size

Target
Style

Target
RTL

(All) (All) (All) (All) (All) Arial
Unicode MS

* * Enabled

Button (All) (All) (All) (All) * * * *

Even though it would seem like both rows of the configuration would apply to Button objects, only the second
row is actually applied because it most specifically matches.

Project Localization

Page 700

Set the project's language at startup
Even when you have multiple languages configured for your project, you must still specify which language
you want your project to start in at runtime.

This procedure assumes that you have already added at least one target language to the Translation Table.
For more information, see Add a target language to the Translation Table on page 695.

To set the language at startup:

1. Open the Translation Table worksheet by doing one of the following.

• On the Insert tab of the ribbon, in the Global group, click Translation; or

• In the Global tab of the Project Explorer, double-click Translation.

The Translation Table worksheet is opened for editing.

2. In the Startup target language list, select the language in which you want your project to start.
The list of available languages includes the source language in which you developed the project and any
target languages that you have added.

3. Save and close the worksheet.

Note: Setting your project's language will also automatically set the language of any Virtual
Keyboards displayed in project screens, as long as there is a VK initialization file for the selected
language. For more information, see Data input in screens on Thin Clients on page 342.

Project Localization

Page 701

Set the project's language during run time
You can set your project's language during run time by using the SetLanguage function anywhere that an
expression can be configured.

Before you begin this task, you must have already added at least one target language to the Translation Table
worksheet. For more information, see Add a target language to the Translation Table on page 695.

The SetLanguage function takes one parameter: the ID number of the the target language. Each language's
ID number is shown in parentheses next to that language in the Translation Table worksheet — for example,
"English-United States (1033)".

Note: LCID values were the proprietary language/region codes used in Microsoft Windows up until
Windows 8. Microsoft changed how it handles language identifiers in Windows 10, which effectively
deprecated LCID in the operating system, but we hardcoded the values into this software and we
continue to use them in order to maintain compatibility across all platforms and with existing
projects.

The following example shows how to draw two Button objects that switch the project's language between
English and French:

1. In the Graphics tab of the Project Explorer, double-click a project screen to open it for editing.

2. On the Draw tab of the ribbon, in the Active Objects group, click Button.

3. Draw a Button object in the project screen.

4. Double-click the Button object.
The Object Properties dialog is displayed.

5. In the Caption box, type English.

6. Click Command.
The Command animation properties are displayed in the dialog.

7. In the first row of the On Down tab, in the Expression field, type SetLanguage(1033).

Project Localization

Page 702

8. Close the Object Properties dialog.

9. Duplicate the Button object, either by copy-and-paste or by Ctrl-click.

10.Repeat steps 4 through 8, replacing the caption with French and the expression with
SetLanguage(1036).

11.Save and close the project screen.

During project run time, clicking each button will set the language of the entire project to that language,
using the translated text from the Translation Table.

Note: Setting your project's language will also automatically set the language of any Virtual
Keyboards displayed in project screens, as long as there is a VK initialization file for the selected
language. For more information, see Data input in screens on Thin Clients on page 342.

Project Localization

Page 703

Disable translation of selected screen objects
By default, translation is enabled for all screen objects that have text to be translated. However, you can
disable translation of selected objects if you need to preserve their original text.

1. Double-click a screen object to open its Object Properties dialog.

2. In the dialog, look for the Enable translation option.
If the option is not available in the object's basic properties, then click Advanced to access the advanced
properties

3. Clear the Enable translation option.

4. Close the Object Properties dialog.

Once the option is cleared on an object, its text will no longer be translated during project runtime. The text is
still added to the translation table and may be processed though the automatic translation engine, along with
all other project texts, but the resulting translation will not actually be applied to the object during runtime.

Project Localization

Page 704

Configure the advanced translation settings
Configure the advanced translation settings as needed.

Before you begin this task, you should have already enabled translation and added at least one target
language to your project's Translation Table.

To configure the advanced translation settings:

1. Open the Translation Table worksheet by doing one of the following:

• On the Insert tab of the ribbon, in the Global group, click Translation; or

• In the Global tab of the Project Explorer, double-click Translation.

The Translation Table worksheet is opened for editing.

2. Click Advanced.
The Advanced dialog is displayed.

Advanced translation settings
3. Select or clear the options as needed.

Option Description

Ignore edging spaces Ignore any leading or trailing spaces in strings to
be translated. If this option is not selected, then
strings must match exactly.

Keep original text when translation is blank Display the string in the Source column when the
Target column is empty. If this option is not selected,
then the original text may be replaced with blank
space.

Translate before parsing strings in curly brackets Translate the string before evaluating any tag/
expression configured in curly brackets. For
example, if the original text is "The current user
is {UserName}" and the Portuguese translation is
"O usuário atual é {UserName}", then the string
is correctly translated before getting the value of
UserName.

If this option is not selected, then the tag/
expression is evaluated before the string is
translated. Therefore, if you have not configured a
translation that includes the exact value of the tag/
expression, then the string will not be translated.

Enable alarm/event delimiters Enable the use of delimiters in alarm/event
messages, so that when the messages are generated
and saved, they are formatted in such a way that
they can be correctly translated when retrieved.

Project Localization

Page 705

Option Description
If this option is not selected, then any tag/
expression configured in curly brackets is evaluated
when the message is generated and saved, before
translation. In other words, the message is saved
as a literal string, and if you do not configure a
translation that includes the exact value of the tag/
expression, then the message will not be translated.

Selecting this option, however, will cause the
message to be saved with both the tag/expression
and its value at the time the message was
generated. For example, if you configure an event
message to be "The current user is {UserName}",
then it will be saved as "The current user is {$$
$UserName:Michael$$$}", which means that the
value of UserName was Michael at the time the
message was generated. Then, when the message
is retrieved, it is translated as described in Translate
before parsing strings in curly brackets above, with the
saved value inserted as needed.

4. Click OK to close the dialog, and then save and close the Translation Table.

Project Localization

Page 706

Import a legacy translation file into the Translation Table
Due to changes in how the Translation Table works, legacy translation files are not compatible with the latest
version of this software. Use the Translation Table worksheet to import a legacy translation file into your
project, rather than manually reenter the information from that file.

Before you begin this task, you must have a legacy translation file (i.e., a .tra or .csv file) that was created by
an earlier version of this software. You should be able to find the file in the old project folder.

To import a legacy translation file and add it to the current translation:

1. Open the Translation Table worksheet by doing one of the following:

• On the Insert tab of the ribbon, in the Global group, click Translation; or

• In the Global tab of the Project Explorer, double-click Translation.

The Translation Table worksheet is opened for editing.

2. Make sure the Enable Translation option is selected.
If this option is cleared, then the entire Translation Table worksheet is disabled and the language cannot
be changed during run time.

3. In the Translation Table worksheet, click Import.
A standard Open dialog box is displayed.

4. Locate and select the legacy translation file (.tra or .csv format), and then click Open.

The legacy translation file is imported and added to the current translation.

Project Localization

Page 707

About the date format and how to change it
The date format determines how dates are displayed throughout the BLUE Open Studio 2020 software, as
well as how date strings are handled by the project during run time. You can change the date format, either
as part of localizing your BOS project or simply to suit your personal preference.

Actual dates and times are stored as complete timestamps, the format of which is hardcoded into the
software. Such timestamps can be difficult to read, however, and they often contain additional information
that is not immediately relevant to the user. Therefore, when it is necessary to display a date and/or time, the
software parses the timestamp, gets the relevant information, and displays it in a user-friendly format. The
date format determines what exactly that format is for dates.

Generally speaking, the date format has two configurable settings: the order and the separator. First,
the order setting determines the order in which the day (D), month (M), and year (Y) are displayed. Any
combination of the three can be used, but some combinations like MDY, YMD, and DMY are more commonly
used. Second, the separator setting determines the character that separates the three parts of the date. Again,
any single character can be used, but some characters like the forward slash (/), the hyphen (-), and the dot/
period (.) are more commonly used.

The order and separator settings together determine the overall date format. For example, BLUE Open
Studio 2020 uses the MDY order and the forward slash (/) separator by default, and together they produce
the American-style format MM/DD/YYYY (e.g, 02/13/2015). Another common date format is the one
recommended by ISO 8601; it uses the YMD order and the hyphen (-) separator to produce the format YYYY-
MM-DD (e.g., 2015-02-13).

Note: BLUE Open Studio 2020 always uses two-digit days and months (i.e., DD, MM) and four-digit
years (i.e., YYYY), regardless of the order.

To check the date format at any time, simply reference the Date system tag. The value of this tag is always
the current system date on the local computer, formatted as a string using the current date format. The "local
computer" is the computer where the tag is referenced, regardless of whether it is referenced in a background
task on the project runtime server or in screen on a project thin client. The server and each client can have
its own date format, because the date format can be changed from the default (see "Changing the date format"
below).

The easiest way to reference the Date system tag is to type it into the Watch window on page 70, because the
value of the tag is immediately displayed there even when your project is not running. You can use the tag
anywhere in your project that accepts a tag or expression, however. For more information about system tags,
see System Tags Folder on page 149.

It is important for you to know what the date format is when you are both developing and running your
project, because whenever you specify a date as a string, you must do so in the format that the software
expects. If you do not, the software will not be able to parse the string correctly and you will see unexpected
behavior during project run time. For example, if the software is currently using the format MM/DD/YYYY
and you try pass the date string "2015-02-13" as an argument to a function, the function will return an
error code indicating that the specified date is invalid.

Changing the date format
The default date format for all BLUE Open Studio 2020 software components — the project development
environment, the project runtime server, and each project thin client — is MM/DD/YYYY. You cannot change
this default. Every time you run the software, it automatically uses this default at least to start.

We can and often do change the default date format for customers in other regions around the world that
use different formats, but there are special considerations in doing so, such as maintaining backward
compatibility with existing projects and not interfering with future software upgrades. That is why we have
not made the default a user-configurable setting. If you need to have your default changed, please contact
your BLUE Open Studio 2020 software distributor.

You can change the date format at any time after you run a project, however, and the project will keep using
the specified format until you either change it again or stop the project. When you stop the project, the date
format is reset to the default.

There are a few different ways to change the date format.

First, you can call the function SetDateFormat. This is the most straightforward way, because you can
call it anywhere that you normally use the built-in functions. It is most commonly called in a project's

http://www.iso.org/iso/iso8601

Project Localization

Page 708

Startup Script, to set the date format on the project runtime server, as well as in the Graphics Script, in the
Graphics_OnStart sub-routine, to set the date format on each project thin client. For more information, see
SetDateFormat on page 1177.

Second, if you install Secure Viewer on a computer or device in order to use it as a project thin client, you
can specify the date format for that client in Secure Viewer's advanced settings. Doing so should eliminate
the need to call the function SetDateFormat on that client, as described above, but it will not override the
function if it is called. For more information, see Install the Thin Client software on page 40.

Third, when you use the Translation Table to localize your project for other languages or regions, you can also
specify the date format as part of the localization. Then, when you set the language during project run time,
the date format will be changed with everything else. For more information, see Project Localization on page
694.

Please keep in mind that the project runtime server and each project thin client — even the client on the
same computer as the server, because it runs in a separate processing thread — can have its own date
format, depending on how you design and run your project. This can be useful in some cases, such as when
your server is located in one region while your clients are located in another. You might even allow users to
change the date format on their clients just to suit their personal preferences. But whatever you do, you must
thoroughly test your project to ensure that changing the date format does not cause other issues.

Debugging Tools

Page 709

Debugging Tools

Debugging Tools

Page 710

Watch window
The Watch window is a debugging tool that lets you: watch and force values to project tags; execute and test
functions; and execute and test math expressions.

Example of the Watch window

The Watch window contains the following elements:

• For each item that you want to watch during project run time:

• Tag/Expression: Specify a project tag, system tag, or expression that you want to watch.

• Value: Displays the value returned by the tag/expression.

• Quality: Displays the quality (GOOD or BAD) of the value returned by the tag/expression.

• Continuous: Select this option to have the project continuously evaluate the tag/expression.

• DB tabs: You can use these tabs to organize the items you are watching, so that you do not need to scroll
through one long list of items.

• Locals, Stack Frame, and Tasks Frame tabs: These tabs are used to debug VBScript.

• Scroll bars: Use to view areas of the Watch window that are obscured from view because of the window size
or the size of the current sheet.

Tip: The Watch window is dockable, which means you can move it to another location in the project
development environment. Click on the titlebar and drag it to a new location. Release the mouse
button to attach or dock the window to its new location.

Using the Watch tool
This software includes a standalone Watch tool, separate from the project development environment, that you
can use to connect to a running project and then monitor that project's database.

The Watch tool is functionally similar to the Watch window on page 70 in the project development
environment, but it differs in several important ways:

• The Watch tool can connect to projects running on both the local computer and remote computers, while
the Watch window only shows the project that is currently open in the project development environment;

• You can open multiple instances of the Watch tool in order to connect to different projects at the same
time; and

• The Watch tool runs separate from the project development environment, and it can be left open when the
project development environment is closed.

Before you try to use the Watch tool to connect to a project, confirm the project is running and the TCP/IP
Server Runtime task is started. The TCP/IP Server (a.k.a. the Data Server) is what makes the project database
accessible to debugging tools like Watch. Also, if the project runtime is hosted on a remote computer, note the
host name or IP address of that computer. For more information, see Runtime Tasks on page 134.

Any time you try to access a project, if that project's security system is enabled then you may be asked to
log on. This includes when you use the Watch tool to connect to a project. As such, your user account must

Debugging Tools

Page 711

belong to a group that has the Enable Remote Debugging Tools option selected, in the security system settings. If
you also want to be able to write values to the database, the Watch (write) option should also be selected, but
that option is not required simply to use the Watch tool. For more information, see Project Security on page
652.

Open the tool from the Local Management tools
To open the Watch tool from the Local Management tools:

1. On the Home tab of the ribbon, in the Local Management group, click Tasks. The Runtime Tasks dialog box is
displayed.

2. In the list of execution tasks, select the Watch task and then click Start. The Watch tool is displayed in
a separate window, and it automatically connects to the project running on the local computer (a.k.a.
LOCAL).

3. Click OK to close the Runtime Tasks dialog box.

Open the tool from the Remote Management tools
To open the Watch tool from the Remote Management tools:

1. On the Home tab of the ribbon, in the Remote Management group, click Watch. The Remote Computer dialog box
is displayed.

2. In the Mode box, select one of the following:

Mode Description

TCP/IP Connect to the project's TCP/IP Server using unencrypted communication.

Encrypted TCP/IP Connect to the project's TCP/IP Server using encrypted communication.

If you want to use TCP/IP mode, the standard Port option must be selected in the project settings. If you
want to use Encrypted TCP/IP mode, the Encrypted Port option must be selected in the project settings. For more
information about both options, see Communication tab on page 120.

3. In the Host box, type the host name or IP address of the computer that is hosting the project runtime. You
do not need to include the port number as long as it has not been changed from the default port for the
selected mode (e.g., port 51234 for Encrypted TCP/IP). If the port number has been changed, however, include
the correct port number with the specified host.

Tip: Even though you are opening the tool from the Remote Management tools, you can use it to
connect to the project running on the local computer. To do this, leave the Host box empty.

4. Click OK. The Watch tool is displayed in a separate window, and it automatically connects to the specified
host.

Remember that you can open multiple instances of the tool as long as you specify a different host and/or port
for each instance.

Run the tool from the command prompt
The Watch tool is actually a small utility program that is included with BLUE Open Studio 2020, and you can
run it from the Windows command prompt with appropriate parameters. Assuming the BLUE Open Studio

Debugging Tools

Page 712

2020 software has been installed in its default location on your computer, the Watch tool should be located
at:

C:\Program Files (x86)\Pro-face\BLUE Open Studio 2020\Bin\DatabaseSpyExt.exe

To run the program from the command prompt, make sure you are in the correct directory and then type the
following:

DatabaseSpyExt /DSIP:<host name or IP address> /DSPORT:<port number>

For the project running on the local computer, you can specify the host as localhost or 127.0.0.1.

Remember that you can open multiple instances of the tool as long as you specify a different host and/or port
for each instance.

Use the tool to monitor the project database
If the Watch tool successfully connects to the specified host, it is displayed in its own window separate from
the project development environment.

As stated at the beginning of this topic, the Watch tool is functionally similar to the Watch window on page
70 in the project development environment. It provides the same basic interface, and in most cases it can be
used in the same way.

An example of the Watch tool in use

When you use the tool to connect to a project running on a remote computer, however, there are some
limitations on accessing tags in the Shared Database part of the project database. For example, you might not
be able to access class members that were imported through Tag Integration.

When you are done, click Close to disconnect from the specified host and close the tool.

Opening the Watch page for Mobile Access
Use the Watch tool to open the Watch page for a project that is running on Mobile Access, or use your web
browser to go directly to that page.

The Watch page for Mobile Access is functionally similar to the Watch window on page 70 in the project
development environment, but it differs in several important ways:

• You can open the Watch page for projects running on both the local computer and remote computers,
while the Watch window only shows the project that is currently open in the project development
environment;

• You can open multiple instances of the Watch page, each in a separate browser tab, in order to access
different projects at the same time; and

• The Watch page is displayed entirely in your web browser, as a part of the Mobile Access web interface.

Debugging Tools

Page 713

Of course, the project must be configured to run on Mobile Access, and that requires some additional work.
For more information, see Mobile Access on page 769.

Before you try to open the Watch page for a project, confirm the project is running and the Mobile Access
Runtime task is started. The Mobile Access Runtime is what generates the Mobile Access web interface for a
project, and the Watch page is part of that web interface. Also, if the project runtime is hosted on a remote
computer, note the host name or IP address of that computer. For more information, see Runtime Tasks on
page 134.

Any time you try to access a project, if that project's security system is enabled then you may be asked to log
on. This includes when you open the Watch page for a project. As such, your user account must belong to
a group that has the Enable Remote Debugging Tools option selected, in the security system settings. If you also
want to be able to write values to the database, the Watch Window (write) option should also be selected, but that
option is not required simply to use the Watch page. For more information, see Project Security on page 652.

Use the Watch tool to open the page
To use the Watch tool to open the Watch page:

1. On the Home tab of the ribbon, in the Remote Management group, click Watch. The Remote Computer dialog box
is displayed.

2. In the Mode box, select one of the following:

Mode Description

HTTP (Web) Connect to the Mobile Access web interface using unencrypted
communication.

HTTPS (Web) Connect to the Mobile Access web interface using encrypted communication.

If you want to use HTTP (Web) mode, you should not need to do anything else because that is the default
configuration for most web servers. If you want to use HTTPS (Web) mode, the web server must be configured
to use Secure Sockets Layer (SSL) to serve web pages. For more information, see Mobile Access web server
add-on on page 781.

3. In the Host box, type the host name or IP address of the computer that is hosting the project runtime.
You do not need to include the port number as long as it has not been changed from the default port for
the web server. If the port number has been changed, however, include the correct port number with the
specified host.

Tip: Even though you are opening the page from the Remote Management tools, you can use it
to open the Watch page for a project running on the local computer. To do this, leave the Host box
empty.

4. Click OK. Your default web browser is opened, and it opens the Watch page for the specified host.

Remember that you can open multiple instances of the page in separate browser tabs as long as you specify a
different host for each tab.

Debugging Tools

Page 714

Go directly to the page in your web browser
The Watch page is part of the Mobile Access web interface for a project, so you can go directly to the page
without opening the project development environment. In the address bar of your web browser, type the
following URL:

https://<host name or IP address>/BOS2020/index.html?watch=1

If you are not already logged on to the project, you are prompted to log on at this time.

You can automatically log on by including your user name and password. To include only your user name,
type the following URL:

https://<host name or IP address>/BOS2020/index.html?watch=1&user=<user name>

The Logon page is displayed with your user name automatically entered. You are still prompted for your
password.

To include both your user name and your password, type the following URL:

https://<host name or IP address>/BOS2020/index.html?watch=1&user=<user
 name>&password=<password>

The Logon page is not displayed. Instead, you are automatically logged on, and the Watch page is displayed
immediately. This option is not secure, however, especially if you save this URL as a favorite or bookmark.

Remember that you can open multiple instances of the page in separate browser tabs as long as you specify a
different host for each tab.

Use the page to monitor the project database
As stated at the beginning of this topic, the Watch tool is functionally similar to the Watch window on page 70
in the project development environment. It provides the same basic interface, and in most cases you can use
it in the same way. However, the tools to manage the list of tags/expressions are somewhat different.

Tools on the Watch page

To add a project tag or expression to the list, type it in the Tagname/Expression box and then click/tap the
Add tool. Each tag value will be updated whenever it changes. Each expression will be evaluated when it is
added to the list, and thereafter it will be updated only if it includes at least one tag value that changes. Only
expressions that are supported on Mobile Access can be evaluated with GOOD quality. Expressions that

Debugging Tools

Page 715

are not supported cannot be evaluated and will always have BAD quality. For more information, see List of
available functions on page 925.

An example of tagnames and expressions added to the list

To edit a tagname/expression in the list, double-click/tap it and then make your change. It will be updated
after you make your change, as if you just added it.

To write a new value to a tag, double-click/tap the value (not the tagname) and then make your change.
Remember that you must be logged on as a user who belongs to a group that has the Watch Window (write) option
selected.

To remove a single tagname/expression from the list, click/tap it and then slide right.

To clear the entire list, click/tap the Clear tool.

To copy the entire list to your computer's clipboard, click/tap the Copy tool. You can then paste the copied list
into another application such as a text editor or spreadsheet.

To paste a list from your computer's clipboard, click/tap the Paste tool. The pasted list will be appended to the
existing list.

Debugging Tools

Page 716

Output window
Use the Output window to view additional information about your project. By default, the window is located in
the bottom-right corner of the project development environment.

Output window

The Output window has three tabs:

• The LogWin tab displays the log messages that are generated by your project. You can select exactly which
types of messages are displayed, but generally speaking, the log includes run-time messages from the tags
database, the communication drivers, the background tasks, the project security system, and so on, as
well as certain "housekeeping" messages generated by the project development environment itself. You can
use these messages to test and debug your project.

Note: The Output window cannot display the log for a project running on a remote computer. It
also cannot print or save log messages. If you want to do either of those things, use the LogWin
command instead.

• The XRef tab displays the results of using the Cross Reference command to find where a specific tag is used in
your project. The results include the file path and name of the worksheet in which the tag is used, as well
as the column and row in the worksheet. So, if something changes in the tag and produces unexpected or
unsuccessful results, you can locate all instances of the tag for debugging purposes.

• The Find Results tab displays the results of using the Global Find command.

The Output window is dockable, which means you can drag it to another location in the project development
environment.

Configure the log settings for the Output window
Configure the log settings for the Output window to select exactly which types of messages are included in the
log.

By default, the log shows only debugging and error messages — that is, messages which indicate your project
is not running properly. If the log showed all possible messages generated during project run time, it would
quickly overflow and become unusable. Configuring these log settings allows you to select the types of log
messages that you want to include in the log.

To configure the log settings for the Output window:

1. In the Output window, make sure the Log tab is selected.

2. Right-click anywhere in the window, and then click Settings on the shortcut menu.

The Log Settings dialog box is displayed with the Log Options tab selected.

Debugging Tools

Page 717

3. In the Log Options tab of the dialog box, select the types of log messages that you want to include in the
log.
Option Description

Field Read Commands Show any read commands that are sent to
connected devices.

Field Write Commands Show any write commands that are sent to
connected devices.

Protocol Analyzer Show messages generated by configured device
drivers.

OPC DA 2.05 Show messages generated by the OPC DA 2.05
Client Runtime task.

OPC XML/DA Show messages generated by the OPC XML/DA
Client Runtime task.

OPC UA Show messages generated by the OPC UA Client
Runtime task.

OPC UA Server Show messages generated by the OPC UA Server
Runtime task.

Logon/Logout Display a message whenever a user logs on or logs
out. (For more information, see Security.)

Trace Messages Show messages generated by the Trace function.
This function is used to generate customized
messages from within your project.

Database Messages Show messages generated by communication with
external databases through the Database Gateway.
(Error messages only.)

Recipe/Report Show messages generated by the execution of
Recipe and Report worksheets.

Display Open/Close Display detailed information whenever a screen is
opened or closed:

• Disk Load Time: Time to load the screen file
from the disk into memory.

Debugging Tools

Page 718

Option Description
• Open Time: Time to open the screen, including

initializing tags used in the screen and running
any "OnOpen" scripts or functions.

• Total Load Time: Total time to load the screen
(includes Disk Load Time and Open Time above).

• First Draw Time: Time to first drawing of screen
objects.

• First OnWhile Time: Time to first running of any
"OnWhile" scripts or functions.

• Total Open Time: Total time to open the screen
(includes First Draw Time and First OnWhile
Time above).

• Close Time: Time to close the screen, including
finalizing tags used in the screen and running
any "OnClose" scripts or functions.

• Total Close Time: Total time to close the screen,
including the time to close the screen file on the
disk.

This information can be used to analyze runtime
performance on low-end target systems. If a
particular step of opening or closing takes an
unusually long time, then it can be identified and
redesigned.

TCP/IP Messages Show messages generated by TCP/IP
communications.

Mobile Access Show messages generated by Mobile Access.

Insert date/time Timestamp each message.

4. If you selected OPC XML/DA or OPC UA, you need to specify exactly which types of messages from the OPC
communication stack should be included in the log. Click the browse button to the right of the selected
option in order to open the OPC Log Settings dialog box, and then use it to select the types of messages you
want to include.
Each OPC communication stack has its own settings, but the descriptions of the settings are the same for
all. The example messages below are for OPC UA.

Log settings for OPC UA Client

Debugging Tools

Page 719

Option Description

Read Enable trace messages on read operations.
Examples of messages:

OPC UA: Read Group 1 Started – OK

OPC UA: Read Group 1 Completed – OK

OPC UA: Read Group 25 Started – Error,
 asynchronous reading pending for the
 current group

Write Enable trace messages on write operations.
Examples of messages:

OPC UA: Write Group 1 Started [Line 1 =
 10.25, Line 42 = 20.45] – Status OK

OPC UA: Write Group 1 Completed [All
 Items] – Status OK

Connection Enable trace messages on changes in connection
status between the OPC Client (i.e., your project)
and the OPC Server. Examples of messages:

OPC UA: Connection established with
 server “Connection1”

OPC UA: Error to connect to server
 “Connection2” – Time out waiting for
 server response

Subscription Enable trace messages on subscriptions to server
items, such as the creation of new subscriptions
and changes in data type. Examples of messages:

OPC UA: Group 1 => Subscription created

You also need to select the level of verbosity for OPC messages.

Option Description

Error Critical issues that have caused the OPC
communication to fail. These issues must be
resolved before you can resume communication.

Warning Non-critical issues that affect runtime performance
or might cause the OPC communication to fail
under other conditions. These issues should be
resolved as soon as possible.

Includes Error above.

Debugging Tools

Page 720

Option Description

Information All messages generated by the OPC communication.
This is the default option.

Please note this can be extrememly verbose,
depending on which type(s) of messages you
have selected to display and how many OPC item
subscriptions you have created.

Includes Error and Warning above.

When you are done, click OK to save the settings and close the dialog box.

5. If you selected OPC UA Server, you need to specify exactly which types of messages from the OPC UA Server
Runtime task should be included in the log. Click the browse button to the right of the selected option in
order to open the OPC UA Server dialog box, and then use it to select the types of messages you want to
include.

Log settings for OPC UA Server

Note: These settings are for the runtime task only. They are separate from the trace messages
generated by the OPC UA communication stack. For more information, see How to manage OPC
UA Server during project run time on page 644.

When you are done, click OK to save the settings and close the dialog box.

6. Use the OPC UA Server dialog box to select the types of messages that you want to include in the log.
Each OPC communication stack has its own settings, but the descriptions of the settings are the same for
all. The example messages below are for OPC UA.
You also need to select the level of verbosity for OPC messages.

Option Description

Error Critical issues that have caused the OPC
communication to fail. These issues must be
resolved before you can resume communication.

Warning Non-critical issues that affect runtime performance
or might cause the OPC communication to fail
under other conditions. These issues should be
resolved as soon as possible.

Includes Error above.

Information All messages generated by the OPC communication.
This is the default option.

Please note this can be extrememly verbose,
depending on which type(s) of messages you
have selected to display and how many OPC item
subscriptions you have created.

Debugging Tools

Page 721

Option Description
Includes Error and Warning above.

When you are done, click OK to save the settings for the selected OPC task and close the dialog box.

7. If you selected Mobile Access, you need to specify exactly which types of messages from the Mobile Access
Runtime task should be included in the log. Click the browse button to the right of the selected option in
order to open the Mobile Access dialog box, and then use it to select the types of messages you want to
include.

Log settings for Mobile Access

By default, only error messages — that is, messages about critical issues that have caused Mobile Access
to fail — are included in the log. For more information about the available options, see Use the activity log
to troubleshoot the Mobile Access web interface on page 817.

When you are done, click OK to save the settings and close the dialog box.

8. If you want to log every change in the values of specifc project tags, do the following:
a) In the Log Settings dialog box, click the Log Tags tab.

The tab is displayed.

Debugging Tools

Page 722

b) Click Add.
The Object Finder is displayed.

c) Use the Object Finder to select the project tag that you want to log, and then click OK.
You can also log changes in tag properties. For more information, see Reference a tag property instead
of a project tag on page 167.
The selected tag is added to the log.

d) Repeat as needed for each project tag that you want to log.

9. Click OK to save your settings and close the Log Settings dialog box.

Save log messages from the Output window to a file
Configure the log settings for the Output window in order to save its output — that is, the log messages from
the project running on the local computer — to a file.

To configure the settings for the Output window:

1. In the Output window, make sure the LogWin tab is selected.

2. Right-click anywhere in the Output window, and then click Settings on the shortcut menu.

The Log Settings dialog box is displayed with the Log Options tab selected.

Debugging Tools

Page 723

3. Select the Log To File option, and then click the More button (…) to the right of the option.

The Log To File dialog box is displayed.

4. Select how you want to save the output.
Option Description

Date The log is saved in dated files in the project folder,
using the file name format YYMMDD.log (e.g.,
200110.log). A new file is created for each day the
project runs.

Custom File Name The log is saved in a single file at a specified
location.

5. If you selected Custom File Name, use the File Name box to specify where the file should be saved:
a) Click the browse button to the right of the File Name box.

A standard Save As dialog box is displayed.

b) Locate the folder in which you want to save the file, and then in the File name box, type the custom file
name.

c) Click Save.
The Save As dialog box is closed, and the file path and name are displayed in the File Name box.

6. Click OK to close the Log To File dialog box.

Debugging Tools

Page 724

If your project is already running, it will start saving the file(s) immediately. Otherwise, it will start saving the
file(s) the next time it is run.

The saved log files can quickly fill the available storage space, depending on how active the project is and
how the log settings are configured, so you should be careful about leaving the Log To File option selected
for extended periods. This should be for testing and debugging purposes only. If you want to save a more
permanent record of run-time behavior or performance, use Alarms, Events, Trends, Reports, and other such
features in your project.

Debugging Tools

Page 725

About the LogWin tool
The LogWin tool provides additional tools for viewing, printing, and saving the project runtime log.

By default, the project runtime log is displayed in the Output window in the project development environment.
That is good enough for most testing and debugging, but the Output window can only display the log for the
project running on the local computer and it cannot print or save the log.

The LogWin tool displays essentially the same information as the Output window, but it provides some
additional tools for doing so. It can view the log generated by either the project runtime on either the local
computer or a remote computer, depending on how you open it, and it can print or save the log for future
reference.

Note:

• To enable logging for Mobile Access, select the appropriate options in the Mobile Access
Configuration worksheet. For more information, see Configure the global settings for all areas on
page 803.

Open the LogWin tool
This software includes a standalone LogWin tool that you can use to connect to a running project and then
view that project's log messages.

The LogWin tool is functionally similar to the Output window in the project development environment, but it
differs in several important ways:

• The LogWin tool can connect to projects running on both the local computer and remote computers, while
the Output window only shows the project that is currently open in the project development environment;

• You can open multiple instances of the LogWin tool in order to connect to different projects at the same
time; and

• The LogWin tool runs separate from the project development environment, and it can be left open when the
project development environment is closed.

Before you try to use the LogWin tool to connect to a project, confirm the project is running and the TCP/IP
Server Runtime task is started. The TCP/IP Server (a.k.a. the Data Server) is what makes the project database
accessible to debugging tools like LogWin. Also, if project runtime is hosted on a remote computer, note the
host name or IP address of that computer. For more information, see Runtime Tasks on page 134.

Any time you try to access a project, if that project's security system is enabled then you may be asked to log
on. This includes when you use the LogWin tool to connect to a project. As such, your user account must
belong to a group that has the Enable Remote Debugging Tools option selected, in the security system settings. For
more information, see Project Security on page 652.

Open the tool from the Local Management tools
To open the LogWin tool from the Local Management tools:

1. On the Home tab of the ribbon, in the Local Management group, click Tasks. The Runtime Tasks dialog box is
displayed.

2. In the list of execution tasks, select the LogWin task and then click Start. The LogWin tool is displayed in
a separate window, and it automatically connects to the project running on the local computer (a.k.a.
LOCAL).

3. Click OK to close the Runtime Tasks dialog box.

Open the tool from the Remote Management tools
To open the LogWin tool from the Remote Management tools:

1. On the Home tab of the ribbon, in the Remote Management group, click LogWin. The Remote Computer dialog box
is displayed.

Debugging Tools

Page 726

2. In the Mode box, select one of the following:

Mode Description

TCP/IP Connect to the project's TCP/IP Server using unencrypted communication.

Encrypted TCP/IP Connect to the project's TCP/IP Server using encrypted communication.

If you want to use TCP/IP mode, the standard Port option must be selected in the project settings. If you
want to use Encrypted TCP/IP mode, the Encrypted Port option must be selected in the project settings. For more
information about both options, see Communication tab on page 120.

3. In the Host box, type the host name or IP address of the computer that is hosting the project runtime. You
do not need to include the port number as long as it has not been changed from the default port for the
selected mode (e.g., port 51234 for Encrypted TCP/IP). If the port number has been changed, however, include
the correct port number with the specified host.

Tip: Even though you are opening the tool from the Remote Management tools, you can use it to
connect to the project running on the local computer. To do this, leave the Host box empty.

4. Click OK. The LogWin tool is displayed in a separate window, and it automatically connects to the specified
host.

Remember that you can open multiple instances of the tool as long as you specify a different host and/or port
for each instance.

Run the tool from the command prompt
The LogWin tool is actually a small utility program that is included with BLUE Open Studio 2020, and you
can run it from the Windows command prompt with appropriate parameters. Assuming the BLUE Open
Studio 2020 software has been installed in its default location on your computer, the LogWin tool should be
located at:

C:\Program Files (x86)\Pro-face\BLUE Open Studio 2020\Bin\LogWinExt.exe

To run the program from the command prompt, make sure you are in the correct directory and then type the
following:

LogWinExt /DSIP:<host name or IP address> /DSPORT:<port number>

For the project running on the local computer, you can specify the host as localhost or 127.0.0.1.

Remember that you can open multiple instances of the tool as long as you specify a different host and/or port
for each instance.

Use the tool to view log messages
If the LogWin tool successfully connects to the specified host, it is displayed in its own window separate from
the project development environment.

As stated at the beginning of this topic, the LogWin tool is functionally similar to the Output window in the
project development environment. It provides the same basic interface, and in most cases it can be used in

Debugging Tools

Page 727

the same way. However, the LogWin tool offers even more options than the Output window, such as saving
the output on disk. For more information about those options, see the other topics in this section.

An example of the LogWin tool in use

When you are done, click File > Exit to disconnect from the specified host and close the tool.

Configure the log settings for the LogWin module
Configure the log settings for the LogWin module to select exactly which types of messages are included in the
log.

Before you begin this task, verify that the project is running on either the local or remote computer and that
the LogWin module is open for that computer.

By default, the log shows only debugging and error messages — that is, messages which indicate your project
is not running properly. If the log showed all possible messages generated during project run time, it would
quickly overflow and become unusable. Configuring these log settings allows you to select the types of log
messages that you want to include in the log.

Note: If you are using the LogWin module to view the log for the local computer, be aware that
it shares its log settings with the Output window in the project development environment. If you
change the settings for one, they will also be changed for the other. For more information, see
Output window on page 71.

To configure the log settings for the LogWin module:

Debugging Tools

Page 728

1. In the LogWin window, on the Log menu, select the types of log messages that you want to include in the
log.
You will need to open the menu to select each additional option, because there is not a single dialog box
for the options as there is in the Output window.

Option Description

Field Read Commands Show any read commands that are sent to
connected devices.

Field Write Commands Show any write commands that are sent to
connected devices.

Protocol Analyzer Show messages generated by configured device
drivers.

OPC DA 2.05 Show messages generated by the OPC DA 2.05
Client Runtime task.

OPC XML/DA Show messages generated by the OPC XML/DA
Client Runtime task.

OPC UA Show messages generated by the OPC UA Client
Runtime task.

OPC UA Server Show messages generated by the OPC UA Server
Runtime task.

Logon/Logout Display a message whenever a user logs on or logs
out. (For more information, see Security.)

Trace Messages Show messages generated by the Trace function.
This function is used to generate customized
messages from within your project.

Database Messages Show messages generated by communication with
external databases through the Database Gateway.
(Error messages only.)

Recipe/Report Show messages generated by the execution of
Recipe and Report worksheets.

Display Open/Close Display detailed information whenever a screen is
opened or closed:

• Disk Load Time: Time to load the screen file
from the disk into memory.

• Open Time: Time to open the screen, including
initializing tags used in the screen and running
any "OnOpen" scripts or functions.

• Total Load Time: Total time to load the screen
(includes Disk Load Time and Open Time above).

• First Draw Time: Time to first drawing of screen
objects.

• First OnWhile Time: Time to first running of any
"OnWhile" scripts or functions.

• Total Open Time: Total time to open the screen
(includes First Draw Time and First OnWhile
Time above).

• Close Time: Time to close the screen, including
finalizing tags used in the screen and running
any "OnClose" scripts or functions.

• Total Close Time: Total time to close the screen,
including the time to close the screen file on the
disk.

Debugging Tools

Page 729

Option Description
This information can be used to analyze runtime
performance on low-end target systems. If a
particular step of opening or closing takes an
unusually long time, then it can be identified and
redesigned.

TCP/IP Messages Show messages generated by TCP/IP
communications.

Mobile Access Show messages generated by Mobile Access.

Insert date/time Timestamp each message.

After you select an option, a check mark is displayed next to it to indicate that it has been selected.

2. If you select OPC XML/DA or OPC UA in the Log menu, a dialog box is displayed. In this dialog box, select
Enable, and then select the types of OPC messages that you want to include in the log.
Each OPC task has its own settings, but the descriptions of the settings are the same for all OPC tasks.
The example messages below are for OPC UA.

Option Description

Read Enable trace messages on read operations.
Examples of messages:

OPC UA: Read Group 1 Started – OK

OPC UA: Read Group 1 Completed – OK

OPC UA: Read Group 25 Started – Error,
 asynchronous reading pending for the
 current group

Write Enable trace messages on write operations.
Examples of messages:

OPC UA: Write Group 1 Started [Line 1 =
 10.25, Line 42 = 20.45] – Status OK

OPC UA: Write Group 1 Completed [All
 Items] – Status OK

Connection Enable trace messages on changes in connection
status between the OPC Client (i.e., your project)
and the OPC Server. Examples of messages:

OPC UA: Connection established with
 server “Connection1”

OPC UA: Error to connect to server
 “Connection2” – Time out waiting for
 server response

Debugging Tools

Page 730

Option Description

Subscription Enable trace messages on subscriptions to server
items, such as the creation of new subscriptions
and changes in data type. Examples of messages:

OPC UA: Group 1 => Subscription created

You also need to select the level of verbosity for OPC messages.

Option Description

Error Critical issues that have caused the OPC
communication to fail. These issues must be
resolved before you can resume communication.

Warning Non-critical issues that affect runtime performance
or might cause the OPC communication to fail
under other conditions. These issues should be
resolved as soon as possible.

Includes Error above.

Information All messages generated by the OPC communication.
This is the default option.

Please note this can be extrememly verbose,
depending on which type(s) of messages you
have selected to display and how many OPC item
subscriptions you have created.

Includes Error and Warning above.

3. If you select Mobile Access in the Log menu, the Mobile Access dialog box is displayed. In this dialog box,
select Enable, and then select the types of Mobile Access messages that you want to include in the log.
By default, only error messages — that is, messages about critical issues that have caused Mobile Access
to fail — are included in the log. For more information about the available options, see Use the activity log
to troubleshoot the Mobile Access web interface on page 817.

4. If you want to log every change in the values of specifc project tags, do the following:
a) On the Log menu, click Tags.

The Log Tags dialog box is displayed.

b) In the dialog box, click Add.
The Object Finder window is displayed.

c) Use the Object Finder to select a project tag that you want to log, and then click OK.

Tip: You can also log changes in tag properties. For more information, see Reference a tag
property instead of a project tag on page 167.

The selected tag is added to the log.

d) Repeat as needed for each project tag that you want to log.

e) Click Close to close the Log Tags dialog box.

5. If you want to insert a time stamp in the log messages, click Insert date/time on the Options menu.

The new settings are saved in a file on the local computer. Every time you open the LogWin module on that
computer, it will use the settings from the file, regardless of which project runtime the module connects to.

Debugging Tools

Page 731

Save log messages from the LogWin tool to a file
Configure the settings for the LogWin tool in order to save its output — that is, the log messages from a
project running on a remote computer — to a file. The output is saved continuously as long as the LogWin
tool is open and the project is running.

Before you begin, verify the project is running on the remote computer and the project's LogWin task is
started.

To configure the settings for the LogWin tool:

1. In the LogWin window, go to Options, and then select Log To File.
The Log To File dialog box is displayed.

2. Select how you want to save the output.
Option Description

Disable Saving is disabled. This is the default when you
open the LogWin tool.

Date The output is saved in dated files, using the name
format YYMMDD.log (e.g., 150513.log).

Custom File Name The output is saved in a single file at a specified
location.

3. If you selected Custom File Name, use the File Name box to specify where the file should be saved:
a) Click the browse button to the right of the File Name box.

A standard Save As dialog box is displayed.

b) Locate the folder in which you want to save the file, and then in the File name box, type the custom file
name.

c) Click Save.
The Save As dialog box is closed, and the file path and name are displayed in the File Name box.

4. Click OK to close the Log To File dialog box.

Assuming the project is running and generating log messages, the LogWin tool immediately starts saving
the file(s). If you selected the Date option, the files are saved in the project folder of the project that was most
recently opened in the project development environment, regardless of whether that is the project to which the
LogWin tool is currently connected. If you selected the Custom File Name option, the file is save at the specified
location.

The saved log files can quickly fill the available storage space, depending on how active the project runtime
is and how the log settings are configured, so you should be careful about letting the LogWin tool run for
extended periods. This should be for testing and debugging purposes only. If you want to save a more
permanent record of run-time behavior or performance, use Alarms, Events, Trends, Reports, and other such
features in your project.

Remote Management

Page 732

Remote Management
Use the Remote Management tool to download project files to a target device and then run/stop the project on
that device.

In this case, a "target device" is any computer that has the project runtime server software installed and
running. For more information, see Installation Guide on page 34.

The actual connection is handled by a small program on the target device called Remote Agent
(CEServer.exe).

Remote Management

Page 733

Enable security in Remote Agent and add users
Enable security in Remote Agent on a target device in order to allow only certain users to connect to the
device and to encrypt communications between the device and the project development application.

Before you begin this task, the project runtime software (BLUE Open Studio 2020) must be installed on the
target device and Remote Agent must be running.

Remote Agent

To enable security and add users:

1. In Remote Agent on the target device, click Setup.
The Setup dialog box is displayed.

Setup dialog box
2. Click Users.

Remote Management

Page 734

The Users dialog box is displayed.

Users dialog box
3. Select Enable security system.

4. Click Add.
The Add User dialog box is displayed.

Add User dialog box
5. Type the User Name and Password for the user, and then select which rights that user should have.

The available rights correspond to commands in the Remote Management tool in the project development
application.

Option Description

Send To Target Send an entire project to the device.

Send File Send a specific file to the device.

Run/Stop Run or stop the project runtime server on the
device.

Get From Target Get an entire project from the device.

Install System Files Install the project runtime software on the device.

6. Click OK.
The Add User dialog box is closed and the user is added to the User List.

7. Repeat for all of the users that should be able to connect to the device.

8. Click Close to close the Users dialog box.

9. Click OK to close the Setup dialog box, but leave Remote Agent running on the device.

Customize Remote Agent's encryption key
Customize Remote Agent's encryption key in order to increase the security of remote management.

Before you begin this task, Remote Agent must be installed and running on the target device and security
must be enabled.

When you enable security in Remote Agent, connections between the project development application and the
target device are automatically encrypted. This prevents third-party programs from intercepting projects or
sending unauthorized Run/Stop commands to the target device

Remote Management

Page 735

By default, Remote Agent uses a built-in encryption key that should be secure enough for most situations.
You may want to customize the key, however, because the more unique the key is, the more secure the
connection will be.

To customize the key:

1. Determine what you want the key to be.
It does not matter what the key actually is, because it is automatically shared between Remote Agent and
the project development application. As such, you can use an online GUID generator to generate a suitable
key.

2. On the target device, exit Remote Agent.

3. Edit the Remote Agent initialization file.

• For Remote Agent running on Windows or Windows Server, create a new text file named
RemoteAPI.ini in the same directory as Remote Agent (CEServer.exe).

4. Insert the following lines in the initialization file.

[Protection]
InternalKey=<your custom key>

5. Save and close the initialization file.

6. Run Remote Agent.

Remote Agent will automatically share the new key with the project development application, when you use
the Remote Management tool to connect to the target device and log on as an authorized user.

Remote Management

Page 736

Download your project to the target device
Use the Remote Management tool to download your project to a target device.

Before you begin this task, your project development workstation should be connected to the target device
and Remote Agent should be installed and running on that device.

To download your project:

1. On the Home tab of the ribbon, in the Remote Management group, click Connect.
The Remote Management dialog box is displayed with the Target tab selected.

2. On the Target tab of the dialog box, confirm that you are connected to the target device. If you are not,
review the connection settings and then click Connect.
The Remote Management tool connects to the target device and its status is displayed.

Tip: If the connection settings are correct but you cannot connect to the target device, make
sure the Remote Agent program is running on the device, empty the device's \Temp directory, and
then try again.

3. In the list of tabs on the left, click Project.
The Project tab of the dialog box is displayed.

4. In the Local box, you should see the location of the project that is currently open in your development
environment. This is the project that will be downloaded to the target device. If it is not the project that you
want to download, cancel the Remote Management dialog box, open the correct project, and then restart
this task.

5. In the Target box, confirm the location of the project folder on the target device. If the location is not correct,
click the browse button to the right and then select a new location.

Assuming you are properly connected to the device, you should be able to browse it like a network volume.

Remote Management

Page 737

Note: By default, you can download the project to any location on the target device, even
to another location outside the folder that contains the project runtime software. You might
consider this a security vulnerability, however, so if you want to restrict downloads only to the
folder that contains the project runtime software, go to Remote Agent on the target device and
select Lock project download.

6. Click Download to download the entire project to the target device, or click Send File to select a specific file to
send.

When you download your project to the device, new project files automatically and immediately replace
old ones, even while the project is running. As such, you may choose to stop the project on the device (by
clicking Stop) before you download files, to make sure the project stops as expected and does not cause
a disruption. You are not required to stop the project, however; if it is robust enough to handle changes
while running, you can download new files at any time.

The Only newer files option controls which project files are downloaded:

• If this option is selected, only newer files — that is, files that have changed since the last time the
project was downloaded to the device — will be downloaded. This can reduce the total time needed to
download.

• If this option is cleared, all of the project files will be downloaded, overwriting the existing files on the
device.

7. If you have enabled Data Protection in your project settings but not on the target device, you will be asked
if you want to enable it on the target device. Click Yes, and then when prompted, enter the Data Protection
password.
For more information, see Enable Data Protection to encrypt sensitive information on page 111. If you do
not enable Data Protection on the target device now, you must do so later in Remote Agent on the device
itself before you run the project.

The project is downloaded to the target device. If the download is interrupted, you will be asked if you want to
continue, and if you do, you will also be advised that the project might not run properly after it is downloaded.

Please note that once you have configured the Remote Management settings, you can click Download on the
Home tab of the ribbon to send new project files at any time without opening this dialog box.

You can also compress the project files to make them download more quickly over a slow network connection.
To do this, select the Enable File Compression check box in the Communication tab of the Project Settings dialog
box.

Remote Management

Page 738

Run or stop your project on the target device
Once you have downloaded your project files to the target device, you can run or stop the project at will.

There are three ways to run or stop a project on a target device.

Ribbon
Assuming you are currently connected to the target device and you have downloaded your project files to it,
the easiest way to run and stop the project is to use the appropriate commands on the ribbon: on the Home
tab of the ribbon, in the Remote Management group, click Run or Stop.

Remote Management
If you are not currently connected to the target device:

1. On the Home tab of the ribbon, in the Remote Management group, click Connect. The Remote Management
window is displayed.

2. Click the Target tab of the Remote Management window, check the connection settings, and then click
Connect.

3. Click the Project tab of the Remote Management window, check the project settings, and then click Run or
Stop.

Remote Management

Page 739

Configure Remote Agent to autorun a project
By default, you must manually run your finished project on the target device, either from your PC by using
the Project tab of the Remote Management dialog (see above) or on the target device itself by clicking the Start
button in the Remote Agent dialog.

However, you can configure the target device to automatically run a specified project. To do this, edit the file
CEServer.ini on the target device to include the following setting:

[Setup]
AppName=Applicaion Path

Where <project name> is the location of the BOS project files on the target device. For example:

[Setup]
AppName=\Harddisk\Test\CEserverTest

The next time the target device boots up and opens the Remote Agent dialog (CEServer.exe), it will read this
setting and automatically run the specified project.

There are three ways to edit the CEServer.ini file:

• Edit the file directly on the target device using an attached keyboard or the touchscreen keypad. The file
should be located in the same directory as the Remote Agent program (CEServer.exe).

• Mount the target device as a shared volume on your PC and edit the file there.

• Edit the file in the Pro-face\BLUE Open Studio 2020\Redist directory before you install the system
files on the target device.

Note: This last method changes the default copy of CEServer.ini that is included with BOS.
Use this method only if:

• You back up the file before editing it;

• You are installing the same system files on multiple, identical devices; and

• You already know the location (file path) of the BOS project files on the target device (perhaps
by using the normal installation method on a test station).

Thin Clients and Mobile Access

Page 740

Thin Clients and Mobile Access
This section describes how to make your project accessible to thin clients and mobile devices.

BLUE Open Studio 2020 is built on a server/client architecture that can support both thick clients and thin
clients. The choice of the type of client depends upon your system requirements:

• A thick client is a computer that performs most, if not all, of the processing activity during project run
time. It has sufficient processing power, memory, and graphics to run the complete project files, and it
only exchanges data (i.e., function syncronization and tag value changes) with the project runtime server
as needed. (A project runtime server can also be a thick client to another server.)

In BOS, thick clients are handled through Remote Management.

• A thin client is a computer that depends primarily on the project runtime server for processing. It only
needs to have a network connection to get screens and data from the server and a web browser to display
the screens to the user.

Thin Clients in BOS
BLUE Open Studio 2020 allows you to create screens that can be viewed on a remote station in a regular web
browser. The station where the user can view the screens is called the thin client.

Typical thin client architecture

The actual BLUE Open Studio 2020 software is installed only on the server station. All project files —
the tags database, screen files, and task worksheets — are stored on the server, and all background and
communication tasks are executed on the server.

The thin client simply loads your project's graphical interface (i.e., the screens containing objects and
animations) as needed and then uses that interface to represent data (i.e., tag values) on the server. You do
not need to install the BOS development application or any of the project files on the thin client.

This solution provides a high level of flexibility because any computer that has a network connection to the
server station (via TCP/IP) can access the project during run time.

Note: Since screens and screen objects may contain scripting, using VBScript and/or the BOS
Scripting Language, these scripts are executed on the thin client.

Competitive Advantages of Thin Clients
BLUE Open Studio 2020 is built on a server/client architecture that supports true thin clients. This capability
is built into BOS and is not an add-on. This means that:

• The project runtime server can support a large number of simultaneous thin client connections. Each thin
client can view the same or different screens as another thin client.

• The server knows which screen each thin client is viewing and automatically "pushes" any tag value
changes to the thin client, thereby eliminating the need for browser refreshes.

• The server can support run-time language switching for each thin client, which means that one thin client
can display a screen in English while another thin client can display the same screen in Spanish.

Thin Clients and Mobile Access

Page 741

• The project can be configured to support redundant data and web servers with automatic switch-over.

Thin Client Licensing
The maximum number of simultaneous thin client connections depends on settings of the license installed on
the project runtime server. The user does not need to install any license on the thin client.

Thin Clients and Mobile Access

Page 742

Thin Clients

The Underlying Technology
In a BOS project, there are several components used to implement the Thin Client capability.

These components are:

Data Server

The Data Server is built-in to the BOS runtime. The Data Server has direct access to the BOS
Project Tags Database (runtime) and is responsible for working with ISSymbol to make sure any
Tag data being displayed on a Web page at any Thin Client is updated with the latest value(s).

BOS can support a backup or secondary Data Server that will be used should the Primary Data
Server become unavailable. The Thin Client will automatically switch over to the Secondary
without user intervention required.

Web Server

The Primary Web Server is responsible for providing Web pages on demand (i.e., when requested
by the Client) through navigation to various project screens by the Thin Client. The Web Server
communicates with the Thin Client via HTTP protocol over TCP/IP. SSL (Secure Socket Layer)
encrypted communications can be enabled. The Web Server does not need to reside on the same
PC as the BOS runtime project. In fact, the Web Server could be a non-Windows corporate Web
Server. However, the Web Server needs to have access to the HTML files that are the project Web
pages.

BOS supports a Secondary Web Server that will be automatically switched to (by the Client) in
case the Primary Web Server becomes unavailable.

Web Browser

The Web Browser is located on the Thin Client PC and provides the graphical interface function
with the user. Web pages (HTML) is passed to the browser via demand ("pull") and data is
"pushed" to the browser by the Data Server whenever a Tag or Tags referenced on the Screen
displayed on the Web Client is updated in the Tag Database.

ISSymbol

ISSymbol is a Pro-face-provided ActiveX Control that facilitates the interaction between the
browser on the Web Client and the Web Server as well as the Data Server.

The ISSymbol ActiveX Control is used for both the Internet Explorer-based and Secure Viewer-
based browsers.

Web Tunneling Gateway

The (Primary) Web Tunneling Gateway is a bridge between the Web Server and the Data Server
that is used in one of two situations. The first is whenever data security is required (e.g., BOS
data exchanged with the Thin Client needs to be encrypted). The second situation is when the
Data Server is "hid" behind a corporate firewall, and only the Web Server IP address (or URL) is
exposed.

BOS supports a backup (Secondary) Web Tunneling Gateway to be used if the Primary Web
Tunneling Gateway becomes unavailable. The Thin Client will automatically switch over to the
secondary Web Tunneling Gateway.

The Web Tunneling Gateway is automatically installed when BLUE Open Studio 2020 is
installed on your PC if the installation program detects that IIS is present.

Note:

• The Web Tunneling Gateway is automatically installed if IIS is detected during the installation
process. Otherwise, it must be manually installed.

• The main function of the Web Tunneling gateway is to encapsulate data packets in HTTP or
HTTPS for communication through a firewall.

Thin Clients and Mobile Access

Page 743

Examples of Client/Server Architecture
This section describes some example architectures applied for web-based solutions and provides information
on how to configure the project for each architecture. This section does not describe all possible architectures,
but it provides the concepts necessary to design and configure different scenarios based on the basic
architectures illustrated below

The Web Settings are configured by the Web tab of the Project Settings dialog. To open this dialog: on the
Project tab of the ribbon, in the Web group, click Thin Client. By pressing the Advanced button, you access
additional settings. The following pictures illustrate these dialoges:

Thin Clients and Mobile Access

Page 744

The following table describes the meaning of the main Web settings illustrated in the above dialoges:

Setting Description

Data Server IP Address When the Web Tunneling Gateway is disabled: The Thin Client Control (ISSymbol) uses the
Data Server IP Address to connect to the BOS TCP/IP Server Task.

When the Web Tunneling Gateway is enabled: The Web Tunneling Gateway uses the Data
Server IP Address to connect to the BOS TCP/IP Server Task.

Secondary Data Server IP Address Same as the Data Server IP Address. However, the Secondary IP Address is used only when the
connection with the Data Server IP Address fails.

Web Tunneling Gateway IP Address The Thin Client Control (ISSymbol) uses the Web Tunneling Gateway IP Address to connect to
the Web Tunneling Gateway.

Web Tunneling Gateway Secondary IP Address Same as the Web Tunneling Gateway IP Address. However, the Web Tunneling Gateway
Secondary IP Address is used only when the connection with the Web Tunneling Gateway IP
Address fails.

The Secondary addresses can be used in the following scenarios:

• When the Thin Clients can connect to either one of two redundant Servers (Web or Data); or

• When the Thin Clients can connect to the Server through the Intranet (LAN – Local Area Network) or
through the Internet (WAN – Wide Area Network). In this case, the Primary addresses should be configured
based on the network used more often by the Thin Clients. In the following examples, the LAN addresses
are used as Primary and the WAN addresses are used as Secondary.

The following table describes the meaning from some terms used in the next examples:

Term Description

LAN Local Area Network (for example, Intranet)

WAN Wide Area Network (for example, Internet)

Server Station where the following components are running:

• BOS (TCP/IP Server task)

Thin Clients and Mobile Access

Page 745

Term Description
• Web Server (for example, Internet Information Services from Microsoft – IIS)

• Web Tunneling Gateway for IIS (if enabled)

Although BOS does not need to run in the same station where the other components are running, the following examples
assume that it is.

Thin Client LAN Thin Client station (Web Browser + ISSymbol control) that connects the Server via the LAN.

Thin Client WAN Thin Client station (Web Browser + ISSymbol control) that connects the Server via the WAN.

IP_SERVER_LAN IP Address of the Server on the LAN.

IP_SERVER_WAN IP Address of the Server on the WAN.

IP_ROUTER_LAN IP Address of the Router on the LAN.

IP_ ROUTER_WAN IP Address of the Router on the WAN.

ScreenName Name of the project screen, saved as HTML, that is open on the Thin Client station.

Example 1: Web Server and Thin Client in the same Intranet (LAN)

This is the very common architecture, as well as the simplest to configure. In this architecture, both the Web
Server (e.g., Microsoft IIS) and the Data Server (i.e., the BOS TCP/IP Server module) are running on the same
PC. The Thin Client connects to the Web Server to download the HTML screen file(s). Then it connects to
the Data Server to exchange data with the BOS runtime project. Since both the Thin Client and the Server
station are connected to the same network, the Thin Client can access the Server station directly through its
IP address (or host name).

Configuration:

Setting WTG Enabled Web Gateway Disabled

Data Server IP Address IP_SERVER_LAN IP_SERVER_LAN

Secondary Data Server IP Address - -

Web Tunneling Gateway IP Address IP_SERVER_LAN -

Web Tunneling Gateway Secondary IP Address - -

Note:

• URL From Thin Client LAN: http://IP_SERVER_LAN/ScreenName.html

• Home directory of the web server (HTTP server) on the server station: Web sub-folder of the project

Thin Clients and Mobile Access

Page 746

Example 2: Web Server with Intranet (LAN) and Internet (WAN) Connections

This architecture has both the Web Server (e.g., Microsoft IIS) and the Data Server (i.e., the BOS TCP/IP
Server module) running on the same PC. Thin Clients can connect to the Server through either an Intranet
(LAN) connection to the Server or an Internet (WAN) connection to the Server (e.g., two different Ethernet
ports).

Configuration:

Setting Web Gateway Enabled Web Gateway Disabled

Data Server IP Address IP_SERVER_LAN IP_SERVER_LAN

Secondary Data Server IP Address IP_SERVER_LAN IP_SERVER_WAN

Web Tunneling Gateway IP Address IP_SERVER_LAN -

Web Tunneling Gateway Secondary IP Address IP_SERVER_WAN -

Note:

• URL From Thin Client LAN: http://IP_SERVER_LAN/ScreenName.html

• URL From Thin Client WAN: http://IP_SERVER_WAN/ScreenName.html

• Home directory of the Web Server (HTTP server) on the Server station: Web sub-folder of your
project folder

• You must assign a Fixed IP address to the Web Server on the Internet (WAN), and the project
must be running in this Server. Consult your ISP provider or IT department for further
information about how to get a Fixed IP address for your Server.

Example 3: Web Server with Intranet (LAN) and Router Internet (WAN) Connections

This architecture has both the Web Server (e.g., Microsoft IIS) and the Data Server (i.e., the BOS TCP/IP
Server module) running in the same PC. Thin Clients can connect to the Server through either an Intranet
(LAN) connection or an Internet (WAN) connection. There is a Router between the Intranet (LAN) and the
Internet (WAN).

Thin Clients and Mobile Access

Page 747

Configuration:

Setting Web Gateway Enabled Web Gateway Disabled

Data Server IP Address IP_SERVER_LAN IP_SERVER_LAN

Secondary Data Server IP Address IP_SERVER_LAN IP_ROUTER_WAN

Web Tunneling Gateway IP Address IP_SERVER_LAN -

Web Tunneling Gateway Secondary IP Address IP_ROUTER_WAN -

Note:

• URL From Thin Client LAN: http://IP_SERVER_LAN/ScreenName.html

• URL From Thin Client WAN: http://IP_ROUTERR_WAN/ScreenName.html

• The Router must be configured to forward the TCP Port(s) from its public IP (IP_ROUTER_WAN) to
the Server private IP (IP_SERVER_LAN).

If the Web Gateway is enabled, only the HTTP Port (80, by default) or the HTTPS Port (SSL Port
443, by default) must be forwarded from IP_ROUTER_WAN to the IP_SERVER_LAN.

If the Web Gateway is disabled, both the HTTP Port (80, by default) and the Studio TCP/IP
Server Port (1234, by default) must be forwarded from IP_ROUTER_WAN to the IP_SERVER_LAN.
Consult the Router documentation for further information about how to configure Port
Forwarding on it.

• Home directory of the Web Server (HTTP server) on the Server station: Web sub-folder of your
project folder

• You must assign a Fixed IP address to the Router on the Internet (WAN), and the project must be
running in this Server. Consult your ISP provider or IT department for further information about
how to get a Fixed IP address for your Server.

Configuring the Data Server
BOS has a couple dialoges that are used for configuration of the Data Server and the Web Server
configuration to be used. The Data Server is part of the project runtime and uses the TCP/IP Server module.

Thin Clients and Mobile Access

Page 748

Communication Settings dialog configuration
1. On the Project tab of the ribbon, in the settings group, click Communication.

2. Enter the Port number (1234 is the default) for the Data Server. You can also define the Data Send Period
(i.e., time period for updated communication of data values to the Web Client).

3. Optionally enable Binary Control of the data. It is more secure, but is slower. The default is disabled.

Thin Clients and Mobile Access

Page 749

Enable the TCP/IP task
1. On the Home tab of the ribbon, click Tasks (local or remote, depending on the project's target system).

2. Be sure the TCP/IP Server is set to Automatic. This should be the default state, but can be manually
configured by selecting the Startup button.

3. Be sure the TCP Port number is properly set (see Communication Settings above), otherwise the TCP/IP
Server will start then stop.

Configuring a web server to host your project pages
As part of deploying your project over the Web, you must configure a web server to host your project screens.

You are not required to use a Windows computer to host your project pages. The pages are essentially static
files waiting to be downloaded; all runtime processing is handled by the project viewer (i.e., Internet Explorer
with ISSymbol installed, or Secure Viewer) on the Thin Client. As such, you can use any standards-compliant
web server on any computer platform to host your pages.

Thin Clients and Mobile Access

Page 750

For example, if you already have a Unix-based intranet server, then you can copy your project's Web sub-
folder (or whatever folder in which you've saved your project pages) to the server and have your Thin Clients
point to that server's address.

Please note, however, that the web server you choose may not be robust enough to serve your project in a
production environment and/or it may not support all features of BLUE Open Studio 2020. If you want to use
these features, then in most cases you should use Microsoft IIS as described below.

Before you install and configure any software, please review its documentation thoroughly.

Tip:

A web server typically runs on, or "listens to", a computer's TCP/IP port 80. Only one process can
run on a given port, however, so if another process on your computer — for example, some third-
party SCADA software — is already running on port 80, then it and the web server process might
conflict with each other. You must either configure one of the processes to run on a different port or
use Task Manager to end the conflicting process. If you cannot identify the conflicting process, open
Command Prompt and enter the following command to get a list of all networking processes:

netstat -a -o

NTWebServer
NTWebServer is a lightweight, zero-configuration web server that is included free with BLUE Open Studio
2020. You can use it to demonstrate your project and run basic tests without making the financial and
technical investment in a full-featured web server. It is not robust, however, and it does not support Mobile
Access or Web Tunneling Gateway. For real-world applications, we recommend you use Microsoft IIS as
described below.

NTWebServer can be run on any supported Windows computer, and it can be found in your BLUE Open
Studio 2020 program folder at:

C:\Program Files (x86)\Pro-face\BLUE Open Studio 2020\Bin\NTWebServer.exe

Copy NTWebServer to your project's Web sub-folder, and then run it. It must be located in the same folder as
the pages it will serve, so that after you run it, that folder becomes the "home" directory of the website.

Note:

By default, NTWebServer runs on port 80. To run it on another port, open Command Prompt and
enter the following command:

NTWebserver.exe p <port number>

You can run several instances of NTWebServer on the same computer, as long as each instance runs
on a different port and does not conflict with any other processes for control of that port.

NTWebServer must run as a normal program; it cannot run as a Windows service.

Microsoft IIS
Internet Information Services (IIS) is the full-featured server software that is included in most versions of
Windows and Windows Server. It supports all features of BLUE Open Studio 2020, and it is robust enough to
serve almost any project in a production environment. It is the web server that we recommend for most users.
To properly install and configure it, however, you should be experienced with administering Windows on a
network.

Please note that these instructions apply only to the following versions of IIS:

Version …on Operating System

IIS 8.5 • Windows 8.1

Thin Clients and Mobile Access

Page 751

Version …on Operating System
• Windows Server 2012 R2

IIS 10 • Windows 10

• Windows Server 2016

• Windows Server 2019

Thin Clients and Mobile Access

Page 752

For the sake of system security, IIS is turned off by default when the operating system is installed. Use the
Windows Features control panel to turn it on. If you want to use Mobile Access and/or WTG in your project,
make sure ASP, ASP.NET, and ISAPI Extensions are also turned on.

An example of the features selected in Windows 10

Once IIS is turned on, you can use Administrative Tools to configure it. For more information, please refer to
Microsoft's extensive documentation.

Thin Clients and Mobile Access

Page 753

Apache for Windows
If IIS is not available to you or if you choose not to use it, then the second most popular web server for
Windows is the open-source Apache. However, it requires even more expertise than IIS to properly install and
configure, so please review the documentation thoroughly before you attempt it.

Install the Thin Client software
Install the Thin Client software on a client station in order to let users view your project.

Note: We recommend that you use Mobile Access instead of our traditional Thin Client software
whenever possible. Thin Client depends on legacy, Windows-only technologies, while Mobile Access
allows you to use any HTML5-compatible browser running on any platform as a project viewer.
Mobile Access does not yet support all of the features that Thin Client does, but we are continuing to
improve Mobile Access with every new release.

If you have already installed either the full BLUE Open Studio 2020 software or one of the runtime editions on
the computer or device that you want to use as a client station, you may skip this procedure because you do
not need to install the Thin Client software on the same computer or device. The full software and the runtime
editions include the same components as the Thin Client software, except that they are preconfigured to view
the project that is running locally.

Before you begin this procedure, you should install the full BLUE Open Studio 2020 software on at least one
Windows computer — typically, on your project development workstation — because doing so also unpacks
the Thin Client software installer.

To run the Thin Client software installer, you must have a computer or device with a network connection and
one of the following operating systems:

• Windows:

• Windows 10, version 1803 or later (including LTSC/LTSB versions)

• Windows 8.1

• Windows Server:

• Windows Server 2019

• Windows Server 2016

• Windows Server 2012 R2

You must also have Administrator privileges on the computer or device in order to install any software.

The Thin Client software is based on ISSymbol, which is an ActiveX control that we developed to open project
screens and exchange data (e.g., tag values) with the project runtime. It acts as a control layer between the
client and the server, similar to the Java Virtual Machine for Java-based applications, and it provides a high
level of security because it does not allow the project to access the operating system on the client station.

To install the Thin Client software:

1. Locate the Thin Client software installer in your BLUE Open Studio 2020 program folder.

If BLUE Open Studio 2020 was installed at its default location on your computer, the Thin Client software
installer should be located at:

C:\Program Files (x86)\Pro-face\BLUE Open Studio 2020\Redist\WebAddOn\ThinClient
\ThinClientSetup.exe

2. Copy the Thin Client software installer to the computer or device on which you want to install the software.
Assuming the computer or device has a network connection — which it should, if you plan to use it as a
project viewer — you can simply copy the installer across the network. Otherwise, copy the installer to
removable media (e.g., a USB flash drive) and then carry it to the computer or device.

3. On that computer or device, run the Thin Client software installer (ThinClientSetup.exe).
The first page of the installation wizard is displayed.

4. Click Next.

http://httpd.apache.org/

Thin Clients and Mobile Access

Page 754

The next page of the wizard is displayed.

5. On the Customer Information page, type your name and your company name, and then click Next.
The next page of the wizard is displayed.

6. On the Choose Destination Location page, select the folder where the software should be installed, and then
click Next.
By default, the software will be installed at:

C:\Program Files (x86)\Pro-face\Thin Client\<ID string>\

The next page of the wizard is displayed.

7. On the Select Features page, select the specific features and components that you want to install, and then
click Next.
Feature Description

Program Files The main program files for the thin clients. This
feature cannot be deselected.

Secure Viewer Creates shortcuts in the Start menu and on the
desktop. If you deselect this feature, the program
files will still be installed but the shortcuts will
not be created. You will need to locate the Secure
Viewer program (Viewer.exe) and then manually
run it.

PDF Printing Additional software that allows the project to save
run-time reports as PDF files.

Security System Device Driver An additional keyboard driver that enforces project
security during run time by controlling user input.

The next page of the wizard is displayed.

8. On the Ready to Install the Program page, click Install.
The software is installed, and then when the installation is finished, the last page of the wizard is
displayed.

9. Click Finish to close the installation wizard.

Once the Thin Client software is installed, you may choose which type of thin client to use:

• If you choose to use Secure Viewer as a standalone program, you must configure it before you can run it.
For more information, see Configure and run Secure Viewer on page 755.

The Thin Client software itself does not need to be licensed on any computer or device. The license for the
project runtime determines the number of thin clients that are allowed to connect to it at the same time. For
more information, see License Settings on page 44.

INSTALL THE CUSTOM WIDGET FRAMEWORK ON A CLIENT STATION
If your project screens include custom widgets, you might need to install Custom Widget Framework on some
client stations to enable them to properly display the widgets.

This task applies only to stations on which you have already installed the Thin Client software — in other
words, stations that are using the Thin Client software to view your project screens.

Stations that are viewing your project through Mobile Access do not need to have Custom Widget Framework
installed, because custom widgets are HTML5-based screen objects that can be displayed normally in the web
browser.

Before you begin this task, you must have installed the full Studio software on at least one Windows
computer — typically, on your project development workstation — because doing so also unpacks the Custom
Widget Framework installer. (Custom Widget Framework is not included in the Thin Client installer because it
would greatly increase the file size of that installer, for a feature that not all projects use.)

You must have Administrator privileges on a computer or device in order to install any software.

To install the Custom Widget Framework on a client station:

Thin Clients and Mobile Access

Page 755

1. Locate the Custom Widget Framework installer (CustomWidgetFrameworkSetup.exe) in your Studio
program folder.

If Studio was installed in its default location, the Custom Widget Framework installer should be located at:

C:\Program Files (x86)\Pro-face\BLUE Open Studio 2020\Redist\CustomWidgetFramework
\CustomWidgetFrameworkSetup.exe

2. Copy the installer to the client station, either over the network or on a portable hard drive.

3. Run the installer. You might need to do this as a user with Administrator privileges: right-click the
installer, and then on the shortcut menu, click Run as Administrator.

4. Follow the installer's instructions. On the Choose Destination Location page of the installer, make sure the
Bin sub-folder in the Thin Client program folder is selected. If it is not, click Browse and then use the file
browser to locate and select the Bin sub-folder.

Configure and run Secure Viewer
After you have installed Secure Viewer on a Windows computer , you can configure and run it as a project
thin client.

Before you begin this task, you must have already installed Secure Viewer on the computer or device as part
of the full BLUE Open Studio 2020 software, the thin client software, or the project runtime software. For
more information, see Installation Guide on page 34.

Also, you must have Administrator privileges on the computer or device in order to run the Secure Viewer
configuration utility.

Finally, this task assumes that you have properly developed and deployed your project for network access,
that the project itself is running, and that you have the information you will need to configure Secure Viewer
(e.g., the IP address or hostname of the project runtime server). For more information, see Thin Clients on
page 742.

To configure and run Secure Viewer:

1. Locate and run the Secure Viewer configuration utility (ViewerCfg.exe).

If you installed the full BLUE Open Studio 2020 software at the default location on a Windows computer ,
the Secure Viewer configuration utility should be located in the BLUE Open Studio 2020 program folder at:
C:\Program Files (x86)\Pro-face\BLUE Open Studio 2020\Bin\ViewerCfg.exe

If you installed the thin client software at the default location on a Windows computer, the Secure
Viewer configuration utility should be located in the Thin Client program folder at: C:\Program Files
(x86)\Pro-face\Thin Client\ID string\ViewerCfg.exe

Note: To run properly, the Secure Viewer configuration utility must be run with Administrator
privileges. It should be installed with those privileges by default, but if you have problems, check
the file properties for ViewerCfg.exe and make sure the Run as Administrator option is selected.

Thin Clients and Mobile Access

Page 756

The configuration utility window is displayed.

Secure Viewer configuration utility
2. In the Data Server IP and TCP Port boxes, type the host name or IP address and port number of the data server

(a.k.a. the project runtime server).
By default, the Encrypted Channel option is selected and the port number is 51234. Make sure these settings
match the corresponding project settings. For more information, see Communication tab on page 120.

3. In the URL box, type the URL of the project file (<project name>.APP) on the project runtime server.
The project file must be accessible via either the local file system, network file sharing, or a properly
configured web server, and the syntax of the URL depends on which it is.

4. Configure the other settings as needed.

Note: Configuring these settings is optional. In most cases, the default settings should suffice.

a) Select the Enable Splash Window check box to display a splash window when Secure Viewer is run.

b) Select the Enable Progress Bar check box to display a progress bar while Secure Viewer loads the project
file.

c) Click Advanced.

Thin Clients and Mobile Access

Page 757

The Advanced dialog box is displayed.

Secure Viewer advanced settings
d) In the Secondary Data Server IP box, type the IP address (or hostname) of the secondary data server, if any.

The secondary data server is another computer that is hosting the same project in parallel with
the primary data server. If Secure Viewer loses its connection to the primary data server, it will
automatically attempt to connect to the secondary data server.

e) In the Backup URL box, type the URL of the backup project file.

f) In the Date Format area, select the order and separator for the date format.
For more information, see About the date format and how to change it on page 707.

g) In the Switch Timeout box, type the number of seconds that Secure Viewer should wait before it attempts
to connect to the secondary data server, in the event that it becomes disconnected from the primary
data server.

h) Select the Log on as default user check box to have Secure Viewer automatically log on as the default user
"Guest", if it is enabled.

This will eliminate the need to enter a specific username and password when Secure Viewer is run,
although the user can choose to log off and then log on again with another username. For more
information, see Project Security on page 652.

Tip:
You can also change the name of the default user, from "Guest" to something else. To do
this, use a text editor to open the Secure Viewer initialization file (Viewer.ini) and edit the
following setting:

[Options]
user=<default user name>

i) Select the Disable Commands check box to prevent Secure Viewer from sending commands (i.e., user
input) to the project runtime server.
When this option is selected, Secure Viewer will only display current run-time information received
from the server, effectively making the client station a simple, non-interactive viewscreen.

j) Select the Force remote behavior check box to force Secure Viewer to behave as if it is running on a remote
station, which means that it will keep virtual copies of project tags with Local scope.

Thin Clients and Mobile Access

Page 758

This option is relevant only if Secure Viewer is running on the same computer as the project runtime
server. If it is, and if this option is not selected, Secure Viewer will synchronize all project tags with the
server, regardless of scope. For more information, see Choosing the Tag Scope on page 154.

k) Click OK to close the Advanced dialog box.

5. In the Secure Viewer configuration utility, review the settings and then click Save.

The configuration is saved as a Secure Viewer initialization file (Viewer.ini). This file should always be in
the same folder as the Secure Viewer program.

Tip: Once you have a properly configured initialization file, you can reuse it with other
installations of Secure Viewer.

6. Click Close to close the Secure Viewer configuration utility.

7. Run the Secure Viewer program by doing one of the following:

• Double-click the Secure Viewer program itself (Viewer.exe), which should be located in the same folder
as the Secure Viewer configuration utility; or

• Double-click the Secure Viewer shortcut on your desktop, if you installed the Thin Client software.

The Secure Viewer program window is displayed, and if the program has been properly configured, it
connects to the project runtime server and loads the project file.

8. If the Secure Viewer program is connecting to the project runtime server via encrypted channel, you might
be prompted to verify the server certificate — in the Verify Certificate dialog box, do one of the following:

• To verify the certificate for the current session only, click Yes.

• To verify the certificate for all sessions, click View Certificate and then follow the instructions to install the
certificate in the Windows certificate store.

If you choose to install the certificate and then accept the default settings, it will be installed in the
following store:

Current User\Intermediate Certification Authorities\Certificates

For more information about installing and managing certificates, see Windows help.

When you are done with this task, you can use Secure Viewer to access the project as you normally would.

As part of securing the project thin client, you can configure the computer or device to automatically run
Secure Viewer on startup and then not allow the user to exit the program or switch to other programs. For
more information, contact your system administrator.

CUSTOMIZE THE VIEWER PROGRAM ICON IN THE TASKBAR
You can customize the Viewer program icon that appears in the Windows taskbar simply by copying your
custom icon into the program folder.

This customization works both for the local Viewer module that is part of the project runtime software and for
the standalone Secure Viewer program that is part of the thin client software. It is primarily intended for the
latter, however, because that is the program most users see.

You might want to customize the Viewer program icon if, for example, you are a system integrator and you
want to provide a branded, turnkey solution to your customers. Customizing the icon can help to maintain a
common look and feel.

This task assumes you already have the custom icon that you want to use. It should be a standard Windows
ICO file (*.ico).

To customize the Viewer program icon, copy the ICO file into the same folder that contains the Viewer
program (Viewer.exe), and then rename the ICO file to Viewer.ico.

The location of the Viewer program varies:

Thin Clients and Mobile Access

Page 759

• For the standalone Secure Viewer program running in Windows, it is typically located at:

C:\Program Files (x86)\Pro-face\Thin Client\BBBE2E0F-084D-484b-AFDF-EA12BF0E52FF
\Viewer.exe

• For SCADA running in Windows, it is typically located at:

C:\Program Files (x86)\Pro-face\BLUE Open Studio 2020\Bin\Viewer.exe

The next time the Viewer program is run, it will automatically get the custom icon and display it in the
taskbar.

Customizing the icon: before and after

Implementing Security for Web-based Applications
There are various methods for implementing security of Web-based applications. The approach that you
require can depend on a number of factors, and may involve one or more methods of implementing Security.

Method 1: Password Protection
BOS provides the ability to create Groups of Users and individual Users within a Group. Each Group
(e.g., Operators, Supervisors, Maintenance) can have different security levels and access different levels of
functionality. Individual passwords can be configured for each User.

Security Groups and Users

In addition, Groups can have advanced settings, allowing features like minimum password size, password
aging, e-signature on Objects with Command animations, Account Auto-lockup (e.g., lock up after a number

Thin Clients and Mobile Access

Page 760

of invalid attempts to access), and User Account blocking (temporarily disable – e.g., when employee is on
vacation).

Thin Clients and Mobile Access

Page 761

If System Security is enabled, these Password Protection features are also available at the Thin Client station.
When a User at a Thin Client station attempts to connect to the Web Server, they will be prompted for a User
Name and a Password. If either is invalid, the User will not be let on to the system.

Log On dialog

Within a project, the various screen objects and their animations, and Screen access can have a security level
assigned to it. The current User logged on must have a access level range which matches the desired Object or
Screen. The following is a representative method of assigning security access levels by Group.

For more information, see Security.

Thin Clients and Mobile Access

Page 762

Method 2: Disabling Thin Client Commands
BOS allows bi-directional data exchange between the Thin Client and the Data Server. However, for security
reasons it may be advantageous to only allow the Thin Client to view the process or machine data, and not
send any data back to the Data Server.

Selecting (checking) the Disable Remote Client Commands option in the project settings (Thin Client on the
Project tab of the ribbon) ensures that all commands coming from a Thin Client station are blocked. The
communication becomes unidirectional (from the Server to the Thin Clients):

Project Settings — Web tab

Method 3: Embedded Firewall
This feature allows the user to filter access to the project based on the Thin Clients IP Address. When a Thin
Client attempts to connect to the Server station, the Server checks if the IP Address of the Thin Client station

Thin Clients and Mobile Access

Page 763

is authorized to access the project. The ranges of authorized IP Addresses can be configured in the Server
station by clicking IP Security in the project settings (Thin Client on the Project tab of the ribbon):

IP Security dialog

Access allowed by IP address

Method 4: Encrypted Communications (SSL)
By enabling the Web Tunneling Gateway (WTG), you can enable all communications between the Data Server
+ Web Server and the Thin Client to be encrypted using RC6, a highly-secure 128-bit encryption standard. To
use SSL, you must do the following:

Thin Clients and Mobile Access

Page 764

1. Click Advanced in the project settings (Thin Client on the Project tab of the ribbon). Select (check) the Web
Tunneling Gateway Enabled option. Click on the SSL radio button and be sure the SSL port is set to 443. Click
OK.

Project Settings — Web — Advanced dialog
2. In your Web Server, be sure SSL capabilities are enabled and that a SSL Certificate of Authentication is

present.

3. Be sure SSL is enabled in the Web Client

4. Set up all other Web configurations to support the WTG.

Method 5: VPN
A VPN is a Virtual Private Network. It is called virtual since it really uses the public Internet to transport
data from one computer to another. But since this network is encrypted and uses other security mechanisms
enabled by the ISP, is it a very secure Private Network. While VPN's are inherently secure, they are more
costly that a simple public Internet connection.

List of network ports used by this software
This is a list of the various network ports that are used by the SCADA project runtime, its subordinate drivers
and utilities, and other related programs.

Port Feature or Protocol

20 FTP Server (Data)

21 FTP Server (Command)

25 Simple Mail Transfer Protocol (SMTP), for outgoing mail

80 Web Server (HTTP), unencrypted

102 Siemens SIMATIC S7 Protocol, for the SIETH and SITIA drivers

110 Post Office Protocol version 3 (POP3), for incoming mail

Thin Clients and Mobile Access

Page 765

Port Feature or Protocol

118 Microsoft SQL Server Services

135 Distributed Component Object Model (DCOM), for OPC DA and OPC HDA

161 Simple Network Management Protocol (SNMP)

162 Simple Network Management Protocol (SNMP) Trap

389 Lightweight Directory Access Protocol (LDAP), unencrypted

443 Web Server (HTTPS), encrypted using SSL

502 Modbus TCP/IP, for the MOTCP driver

636 Lightweight Directory Access Protocol (LDAP), encrypted using SSL

1028 FTP Client (Command)

1029 FTP Client (Data)

1234 SCADA project runtime server (a.k.a. Data Server or TCP/IP Server),
unencrypted

Note: You can change this port number in your project settings.
For more information, see Communication tab on page 120.

1433 Microsoft SQL Server

1434 Microsoft SQL Server Dedicated Administrator Connection (DAC)

1521 Oracle

1526 Oracle

2030 Oracle

3306 MySQL (can be configured to use 3306–3309)

3872 Oracle Management Remote Agent

3997 Studio Database Gateway (StADOSvr.exe)

Note: You can change this port number in the gateway settings,
particularly if you need to run multiple instances of the gateway.
For more information, see Manually running Studio Database
Gateway on page 841.

4322 Remote Agent (CEServer.exe)

4448 Mobile Access Runtime (MobileAccessTask.exe)

5432 PostgreSQL

44818 Allen-Bradley CIP (default), for the ABCIP driver

Note: You can change this port number in the ABCIP driver
settings.

47808 BACNet UDP (default), for the BACNE driver

Note: You can change this port number in the BACNE driver
settings.

48010 OPC UA Server (default)

Note: You can change this port number in your project settings.
For more information, see Configure the communication settings
for OPC UA Server on page 637.

Thin Clients and Mobile Access

Page 766

Port Feature or Protocol

51234 SCADA project runtime server (a.k.a. Data Server or TCP/IP Server), encrypted
via TLS/SSL

Note: You can change this port number in your project settings.
For more information, see Communication tab on page 120.

Notes
Depending on which features you use in your project, you might need to update your network firewall settings
in order to open the corresponding ports and allow the traffic to pass through. For example, if you develop
your project to send email alerts, you need to open port 25 for SMTP.

Many of the port numbers listed above are only the defaults for those ports. You can change them, but if you
do so, you need to do so on both the server side and the client side, and that is in addition to updating the
firewall settings. Keep in mind that the SCADA project runtime acts as the server in some cases and as the
client in others, depending on the feature or protocol.

The communication drivers (e.g., MOTCP, ABCIP, BACNE) included in the list above are only some of the most
commonly used drivers. For more information about the port used by a specific driver, see the documentation
for that driver.

View or disconnect client sessions
Use the Current Sessions dialog box to view or disconnect clients that are currently connected to your project
runtime server.

Before you begin, your project must be running on Windows using the full BLUE Open Studio 2020 software
with an appropriate runtime license. The Current Sessions feature is not available in our other runtime
editions. Also, you must have access to the computer that hosts the project runtime, either directly or
through screen sharing. You cannot access the Current Sessions feature through Remote Management.

When a client connects to your project runtime server, a client session is initiated. Each session counts
against the maximum number of clients allowed by your runtime license. A session ends only when the
user either logs off from the project or closes the client program, so if the current number of client sessions
approaches the maximum number of clients allowed, you might need to disconnect old or idle sessions in
order to ensure that your project runtime server remains accessible.

Note: For Mobile Access only: due to technical differences between web browsers, the exact moment
when the thin client is considered "closed" — and therefore the session ends — varies somewhat. In
Chrome for Android, the session ends when the user goes to a new website but not when the user
closes the browser tab. In Safari for iOS, it is the opposite: the session ends when the user closes the
browser tab but not when the user goes to a new website.

Thin Clients and Mobile Access

Page 767

Thin Client sessions are handled by the TCP/IP Server runtime task in your project. When the project is
running and the task is started, a TCP/IP Server icon is displayed in the notification area of the Windows
taskbar. You can use this icon to open the Current Sessions dialog box for the Thin Client sessions.

Example of the Current Sessions dialog box for TCP/IP Server

Mobile Access sessions are handled by the Mobile Access runtime task, and similar to the above, when the
project is running and the task is started, a Mobile Access Task icon is displayed in the notification area of
the Windows taskbar. You can use this icon to open the Current Sessions dialog box for the Mobile Access
sessions.

Example of the Current Sessions dialog box for Mobile Access

Thin Clients and Mobile Access

Page 768

For more information about the TCP/IP Server and Mobile Access runtime tasks, see Runtime Tasks on page
134.

Also, please note how the title bar shows the maximum number of clients allowed. That information is gotten
from your runtime license settings. For more information, see License Settings on page 44.

Finally, the User Name column will show individual user names only if you enabled the security system in your
project. If you did not, all users will be logged on and shown as "Guest". For more information, see Project
Security on page 652.

Note: The Mobile Access runtime task has a memory limit of 1.5 GB. If this limit reached during
project run time — typically due to trying to run an extremely large project, but also sometimes due
to managing a large number of client sessions — additional clients will not be allowed, regardless of
the runtime license settings. When this happens, an alert message will be displayed to users who try
to log on.

To view or disconnect thin client sessions:

1. In the notification area of the Windows taskbar, right-click either the TCP/IP Server icon or the Mobile Access
Task icon, and then on the shortcut menu, click Current Sessions.
You might need to expand the notification area to show hidden icons.
The Current Sessions dialog box is displayed.

2. To refresh the list of sessions, click Refresh.
In most cases, the list will automatically refresh itself as thin clients connect and disconnect, but you can
also manually refresh it make sure you have the latest information.

3. To disconnect a specific session, select that session in the list, and then click Disconnect.
The selected session is disconnected and the session's user is logged off. A new session is automatically
initiated, as if the user restarted or reloaded the thin client, but it will expire after a specfied period if no
one logs on. For more information about session expiration, see Configure the global settings for all areas
on page 803.

4. When you are done, either close the window or click Close.

Thin Clients and Mobile Access

Page 769

Mobile Access
You can use Mobile Access (sometimes also called Studio Mobile Access or SMA) to deploy an HTML5-
enhanced web interface that presents alarms, trends, process values, and even project screens in a unified,
easy-to-use "dashboard".

This web interface is designed for smartphones and tablets, such as Android and iOS devices, but it can be
accessed from almost any computer using a modern web browser.

It is important to remember that although Mobile Access is part of the same project runtime and may be
hosted on the same server that hosts the screens published for Thin Clients, it is a distinct interface based
on platform-agnostic technology. Our traditional Thin Client software is based on ActiveX technology, and
as such, it can run only on Windows computers. In contrast, the Mobile Access web interface is based on
HTML5, so it can run in most web browsers on most computers and devices.

To use Mobile Access, you must have a web server running on the same computer that hosts your project
runtime server, and you need to install and configure some additional software that creates the actual Mobile
Access web interface and allows the web server to communicate with the project runtime server. This software
is available both for Microsoft IIS and for other, CGI-enabled web servers (e.g., Apache).

Also, your software license must include enough Thin Clients to accommodate all of the users that you
expect to access the Mobile Access web interface at the same time. Please contact your vendor to review your
software license. For more information, see License Settings on page 44.

The rest of this section describes how to set up your web server for Mobile Access, how to configure the
Mobile Access web interface during project development, and how to log on to and navigate the web interface
during project run time. You should already be familiar with how to locate and open worksheets in the Project
Explorer, how to edit a worksheet, and how to save and close a worksheet.

Supported features in Mobile Access
This is a list of the features that are currently supported in project screens when they are viewed in the Mobile
Access web interface.

Screen objects and animations
The following table shows exactly which screen attributes, objects, and animations are supported in project
screens, as well as the specific properties that are supported on each one:

Group Type Properties

Background Picture You can select any image format, but support for certain formats varies from browser to
browser. If you use an unsupported image in your project screen, the browser will not be able to
render that image when you view the screen in the Mobile Access web interface. For the best
performance across all browsers, try to use "web-compatible" image formats such as GIF, JPG,
and PNG wherever possible.

Size Width, Height

Location Top, Left

Titlebar Text only — you cannot configure a tag in curly brackets (e.g., {MyTitle}).

System Menu Close button only

Note: If you select the System Menu option, the user will be able to drag the
screen within the browser window.

Style Dialog, Popup, Replace (Partial), Replace (Complete), Overlapped

Border None, Thin

Screen Logic On Open, While Open, On Close

Screen Attributes

Multi Touch Settings Inner Zoom only — it is automatically enabled and cannot be changed.

Shapes Line Solid Line, Dashed Line, No Line, Color, Weight

Thin Clients and Mobile Access

Page 770

Group Type Properties

Open Polygon Solid Line, Dashed Line, No Line, Color, Weight

Closed Polygon All Border Types, Border Color, Border Weight, Fill Color, Fill Effects (Horizontal, Vertical,
Diagonal Up, Diagonal Down)

Rectangle All Border Types, Border Weight, Border Color, Fill Color, Fill Effects (Horizontal, Vertical,
Diagonal Up, Diagonal Down), Caption, Fonts, Multiline, Wrap Text

Rounded Rectangle All Border Types, Border Weight, Border Color, Fill Color, Fill Effects (Horizontal, Vertical,
Diagonal Up, Diagonal Down)

Ellipse Type - Ellipse only, Border Weight, Border Color, Fill Color, Fill Effects (Horizontal, Vertical,
Diagonal Up, Diagonal Down)

Text Caption, Align, Fonts, Background, Hint (for Data Input only)

Horizontal scaling of text — which you can normally achieve by horizontally resizing the Text
object — is not supported. Text will always appear at its full width for the specified font size. If
you need "narrow" text, use an appropriate font like Arial Narrow.

Text Box Hint (for Data Input only), Format (all choices), Input Enabled, Fonts, Mask/Count, Minimum
Value, Maximum Value, Disable, Multi-line, Password, Scroll Bar, Word Wrap, RTL

Button Styles (3D Sharp, 3D Soft, OS Like), Fonts, Align, Multiline, Wraptext

Images, including the Size and Position properties, are supported. The Transparent Color
property is not supported, however. Images that have transparency encoded in the image file
itself (i.e., in the so-called "alpha channel") will be displayed as intended in the browser. This
includes .png files and some .gif files. Other image formats — most notably .bmp files — cannot
be displayed with transparency in the browser. We recommend using .png files whenever
possible.

Pushbutton All Types, States, and Styles

Animations applied to the Pushbutton object are not supported, regardless of whether they are
listed below as being supported in general.

Check Box Tag, True Value, Caption, Fonts, 2 states

Radio Button Tag, True Value, Caption, Fonts, 2 states

Combo Box Label, Position, Disable, Security, Sort, Data Sources (Static Labels or Database; see note),
Advanced (Color, Decimal Points), Fonts (except Strikeout and Underline)

If you select Database as the data source for a Combo Box object, the object must use the
default database (primary or secondary) that is configured in the project settings. However, you
can select a different table and/or field for each instance of the object.

List Box All properties are supported except for the Font properties Strikeout, Underline, and Script

Animations applied to the List Box object are not supported, regardless of whether they are listed
below as being supported in general.

Active Objects

Smart Message Message Display only, Integer Value only, Static Data Source only, Align, Read Tag/Expression,
all Message properties, and all Font properties except for Strikeout, Underline, and Script

Animations applied to the Smart Message object are not supported, regardless of whether they
are listed below as being supported in general.

Alarm/Event see "Alarm/Event Control object" below

Trend see "Trend Control object" below

Data Objects

Grid see "Grid object" below

Linked Symbol see "Custom properties" belowLibraries

Linked Picture Link File, Transparent (Color Code, Tracker)

Note: BMP, JPG, and PNG files only.

Thin Clients and Mobile Access

Page 771

Group Type Properties

Custom Widget fully supported

Command Events: On Down, On Up, On Right Down, On Right Up

Types: VBScript, Open Screen, Close Screen, Set Tag, Reset Tag, Toggle Tag

Hyperlink Type, URL

Bargraph Minimum Value, Maximum Value, Foreground Color, Direction (Vertical, Horizontal), Orientation
(Up, Down)

Text Data Link Format (all choices), Input Enabled, Minimum Value, Maximum Value, Disable, Password, RTL

Color Type (By Limit, By Color), Change Limit, Color, Blink (Slow, Fast)

This animation is not supported when it is applied to a group of shapes (e.g., Line, Rectangle,
Ellipse). Instead, apply the animation separately to each shape before you group them.

Visibility/Position Visibility, Horizontal (Tag/Expression, Value Range, Position, Reference), Vertical (Tag/
Expression, Value Range, Position, Reference), Slider

Note: The tags configured for Horizontal Tag/Expression and Vertical Tag/
Expression are not updated until the user releases the object.

Resize Height (Tag/Expression, Value Range, Size Range, Reference), Width (Tag/Expression, Value
Range, Size Range, Reference)

Animations

Rotation Range Minimum, Range Maximum, Degrees Start, Degrees End, Reference, Offset (x, y),
Counter Clockwise

The Windows-based Virtual Keyboard (VK) is not used for data input on any screen objects or animations.
Instead, if input is required from the user, a customized Data Input dialog box is displayed and the client
station's own keyboard — on-screen for tablets and smartphones, physical for other computers — is used. For
more information, see Data Input on page 342.

Thin Clients and Mobile Access

Page 772

The Hint, E-Sign, Auto Format, Security, and Key properties — which are common to most screen objects and
animations — are not supported unless otherwise noted. The Enable Translation option is supported with some
limitations; see "Translation" below.

Examples of supported screen objects and animations

Alarm/Event Control object
The Alarm/Event Control object is supported in project screens on Mobile Access, and it appears and behaves
essentially the same as it does in the other, Windows-based thin clients. Nevertheless, you should thoroughly
test your project on both types of clients in order to confirm that your Alarm/Event Control object(s) behave
as expected during project run time.

The following list describes the specific object properties and features that are supported on Mobile Access:

• Type: All types and history formats are supported.

• Filters: All options are supported, except Filter Expression for Alarm Online.

• Columns:

• All available columns are supported, except Delete Message.

• Properties: Label, Width, Align.

• As noted above, the Key feature is not supported in any screen object on Mobile Access.

• Advanced:

• Date & Time Format: All options are supported.

• Delete Message: Not supported.

• Acknowledgement: All properties are supported, except the Security feature which is not supported in
any screen object on Mobile Access.

Thin Clients and Mobile Access

Page 773

• Run-time Returned Values: All properties are supported, except Summary Changes. Please note that you
must specify arrays for First Row Text and Selected Row Text.

• Run-time Dialog Triggers: Not supported.

• Save/Print: Not supported.

• Navigation Triggers: Not supported.

• As noted above, the Auto Format feature is not supported in any screen object on Mobile Access.

• Fonts: All options are supported, except Strikeout, Underline, and Script.
• Format: All options are supported, except background color fill effects which are not supported in any

screen object on Mobile Access.

Trend Control object
The Trend Control object is supported in project screens on Mobile Access, but it appears and behaves
somewhat differently than it does in the other, Windows-based thin clients, moreso than can be described
in this documentation. You should thoroughly test your project on both types of clients in order to become
familiar with the differences. In particular, note the differences in behavior of the cursor and toolbar.

You can use multi-touch gestures to manipulate the trend control, assuming your Mobile Access device has
touchscreen input. For example, you can "pinch" and "stretch" to zoom (i.e., change the X-axis scale) and you
can "slide" to pan (i.e., change the X-axis period).

The following list describes the specific object properties and features that are supported on Mobile Access:

• Points:

• Supported properties: Label, Color, Tag/Field, Hide.

• Data Source: Tag only. All tags must be specified in Trend worksheets, but both online (i.e., current) and
historical values can be displayed.

• Data Sources: No other data sources are supported. All tags must be specified in Trend worksheets.

• Axes:

• X Axis: For the Date/Time data type, Period must be Auto. For the Numeric data type, only Min and Max
are supported at this time.

• Y Axis: Only Min and Max are supported at this time.

• Legend:

• The entire legend can be shown or hidden, by selecting or clearing the Show legend option. If no fields are
selected to be visible, however, then the legend will be automatically hidden.

• Only the Label property is supported at this time, and it displays the label that is configured in the
Points section above. Additional properties will be supported in future releases of this software.

• Toolbar:

• The entire toolbar can be shown or hidden, by selecting or clearing the Show toolbar option.

• Supported commands: Run, Stop, Zoom In, Zoom Out, Cancel Zoom, Cursor, Auto Scale.

• If the toolbar is hidden, you can use activation tags to trigger the supported commands.

• You can specify tooltips for the supported commands.

• Advanced:

• Update trigger is supported.

• "Move to current time on run" is the default behavior of the Trend Control object on Mobile Access. If
the option is cleared, it will be ignored.

• Decimation is the default behavior of the Trend Control object on Mobile Access. It cannot be disabled,
and any changes in the configuration will be ignored.

Thin Clients and Mobile Access

Page 774

Grid object
The Grid object is supported in project screens on Mobile Access, and it appears and behaves essentially
the same as it does in the other, Windows-based thin clients. Nevertheless, you should thoroughly test your
project on both types of clients in order to confirm that your Grid object(s) behave as expected during project
run time.

The most significant limitation is that only the Database source type is supported; the Text File and Class
Tag source types are not supported at this time. Also, only the default database connection (either Primary
or Secondary) is supported; if you configure a Grid object to use a database connection other than than the
default, it will not be supported on Mobile Access. You can use any table in the default database, however.

The following list describes the other, specific object properties and features that are supported on Mobile
Access:

• Columns:

• Supported properties: Label, Field, Type (all except Picture), Width, Input.
• You can configure a project tag for Label (e.g., {MyLabel}) in order to change a column label during

project run time, but the value of the tag is gotten only when the project screen is opened. Using Reload
to reload the contents of the Grid object does not also reload the column label.

• Advanced:

• Supported properties: Selected Values, Number of Rows, Row Number, Condition (see below), Reload, Save Trigger,
Insert Trigger, Inserted Values, Save on data change.

• When using the Condition property to filter the grid rows, Date/Time data types are not supported. In
other words, if a grid column is configured so that its Type is one of the Date, Time, or Date/Time
options, then you cannot enter a condition expression that filters the grid rows according to the values
in that column.

• For the Selected Values and Inserted Values properties, you can include an array index in order to specify
the starting position (offset), but that index must be a literal value and not a project tag. For example,
MyArray[3] is valid but MyArray[GridRowStartPos] is not.

• Fonts: All configurations are supported.

• Colors: All configurations are supported.

Translation
The Translation Table feature, the Enable Translation option on most screen objects, and the associated
Translation functions are all supported on Mobile Access, but with the following limitations.

First, customized fonts and date formats for target languages are not supported. Second, only project texts
— that is, the text you add to screens and worksheets as you develop your project — can be translated; the
other options in the Origin menu in the Translation Table worksheet are not supported, which means user
interface elements like menus and dialog boxes cannot be translated. And third, the Translate before parsing
strings in curly brackets and Enable alarm/event delimiters options in the advanced settings are not supported. For more
information, see Project Localization on page 694.

Custom properties
Custom properties (formerly known as "mnemonics") are supported in project screens on Mobile Access,
but only for object properties that are themselves supported, as described in the table above. For more
information, see Use custom properties to set property values when screens are opened on page 328.

Multiple screens and screen groups
You can open multiple screens and screen groups in the Mobile Access web interface, just as you normally
would in other thin clients.

It is not possible at this time, however, to make screen groups available through the Screens control. (The
Screens control is a part of the Mobile Access web interface that allows the user to view selected project
screens.) Instead, to open a screen group, you must do one of the following:

• In another screen, configure a screen object or script to call the Open function to open the screen group,
and then have the user view that other screen first; or

Thin Clients and Mobile Access

Page 775

• Link directly to the screen group file. For more information, see Link directly to a project screen or screen
group on page 814.

Multi-touch gestures
You can use certain multi-touch gestures in project screens — specifically, you can use the "pinch" and
"stretch" gestures to zoom a screen, and you can use the "slide" gesture to pan a screen that has been
zoomed. No other gestures are supported at this time, however. For more information, see Using multi-touch
gestures in project screens on page 355.

Built-in functions
Many but not all of Studio's built-in functions are supported in project screens. To see if a specific function
is supported, please refer to the documentation for that function. The function will be marked either
"Supported", "Not Supported", or "Executed on Server", and there might be additional notes describing how
the function is executed in Mobile Access.

Functions that are marked "Executed on Server" are executed via remote procedure call (RPC) on the project
runtime server. While these functions are supported, you should avoid using a large number of them in any
project screens that you include in Mobile Access. The extra communication required between server and
client can affect run-time performance.

Also, please note that because Database/ERP functions are executed on the server, they affect server tags
(i.e., tags with Server scope) rather than local tags (i.e., tags with Local scope), and that might result in
unexpected behavior when multiple clients try to execute the functions at the same time. As such, you
should avoid specifying optional parameters that take tag names — for example, if you call the function
DBCursorOpen, do not specify the parameters optStrTags and optStrTagError.

For more information, see Appendix: Built-in Language on page 917. More functions will be supported in
future releases of this software.

VBScript
Most VBScript interfaces — including the Graphics Script, the Screen Script, and Command animations on
screen objects — are supported in project screens in Mobile Access. Most VBScript and built-in functions,
commands, and syntax can be used the same as they are outside of Mobile Access, with the following
exceptions and limitations:

VBScript functions that return as Date

VBScript functions that return values as the Date type are not yet supported in Mobile Access.
These functions include the following:

• Date

• Time

• Now

• DateAdd

• DateSerial

• DateValue

• TimeSerial

• TimeValue

Functions that open project screens and display dialog boxes

Functions that open project screens and display dialog boxes can be called from the Screen
Script and Command animations, but they cannot be called from the Graphics Script. These
functions include the built-in functions Open, LogOn, and ShowMessageBox, as well as the
VBScript function MsgBox.

Dialog boxes are displayed as modal windows in the Mobile Access web interface. In other
words, when a function displays a dialog box, project screens in the background will not be
updated until the user closes that dialog box.

Calling variables and procedures declared in the Graphics Script

Thin Clients and Mobile Access

Page 776

Normally, variables and procedures that have been defined in the Graphics Script can be
called from the other VBScript interfaces using the syntax Graphics.variable_name or
Graphics.procedure_name, respectively. This feature is not supported on Mobile Access,
however, because in the Mobile Access web interface, the Graphics Script and each project
screen runs in its own thread separate from the others.

For variables that you want to be global, use project tags instead. For procedures that you
want to be global, define them in Global Procedures and then run them using the function
RunGlobalProcedureOnServer on page 1090.

System tags GroupCNFLoLevel and GroupCNFHiLevel
The pre-defined system tags GroupCNFLoLevel and GroupCNFHiLevel are not supported in
Mobile Access. In fact, these tags have been deprecated; if you want to check the security levels
to which the user has access, use the function CheckSecurityLevel instead.

Setting a project tag to an empty value
When a project tag is given an empty value — for example, when it is set to equal the VBScript
keyword Empty — an error message is sent to the log and the actual value of the tag is not
changed. In other words, the project tag retains its existing value.

Tag fields

The following tag fields are supported on each type of project tag in Mobile Access:

Supported on Type…Tag Field

Boolean Integer Real String

Name ✓ ✓ ✓ ✓

MemberName

Size ✓ ✓ ✓ ✓

Index ✓ ✓ ✓ ✓

Description ✓ ✓ ✓ ✓

Value ✓ ✓ ✓ ✓

TimeStamp ✓ ✓ ✓ ✓

Quality ✓ ✓ ✓ ✓

Blocked

Min ✓ ✓

Max ✓ ✓

Unit ✓ ✓

UnitDiv

UnitAdd

DisplayValue

DisplayMin

DisplayMax

DisplayUnit

Hi ✓ ✓ ✓

Lo ✓ ✓ ✓

HiHi ✓ ✓

LoLo ✓ ✓

Rate ✓ ✓

Thin Clients and Mobile Access

Page 777

Supported on Type…Tag Field

Boolean Integer Real String

DevP ✓ ✓

DevM ✓ ✓

HiLimit ✓ ✓ ✓

LoLimit ✓ ✓ ✓

HiHiLimit ✓ ✓

LoLoLimit ✓ ✓

RateLimit ✓ ✓

DevPLimit ✓ ✓

DevMLimit ✓ ✓

DevSetPoint ✓ ✓

AlrStatus ✓ ✓ ✓

AlrDisable ✓ ✓ ✓

Ack ✓ ✓ ✓

UnAck ✓ ✓ ✓

AlrOffValue ✓

AlrOnValue ✓

AlrAckValue ✓

B0 … B31 ✓

Note:

If you reference a simple class tag without specifying a member (e.g., MyClass-
>fieldname), only the Size and Description fields are supported. If you reference
a complex, array-based class tag without specifying a member (e.g., MyClass[0]-
>fieldname), none of the fields are supported. To access all of the supported
fields listed above, you must specify the full tag and member names, as well as
the array index if applicable. For example, MyClass[0].Member->fieldname. For
more information, see About classes on page 147.

Also, the script/expression compiler used in Mobile Access is stricter than
the one used elsewhere in Studio. It will not accept references to unsupported
tag fields. For example, if you try to reference MyString->B0 anywhere else in
Studio, the compiler will accept the reference and then simply return 0 or some
other invalid value. In Mobile Access , however, a run-time error will be generated
because B0 is not supported on String tags. You can check for such errors in the
log.

For more information about tag fields, see Reference a tag property instead of a project tag on
page 167.

Tag changes in the Event Logger
When a project tag is changed using VBScript in Mobile Access, that change will be logged in the
Event Logger with the client's IP address instead of its host name.

Date formats and time zones

While the server and clients may have their respective system times, Mobile Access always uses
the server's date format and time zone settings when it opens project screens. In the current
release, it is not possible for the server and clients to have different settings, so you should not
try to view project screens on clients with different settings as that might result in unexpected
behavior during run time. (It is okay to use the Alarm, Process Values, and Trend controls in

Thin Clients and Mobile Access

Page 778

the web interface, because they do not include any VBScript that might be affected by this
limitation.)

As a workaround, you can change the time zone setting on your client to match the server, but
if that is not practical and you must view your project screens while in a different time zone, you
should use our traditional Thin Client software instead of Mobile Access.

Boolean tags
Mobile Access does not support the legacy method for handling Boolean tags (i.e., project tags of
Boolean type) in VBScript. Boolean tags are always handled as if they have a numerical value of
-1 for TRUE, to ensure compatibility with Boolean variables in VBScript. Editing your project file
to change the property VBBoolean will not override this. For more information, see How Boolean
tags are handled in VBScript on page 1267.

Statement continuation with comments

In VBScript, you can use an underscore character to indicate that a statement is continued to
the next line. Programmers often do this to make a long statement easier to read. For example:

MyArray = Array("FIRST_NAME", _
 "LAST_NAME", _
 "ADDRESS")

Without the underscore character, the end of the line would also be the end of the statement.

The VBScript compiler in Mobile Access supports continuing a statement like this, except for the
following limitation: in MsgBox statements and function calls, you cannot insert a comment after
an underscore character. For example:

MyVar = MsgBox("Hello World!", _ 'This is a comment
 65, _ 'This is another comment
 "MsgBox Example")

This code would not be accepted by the VBScript compiler in Mobile Access, and the resulting
compiler error could prevent a project screen from opening at all.

For more information about using VBScript in your project, see Overview of VBScript on page 1233.

Important features not supported
Mobile Access supports only the features listed above and with the limitations mentioned. Among the features
not supported, the following ones are most commonly used:

Selecting from a list of users to log on
The Mobile Access Logon screen does not support selecting from a list of users. The user must
know and type their user name. For more information, see Log on to the Mobile Access web
interface on page 805.

Tag updates while built-in dialog boxes are displayed
Certain built-in dialog boxes (e.g., MsgBox, LogOn) act like modal windows when they are
displayed on the Mobile Access client, even though they are displayed within the web browser.
As such, open project screens will stop receiving tag updates from the project runtime server —
and consequently, animations in the project screens might appear to freeze — while one of those
dialog boxes is displayed. The tag updates will resume as soon as the user closes the dialog box.
Please note that this limitation does not apply to Popup-style project screens, which can appear
similar to those dialog boxes.

Tabbing through screen objects
Using a keyboard to tab through and activate screen objects is not supported, due to how
project screens and screen groups are composed and displayed in Mobile Access. In most cases,
it is better to click or tap on a screen object in order to activate it.

Thin Clients and Mobile Access

Page 779

Embedded bitmaps
Embedded bitmaps are not supported in project screens on Mobile Access. If you paste bitmaps
into your screens, make sure that they are saved in separate files. For more information, see
Paste a bitmap image into a screen on page 245.

Image formats
Support for certain image formats varies from browser to browser. If you use an unsupported
image in your project screen, the browser will not be able to render that image when you view
the screen in the Mobile Access web interface. For the best performance across all browsers, try
to use "web-compatible" image formats such as GIF, JPG, and PNG wherever possible.

Background color fill effects
Background color fill effects are not supported in project screens in the Mobile Access web
interface. You can select any solid color for the background, but if you use fill effects to create
a color gradient, only the gradient's "start" color will be displayed. If the screen's background
must be a color gradient, create it as a background image instead. For more information, see
Modifying a screen's background color or image on page 233.

Additional options for Driver and OPC communication

Some additional options for Driver and OPC communication are not supported in Mobile
Access. First, in the project settings, the Send last state option is not supported. Mobile Access
automatically uses the Send every state option, with a fixed buffer size of 5. For more information,
see Communication tab on page 120.

Second, in all Driver and OPC client worksheets, the Scan field in the worksheet body is not
supported. More specifically, while the field can normally be set to either Screen (scan the tag
only while a screen that uses the tag is open) or Always (always scan the tag while the worksheet
is enabled), the Screen option cannot be supported due to how project screens are presented by
the Mobile Access web interface. All tags in all Driver and OPC client worksheets should have
the Always option selected. As an alternative, you can configure a worksheet's Disable setting to
disable the entire worksheet unless a screen is open.

Compressing files for faster downloads
In projects that are accessed by our traditional Thin Client software, you can choose to
compress the screen files to make them faster to download over slow connections. (The Enable File
Compression option is located on the Web tab of the project settings.) This feature is not supported
in Mobile Access. If you try to view a project screen that has been compressed like this, the
screen might behave unexpectedly and you might see messages in the activity log that say tags
or objects do not exist.

If your project requires a feature that is currently not supported in Mobile Access, consider using our
traditional Thin Client software instead. For more information, see Thin Clients on page 742.

More features will be supported in future releases of this software.

Tips for Mobile Access development and run time
These are general tips for developing projects for Mobile Access, as well as for using the Mobile Access web
interface during run time.

Do not use unsupported features in your project
Mobile Access currently supports many but not all features of BLUE Open Studio 2020. If you use an
unsupported feature in a project screen, you might see unexpected behavior when you view that screen in
the Mobile Access web interface. Such behavior can range from incorrect tag changes and function calls to
objects, animations, or scripts that do not work at all.

Make sure that all of the screen objects, animations, background tasks, VBScript, and built-in functions that
you use are included in the list of supported features. For more information, see Supported features in Mobile
Access on page 769.

Thin Clients and Mobile Access

Page 780

If you do use unsupported features, they will be reported in the Output window in the development
environment when you either verify your project or publish your screens as HTML.

Use an HTML5-compatible browser to view your project
The Mobile Access web interface uses HTML5 (including CSS3 and AJAX) to create animated graphics and
perform real-time data exchange. That means you must use an HTML5-compatible browser to view your
project in Mobile Access. We recommend Google Chrome — it is available for most platforms and operating
systems, and we have found that it provides the best overall performance and compatibility.

For more information, see Log on to the Mobile Access web interface on page 805.

Make sure your computer or device has enough resources
Viewing large or complex project screens in the Mobile Access web interface can be resource-intensive, and
your computer or device might not have enough resources (e.g., processor, memory, bandwidth) to do the
job regardless of how new it is, which operating system it runs, or which browser you use. If either the web
interface in general or a specific project screen seems to perform unsatisfactorily, try viewing it on another
computer or device. Also, particularly on mobile devices like smartphones and tablets, check to see if your
device's battery is low or if you have other apps open. Any or all of these factors can affect the performance of
the web interface and give you a false impression of Mobile Access itself.

If, after checking these things, you still see unsatisfactory performance, you may need to "lighten" your project
screens — that is, modify your screens to decrease the amount of resources that they require. Here are a few
ways to do that:

• Try not to use large, high-resolution pictures in a screen, especially if you resize them in the screen
editor after you place them. Replace them wherever possible with pictures that are properly scaled and
resampled. Also, try decreasing the image resolution (e.g., from 300 DPI to 72 DPI) if full resolution is not
necessary.

• Do not to paste a picture or use a group of objects more than once in a screen, because each instance
requires its own resources. Replace these pictures and groups with Linked Pictures and Linked Symbols,
respectively.

• Make sure the project screen itself is properly sized for the computers or devices on which you plan to view
it. It is a waste of resources to create, for example, a 2560-by-1440 screen for a 750-by-1334 smartphone
(i.e., the iPhone 6). If the Auto Screen Scaling option is selected in the project settings (see Viewer tab on page
115), the screen is automatically downscaled to fit the browser in which it is viewed, so nothing will be
inadvertently cropped or hidden and the user can zoom in to see the smaller details, if necessary. (Please
note that zooming works somewhat differently in mobile browsers versus desktop browsers.) An oversized
screen, however, always takes more resources and is more difficult to use.

You can change the screen size in the Screen Attributes.

In the end, however, please keep in mind that the performance of the Mobile Access web interface is not an
indicator of the performance of the BLUE Open Studio 2020 project runtime itself. Regardless of what you see
in your browser, your project should be running well everywhere else.

Other tips for developing for Mobile Access
Here are some other tips for project and screen development:

Do not enable file compression
In projects that are accessed by our traditional Thin Client software, you can choose to
compress the screen files to make them faster to download over slow connections. (The Enable File
Compression option is located on the Web tab of the project settings.) This feature is not supported
in Mobile Access. If you try to view a project screen that has been compressed like this, the
screen might behave unexpectedly and you might see messages in the activity log that say tags
or objects do not exist.

Avoid tag synchronization when opening screens
If you use a large number of project tags in the VBScript sub-routines Screen_OnOpen or
Graphics_OnOpen, your screens might take a long time to open or update. This is because the
tag values — even for project tags with Local scope — must be synchronized between server and

Thin Clients and Mobile Access

Page 781

client when the scripts are executed, and that can take a long time if you have a slow client/
server connection.

The solution is to use VBScript variables instead of project tags wherever possible. Variables
exist only within the scripts where they are declared and used, so no synchronization is
required. Otherwise, you can check the activity log to see which tags are being synchronized and
when.

Do not use "Executed on Server" functions in FOR loops
Similar to the issue of tag synchronization that is described above, if you use a large number of
functions marked "Executed on Server", your project screens might take a long time to update.
This is because the function calls must be sent from the client to the server, and then the
returned values must be sent from the server to the client.

This is especially true of functions called from within a FOR loop. The loop itself can be executed
relatively quickly on the client, but the function calls might "stack up" as the client waits for the
server to execute them.

If you experience any of the issues described above, you can use the activity log to troubleshoot your project
screens. For more information, see Troubleshooting project screens in Mobile Access on page 816.

Mobile Access web server add-on
The Mobile Access add-on is an extension to your web server that allows it to work with your project runtime
server, and it is required to make the Mobile Access web interface accesible to remote users.

More specifically, this add-on establishes a connection between your web server and the Mobile Access task
in your project runtime. It is the task that actually manages the Mobile Access features of your project, and it
communicates with clients through the web server.

This add-on also provides the webpages, scripts, and images that make up the Mobile Access web interface.
The web server serves these files to clients as needed.

The add-on must be installed with the web server on the same computer that hosts the project runtime
server. As such, if you plan to have remote users access your project over the Internet, the computer itself
must be connected to the Internet.

Add-ons are available for several different web server platforms:

Operating System Microsoft IIS CGI / Apache

Windows / Windows Server Supported (More info…) Supported (More info…)

MOBILE ACCESS WEB SERVER ADD-ON FOR IIS
The Mobile Access web server add-on for IIS connects your project runtime server with Microsoft's Internet
Information Services (IIS), as long as they are both running on the same computer.

Turn on IIS for thin client access
Turn on Microsoft's Internet Information Services (IIS) and configure it with the correct settings to make your
project accessible to thin clients over the network.

Please note that these instructions apply only to the following versions of IIS:

Version …on Operating System

IIS 8.5 • Windows 8.1

• Windows Server 2012 R2

IIS 10 • Windows 10

• Windows Server 2016

• Windows Server 2019

Thin Clients and Mobile Access

Page 782

IIS supports all features of BLUE Open Studio 2020, and it is robust enough to serve almost any BOS project
in a production environment. It is the web server software that we recommend for most users, and to achieve
the best performance during project run time, we strongly recommend that you use one of the versions listed
above.

You only need to turn on IIS on the computer that will be your project runtime server. This might be the same
computer that you are using to develop your project, especially if you plan to test your project locally, but it
does not need to be.

You must have Administrator privileges on the computer in order to turn on and configure IIS, and you
should be familiar with administering Microsoft Windows on a network.

For the sake of system security, IIS is turned off by default when the operating system is installed. To turn on
and configure IIS in Windows:

1. Do one of the following:

• In Windows 8.1, go to Start and then click Control Panel; or

• In Windows 10, go to Start and then click Settings.

The Control Panel (Windows 8.1) or Windows Settings (Windows 10) window is displayed.

2. Use the search box to search for Turn Windows features on or off.
The Windows Features dialog box is displayed.

3. In the Windows Features dialog box, select Internet Information Services.
IIS is selected with its default features, but you need to make sure that all of the features required by
BLUE Open Studio 2020 are also selected.

4. Expand Internet Information Services > World Wide Web Services > Application Development Features, and then make sure
all of the following features are selected:

• Application Development Features
• .NET Extensibility 3.5
• .NET Extensibility 4.x
• ASP
• ASP.NET 3.5
• ASP.NET 4.x
• ISAPI Extensions
• ISAPI Filters

• Common HTTP Features
• Static Content

Thin Clients and Mobile Access

Page 783

Some additional features may be selected by default, but you do not need to clear them. You only need to
make sure the features listed above are selected.

An example of the features selected in Windows 10
5. Click OK.

IIS is turned on with the selected features, but you might be prompted to restart Windows to apply the
changes.

6. After you have turned on IIS, you can use Internet Information Services (IIS) Manager to configure it. To
open IIS Manager:
a) In the Control Panel window, click System and Security, and then click Administrative Tools.

The Administrative Tools window is displayed.

Thin Clients and Mobile Access

Page 784

b) In the Administrative Tools window, double-click Internet Information Services (IIS) Manager.

Please note that turning on IIS as a Windows feature does not mean the web server is actually running. You
will need to use IIS Manager to start Default Web Site, after you have finished configuring IIS and installing
any other software.

Tip:

A web server typically operates on, or "listens to," a computer's TCP/IP port 80. Only one running
process can listen to a given port, so if another process on your computer — for example, third-party
SCADA software — is already listening to port 80, it and the web server process may conflict with
each other. You must either configure one of the processes to listen to a different port or use Task
Manager to end the conflicting process. If you cannot identify the conflicting process, run Command
Prompt and then enter the following command to get a list of all networking processes:

netstat -a -o

Enable SSL encryption in Microsoft IIS
Enable Secure Socket Layer (SSL) encryption in Microsoft Internet Information Services (IIS) in order to secure
communications between the web server and your thin clients.

Please note that these instructions apply only to the following versions of IIS:

Version …on Operating System

IIS 8.5 • Windows 8.1

• Windows Server 2012 R2

IIS 10 • Windows 10

• Windows Server 2016

• Windows Server 2019

For information about enabling SSL on earlier versions of IIS, go to: support.microsoft.com/kb/299875

Also, before you begin this task, you should know whether you are going to use a signed or a self-signed
certificate. Both types of certificates are explained below, but since this is not intended to be a complete
discussion of Windows server administration, instructions are provided only for creating a self-signed
certificate so that you can continue developing and testing your BOS project. For information about
requesting a signed certificate, go to: technet.microsoft.com/library/cc732230

Your BOS project has a built-in security system that you can use to control who logs on and what access they
have. It does nothing to secure the connection between the server and the client, however, so if your local
network is insecure and/or you connect to your server over the Internet, then your communications can be
intercepted and possibly compromised.

One way to secure the connection is to use Secure Socket Layer (SSL) encryption to encrypt the packets that
are sent between the server and the client. When SSL is enabled on the server, the server offers a certificate
that includes proof of the identity of the server and an encryption key. The client — in this case, your web
browser — can either accept or reject the certificate, depending on whether it trusts the certificate. If the
certificate is trusted, then it is automatically accepted and SSL is turned on; in many web browsers, this is
indicated by a padlock icon. If the certificate is not trusted, then an alert message is displayed and the user
must choose whether to accept it or reject it.

The criteria for trusting a certificate is typically whether the certificate is signed by a known certificate
authority (CA) and is unexpired. However, a signed certificate must be requested and purchased from a CA,
so there is also an option to create a free, self-signed certificate. A self-signed certificate is a certificate signed
by the server that is offering it, and as long as it is used only on a secure local network where you know
and trust all of the other computers, it is sufficient for project development. (Again, for information about
requesting a signed certificate, go to: technet.microsoft.com/library/cc732230)

http://support.microsoft.com/kb/299875
http://technet.microsoft.com/library/cc732230
http://technet.microsoft.com/library/cc732230

Thin Clients and Mobile Access

Page 785

Note: You should not use a self-signed certificate in a production environment.

To create a self-signed certificate and enable SSL encryption in IIS:

1. Do one of the following:

• In Windows 8.1, go to Start and then click Control Panel; or

• In Windows 10, go to Start and then click Settings.

The Control Panel (Windows 8.1) or Windows Settings (Windows 10) window is displayed.

2. Use the search box to search for Administrative Tools.
The Administrative Tools dialog box is displayed.

3. In the Administrative Tools window, double-click Internet Information Services (IIS) Manager.
The IIS Manager window is displayed.

4. Create the self-signed certificate:
a) In the IIS Manager window, in the Connections list on the left, select your server (typically your own

computer).

b) In Features view, double-click Server Certificates.

c) In the Actions pane, click Create Self-Signed Certificate.

d) On the Create Self-Signed Certificate page, in the Specify a friendly name for the certificate box, type a friendly
name for the certificate (e.g., BOS), and then click OK.

Your self-signed certificate is added to the list of server certificates.

5. Enable SSL for your web site:
a) In the Connections list on the left, open your server, open Sites, and then select Default Web Site.

b) In the Actions pane, click Bindings.

c) On the Site Bindings page, click Add.

d) On the Add Site Binding page, in the Type list, select https.

e) In the SSL certificate list, select the self-signed certificate that you created.

f) Click OK to close the Add Site Binding page, and then click Close to close the Site Bindings page.

6. Require clients to connect with SSL:
a) In the IIS Manager window, in Features view, double-click SSL Settings.

b) Select Require SSL.

This step is optional. If you have problems connecting to the web site, then you may clear this option and
try connecting without SSL.

7. Restart your web site with the new settings:
a) In the Connections list on the left, select Default Web Site again.

b) In the Actions pane, click Restart.
8. Close IIS Manager.

When you want to deploy your BOS project in a production environment, you should request a signed
certificate and reconfigure IIS to use that certificate.

Install the Mobile Access web server add-on for IIS
Use the standalone Mobile Access Runtime software to install the Mobile Access web server add-on for IIS.

Note: You must have administrator privileges in order to install any software.

Thin Clients and Mobile Access

Page 786

Before you begin this task, you must have already installed the full BLUE Open Studio 2020 software on
at least one computer, even if you only use it for project development, because doing so also unpacks the
standalone Mobile Access Runtime software installer that you need for this task.

The Mobile Access add-on requires .NET Framework 4.5 or later, and if it is not present, the Mobile Access
Runtime software installer will try to install it for you.

In order to install the Mobile Access add-on on the computer or device that hosts your project runtime server,
IIS must be turned on and the ASP.NET features required for Mobile Access should be selected. The Mobile
Access Runtime software installer will try to confirm that IIS is turned on, and if it is not, the installer will
abort the installation. The installer cannot also confirm that the ASP.NET features are selected, however, so
you should confirm that yourself before you begin this task. For more information, see Turn on IIS for thin
client access on page 781.

You should also enable Secure Socket Layer (SSL) encryption in IIS, especially if you plan to access your
project over a public network. For more information, see Enable SSL encryption in Microsoft IIS on page
784.

There are two ways to install the Mobile Access web server add-on for IIS. The first way is to select Mobile
Access Runtime as an installable feature when you install the full BLUE Open Studio 2020 software. For more
information, see Install the full BLUE Open Studio 2020 software on page 36. If you already did that, however,
you do not need to do anything more and you may skip the rest of this task.

The second way is to manually install the software after the fact using the standalone Mobile Access Runtime
software installer that is included in your BLUE Open Studio 2020 program folder. You must do this if you
did not select the installable feature, as described above.

To install the Mobile Access web server add-on for IIS:

1. On the computer or device where you want to install the software, make sure IIS is turned on, but if the
default web site is started, use IIS Manager to stop it.

2. Locate the standalone Mobile Access Runtime software installer (MobileAccessSetup.exe) in your BLUE
Open Studio 2020 program folder.
If BLUE Open Studio 2020 was installed at its default location on your computer, the Mobile Access
Runtime software installer should be located at:

C:\Program Files (x86)\Pro-face\BLUE Open Studio 2020\Redist\WebAddOn\IIS
\MobileAccessSetup.exe

3. Run the installer, and then follow its instructions (i.e., proceed through the installation wizard).

Note: You might need to run the installer as an administrator, if your own user privileges are
not sufficient — right-click the installer, and then on the shortcut menu, click Run as Administrator.
You will be prompted for an administrator's user name and password.

4. When the installation is finished, use IIS Manager to start the default web site.

To confirm that the add-on was successfully installed, run your project and then try to log on to the Mobile
Access web interface. (This assumes you have already enabled and configured Mobile Access in your project,
of course.) For more information, see Log on to the Mobile Access web interface on page 805.

If the web interface fails to load — that is, if the Mobile Access Logon screen is not displayed at all —
use IIS Manager to confirm that your web server has started and the Mobile Access application pool
(StudioMobileAccessPool) has been configured to use .NET Framework 4.x.

Finally, you should repeat this task whenever you upgrade the full BLUE Open Studio 2020 software, to
ensure that you are using the latest version of Mobile Access.

MOBILE ACCESS WEB SERVER ADD-ON FOR CGI
The Mobile Access web server add-on for CGI connects your project runtime server with any web server that
supports the Common Gateway Interface (CGI), as long as they are both running on the same computer.

Thin Clients and Mobile Access

Page 787

Install and configure Apache for Windows
This is an example of how to install and configure Apache for Windows (including Windows Server), so that
you can subsequently install the Mobile Access web server add-on for CGI.

You must have Administrator privileges on a Windows computer in order to install software and run network
applications.

Apache (a.k.a. httpd) is a free and widely used web server package that supports the Common Gateway
Interface (CGI). It is available for many different platforms, including both Windows and Linux. Once you have
it installed and configured, you can also install the Mobile Access web server add-on for CGI.

If Apache is already installed and you are familiar with it, you may skip to the end of this task.

Note: This is for testing and demonstration purposes only. Before you set up a "live" web server,
you should consider all of the administrative and security issues that are involved in doing so.
Please consult your network administrator.

To install and configure Apache for Windows:

1. On the computer or device that will host your project runtime server, in the web browser, go to:
www.apachehaus.com/cgi-bin/download.plx

2. Download the latest version of Apache for Windows.
At the time of this writing, the latest version is 2.4.16, and that is reflected in the remaining steps of this
procedure. Also, make sure that you get correct build for your version of Windows: x86 for Windows 32-bit,
x64 for Windows 64-bit.
The compressed folder (e.g., httpd-2.4.16-x64-r2.zip) is saved in the Downloads folder.

3. Right-click the compressed folder, and then click Extract All on the shortcut menu.
The Extract dialog box is displayed, asking you to confirm where the files will be extracted.

4. Click Extract.
The files are extracted to the specified location.

5. Open the uncompressed folder, and then in that folder, find the Apache24 folder.

6. Copy or move the Apache24 folder to the top level of the C drive (i.e., the computer's root directory).

7. Click the Start button, and then on the Start menu, point to Accessories > Command Prompt.
8. Right-click Command Prompt, and then click Run as administrator on the shortcut menu.

A User Account Control dialog box is displayed, asking you to allow Command Prompt to make changes to
the computer.

9. Click Yes.
The Command Prompt window is displayed.

10.At the prompt, type cd C:\Apache24\bin, and then press Return.
The prompt is changed to the specified directory.

11.At the prompt, type httpd -k install, and then press Return.
Apache is installed as a Windows service, so that it can run in the background (similar to a Unix/Linux
daemon).

12.At the prompt, type httpd -k start, and then press Return.
The Apache service is started.

13.In the web browser, in the address bar, type localhost, and then press Return.
Apache is preconfigured for localhost access, which means you should be able to go to the localhost
address (i.e., http://localhost/) to access the default website.
If Apache is running correctly, the website's default page — typically, the readme file — is displayed.

Tip: You should review the readme file at this time.

The following table shows the most commonly used Apache commands:

https://www.apachehaus.com/cgi-bin/download.plx

Thin Clients and Mobile Access

Page 788

Command Description

httpd -k install Install Apache as a Windows service.

httpd -k config Configure the startup options of the Apache service.

httpd -k uninstall Uninstall the Apache service.

httpd -k start Start the Apache service.

httpd -k restart Restart the Apache service while it is running.

httpd -k stop Stop the Apache service.

httpd -t Test the Apache configuration syntax.

httpd -v Show the Apache version number.

httpd -h List all of the available Apache commands.

You can also use Apache Monitor, a desktop tray application, to start and stop Apache services. The Apache
Monitor program file is located at C:\Apache24\bin\ApacheMonitor.exe. Either double-click the program
file to run it, or copy it to your Startup folder so that it starts automatically when the computer is turned on.

The default TCP/IP port for most web servers is port 80. If you already have another web server running
— or "listening" — on port 80, it will conflict with Apache. Either stop or disable the other web server, or
reconfigure Apache to listen on an alternative port. To do the latter, stop Apache, open the configuration file
(C:\Apache24\conf\httpd.conf), and edit the following settings:

Listen <alternative port>

ServerName localhost:<alternative port>

For the complete Apache documentation, go to: httpd.apache.org/docs/2.4/

Once you have Apache installed and configured, you can proceed with installing the Mobile Access web server
add-on for CGI. For more information, see Install the Mobile Access web server add-on for CGI on page 788.

Install the Mobile Access web server add-on for CGI
Install the Mobile Access web server add-on for any web server that supports the Common Gateway Interface
(CGI).

Before you begin this task, you must have already installed the full BLUE Open Studio 2020 software on
your computer, even if you only use it for project development, because it includes the redistributable Mobile
Access web server add-on files.

Also, you must properly install, configure, and run a CGI-enabled web server on the same computer that
hosts your project runtime server. There are many such web servers available for many different platforms,
so it is beyond the scope of this documentation to cover all of the possible installation and configuration
procedures.

The most widely used, CGI-enabled web server is Apache, which can be installed on Windows (including
Windows Server) as an alternative to Windows' built-in web server, Internet Information Services (IIS). For
more information, see Install and configure Apache for Windows on page 787.

IIS also supports CGI, but you must use IIS Manager to enable and configure it, and that is beyond the scope
of this documentation. For more information, consult the documentation for IIS.

When you configure the web server, note the locations of its cgi-bin and document root directories. If you
followed the preceding instructions to install and configure Apache for Windows, you should have these
directories on your target device:

Directory Location

cgi-bin C:\Apache24\cgi-bin\

DocumentRoot C:\Apache24\htdocs\

http://httpd.apache.org/docs/2.4/

Thin Clients and Mobile Access

Page 789

The cgi-bin directory contains supplemental scripts and programs that enable certain features of the website.
The Mobile Access web server add-on is such a program.

The document root directory is the "top level" of the website, which means that when a user goes to the
website (e.g., http://www.mywebsite.com/), they actually go to that directory on the computer. You can
reconfigure the web server to change the directory, but in most cases, that should not be necessary.

Keep in mind that while the following steps use Apache for Windows as an example, they should apply to any
CGI-enabled web server that has cgi-bin and document root directories.

To install the Mobile Access web server add-on for CGI:

1. Locate the web server add-on files in your SCADA program folder, and then copy all of them to the web
server's cgi-bin directory.

If SCADA is installed at the default location on your computer, the add-on files should be located at:

C:\Program Files (x86)\Pro-face\BLUE Open Studio 2020\Redist\WebAddOn\CGI*.*

The add-on files include the CGI process itself and several associated libraries. Make sure you copy all of
them to the cgi-bin directory.

For example, using Apache for Windows:

C:\Apache24\cgi-bin\WebCGIProc.exe

2. Locate the Mobile Access web files in your BLUE Open Studio 2020 program folder, and then copy the
entire MA folder to the web server's document root directory.

If SCADA is installed at the default location on your computer, the MA folder should be located at:

C:\Program Files (x86)\Pro-face\BLUE Open Studio 2020\Redist\MobileAccess\MA

After you have done this, the MA folder should be a sub-directory of the document root directory. For
example, using Apache for Windows:

C:\Apache24\htdocs\MA\

3. Edit the Mobile Access configuration file (config.js) to point to the CGI process:
a) Locate the Mobile Access website configuration file.

For example, using Apache for Windows, the file should be located at:

C:\Apache24\htdocs\MA\sma\config.js

b) Open the configuration file in a text editor, and then find the servicesUrl setting:

window.sma.configSettings = {
 "servicesUrl": "service"
};

c) Replace "service" with the URL of the CGI process (WebCGIProc.exe) that you previously copied to
the cgi-bin directory.

Using Apache for Windows as an example:

window.sma.configSettings = {
 "servicesUrl": "/cgi-bin/WebCGIProc.exe"
};

Please note the URL is relative to the "top level" of the website, and it is not the same thing as the file
path on the computer.

Thin Clients and Mobile Access

Page 790

d) Save and close the configuration file.

You might need to restart the web server for these changes to take effect. For example, assuming that you are
running Apache as a Windows service (as described in the preceding topic), open a Command Prompt window
and then enter the following:

httpd -k restart

To confirm the files were successfully installed, run your project and then try to log on to the Mobile Access
web interface. (This assumes you have configured Mobile Access in your project and your project is running,
of course.) For more information, see Log on to the Mobile Access web interface on page 805.

If it does not work, make sure you have selected the Enable CGI option in the Mobile Access Configuration
worksheet in your project. For more information, see Configure the global settings for all areas on page 803.

Finally, you should repeat this task whenever you upgrade the full BLUE Open Studio 2020 software, to
ensure you are using the latest version of Mobile Access.

Configuring the Mobile Access web interface
Use the Mobile Access Configuration worksheet to configure the Mobile Access web interface for your project.

Your project's web interface consists of one or more "areas", which are typically organized by location, system,
or machine. Each area has an Alarm control, a Process Values control, a Trend control, and a Screens
control. These controls appear in the web interface as green tiles, and when you click/tap one of these tiles, it
opens a new page for that control.

An example of the Mobile Access web interface

Each area can also have one or more "sub-areas", which appear in the web interface as orange tiles. When
you click/tap one of these tiles, it opens a new page for that sub-area.

Thin Clients and Mobile Access

Page 791

You can insert as many areas and sub-areas as you want; the web interface is automatically expanded to
accomodate them. You use the Mobile Access Configuration worksheet to insert and configure areas.

Configuring the Mobile Access web interface for your project

The Alarm, Process Values, Trend, and Screens controls are functionally similar to their corresponding screen
objects:
Alarm

The Alarm control is similar to the Alarm/Event Control screen object. It displays active alarms
and allows the user to acknowledge them.

Process Values
The Process Values control is similar to the Symbols library, in that it uses various pre-made
widgets (e.g., gauges and switches) to graphically represent project tag values. It can also allow
the user to change the values during project run time, depending on how you configure the
widgets.

Trend
The Trend control is similar to the Trend Control screen object. It graphs the changes in process
values during project run time, and it can also display trend history when available.

Screens
The Screens control presents project screens that you have selected to include in the web
interface. In most cases, selected screens function the same as screens published for Thin
Clients, but there are some limitations. For more information, see Supported features in Mobile
Access on page 769.

Note: The first time you open and edit the Mobile Access Configuration worksheet, the startup
mode of your project's Mobile Access Runtime task is automatically changed to Automatic. This is to
ensure that Mobile Access will behave as expected when you run your project. You can change the
startup mode back to Manual, if you wish. For more information, see Runtime Tasks on page 134.

Thin Clients and Mobile Access

Page 792

CONFIGURE THE WEB SETTINGS FOR MOBILE ACCESS
Configure these general settings to determine the overall user experience for viewing project screens through
Mobile Access.

To configure the web settings for Mobile Access:

1. If the Mobile Access Configuration worksheet is not already open, do one of the following:

• On the Project tab of the ribbon, in the Web group, click Mobile Access.

• On the Graphics tab of the Project Explorer, double-click Thin Clients > Mobile Access.

The Mobile Access Configuration worksheet is opened for editing.

2. Under Process Values, review the settings that determine how process values are updated during run time.
Update Rate

The normal rate (in milliseconds) at which process values in screens are updated from the
project runtime server. The default rate is 1000 milliseconds (i.e., 1 second). In other words,
project screens are normally updated once per second.

Update Rate After Command
The increased rate (in milliseconds) at which process values are updated after any command
is executed in a project screen. This lets the user see immediate changes resulting from the
command.

Update Count After Command
The number of times that process values are updated at the increased rate, after which they
return to the normal rate.

These settings make project screens appear more responsive while users are actually using them. You
can increase the rate and/or count, but doing so will put more of a load on your network and the project
runtime server. In most cases, you should accept the default values.

3. Under Web, in the Session Expiration box, type the number of seconds of inactivity that will be allowed before a
client session expires.

Thin Clients and Mobile Access

Page 793

The default period is 300 seconds (or 5 minutes). A session is considered active as long as the client
is connected to the server and a user is logged on, even if there is no user input. The session becomes
inactive when the user logs off or the client loses its connection to the server. Then, after the specified
period of inactivity, the session expires and the user must reload the Mobile Access web interface in order
to reconnect to the server.

4. In the Zoom Mode list, select how you want your project screens to be displayed in the browser window.
The following options are available:

Option Description

Disabled In this mode, screen zoom is disabled entirely
and the project is displayed at full resolution,
regardless of the size of the browser window. All
of the screens are displayed in their specified
sizes and positions (as configured in the Screen
Attributes for each screen), relative to the top-left
corner of the browser window. Resizing the browser
window does not affect the screens in any way.
If a screen is configured so that some or all of its
area will be displayed outside the available area of
the browser window, such screen area will not be
visible. The browser window does not include scroll
bars, and the user cannot use "pinch" and "stretch"
gestures to zoom the screens.

Auto Screen Scaling In this mode, all of the screens are scaled
proportionally according to the ratio between the
project's display resolution and the size of the
browser window. As long as a screen's specified size
and position (as configured in Screen Attributes)
do not exceed the project's display resolution,
the screen will be fully visible within the browser
window. Resizing the browser window also resizes
all of the screens displayed within the browser
window. The browser window does not include
scroll bars, and the user cannot use "pinch" and
"stretch" gestures to zoom the screens.

When the system calculates the ratio between
the project's display resolution and the size of
the browser window, it keeps the original width/
height ratio of the display resolution in order to
avoid distorting the contents of the screens. For
example, if the specified display resolution is
1000x500 (2:1) and the browser window is 500x100
(5:1), the maximum display resolution that will
actually fit within the browser window is 200x100
(2:1). Therefore, each screen's size/position will
be divided by 5 (1000/200 or 500/100) before it is
displayed in the browser window.

This is the default option for new projects.

Custom Zoom This mode is the same as Disabled mode (see above),
except that the user can use "pinch" and "stretch"
gestures to zoom the screens. The zoom is applied
to all open screens at the same time. If the project's
display resolution is smaller than the size of the
browser window, the user can zoom in so that the
screens fill the window. Conversely, if the project's
display resolution is larger than the size of the
browser window, the user can zoom out so that the
screens fit within the window. When zooming, the
system keeps the original width/height ratio of each

Thin Clients and Mobile Access

Page 794

Option Description
screen in order to avoid distorting the contents of
the screen.

Once the user zooms in so that the screens fill the
browser window, that becomes the minimum level
of zoom.

Single Screen Scaling In this mode, each screen is scaled proportionally
according to the ratio between its own specified size
(as configured in Screen Attributes) and the size of
the browser window. The screen's specified position
is ignored, because the screen is automatically
centered in the browser window. The project's
display resolution is ignored as well. Since each
screen is resized and centered separately, this mode
is not useful for displaying more than one screen at
the same time, such as screen groups. Only the last
screen opened is visible; previously opened screens
are automatically closed. The browser window does
not include scroll bars, and the user cannot use
multi-touch gestures (i.e., "pinch and stretch") to
zoom screens.

Note: When the system calculates the
ratio between the screen's specified size
and the size of the browser window, it
keeps the original width/height ratio of
the screen size in order to avoid distorting
the contents of the screen. For example,
if the specified screen size is 1000x500
(2:1) and the browser window is 500x100
(5:1), the maximum screen size that will
actually fit in the browser window is
200x100 (2:1). Therefore, the screen's
size will be divided by 5 (1000/200 or
500/100) before it is displayed in the
browser window.

5. Review the Enable Hide for All Screens and Max Hidden Screens settings.

Project screens can be hidden instead of actually closed, so that they appear to reopen quickly. This will
increase the responsiveness of your project screens, but it will also use more resources on client devices.

Enable Hide for All Screens
This option enables hiding for all project screens viewed through Mobile Access.

Max Hidden Screens
The maximum number of project screens that can be hidden and then cached in memory.
Screens are cached on a First In First Out (FIFO) basis. You might need to adjust the number
depending on the available resources on client devices.

These settings are similar to the Performance Optimization settings in the Screen Attributes, except that they
apply equally to all project screens viewed through Mobile Access rather than on a screen-by-screen basis.

6. Review the Background Color and Align settings.

Even when zooming is enabled, your project screens often will not perfectly fill the browser window; the
browser window's background color will be visible around the sides of your project screens. To minimize
the contrast, align the project screens within the browser window and then adjust the background color to
match.

Background Color
The color that fills the browser window around the project screen. Click the color picker and
then select a new color, if you wish.

Thin Clients and Mobile Access

Page 795

Align
The alignment of the project screen within the browser window: Top Left, Top Center, Center
Left, Center (default).

Note: The Align setting applies only when Zoom Mode is Auto Screen Scaling. Each of the other modes
overrides the alignment in some way.

7. Select Always Use Data Input Dialog if you want to display the Data Input dialog box for all screen objects that
take user input.

The Data Input dialog box in Mobile Access provides an easy-to-use interface with an on-screen keyboard
that allows the user to type their input on touchscreen devices. This option is selected by default in order
to ensure that your project will be usable on small screens, where some screen objects might be too small
to type into without zooming. If this option is cleared, the Data Input dialog box will be displayed only
for certain screen objects that do not have input boxes at all, such as a Text object with a Text Data Link
animation applied to it. For more information, see Data input in screens on Mobile Access on page 346.

8. Select Enable CGI if you have a set up a CGI-enabled web server (e.g., Apache) to serve the Mobile Access
web interface to users.

9. Under User Experience, review the settings that determine how feedback is given to the user when the project
runtime server is slow to respond.
Initial Events Timeout

When the user tries to open a project screen in Mobile Access, some requests are sent to the
server in order to load and initialize that screen. If the server does not respond within the period
specified by this setting, an appropriate message is sent to the activity log. For example:

[Warning, 1]:Mobile Access([05E95210] HTML5 Server => Timeout waiting for
 graphic initialization [03/11/2020 15:56:28.966]

Standby Start
When the user tries to click/tap a screen object (e.g., a button), the command associated with
that object is sent as a request to the server. If the server does not respond within the period
specified by this setting, a "spinning wheel" animation is displayed in front of the object.

Standby Timeout
After the "spinning wheel" animation is displayed in front of the object, if the server still does not
respond within the period specified by this setting, the request is cancelled and the animation is
removed.

If the project runtime server is often slow to respond, your project's user experience can be significantly
affected. Check your network activity, the number of thin clients connected to server, and the status/
health of the server itself.

10.Under Browser Logs, select the types of log messages that you want to send to Mobile Access clients.

Mobile Access generates its own activity log. It is similar to the project runtime log displayed in the Output
window and LogWin tool, but it comprises only messages about Mobile Access itself and the performance
of the web interface. Users can view the activity log in their browser consoles. For more information about
the available options, see Types of Mobile Access log messages on page 822.

Note: The settings in this worksheet apply to all Mobile Access clients; i.e., except for messages
about the specific project screens that are currently open on each client, the same log messages
are sent to all clients and can be viewed by all users. If an individual user wants to filter their
own view of the log, they should use the tools in their own browser console.

When you are done, you can click Area Settings to configure the specific areas of the Mobile Access web
interface, or you can close the worksheet altogether. The entire Mobile Access configuration is saved when you
close the worksheet.

Thin Clients and Mobile Access

Page 796

INSERT A NEW AREA IN THE WEB INTERFACE
Insert a new node, or "area", in the Mobile Access tree view in order to add a new page to the Mobile Access
web interface.

The site map of the Mobile Access web interface is determined by the hierarchical tree on the left side of the
Mobile Access Configuration worksheet. The root node of the tree, named Main, corresponds to the home page
of the web interface. If you wish, you can configure the settings for Main so that it includes everything you
want to display in the web interface. You are not required to add to the tree, and if you choose not to, you can
skip this task and proceed to configuring the settings for Main.

However, if you want organize your project tags in some way — for example, by machine, by process, or
by facility — you can insert additional nodes, or "areas", into the tree. Each area has its own settings and
is represented by its own page in the Mobile Access web interface. Areas can have as many sub-areas as
you want, as many levels deep as you want. The structure of the tree, and therefore the site map of the web
interface, is entirely up to you.

Keep in mind, however, that the structure of the tree determines how the user must navigate the Mobile
Access web interface during run time. You may choose to have all of the areas together on the same level, but
if you do, then the user must pan/scroll a lot to move between the areas. Alternatively, you may choose to
create many levels of areas and sub-areas, but if you do, then the user must click/tap down through those
levels and then back up again. In short, it is important to keep your web interface logically organized and easy
to navigate, and as such you should manually outline your tree before you begin to insert areas.

To insert an area in the Mobile Access tree view:

1. If the Mobile Access Configuration worksheet is not already open, do one of the following:

• On the Project tab of the ribbon, in the Web group, click Mobile Access; or

• On the Graphics tab of the Project Explorer, double-click Thin Clients > Mobile Access.

The Mobile Access Configuration worksheet is opened for editing, and the Web Settings page of the
worksheet is displayed.

2. At the bottom of the Web Settings page, click Area Settings.

Thin Clients and Mobile Access

Page 797

The Area Settings page of the worksheet is displayed, with the tree view displayed on the left. It replaces
the Web Settings page.

An example of the Mobile Access tree view / site map
3. Carefully determine where in the tree view you want to insert the new area, because once you have

inserted it, it is not possible to move it using the Mobile Access Configuration worksheet.

4. Right-click on the existing area in which you want to insert the new area, and then on the shortcut menu,
click Insert Area.
A New Area dialog box is displayed.

5. In the Area name box, type the name of the new area, and then click Add.
The new area is inserted in the tree view.

After you have inserted the new area, you can configure the settings for that area.

To delete an area that you have inserted, right-click the area, and then on the shortcut menu, click Delete Area.
Please note that when you delete an area, you also delete all of the sub-areas that it contains. You cannot
delete Main.

Note:

Your Mobile Access configuration is saved as an XML file in your project folder at:

<project name>\Web\MobileAccess.sma

If necessary, you can manually edit this file to make changes that cannot be made in the Mobile
Access Configuration worksheet. For more information, please contact your software distributor.

Thin Clients and Mobile Access

Page 798

CONFIGURE THE SETTINGS FOR A SELECTED AREA
Each area in the Mobile Access tree / site map has its own area settings. Configure these settings to
determine which alarms, trends, process values, and project screens to display on that area's corresponding
page in the Mobile Access web interface.

The default area, at the root of the Mobile Access tree view, is "Main". Every project that has Mobile Access
enabled has a "Main" area. You can rename if from "Main" to something else that is more appropriate to your
project, but it is always the default area and it is always displayed first in the Mobile Access web interface.

The first time you open the Area Settings worksheet, it automatically displays the settings for the "Main" area.
This task shows how to edit those settings, but the same procedure applies to editing the settings for any
selected area.

For more information about the Mobile Access tree view, how it determines the site map of the Mobile Access
web interface, and how to insert additional areas, see Insert a new area in the web interface on page 796.

To configure the settings for a selected area:

1. If the Mobile Access Configuration worksheet is not already open, do one of the following:

• On the Project tab of the ribbon, in the Web group, click Mobile Access.

• On the Graphics tab of the Project Explorer, double-click Thin Clients > Mobile Access.

The Mobile Access Configuration worksheet is opened for editing, and the Web Settings page of the
worksheet is displayed.

2. At the bottom of the Web Settings page, click Area Settings.
The Area Settings page of the worksheet is displayed. It replaces the Web Settings page.

3. In the tree view, select the area for which you want to configure settings.

The Area Settings worksheet for that area is displayed.

Thin Clients and Mobile Access

Page 799

Thin Clients and Mobile Access

Page 800

4. Under General, configure the general settings for this area.
a) In the Name box, type the name of the area as it should appear in the tree view.

b) In the Label box, type the area label that should be displayed in the Mobile Access web interface during
run time. Typically, the label is the same as the full name, but you may choose to abbreviate it if the
full name cannot be displayed correctly in the Mobile Access web interface.

c) In the Access Level box, type the minimum security level that the user must have in order to access the
area during run time.

5. Under Alarms, specify which alarms should be displayed in this area's Alarm window during run time.
By default, all areas of the Mobile Access web interface will display all alarms that are configured in your
project's Alarm worksheets. However, you can filter the alarms by group, by selection, or by priority in
order to display only the alarms that are relevant to this area. The easiest way to do this is to configure
a separate Alarm worksheet/group for each area and then filter by those group numbers, but if you
configured your project's alarms long before you configured the areas of your Mobile Access web interface,
then they may not correspond. If that is the case, you can use the other settings. For more information
about group, selection, and priority, see Alarm worksheet on page 374.
a) In the Group box, type the number of the Alarm group(s) that you want to display in this area.

You can specify more than one group by using commas and hyphens. For example, if you type…

5-10,60,80-90

…you will display groups 5 through 10, group 60, and groups 80 through 90 in this control.

The Group box will validate as you type; if you type an invalid group or groups, then the box will be
bordered in red.

If you leave this box empty, no filtering will be done by Alarm group.

b) In the Selection box, type the selection alias(es) of the specific alarms that you want to display in this
area.

You can specify more than one selection alias by using commas. For example…

AliasA,AliasB,AliasD

If you leave this box empty, no filtering will be done by selection alias.

c) In the Priority From and Priority To box, type the priority range of the specific alarms that you want to
display in this area.
If you leave the default values of 0 and 255 (i.e., the maximum range), no filtering will be done by
priority.

d) Select Show process values alarms only if you only want to show alarms for the process values that are
actually configured for this area (see below).
If you select this option, it will override all of the other alarm filter settings.

6. Under Trend and Process Values, select the values that you want to display in this area's Trend and Process
windows during run time. For each row, do the following:
a) In the Tag Name column, type the name of a project tag that you want to display as a process value.

You can also double-click in the box to open the Object Finder.

b) In the Label column, type a simple label for the project tag.

c) Select Write if you want to let the user write new values to the tag by manipulating the corresponding
widget (e.g., push the button, slide the gauge, toggle the switch).

d) Select Trending if you want the process value to be graphed as a trend in the area's Trend window, rather
than displayed as a widget in the area's Process Values window.

e) In the Min and Max columns, type the minimum and maximum for the process value.

Please note that these are not hard limits on the process value. The actual value of the project tag can
exceed both the minimum and maximum, depending on how the value is calculated during run time.

Thin Clients and Mobile Access

Page 801

The actual value simply will not be displayed, because it is literally off the scale. Instead, when the
actual value is less than the minimum, the minimum is displayed, and when the actual value is greater
than the maximum, the maximum is displayed.

In the Process Values window, Min and Max are used to determine the scale of the selected widget.

In the Trend window, Min and Max are used to calculate the percentage. (For example, if Min is 10, Max is
20, and the actual value is 16, then the percentage is 60%.)

f) In the Widget column, select the type of widget that should be used to represent the process value in the
Process Values control.

The following widgets are available.

Option Tag Types Appearance

Circular Gauge Integer, Real

Semi-Circular Gauge Integer, Real

Horizontal Gauge Integer, Real

Switch Boolean

Thin Clients and Mobile Access

Page 802

Option Tag Types Appearance

Text Box any

If you select None, the process value will not be displayed in the Process Values window.

This setting has no effect if the Trending option is selected.

g) In the Pen Color column, use the color picker to pick a pen color for the process value.
This setting has no effect if the Trending option is cleared.

h) In the Widget Size list, select how large the widgets should be displayed.
Larger widgets are clearer and easier to use on mobile devices, but they also take up more screen
space.

i) In the Write Access Level box, type the minimum security level that the user must have in order to write
new values to project tags.

7. In the Screens area, specify which project screens should be made available through this area's Screens
window. For each row, do the following:
a) In the Screen column, click the list menu, and then select a project screen.

Tip:
The list menu should include all project screens that have been saved as HTML. If you do not
see the screen(s) that you want to select, do one of the following:

• Verify your project (i.e., on the Home tab of the ribbon, in the Tools group, click Verify); or

• Re-publish your project screens for the web (i.e., go to File, and then click Save All As HTML).

Screen names should not include spaces. If a screen name does include a space, save that
project screen with a new file name and then re-publish it for the web.

b) In the Label column, type a label for the project screen that you selected.
This label is displayed only in the Mobile Access web interface; it is not saved with the original screen
file.

Any project screen that has been saved as HTML can be selected for Mobile Access. However, not all screen
objects and animations are fully supported in Mobile Access at this time, so make sure that you test the
selected screens before you deploy your project. Also, even though you can open multiple screens and
screen groups in Mobile Access, you cannot make screen groups available through the Screens control. For
more information, see Supported features in Mobile Access on page 769.

Also, with regards to project security, the Disable and Security settings are enforced on all screen objects and
animations, but the E-sign setting is not.

When you are done, you can either return to the Web Settings page of the worksheet or close the worksheet
altogether. The entire Mobile Access configuration is saved when you close the worksheet.

Thin Clients and Mobile Access

Page 803

CONFIGURE THE GLOBAL SETTINGS FOR ALL AREAS
Configure the Mobile Access global settings in order to set default values — such as alarm columns and
colors, trend duration, and update rates — for the Alarm and Trend windows in all of the configurable areas
in the Mobile Access web interface.

Note: These settings do not apply to Alarm Control and Trend Control objects in project screens
that are viewed through Mobile Access. Those objects have their own settings that you configure
when you develop your project screens.

To configure the global settings for all areas:

1. If the Mobile Access Configuration worksheet is not already open, do one of the following:

• On the Project tab of the ribbon, in the Web group, click Mobile Access.

• On the Graphics tab of the Project Explorer, double-click Thin Clients > Mobile Access.

The Mobile Access Configuration worksheet is opened for editing, and the Web Settings page of the
worksheet is displayed.

2. At the bottom of the Web Settings page, click Area Settings.
The Area Settings page of the worksheet is displayed. It replaces the Web Settings page.

3. At the top of the Area Settings page, click the Global Settings tab .

The Global Settings tab is displayed.

4. Under Alarm Window, select and arrange the columns that the Alarm windows should display by default.

Note: These settings can be overriden by the user in the client-side settings.

The available columns are listed on the left. The displayed columns are listed on the right. For more
information about what each column means, see Alarm/Event Control object on page 398.

a) To display a column, select it in the list of available columns and then click the >> button.

b) To hide a column, select it in the list of displayed columns and then click the << button.

c) To arrange the displayed columns, select a column and then click Move Up or Move Down.
The order in which the columns are listed here is the order in which they will be displayed, from left to
right, in the alarm control.

Thin Clients and Mobile Access

Page 804

5. In the Update Rate box, type the rate (in milliseconds) at which Alarm windows should be updated during
run time.
The default rate is 1000 milliseconds (i.e., 1 second), which means each Alarm window is updated once per
second. You can increase the rate, but doing so will put more of a load on your network and the project
runtime server. In most cases, you should accept the default rate.

6. Select the alarm colors: for each alarm state (Active, Acknowledged, Normalized), click the color picker and
then select a new color.

7. Under Trend Window, in the Update Rate box, type the rate (in milliseconds) at which Trend windows should be
updated during run time.
The default rate is 1000 milliseconds (i.e., 1 second), which means each Trend window is updated once per
second. You can increase the rate, but doing so will put more of a load on your network and the project
runtime server. In most cases, you should accept the default rate.

8. In the Default duration box, type the number of seconds of trend history that each Trend window should
display by default.
The default value is 60 seconds (i.e., 1 minute). However, this value can be overriden by the user in the
client-side settings.

When you are done, you can either return to the Area Settings tab of the worksheet or close the worksheet
altogether. The entire Mobile Access configuration is saved when you close the worksheet.

Navigating the Mobile Access web interface
Navigate the Mobile Access web interface as you configured it for your BOS project.

Before you can use the web interface, the Mobile Access Runtime software must be properly installed and
configured on Microsoft IIS your BOS project must be running.

The home page of the web interface shows the top-level "Main" area and the other second-level areas that
you configured in the Mobile Access Configuration worksheet. The page is automatically created as wide as it
needs to be to accomodate all of the areas, but that means some of the page may be out of view depending on
the size of your browser window or mobile device.

Each area has an Alarm control, a Process Values control, a Trend control, and a Screens control, represented
by the green buttons. Some areas may also have sub-areas, if that is how you structured your web interface
in the Mobile Access Configuration worksheet. Sub-areas are represented by orange buttons.

Thin Clients and Mobile Access

Page 805

To navigate the Mobile Access web interface:

1. Pan/scroll left or right to find the area that you want.

2. Click/tap a green control button to access that control, or click/tap an orange sub-area button to access
that sub-area.
The button spins to show that it was clicked/tapped, and then the page for the selected control or sub-
area is displayed.

3. On any page other than the home page, click/tap the Return button to return to the previous page.

LOG ON TO THE MOBILE ACCESS WEB INTERFACE
Log on to the Mobile Access web interface to view the configured alarms, process values, trends, and project
screens during run time.

The Mobile Access web interface uses HTML5 (including CSS3 and AJAX) to create animated graphics and
perform real-time data exchange. That means you must use an HTML5-compatible browser to access the web
interface. Most modern browsers are HTML5-compatible, but browsers are updated frequently and the HTML5
specification itself is still being revised, so we cannot provide a comprehensive list of browsers that can be
used with Mobile Access.

That being said, we recommend you use either Microsoft Edge or Google Chrome. They are available for most
platforms and operating systems, and we have found that they provide the best overall performance and
compatibility.

We do not support any version of Internet Explorer for use with Mobile Access.

To log on to your project's Mobile Access web interface:

1. On your computer or mobile device, use the web browser to go to the Mobile Access Logon page:

https://<server address>/ma/

You should always include the HTTPS protocol (https://)before the server address in order to connect
securely via SSL. If you do not, your connection might not be secure or the server might not allow you
to connect at all, depending on how it is configured. For more information, see Enable SSL encryption in
Microsoft IIS on page 784.

For <server address>, do one of the following:

• If the server is a computer on your local network, type the host name (or IP address, if you know it) of
that computer. For example:

https://station01/ma/

• If the server is a computer on the Internet, type is the full domain name (or IP address, if you know it)
of that computer. For example:

https://scada.ourcompany.com/ma/

• If the server is located behind a network router that has been configured to do port forwarding, type the
public IP address of that router followed by the port number that has been assigned to the server. For
example:

https://200.128.128.0:3040/ma/

The Mobile Access Logon page is displayed in the browser.

Thin Clients and Mobile Access

Page 806

If you are not connecting via SSL, a message is also displayed to remind you that your connection is not
secure.

If you are connecting via SSL for the first time, you may be prompted to accept the host's SSL certificate.
This is done automatically for most certificates issued by trusted Certificate Authorities, but if your web
server is using a self-signed certificate, you may need to manually install that certificate on your computer
or mobile device. The procedure to do this varies by operating system, so for more information, consult the
documentation for your computer or mobile device.

2. Type your user name and password in the respective boxes in the Mobile Access Logon page, and then
either press Return on your keyboard or click/tap the green arrow.

Thin Clients and Mobile Access

Page 807

You are logged on to the Mobile Access web interface, and the home screen is displayed.

Example of the Mobile Access home screen

Alternatively, an alert message might be displayed when you try to log on. Remember the project runtime
server and the web server are two separate processes; if the project is not running, you may be able to go
to the Mobile Access Logon page but you will not be able to log on to the project. Make sure the project is
running, and then try again.

You can open only one session of the Mobile Access web interface per browser. You cannot open new sessions
in additional tabs or even in additional instances of the same browser. So, for example, if you want to open
two sessions of the web interface on the same computer, you must open the first in Google Chrome and the
second in Microsoft Edge.

To log off from the Mobile Access web interface, click/tap the Return button to return to the home screen,
and then on the home screen, click/tap Log Off.

Thin Clients and Mobile Access

Page 808

USE THE ALARM WINDOW
Use the Alarm window in the Mobile Access web interface to view and acknowledge alarms.

The Alarm window is similar to the Alarm/Event Control screen object. It displays online alarms and allows
the user to acknowledge them.

An example of the Alarm window

By default, active alarms are written in red, acknowledged alarms are written in green, and normalized alarms
are written in blue. However, you can change these colors in the Global Settings tab of the Mobile Access
Configuration worksheet.

The grid columns are also similar to those in the Alarm/Event Control screen object. The following columns
are included by default:
Activation Time

The time when the alarm became active.
Type

The type of alarm (e.g., HiHi, Hi, Lo, LoLo).
Message

The message that was displayed when the alarm became active.
Value

The current value of the affected project tag.

Like the default alarm colors, you can change these default columns in the Global Settings tab of the Mobile
Access Configuration worksheet. However, those changes will apply to the entire Mobile Access website. If you
only want to change the columns for a specific Alarm window, during a specific user session, see below.

To use the Alarm window:

1. To acknowledge all currently active alarms:
a) Click/tap Ack All.

The Ack screen is displayed.

b) Type a comment that will be saved with the acknowledged alarms, and then click/tap Confirm.

The alarms are acknowledged.

2. To acknowledge only selected alarms:
a) In the * column of the grid, select the alarms that you want to acknowledge.

Note: The Alarm window will not be updated while you have alarms selected.

b) Click/tap Ack *.

Thin Clients and Mobile Access

Page 809

The Ack screen is displayed.

c) Type a comment that will be saved with the acknowledged alarms, and then click/tap Confirm.

The alarms are acknowledged.

3. To change the grid columns for a specific Alarm window:
a) Click/tap the Settings button .

The Settings screen is displayed with a list of all of the available grid columns and a toggle switches for
each column.

b) Click/tap the switches to turn the columns on or off.

c) Click Alarm to apply your changes and return to the previous screen.

In most cases, these columns are the same as — and display the same information as — the columns in
the Alarm/Event Control object. The one exception is the Group column, which displays the group number
(e.g., Group 1) instead of the group name for the specific alarm.

4. To return to the home screen, click/tap the Return button .

USE THE PROCESS VALUES WINDOW
Use the Process Values window to view tag values as graphical widgets and also to update selected tags.

The Process Values window is similar to the Symbols library. It uses various pre-made widgets (i.e., gauges
and switches) to graphically represent project tag values. It can also allow the user to change the values
during run time, depending on how you configure the widgets.

An example of the Process Values window

All widgets are continuously updated to show the current values of their associated project tags.

If a widget is highlighted blue, then its associated project tag is writable. That means the user can use the
widget to set a new value for the tag.

To use the Process Values window:

1. To change a value:
a) Click/tap the widget.

The widget must be highlighted blue, to indicate that the tag is writable.
A new screen with an enlarged version of the widget is displayed.

b) Either manipulate the widget (i.e., toggle the switch, move the gauge) to set the new value, or type the
new value in the text box below the widget.

Thin Clients and Mobile Access

Page 810

c) Click/tap Write.

The new value is written to the tags database.

2. To return to the home screen, click/tap the Return button .

USE THE TREND WINDOW
Use the Trend window to view trend graphs of selected process values.

The Trend window is similar to the Trend Control screen object. It graphs the changes in process values
during project run time, and it can also display trend history when available.

An example of the Trend window

The X-axis of the graph is time, and the Y-axis is the value of the tags. The legend below the trend graph
includes the following columns:
Check Box

Select to show the process value on the trend graph, or clear to hide it.
Label

The name of the process value. Please note that this may be different from the original name
of the project tag, depending on how you configure it in the Mobile Access Configuration
worksheet.

Value
The current process value.

Min and Max
The Min and Max settings from the area settings. These are used to calculate the percentage on
the Y-axis. For example, if Min is 10, Max is 20, and the actual value is 16, then the percentage is
60%.

By default, the Trend window runs in real-time (or "play") mode with a duration of 60 seconds. That means
the graph is continuously updated with the current process values, and only the last 60 seconds are actually
shown on the graph. However, you can change all of this in the Settings window. For more information, see
below.

To use the Trend window:

1. To hide or show the legend below the trend graph, click/tap Toggle Legend.

2. To hide or show a specific process value on the trend graph, click/tap the check box in the first column.

3. To add translucent fills below the trend lines:

Thin Clients and Mobile Access

Page 811

a) Click/tap the Settings button .
The Settings screen is displayed.

b) Toggle the Fill switch to ON.

c) Click/tap Trend to apply your changes and return to the Trend window.

4. To change the duration (i.e., the X-axis) of the trend graph:
a) Click/tap the Settings button .

The Settings screen is displayed.

b) In the Duration text box, type the new duration in seconds.

c) Click/tap Trend to apply your changes and return to the Trend window.

5. To show the trend lines as actual values rather than as percentages:
a) Click/tap the Settings button .

The Settings screen is displayed.

b) Toggle the Percentage Mode switch to OFF.

c) In the Min and Max boxes, type the minimum and maximum values for the Y-axis of the trend graph.
These apply to all of the process values, overriding the values' individual Min and Max settings that are
used to calculate the percentages.

d) Click/tap Trend to apply your changes and return to the Trend window.

6. To pause the Trend window and switch to history mode:
a) Click/tap the Settings button .

The Settings screen is displayed.

b) Toggle the Play switch to OFF.
The Duration setting changes to Period.

c) Click/tap Period.
The Period screen is displayed.

d) Use the date and time controls to set the From (start) and To (end) points of the graph's X-axis.

e) Click/tap Settings to apply your changes and return to the Settings screen.

f) Click/tap Trend to apply your changes and return to the Trend window.

g) Click/tap Toggle Cursor to turn on a vertical cursor that you can slide left and right on the trend graph,
in order to see the process values at a specific time.

Note: The Toggle Cursor button is hidden when the Trend window is not in history mode.

In order to display trend history, your project must include a properly configured Trend worksheet that
saves the historical data for the selected project tags. The Trend window itself cannot save historical data.
For more information, see Trend worksheet on page 410.

7. To return to the home screen, click/tap the Return button .

Thin Clients and Mobile Access

Page 812

USE THE SCREENS WINDOW
Use the Screens window to view selected project screens.

Thin Clients and Mobile Access

Page 813

The Screens window shows a list of project screens that you have selected to include in Mobile Access.

An example of the Screens window

An example of a project screen

Thin Clients and Mobile Access

Page 814

All screen objects and animations are continuously updated to show the current values of their associated
project tags. Also, the Disable and Security settings are enforced on all screen objects and animations, but the E-
sign setting is not.

To use the Screens window:

1. To go to a particular project screen, click/tap the screen name in the list.

2. To return to the list of project screens, click/tap the Screens button in the top-left corner.

3. To return to the home screen, click/tap the Return button .

LINK DIRECTLY TO A PROJECT SCREEN OR SCREEN GROUP
Use a custom URL to bypass the Mobile Access web interface and link directly to a specific project screen or
screen group.

In most cases, you would use the Mobile Access web interface to log onto your project runtime server and
then navigate through your project. If you often visit a specific project screen or screen group, however, you
might want to bookmark it and skip the rest of the navigation. To do that, you can compose a custom URL
that includes the server address, the specific version of the Mobile Access Runtime software, the name of the
project screen or screen group, and if you wish, your user credentials.

When you compose and use this custom URL, your primary concern should be project security. If the project
security system has been enabled, you are required to log onto the project runtime server before you can view
any project screens. Therefore, you must decide whether to include your user credentials in the URL. If you
do, you will be automatically logged on and then taken to the screen. If you do not, you will be prompted to
log on before proceeding to the screen.

The key here is that if you save the custom URL with your user credentials, anyone who has an opportunity
to examine the URL — for example, by copying your bookmark or by watching over your shoulder while you
use it — might learn your credentials. You must consider the possibilites and weigh your convenience against
project security.

You do not need to be concerned about having your user credentials intercepted on the network because
they are never actually sent over the network as part of the custom URL. The number sign (#) in the URL
indicates that the following text should be handled by the browser itself. It is typically used to jump to an
anchor in a webpage (e.g., chapter04.html#section02), but in this case, the browser — specifically, the
browser's XmlHttpRequest object — parses the text and then sends it directly to Mobile Access. As long as
SSL encryption is enabled in the web server, this direct communication between the browser and Mobile
Access should be secure.

Note: Custom URLs that use a question mark (?) instead of a number sign (#) are still supported by
the current version of Mobile Access, in order to maintain backward compatibility, but you should
update your bookmarks as soon as possible.

In some cases, the project security system is configured to log users off after a specified period. (For more
information about the Auto LogOff settings, see Group Account dialog on page 677.) When it does, the
browser will be redirected to the Mobile Access Logon page and the custom information will be stripped from
the URL in the browser's address bar. This is to prevent other people from using an unattended computer to
reload the URL and view the project screen.

There are four ways to compose the custom URL:

Screen only

This URL will take you to the Mobile Access Logon page, where you will be prompted for your
user name and password. After you log on, you will be redirected to the specified project screen
or screen group.

https://<host name or IP address>/<version>/index.html#screen=<screen name>

Example for default version:

https://scada.ourcompany.com/MA/index.html#screen=animations

Thin Clients and Mobile Access

Page 815

Example for specific version:

https://scada.ourcompany.com/BOS2020/index.html#screen=Animations

Screen, with guest logon

This URL will log you on as a guest user and take you directly to the specified project screen or
screen group.

https://<host name or IP address>/<version>/index.html#screen=<screen
 name>&guestuser=1

Example for default version:

https://scada.ourcompany.com/MA/index.html#screen=animations&guestuser=1

Example for specific version:

https://scada.ourcompany.com/BOS2020/
index.html#screen=Animations&guestuser=1

Screen, with user name

This URL will take you to the Mobile Access Logon page and automatically enter the specified
user name. You will be prompted for the corresponding password. After you log on, you will be
redirected to the specified project screen or screen group.

https://<host name or IP address>/<version>/index.html#screen=<screen
 name>&user=<user name>

Example for default version:

https://scada.ourcompany.com/MA/
index.html#screen=animations&user=Operator112

Example for specific version:

https://scada.ourcompany.com/BOS2020/
index.html#screen=Animations&user=Operator112

Screen, with user name and password

This URL will automatically log you on as the specified user and then take you directly to the
specified project screen or screen group.

https://<host name or IP address>/<version>/index.html#screen=<screen
 name>&user=<user name>&password=<password>

Example for default version:

https://scada.ourcompany.com/MA/
index.html#screen=animations&user=Operator112&password=eWi28fb2

Thin Clients and Mobile Access

Page 816

Example for specific version:

https://scada.ourcompany.com/BOS2020/
index.html#screen=Animations&user=Operator112&password=eWi28fb2

Notes
This procedure only works for the project screens and screen groups that have been saved as HTML. It does
not work for any other screens, nor does it work for the Alarm, Process Values, or Trend controls in the web
interface.

If you are linking to a screen group instead of a project screen, you must include the screen group file
extension in the custom URL (e.g., index.html#screen=group.sg).

URLs might be case-sensitive, depending on the host's operating system and/or web server.

Mobile Access supports character encoding — that is, substituting character codes for special, non-ASCII
characters — in the custom URL. Character encoding is most often used to allow for spaces in screen
and user names; you can substitute the character code %20 for each space in the custom URL (e.g.,
index.html#screen=main%20screen). It can be used for any special characters, however, as long as you
know the appropriate character codes. For more information, go to: http://www.w3schools.com/tags/
ref_urlencode.asp

Some browsers automatically encode whatever you type in the address bar, which means you can type
the custom URL with spaces (or other special characters) as you normally would. Not all browsers do this,
however, so you should test your custom URL in the browser(s) that you use and be prepared to manually
encode, if necessary.

Troubleshooting project screens in Mobile Access
Use the activity log to troubleshoot project screens in the Mobile Access web interface.

Mobile Access currently supports many but not all features of BLUE Open Studio 2020. If you use an
unsupported feature in a project screen, you might see unexpected behavior when you view that screen in
the Mobile Access web interface. Such behavior can range from incorrect tag changes and function calls to
objects, animations, or scripts that do not work at all.

Mobile Access automatically generates an activity log for the web interface, and you can use the browser
console to get the log for the project screen that you are currently viewing. Then, using the information
provided by the log, you can identify and resolve most issues that you might have.

There are also some common issues that can be resolved without using the activity log. Those issues are
addressed at the end of this section.

http://www.w3schools.com/tags/ref_urlencode.asp
http://www.w3schools.com/tags/ref_urlencode.asp

Thin Clients and Mobile Access

Page 817

USE THE ACTIVITY LOG TO TROUBLESHOOT THE MOBILE ACCESS WEB INTERFACE
Use the Mobile Access activity log, which can be viewed either in the browser console or as part the full
project runtime log, to troubleshoot the Mobile Access web interface.

This activity log is similar to the project runtime log that is displayed in the Output window and/or LogWin
module, except that it comprises only messages about Mobile Access itself and the performance of the web
interface, rather than about the entire project runtime.

An example of the activity log in the console

Where to view the activity log
When Mobile Access is configured and your project is running, you can view the Mobile Access activity log in
three different places.

First, you can view it in the console of the web browser that you use to access the Mobile Access web
interface. This is the most limited view of the activity log, because it displays only the log messages for the
project screen(s) that you are currently viewing in that web browser. It does not display the log messages for
any other client sessions, neither on other computers nor in other client applications (e.g., Secure Viewer)
on the same computer. However, it is the most immediately available when you are actually using the web
interface, and it is somewhat easier to read because it is separated from the full project runtime log. For more
information, see Use the browser console to view the Mobile Access activity log on page 820.

Second, you can view the Mobile Access activity log as part of the full project runtime log, in the Output
window in the project development environment, at least for the project runtime on the local computer. (The
full BLUE Open Studio 2020 software can function as both project development environment and project
runtime, depending on how it is licensed.) For more information, see Output window on page 71.

Third, you can view Mobile Access activity log as part of the full project runtime log, in the LogWin module,
for a project runtime on either the local computer or a remote computer. For more information, see About the
LogWin tool on page 725.

Use the activity log to troubleshoot an issue
Here is an example of how to use the activity log to troubleshoot an issue in one of your project screens.

The screen MyScreen contains a Text Box object that has been configured with the tag MyInput:

Thin Clients and Mobile Access

Page 818

When you normally view the screen in the Mobile Access web interface, the text box shows a value of 0 as it
waits for user input:

If the tag does not exist, however — for example, if you accidentally deleted it from the tags database — then
the text box shows its mask instead and rejects all input:

Thin Clients and Mobile Access

Page 819

Verifying the project will catch things like missing tags, but in order to verify the project, you must be able to
use the project development environment to open and edit the project. The user typically will not be able to do
that during run time.

This is where you can use the activity log to troubleshoot the issue. Open the browser console, and then look
for a message like this in the activity log:

Invalid Date Invalid Date, L1, Error, [04BF97E0] myscreen, myscreen (Screen Script) -
 Expression(1000000): MyInput, Line 1 => Error: Could not read objects database. Object
 MyInput not found [Error Code: 0x80070057]

Tip: The browser console cannot receive log messages unless it is open, so if the console is closed
when you first notice an issue, open it and then access the screen again.

The message provides the name of the screen, the name of the affected object or tag, and the exact nature of
the error. With this information, you should get some idea of how to resolve the issue in your project. This is a
very simple example, of course, and an issue like this typically will be included in a Level 1 log; more complex
issues might require increasing the log level and searching through more messages. But this essentially is the
procedure for using the activity log to troubleshoot a project screen in Mobile Access.

Filter the activity log in the browser console
You can filter the Mobile Access activity log in the browser console in order to reduce the number of log
messages that you must look through to find the information that you need. The tools for filtering the log vary
by browser, so please consult the documentation for the browser that you are using.

Thin Clients and Mobile Access

Page 820

In Google Chrome, click the Filter tool on the console tool bar to reveal additional tools:

Additional filter tools in Google Chrome

If you filter by message type, remember that Mobile Access errors are displayed as "Warnings", Mobile Access
warnings are displayed as "Info", and Mobile Access info messages are displayed as "Logs". ("Errors" are
reserved for critical errors in the web browser itself.) Otherwise, you can try to filter by specific text.

Configure the log settings to show more information
Filtering works only if you are receiving too much information, of course. If you are not receiving enough
information, you might need to configure the log settings to increase the verbosity of the log and/or change
the types of messages that are included in the log.

The log settings for the browser console are actually in your project's Mobile Access Configuration worksheet.
For more information, see Configure the global settings for all areas on page 803. Configuring those settings
will change the log messages that are sent to all of your Mobile Access clients, however, and any change
in your project will require rensending it to its target device(s). As such, this option should reserved for
troubleshooting during project development. If your project is already running on a target device, consider
using the LogWin module instead.

The log settings for both the Output window and the LogWin module are in those respective tools. You can
change those settings at any time without changing the project itself.

USE THE BROWSER CONSOLE TO VIEW THE MOBILE ACCESS ACTIVITY LOG
Use the browser console in Google Chrome, Microsoft Edge, or Safari in order to view the Mobile Access
activity log.

The browser console is a part of the web browser's developer tools, and it is typically used to debug code
in a web page. When you are using the Mobile Access web interface, the browser console also displays log
messages sent by project screens. For more information, see Use the activity log to troubleshoot the Mobile
Access web interface on page 817.

You can open the browser console at any time, but it will not display any log messages unless both the project
runtime server and the web server are running and you have successfully logged on to the Mobile Access web
interface. For more information, see Log on to the Mobile Access web interface on page 805.

Note: These instructions apply only to the desktop versions of these browsers. For more information
about how to access the browser console or developer tools in a mobile browser, please consult the
documentation for that browser.

Google Chrome (Windows, macOS, Linux)
To open the browser console in Google Chrome, do one of the following:

• Go to More (i.e., the dots icon) on the toolbar, and then select More Tools > Developer Tools; or

• Press Ctrl+Shift+J (or Option+Cmd+J in macOS) on the keyboard.

Thin Clients and Mobile Access

Page 821

The console is displayed at the right side of the browser window.

Browser console in Google Chrome

Microsoft Edge (Windows, macOS)
To open the browser console in Microsoft Edge, do one of the following:

• Go to Settings (i.e., the dots icon) on the toolbar, and then select More tools > Developer Tools; or

• Press F12 on the keyboard.

The console is displayed at the right side of the browser window.

Safari (macOS only)
To open the browser console in Safari:

1. Go to Safari (i.e., the application menu), and then select Preferences.

2. In the Preferences dialog box, go to the Advanced tab, and then make sure the Show Develop menu in menu bar
option is selected.

3. Close the Preferences dialog box.

4. Do one of the following:

• Go to Develop, and then select Show Javascript Console; or

• Press Option+Cmd+C on the keyboard.

Thin Clients and Mobile Access

Page 822

The console is displayed at the bottom of the browser window.

Browser console in Safari

TYPES OF MOBILE ACCESS LOG MESSAGES
The Mobile Access activity log can include several different types of log messages. You can configure the log
settings to change which types of messages are displayed, depending on what information you want to see
during project run time.

Where to configure the log settings
Each tool that you can use to view the log has its own log settings.

The log settings for the browser console are actually in your project's Mobile Access Configuration worksheet.
For more information, see Configure the global settings for all areas on page 803. Configuring those settings
will change the log messages that are sent to all of your Mobile Access clients, however, and any change
in your project will require rensending it to its target device(s). As such, this option should reserved for
troubleshooting during project development. If your project is already running on a target device, consider
using the LogWin module instead to view that device's log.

The log settings for both the Output window and the LogWin tool are in those respective tools. You can change
those settings at any time without changing the project itself.

Types of log messages
The first three types of log messages are according to severity:
Error

These are messages about serious errors encountered during project run time, like unsupported
features used in a project screen and run-time errors in the Mobile Access task. (Errors are
marked by the yellow "Warning" icon in most browser consoles.)

Warning

Thin Clients and Mobile Access

Page 823

These are messages about issues that can affect run-time performance, such as excessive tag
synchronization and function calls that must be executed on the server. (Warnings are marked
by the blue "Message" or "Info" icon in most browser consoles.)

Information (Info)
These are messages that report individual function calls, tag value changes, screen openings
and closings, and so on. (Info messages are not marked by icons in browser consoles.)

Note: It is not a mistake that we use the "Warning" icon to mark Mobile Access errors and the
"Message"/"Info" icon to mark Mobile Access warnings. The browser console's red "Error" icon is
reserved for critical errors in the browser itself.

The second three types of log messages are according to which run-time component generated the message:
Runtime Comm

These are messages about communication between the project runtime server and the Mobile
Access task.

Screen
These are messages about the project screens — including objects and scripts — that are
currently being viewed by Mobile Access users.

When you view the activity log in either the Output window or the LogWin module, you can see
messages about all project screens being viewed by all users. When a user views the activity log
in their browser console, they can only see messages about the project screens they are viewing
in their own browser.

Web Services
These are messages about communication between the Mobile Access task and the client
sessions, through whatever web server you have set up to serve the Mobile Access web interface.

The first three types work in combination with the second three types to determine exactly which messages
are included in the activity log. If you want to see everything, simply select all of the options in the log
settings. If you only want to see messages about serious errors in the web services, for example, select only
Error and Web Services. You might need to experiment to get the exact information that you need.

Finally, select the Trace option to display the messages that are generated whenever the Trace function is
called in a project screen.

Increase the verbosity to get more information
By default, the activity log is set to verbosity level 1, which provides the least amount of information. If you
have issues while using the Mobile Access web interface — especially while trying to view selected project
screens — and the log does not help, you can increase the verbosity to get more information.

Be careful not to set the verbosity too high, however, because the higher it is, the longer and more detailed the
log will be, which might make it hard for you to find the information that will actually help you to resolve your
issues. Try increasing the verbosity in steps, first from level 1 to level 2, then from level 2 to level 3, and so on
until you get the information you need.

Here is a basic guide to which levels you should try:

• If objects, animations, or scripts are not working at all, try level 1. This level should be enough to identify
missing tags, unsupported features, and other such things. For more information, see Supported features
in Mobile Access on page 769.

• If a project screen is unusually slow to open or update, try level 3 (which includes levels 1–2). This level
should help you to diagnose issues that affect run-time performance. For more information, see Tips for
Mobile Access development and run time on page 779.

• If you simply do not see the behavior that you expect during run time, try level 5 (which includes levels 1–
4). This level reports every tag update and function call.

Please note that these are only general suggestions; you will probably need to change the verbosity more than
once to get the right amount of detail on your specific issues.

Thin Clients and Mobile Access

Page 824

USE THE PROBEHEALTH SERVICE TO TEST MOBILE ACCESS
Mobile Access includes a ProbeHealth service that you can use to test the status and availability of the server.

Each instance of Mobile Access includes its own ProbeHealth service that returns HTTP status codes when
queried.

To access the ProbeHealth service for a given instance, configure the load balancer to go to the following URL:

https://<host name or IP address>/<version>/ProbeHealth

Example for the default version of Mobile Access:

https://scadaserver01/MA/ProbeHealth

Example for a specific version of Mobile Access:

https://scadaserver01/BOS2020/ProbeHealth

For more information about linking directly to specific versions of Mobile Access, see Link directly to a project
screen or screen group on page 814. However, the ProbeHealth service is a recent addition to Mobile Access
and is not included in some earlier versions, so make sure you test the configuration of the server before you
allow it to accept connections from users.

The ProbeHealth service returns one of the following HTTP status codes when queried:

HTTP Status Code Description

200 OK This instance of Mobile Access is running as expected.

500 Internal Server Error This instance of Mobile Access is not running as expected.

Additional information is provided as a JSON-formatted message, which can be used for logging or
troubleshooting purposes. That message should include one of the following result codes:

Result Code Description

0 Ok

61 LicenseLimit

201 InitializationFailed

205 ErrorConnect

305 ProbeHealthNotOk

Examples of messages:

{"id":0,"resultCode":0,"message":"","data":{"probeHealth":"Ok!"}}

{"id":0,"resultCode":305,"message":"WebProxy: Error to create connection, please make
 sure the runtime is running and that the Mobile Access Task is started (see Project-
>Tasks). [status: -13, message: Fail to establish connection, data: Error to establish
 connection [OS Error Code: 10061]]","data":{}}

For more information about the ProbeHealth service, please contact your BLUE Open Studio 2020 software
distributor.

Thin Clients and Mobile Access

Page 825

View or disconnect client sessions
Use the Current Sessions dialog box to view or disconnect clients that are currently connected to your project
runtime server.

Before you begin, your project must be running on Windows using the full BLUE Open Studio 2020 software
with an appropriate runtime license. The Current Sessions feature is not available in our other runtime
editions. Also, you must have access to the computer that hosts the project runtime, either directly or
through screen sharing. You cannot access the Current Sessions feature through Remote Management.

When a client connects to your project runtime server, a client session is initiated. Each session counts
against the maximum number of clients allowed by your runtime license. A session ends only when the
user either logs off from the project or closes the client program, so if the current number of client sessions
approaches the maximum number of clients allowed, you might need to disconnect old or idle sessions in
order to ensure that your project runtime server remains accessible.

Note: For Mobile Access only: due to technical differences between web browsers, the exact moment
when the thin client is considered "closed" — and therefore the session ends — varies somewhat. In
Chrome for Android, the session ends when the user goes to a new website but not when the user
closes the browser tab. In Safari for iOS, it is the opposite: the session ends when the user closes the
browser tab but not when the user goes to a new website.

Thin Client sessions are handled by the TCP/IP Server runtime task in your project. When the project is
running and the task is started, a TCP/IP Server icon is displayed in the notification area of the Windows
taskbar. You can use this icon to open the Current Sessions dialog box for the Thin Client sessions.

Example of the Current Sessions dialog box for TCP/IP Server

Mobile Access sessions are handled by the Mobile Access runtime task, and similar to the above, when the
project is running and the task is started, a Mobile Access Task icon is displayed in the notification area of

Thin Clients and Mobile Access

Page 826

the Windows taskbar. You can use this icon to open the Current Sessions dialog box for the Mobile Access
sessions.

Example of the Current Sessions dialog box for Mobile Access

For more information about the TCP/IP Server and Mobile Access runtime tasks, see Runtime Tasks on page
134.

Also, please note how the title bar shows the maximum number of clients allowed. That information is gotten
from your runtime license settings. For more information, see License Settings on page 44.

Finally, the User Name column will show individual user names only if you enabled the security system in your
project. If you did not, all users will be logged on and shown as "Guest". For more information, see Project
Security on page 652.

Note: The Mobile Access runtime task has a memory limit of 1.5 GB. If this limit reached during
project run time — typically due to trying to run an extremely large project, but also sometimes due
to managing a large number of client sessions — additional clients will not be allowed, regardless of
the runtime license settings. When this happens, an alert message will be displayed to users who try
to log on.

To view or disconnect thin client sessions:

1. In the notification area of the Windows taskbar, right-click either the TCP/IP Server icon or the Mobile Access
Task icon, and then on the shortcut menu, click Current Sessions.
You might need to expand the notification area to show hidden icons.
The Current Sessions dialog box is displayed.

2. To refresh the list of sessions, click Refresh.
In most cases, the list will automatically refresh itself as thin clients connect and disconnect, but you can
also manually refresh it make sure you have the latest information.

3. To disconnect a specific session, select that session in the list, and then click Disconnect.
The selected session is disconnected and the session's user is logged off. A new session is automatically
initiated, as if the user restarted or reloaded the thin client, but it will expire after a specfied period if no

Thin Clients and Mobile Access

Page 827

one logs on. For more information about session expiration, see Configure the global settings for all areas
on page 803.

4. When you are done, either close the window or click Close.

Database Interface

Page 828

Database Interface
Configuring a database interface with BOS is basically linking tasks from BOS (Alarms, Events or Trends) to
tables of external databases via a specific Database Provider that supports the database you have chosen.

Each history task (Alarm, Events or Trend) can be configured to save data either to files with the proprietary
format from BOS or to external SQL Relational Databases. Use the Options tab to configure the database to
save Alarm and Event history. (See the Trend Folder for instructions for saving history for the trend tasks.)

BOS supports ADO.NET to provide an intuitive, simple, flexible and powerful interface with standard
technologies from MDAC (Microsoft Data Access Components) such as OLE-DB (Object Linking Embedded
— Database) and ODBC (Open Database Connectivity). By using this capability, you can connect to any
database that is MDAC compatible (please see the Conformance Table for the list of databases already tested)

The following tasks support the database interface:

• Alarms: The project can save and/or retrieve the alarm history messages in a relational database.

• Events: The project can save and/or retrieve the event messages in a relational database.

• Trends: The project can save and/or retrieve the Trend history values in a relational database.

• Viewer: Database information can be displayed both in table format (Alarm/Event Control and Grid objects)
or in a graphical format (Trend Control object).

• Web: Because the items listed below are already available in BOS Web interface, you can deploy a project
that stores/saves data in a relational database and have it working over the Web.

Using its embedded database interface, BOS can easily provide data from the plant floor to third-party
systems (e.g., ERP) or get data from them.

BOS can interface with any relational database supported by a valid ADO.NET Provider, OLE DB provider or
ODBC driver. However, the conformance tests were executed with the following databases:

Conformance Test Table

Database Database Version ADO.NET Provider Assembly Version

Microsoft SQL Server 2000 8.0 System.Data.SqlClient 1.0.5000.0

Microsoft Access 2000 9.0.3821 SR-1 System.Data.OleDbClient 1.0.5000.0

Microsoft Excel 2000 9.0.3821 SR-1 System.Data.OleDbClient 1.0.5000.0

Oracle 10g Release 1 for Windows System.Data.OracleClient 1.0.5000.0

Sybase Anywhere 9.0.1.1751 iAnywhere.Data.AsaClient 9.0.1.1751

MySQL 4.0.20a ByteFX.MySqlClient 0.7.6.15073

Note:

For information about how to configure a specific database, please refer to the following:

• Using ODBC Databases on page 858

• Using Microsoft SQL Server on page 859

• Using Oracle Databases on page 862

• Using Microsoft Access or Microsoft Excel on page 863

• Using Sybase on page 865

• Using MySQL on page 865

Database Interface

Page 829

SQL Relational Databases
A SQL Relational Database is a set of information stored in tables with fields and registers, which support
SQL commands.

Each database can have one or more tables. Each table is composed of fields (columns) and registers (rows).
Typically, the fields are pre-defined and the project adds or reads one or more registers, according to the
query condition.

BOS uses Database Providers (ADO.NET) to interface with SQL Relational Databases. Database Providers are
libraries developed to access data from different databases through SQL commands. The ADO.NET Provider
for a specific database can be supplied by the operating system or by the database manufacturer.

The following picture illustrates how BOS can interface with different databases using a different Database
Provider for each database.

The previous picture shows some of the most popular ADO.NET Providers for databases. Notice that the
Microsoft ADO.NET Provider for ODBC Drivers allows you to access the database through an ODBC driver. See
Using ODBC Databases on page 858 for information about how to use this provider. It is also possible that
you do not have an ADO.NET provider, but an OLE DB provider is available. By using the Microsoft ADO.NET
Provider for OLE DB you can get access to the database; the Microsoft Jet OLE DB provider gives access to
applications in the Microsoft Office package by using this approach.

Note: It is important to note that BOS provides the interface for ADO.NET Providers. However,
the ADO.NET Providers and/or the ODBC Driver/OLE DB Provider must be supplied either by the

Database Interface

Page 830

operating system or by the database manufacturer. If your Connection String does not refer to a
valid ADO.NET Provider, the OLE.DB Provider will be used.

Although most projects typically link to only one type of database, BOS gives you the flexibility to link each
task to a specific database supported by a Database Provider. Furthermore, by using this architecture, you
do not need to worry about the specific characteristics of each database (it is mostly handled by the Database
Provider for each database or by the BOS Database Gateway interface). Therefore, the project settings are
mostly uniform, regardless of the specific database chosen by you.

Database Interface

Page 831

Studio Database Gateway
The Studio Database Gateway is a TCP/IP server that interacts with databases using the Microsoft .Net
Framework. It can run on the same computer that is running the BOS project, or on a different computer.
The Database Gateway Host in the Advanced Settings (see Database Configuration on page 106) specifies
whether the gateway will be running on the local computer or not. If you are using the local computer you
should enter either localhost or 127.0.0.1 in the Host name. You do not need to worry about starting or
stopping the gateway because it will be done automatically by BOS tasks. On the other hand, when running
the gateway remotely, you need to start the gateway manually. To do so, copy the files StADOSvr.exe and
StADOSvr.ini from the \BIN folder to the remote computer, and then execute the StADOSvr.exe.

The gateway can be started multiple times for different TCP/IP port numbers. The default port number is
3997, and it is changed by specifying the desired port number in the command prompt (e.g., StADOSvr
1111). When running the StADOSvr, it will add the following icon to the system tray:

When you right-click on the icon, the following shortcut menu is displayed:

Database Interface

Page 832

The Hide option controls whether the Studio Database Gateway window is displayed on the desktop. (The
gateway software runs continuously after you launch it, regardless of whether the window is displayed.) If you
disable the Hide option, the window is displayed:

Studio Database Gateway

Any failure that occurs during operations with databases will be displayed both in this window and also in the
LogWin window. The messages are reported by exceptions generated by the ADO.NET Provider. (Please refer to
Database Troubleshooting for more information about error messages in the gateway module.)

You can configure the output in this window by using the Log menu:

• Show Log menu option: Shows the BOS Database Gateway log files.

• Options menu option: Open the Configure Messages dialog.

Studio Database Gateway: Configure Messages dialog

• Show Messages pane: Select Errors Only to show only error messages in the log, or select All Messages to
show all database messages.

• Additional Information pane: Configure to show additional information about each database message.

Database Interface

Page 833

• Message Type checkbox: Click (check) this option to show the type of the message.

• Date/Time checkbox: Click (check) this option to show the timestamp of the message.

Also, you can directly monitor database connections using the Monitor menu:

• Connections menu option: Displays the Database Connections window.

Studio Database Gateway: Database Connections window
• Log to File menu option: Logs the monitor output to a file named logdate.txt in the same folder as

StADOSvr.exe.

Data Protection
If you have enabled Data Protection in your project, you also need to enable Data Protection in the Studio
Database Gateway so that it and the project runtime server can communicate securely with each other.

Note: If more than one project runtime server will be using the same Studio Database Gateway to
manage database connections, all of the projects should have the same Data Protection password.

To enable Data Protection in the Studio Database Gateway:

1. In the Studio Database Gateway window, on the File menu, click Data Protection. The Data Protection dialog
box is displayed.

2. Select the Enable check box. The Password and Confirm Password boxes become active.

3. In the Password box, type your password, and then in the Confirm Password box, type it again. Be sure to type
the same password that you used in your project.

4. Click OK.

For more information about Data Protection, see Enable Data Protection to encrypt sensitive information on
page 111.

Advanced Settings
The Studio Database Gateway has Advanced Settings that are configured in the StADOSvr.ini file. If you are
having problems interfacing with a specific database, you will probably need to change some of these settings
or add new providers to the file. The following settings are available:

Database Interface

Page 834

Section of .INI File Setting Accepted Values Description

SaveMSec 1 : Disable

2 : Enable

3 : Separate Column

This setting specifies the default behavior for the
provider when saving milliseconds. The default can be
changed on the Advanced Settings in the Database
Configuration Dialogs.

Assembly Any string that contains a .NET
Framework assembly

Assembly option for all providers. The assembly has
all the classes required to interface with the database.
Most of the providers are inside the System.Data
assembly.

ConnectionClass Any connection class inside the
assembly

The Connection Class is the one that implements the
System.Data.IDbConnection interface.

DateAdapterClass Any data adapter class inside the
assembly

The Data Adapter class is used on operations where
updates to the database are necessary. It must be
compatible with the connection class specified and it
should implement IDbDataAdapter.

CommandBuilderClass Any command builder class inside the
assembly

The Command Builder class is also responsible for
updates on databases. It must be compatible with the
connection class.

Provider Name of the provider One of the parameters in the connection string is the
"Provider". The Studio ADO Gateway compares the
value on the connection string with the value for this
parameter in each provider and defines the proper one
to be used.

ColumnDelimiterPrefix Any character or group of characters Specify a character that will be placed before column
names on SQL statements

ColumnDelimiterSuffix Any character or group of characters Specify a character that will be placed after column
names on SQL statements

TableDelimiterPrefix Any character or group of characters Specify a character that will be placed before table
names on SQL statements

TableDelimiterSuffix Any character or group of characters Specify a character that will be placed after table names
on SQL statements

ValueString Any string This value indicates how constant values are identified
on SQL statements. For Microsoft SQL databases
for instance, the value should be @Value, for ODBC
question mark (?)

ValueStringPrefix Any string This value indicates a prefix to be used before the
values. Oracle values, for instance, require the prefix.
The SQL statements use value identifiers by using their
prefixes, but the parameters in the Connection class do
not use the prefix.

ValueAddNumber 0 or 1 Indicates whether a sequential number should be added
to the ValueString to identify the parameter or not. For
Microsoft SQL database, this setting should have the
value 1, because parameters are identified by using
@Value1, @Value2, …, @ValueN. For ODBC, this
setting should be 0.

BoolType Any string representing a valid data type
for the database

When trying to create columns to store boolean values,
the data type specified on this setting will be used. You
need to make sure that the data type specified is able to
save boolean values.

IntegerType Any string representing a valid data type
for the database

When trying to create columns to store integer values,
the data type specified on this setting will be used. You
need to make sure that the data type specified here is
able to store 32 bit values.

Providers

RealType Any string representing a valid data type
for the database

When trying to create columns to store real values, the
data type specified on this setting will be used. You

Database Interface

Page 835

Section of .INI File Setting Accepted Values Description
need to make sure that the data type specified here is
able to store 64 real values.

StringType Any string representing a valid data type
for the database

When trying to create columns to store string values,
the data type specified on this setting will be used. You
need to make sure that the data type specified is able
to save the number of characters that you are willing to
save on your project.

TimeStampType Any string representing a valid data type
for the database

When trying to create columns to store TimeStamp
values, the data type specified on this setting will be
used.

EnableTop 0 or 1 When this field is set to 1, the ADO will place the TOP
in the SQL statement to limit the amount of registers
required.

SingleConnection 0 or 1 When this field is set to 1, the ADO will open only one
connection with the database, regardless of how many
tasks or computers are requesting services from it. The
synchronization between the tasks will be performed by
the gateway, and they will not be able to be executed
simultaneously if this option is enabled.

TimeOut Any integer Timeout (in seconds) to perform insert and update
operations. If no value is specified, then the default of 2
seconds is used.

LongTimeOut Any integer Timeout (in seconds) to perform connection and query
updates. If no value is specified, then the default of 5
seconds is used.

SyncTimeOut Any integer Timeout (in seconds) to perform synchronization. If no
value is specified, then the default of 60 seconds is
used.

Communication

OpenNonQueryTimeOut Any Integer Timeout (in seconds) a request will wait for the
connection used for Non-Query operations. Non-
Query operations should be fast, but we experienced
some issues where the provider would lock up and the
gateway would have too many threads waiting with a
high memory usage. If no value is specified, then the
default of 3000 miliseconds is used.

RegBufSize Any integer Size (in number of registers) of the internal buffer
created for each database worksheet. If no value is
specified, the default value is 128. The total amount
of memory used depends on the number of database
worksheets and the data types of the registers.

Connection

InsertBufferSize Any integer Size (in number of registers) of the buffer for all data to
be inserted into the database. This is to prevent alarms/
events from individually timing out, stacking up, and
causing the project to freeze. If no value is specified, the
default value is 1024.

CultureInfo Any standard language-country code
(e.g., en-US), which is a combination
of an ISO 639-1 language code and an
ISO 3166-1 country code

The language or culture that should be used to format
values in SQL statements. For example, this determines
whether the decimal mark in numeric values is a point
(###.##) or a comma (###,##).

This is important when the option Disable SQL
variables is selected in the Database Configuration
settings. For more information, see Database
Configuration on page 106.

The default value of this paramter is en-US (i.e.,
"English – United States").

Options

DisableCloseQuestion 0 or 1 When this is set to 1, no user confirmation is required
to close StADOSvr.exe. This is important

Database Interface

Page 836

Section of .INI File Setting Accepted Values Description
for devices that have alternative methods for exiting
applications and restarting.

EnableWatchDog 0 or 1 When this is set to 1, if we have a
OpenNonQueryTimeOut, the gateway assumes there
was a deadlock and quits. If the gateway is running
locally, the runtime will restart it automatically. If it
is running remotely, you should consider using the
StudioProcessWatchDog. The default value of this
setting is 0

Monitor Monitor 0 or 1 When this is set to 1, the Monitor menu is displayed
in the Studio Database Gateway. This is enabled by
default now, but it was not in previous versions of BLUE
Open Studio 2020.

GarbageCollectorConnectionEnabled0 or 1 This setting indicates whether garbage collection for
database connections is enabled or disabled. The
default value is 1, even if the setting itself does not
exist in the .ini file, which means the garbage collector
is enabled by default. You need to add this setting
to the .ini file only if you want to disable the garbage
collector.

GarbageCollectorConnectionPeriodAny integer greater than 0 The period (in minutes) after which the garbage
collector runs and old database connections are closed.
The default value is 1, even if the setting itself does not
exist in the .ini file, which means the garbage collector
runs once per minute and all old connections (see
MaxOpenTime below) are closed. You need to add
this setting to the .ini file only if you want to increase the
period.

Performance

GarbageCollectorCursorMaxOpenTimeAny integer greater than 0 The maximum amount of time (in minutes) that a
database connection can be open before the garbage
collector will close it. The default value is 1, even if the
setting itself does not exist in the .ini file, which means if
a connection has been open longer than 1 minute when
the garbage collector runs (see Period above) then
it will be closed. You need to add this setting to the .ini
file only if you want to increase the maximum.

The paramters are grouped into five sections — Providers, Communication, Connection, Options, and
Performance — but all of the settings for configuring database providers are listed in the Providers section
of the file. The default values are specified in the beginning of the file, using the prefix "Default" in each
setting as shown below:

[Providers]
DefaultSaveMSec=3
DefaultAssembly=System.Data
DefaultConnectionClass=System.Data.OleDb.OleDbConnection
DefaultDataAdapterClass=System.Data.OleDb.OleDbDataAdapter
DefaultCommandBuilderClass=System.Data.OleDb.OleDbCommandBuilder
DefaultValueString=@Value
DefaultValueAddNumber=1 DefaultBoolType=INTEGER
DefaultIntegerType=INTEGER DefaultRealType=REAL
DefaultStringType=VARCHAR(255) DefaultTimeStampType=DATETIME
DefaultSingleConnection=0

The next item on the file lists the amount of providers:

Count=5

The providers are identified by the "Provider" setting followed by a number. When connecting to a database,
the Provider setting in the connection string is compared to the provider's identification, in order to determine
which provider will be used. If there is no provider with the value on the connection string, all the default

Database Interface

Page 837

values are assumed. Besides its identification, each provider can have its own value per each setting. Again, if
no value is specified, the default is used. Below is an example with seven providers:

Count=7

Provider1=MICROSOFT.JET.OLEDB
SaveMSec1=3
ColumnDelimiterPrefix1=[
ColumnDelimiterSuffix1=]
SingleConnection1=1

Provider2=SQLOLEDB
ConnectionClass2=System.Data.SqlClient.SqlConnection
DataAdapterClass2=System.Data.SqlClient.SqlDataAdapter
CommandBuilderClass2=System.Data.SqlClient.SqlCommandBuilder
ColumnDelimiterPrefix2=[
ColumnDelimiterSuffix2=]
TableDelimiterPrefix2=[
TableDelimiterSuffix2=]
RealType2=FLOAT

Provider3=MSDASQL
ConnectionClass3=System.Data.Odbc.OdbcConnection
DataAdapterClass3=System.Data.Odbc.OdbcDataAdapter
CommandBuilderClass3=System.Data.Odbc.OdbcCommandBuilder
ValueString3=?
ValueAddNumber3=0
StringType3=VARCHAR(128)
EnableTop3=0

Provider4=ORAOLEDB
Assembly4=System.Data.OracleClient
ConnectionClass4=System.Data.OracleClient.OracleConnection
DataAdapterClass4=System.Data.OracleClient.OracleDataAdapter
CommandBuilderClass4=System.Data.OracleClient.OracleCommandBuilder
ValueString4=Value
ValueAddNumber4=1
ValueStringPrefix4=:
BoolType4=Number(1)
IntegerType4=Number(10)
RealType4=Number
StringType4=VARCHAR(255)
TimeStampType4=TIMESTAMP(0)
EnableTop4=0

Provider5=ASAPROV
Assembly5=iAnywhere.Data.AsaClient
ConnectionClass5=iAnywhere.Data.AsaClient.AsaConnection
DataAdapterClass5=iAnywhere.Data.AsaClient.AsaDataAdapter
CommandBuilderClass5=iAnywhere.Data.AsaClient.AsaCommandBuilder
ValueString5=?
ValueAddNumber5=0
ColumnDelimiterPrefix5=[
ColumnDelimiterSuffix5=]
TableDelimiterPrefix5=[
TableDelimiterSuffix5=]

Provider6=MYSQLPROV
Assembly6=ByteFX.MySqlClient
ConnectionClass6=ByteFX.Data.MySqlClient.MySqlConnection
DataAdapterClass6=ByteFX.Data.MySqlClient.MySqlDataAdapter
CommandBuilderClass6=ByteFX.Data.MySqlClient.MySqlCommandBuilder
ValueString6=@Value
ValueAddNumber6=1
StringType6=VARCHAR(128)
EnableTop6=0

Database Interface

Page 838

Provider7=MSDAORA
Assembly7=System.Data.OracleClient
ConnectionClass7=System.Data.OracleClient.OracleConnection
DataAdapterClass7=System.Data.OracleClient.OracleDataAdapter
CommandBuilderClass7=System.Data.OracleClient.OracleCommandBuilder ValueString7=Value
ValueAddNumber7=1
ValueStringPrefix7=:
BoolType7=Number(1)
IntegerType7=Number(10)
RealType7=Number
StringType7=VARCHAR(255)
TimeStampType7=TIMESTAMP(0)
EnableTop7=0

Database Interface

Page 839

Manually install Studio Database Gateway
You can manually install Studio Database Gateway on a Windows computer in order to have it relay
connections between a project runtime and an external database.

Before you begin this task, you must have already installed the full Studio software on your computer,
because doing so unpacks the standalone Studio Database Gateway software installer.

Also, you must have Administrator privileges on a computer or device in order to install any software.

Studio Database Gateway requires both .NET Framework 3.5 and .NET Framework 4.8 (or later), which are
supported by but not necessarily included in all of the versions of Windows that also support this software.
Before you try to install the Studio Database Gateway software on a computer or device, make sure both
versions of .NET Framework are installed and turned on. For more information, see Install the full BLUE
Open Studio 2020 software on page 36.

In most cases, the project runtime and the database gateway run on the same computer or device: the
database gateway software is installed as part of the project runtime software, and the database gateway runs
automatically when the project itself is run. If this is the case for your project, and if you are satisfied with the
run-time performance of your project, you do not need to do anything more and you may skip this task.

In some cases, however, it is advantageous or even necessary to manually install and run Studio Database
Gateway:

• When you want to optimize network traffic between the project runtime and the database server. For
example, by running the database gateway on the same computer that hosts the database server itself
and then taking advantage of the Decimation feature of the Trend Control object. The database gateway
implements the decimation before it relays the data to the project runtime.

• When you want to limit the number of concurrent connections to the database server. You can have
several projects access the same database server through a single database gateway. As far as the
database server is concerned, the only connection is the database gateway.

Studio Database Gateway relaying database connections

You can install Studio Database Gateway on any Windows computer on your network, as long as that
computer or device can communicate with both the project runtime and the database server.

To manually install Studio Database Gateway:

1. Locate the standalone Studio Database Gateway software installer (GatewaySetup.exe) in your Studio
program folder.

If the full Studio software was installed at its default location, the standalone Studio Database Gateway
software installer should be located at:

C:\Program Files (x86)\Pro-face\BLUE Open Studio 2020\Redist\DatabaseGateway
\GatewaySetup.exe

2. Copy the installer to the Windows computer on which you want to install the database gateway.
You can either copy the installer across the network or move it on a portable hard drive.

3. Run the installer, and then follow the installation instructions.

There are no installation options for you to select.

Database Interface

Page 840

Note: The installer will try to confirm that .NET Framework 4.5.1 is installed on the computer or
device. If it cannot, it will cancel the installation.

When the installation is finished, if the software was installed at its default location, it should be located at:

C:\Program Files\Studio Database Gateway v20.0\

Remember, the database gateway runs automatically (i.e., when the project itself is run) only if it is installed
on the same computer or device as the project runtime. If the database gateway is installed on another
computer or device, you must manually run it before you run your project, so that your project can find it and
connect to it. For more information, see Manually running Studio Database Gateway on page 841.

Database Interface

Page 841

Manually running Studio Database Gateway
By default, Studio Database Gateway is run automatically when you run your project. But in some cases, you
might need to manually run it.

Studio Database Gateway is installed as part of project runtime software. When your project is configured
to connect to an external database and you use any of those runtimes to run your project, the project
itself will try to automatically run the locally installed database gateway. This is reflected in the default
database configuration in your project: the project looks for the database gateway at IP address 127.0.0.1 (i.e.,
localhost), port 3997, as shown in the screen shot below.

Default settings for your project's database configuration

If you do not need to change the configuration or access the database gateway's advanced features — that
is, if you keep the default settings and simply run your project as is — you might never have occasion to
manually run the database gateway. There are several reasons you might do so, however:

• If you have installed the Studio Database Gateway software on another computer, where the project
runtime software cannot automatically run it;

• If you want to access the database gateway's advanced features while your project is not running;

• If you want to run the database gateway on a port other than the default port 3997; or

• If you want to run multiple instances of the database gateway on different ports.

When the Studio Database Gateway software is installed on another computer, it adds a shortcut to the Start
menu, so you can use that to run it: click the Start button, and then, on the Start menu, click All Programs >
Studio Database Gateway > Studio Database Gateway. (This option is not available for the version of Studio Database

Database Interface

Page 842

Gateway that is installed as part of the project runtime software.) The Studio Database Gateway icon appears
in the notificiation area, at the far right of the Windows taskbar, to show that the program is running.

The Studio Database Gateway icon in the notification area

Otherwise, to manually run the database gateway, you must know where the Studio Database Gateway
program file (StADOSvr.exe or StADOSvrCE.exe) is actually located. When it is installed as part of the project
runtime software, it is located in the same program folder. For example, for SCADA, the Studio Database
Gateway program file should be located at:

C:\Program Files (x86)\Pro-face\BLUE Open Studio 2020\Bin\StADOSvr.exe

When the Studio Database Gateway software is installed on another computer, the program file should be
located at:

C:\Program Files\Studio Database Gateway v20.0\StADOSvr.exe

In both cases, if you want to run a single instance of the database gateway on the default port 3997, simply
double-click the program file. If you want to run the database gateway on a port other than the default port
3997, or if you want to run multiple instances of the database gateway on different ports, open a Command
Prompt window and then type the following:

StADOSvr.exe <port number>

For example:

StADOSvr.exe 3998

Database Interface

Page 843

There is no limit on the number of instances that you can run, as long as you have the necessary system
resources and unused ports. For each instance, its port number is displayed in the title bar of the program
window, as shown in the screen shot below.

Studio Database Gateway running on port 3998

Whenever you run Studio Database Gateway, you should note the host name or IP address of the computer
and the number of the port on which the database gateway is running. You will need this information in order
to update the database configuration in your project.

Database Interface

Page 844

Database Configuration
The Database Configuration dialog allows you to configure the necessary settings to link BOS to an external
database file.

Database Configuration dialog

• Database combo-box: Allows you to select either Primary or Secondary. With Primary, all settings displayed
in the Database Configuration window apply to the Primary Database interface. Otherwise, they apply to
the Secondary Database interface. You can configure the Secondary database in the following modes:

• Disabled: In this mode, BOS saves data in the Primary Database only. If the Primary Database is
unavailable for any reason, the data is not saved anywhere else. This option may cause loss of data if
the Primary Database is not available.

• Redundant: In this mode, BOS saves data in both Primary and Secondary Databases. If one of these
databases is unavailable, BOS keeps saving data only in the database that is available. When
the database that was unavailable becomes available again, BOS synchronizes both databases
automatically.

• Store and Forward: In this mode, BOS saves data in the Primary Database only. If the Primary Database
becomes unavailable, BOS saves the data in the Secondary Database. When the Primary Database
becomes available again, BOS moves the data from the Secondary Database into the Primary Database.

Note: The Primary and Secondary can be different types of databases. However, they must have
the same fields.

Using the Secondary Database, you can increase the reliability of the system and use the Secondary
Database as a backup when the Primary Database is not available. This architecture is particularly useful
when the Primary Database is located in the remote station. In this case, you can configure a Secondary
Database in the local station to save data temporarily if the Primary Database is not available (during a
network failure, for instance).

Database Interface

Page 845

• Use project default checkbox: When this option is checked, BOS uses the settings configured in the Default
Database for the task that is being configured (Connection string, User name, Password, Retry Interval and
Advanced Settings). When this option is not checked, you can configure these settings individually to the
current task.

• Connection string field: This field defines the database where BOS will write and read values as well as
the main parameters used when connecting to the database. Instead of writing the Connection string
manually, you can press the browse button (…) and select the database type from the Data Link Properties
window.

Data Link Properties dialog

Note: The list of Database Providers shown in the Data Link Properties window depends on the
providers actually installed and available in the computer where you are running BOS. Consult
the operating system documentation (or the database documentation) for further information
regarding the settings of the Provider for the database that you are using.

• User name field: User name used to connect to the database. The user name configured in this field must
match the user name configured in the database.

• Password field: Password used to connect to the database. The password configured in this field must match
the password configured in the database.

Note: In the Connection string, User name, and Password boxes, as in other boxes and fields that
accept plain text, you can configure tag names in curly brackets (e.g., {MyTag}) in order to
use the values of those tags. You can then change the tag values during run time and thereby
change your database connection and credentials. You should be aware, however, that tag values
are not encrypted when they are sent between the BOS project runtime server and connected

Database Interface

Page 846

thin clients. Therefore, to ensure that your database credentials cannot be intercepted or
compromised, you can configure only server tags — that is, tags that have Scope set to Server; for
more information, see Choosing the Tag Scope on page 154 — in these boxes. The tags will be
evaluated on the server only, and no tag values will be sent between the server and client.

• Retry Interval field: If BOS is unable to connect to the database for any reason, it retries automatically to
connect to the database after the number of seconds configured in this field have passed.

• Advanced button: After pressing this button, you have access to customize some settings. For most projects,
the default value of these settings do not need to be modified and should be kept.

Database Configuration: Advanced dialog

• Time Zone combo box:

• Local Time + Time Difference: Save the local time on the computer, plus the difference (bias) between the
local time zone and Coordinated Universal Time (UTC).

• Local Time: Save the local time only with no bias. This is not recommended.

• UTC: Save the UTC time only. This is the default, and it is strongly recommended for most situations.

• Milliseconds combo box: You can configure how the milliseconds will be saved when saving the date in
the database. Each database saves the date in different formats; for example, some databases do not
support milliseconds in a Date field. The following options are available:

• Default: Uses the format pre-defined for the current database. The databases previously tested by Pro-
face are previously configured with the most suitable option. When selecting Default, BOS uses the
setting pre-configured for the current database type. If you are using a database that has not been
previously configured, the Default option attempts to save the milliseconds in a separate field.

Tip: The default option for each database is configured in the StADOSvr.ini file, stored
in the \BIN sub-folder of BOS. See Studio Database Gateway on page 831 for information
about how to configure the StADOSvr.ini file.

• Disable: Does not save the milliseconds at all when saving the date in the database.

• Enable: Saves the milliseconds in the same field where the date is saved.

• Separate Column: Saves the milliseconds in a separated column. In this case, the date is saved
in one field (without the milliseconds precision) and the number of milliseconds is saved in a
different column. This option is indicated where you want to save timestamps with the precision of
milliseconds but the database that you are using does not support milliseconds for the Date fields.

• Database Gateway: Enter the Host Name/IP Address where the BOS Database Gateway will be running.
The TCP Port number can also be specified, but if you are not using the default, you will have to

Database Interface

Page 847

configure the BOS Database Gateway with the same TCP Port. See Studio Database Gateway on page
831 for information about how to configure the advanced settings for the BOS ADO Gateway.

• Disable Primary Keys: For some modules, BOS will try to define a primary key to the table in order to speed
up the queries. If you are using a database that does not support primary keys (e.g., Microsoft Excel),
then you should select (check) this option.

• Disable Delimiters: Select this troubleshooting option to disable the delimiters that are used to format
communications with the database. Delimiters can cause problems when a Trend Control or Grid
builds a query that includes aggregates such as Min and Max.

• Disable SQL variables: Select this troubleshooting option to disable SQL variables, such as @Value1 and ?,
that are often used in SQL statements and queries. Some specific database providers do not support
these variables.

Note: If you select this option, you might need to specify the language or culture that should
be used to format values in SQL statements. For more information, see "Advanced Settings" in
Studio Database Gateway on page 831.

Table Pane
This area allows you to configure the settings of the Table where the data will be saved. All tasks can
share the same database. However, each task (Alarm, Events, Trend worksheets) must be linked to its own
Table. BOS does not check for invalid configurations on this field, therefore you should make sure that the
configuration is suitable for the database that you are using.

• Use default name checkbox: When this option is checked (default), BOS saves and/or retrieves the data in the
Table with the default name written in the Name field.

• Automatically create checkbox: When this option is checked (default), BOS creates a table with the name
written in the Name field automatically. If this option is not checked, BOS does not create the table
automatically. Therefore, it will not be able to save data in the database, unless you have configured a
table with the name configured in the Name field manually in the database.

• Name: Specifies the name of the Table from the database where the history data will be saved.

Tip: To specify a sheet in a Microsoft Excel spreadsheet file, use the following syntax:

[sheetname$]

• Refresh button: If the database configured is currently available, you can press the Refresh button to
populate the Name combo-box with the name of the tables currently available in the database. In this
way, you can select the table where the history data should be saved instead of writing the Table name
manually in the Name field.

Run-Time Pane
This area allows you set runtime values. The following fields are available:

• Status (output) checkbox: The tag in this field will receive one of the following values:

Value Description

0 Disconnected from the database. The database is not available; your configuration is incorrect or it is an illegal operation.

1 The database is connected successfully.

2 The database is being synchronized.

• Reload (output): Specify a reload tag if you are using curly brackets in any of the configuration fields. When
you want to reconnect to the database using the updated values on your tags, set the tag on this field to 1.
BOS will update the configuration when trying to perform an action in the database, setting the tag back
to 0 when it is finished.

See also:

Configuring a Default Database for All Task History.

Database Interface

Page 848

Configuring a Default Database for All Task History
You can configure a Default Database that will save the historical data from all Tasks in a project. After you
do, when you create a new Task worksheet, you can choose either to use the Default Database or to configure
a new database for that specific worksheet.

To configure the connection settings for the Default Database:

1. On the Project tab of the ribbon, in the Settings group, click Options. The Project Settings dialog is displayed.

2. Click Configure. The Default Database Configuration dialog is displayed.

Default Database Configuration dialog
Please refer to Database Configuration dialog for help completing the fields in this window.

Database Interface

Page 849

Support for AVEVA Insight and Historian
This software includes support for saving historical data either to AVEVA Insight online or to a Historian
database located on-premises.

Insight is a secure, managed solution for collecting, storing, visualising, and analysing industrial data
for faster, smarter business decisions. It consolidates disparate data for complete visibility into how your
business is performing, and enables users throughout the enterprise to access data and information from
anywhere. For more information, go to: https://sw.aveva.com/monitor-and-control/industrial-information-
management/insight

Historian is a high-performance process database capable of storing the huge volumes of data generated from
today’s industrial facilities. It combines advanced data storage and compression techniques with an industry-
standard query interface to ensure open access to your process, alarm, and event data. For more information,
go to: https://sw.aveva.com/monitor-and-control/industrial-information-management/historian

At this time, only Trendworksheets can save historical data to AVEVA Insight and Historian.

Note: To use this feature, you must have selected the Historian option when you installed this
software. For more information, see Install the full BLUE Open Studio 2020 software on page 36.

Connect to AVEVA Insight using AVEVA Insight Publisher
Use Studio Database Gateway and AVEVA Insight Publisher to establish a connection between your project
and AVEVA Insight, so that you can publish historical data from your project to your Insight account.

This task is a supplement to other tasks that describe how to save historical data from your project; it
assumes you have an appropriate worksheet (e.g., Trend) open for editing, and it starts from that point.

This task also assumes you already have an Insight account. (It is possible to create an account during this
task, while you are using AVEVA Insight Publisher, but doing so might interrupt this task.) If you do not
have an account, or if you simply want more information about AVEVA Insight, go to: https://sw.aveva.com/
monitor-and-control/industrial-information-management/insight

In most cases, the database gateway is automatically installed and run on the same computer that hosts the
project runtime. Depending on your network architecture or the nature of your project, however, you may
choose to manually install and run the database gateway on separate computer — either the computer that
hosts the database server or an entirely different computer. If you do that, you should know the host name or
IP address of that computer, as well as the TCP port number for the database gateway. For more information,
see Manually install Studio Database Gateway on page 839.

Multiple project runtimes can use the same database gateway, but that database gateway can connect to only
one Insight account at a time. If you need to connect to multiple accounts, you can run multiple instances
of the database gateway on different TCP ports and then configure the worksheets in your project to use the
appropriate instances. For more information, see Manually running Studio Database Gateway on page 841.

Note: Your project can only save historical data to AVEVA Insight. It cannot retrieve historical data
from AVEVA Insight.

To connect to AVEVA Insight using AVEVA Insight Publisher:

1. Create a new AVEVA Insight Connection in Studio Database Gateway:
a) Run Studio Database Gateway, if it is not already running.

The database gateway should run automatically when you run a project that requires it. Otherwise,
double-click the Studio Database Gateway program file (StADOSvr.exe), which is located in the BLUE
Open Studio 2020 program folder.
The Studio Database Gateway program icon (StDB GTW) appears in the notificiation area, on the
right side of the Windows taskbar, to show that the program is running. The program window is
automatically hidden by default, however.

b) Right-click the icon in the notification area, and then on the shortcut menu, clear the Hide option.

The Studio Database Gateway program window is displayed. The number in parentheses (e.g., 3997) is
the TCP port on which this instance of the database gateway is running.

https://sw.aveva.com/monitor-and-control/industrial-information-management/insight
https://sw.aveva.com/monitor-and-control/industrial-information-management/insight
https://sw.aveva.com/monitor-and-control/industrial-information-management/historian
https://sw.aveva.com/monitor-and-control/industrial-information-management/insight
https://sw.aveva.com/monitor-and-control/industrial-information-management/insight

Database Interface

Page 850

c) Go to File, and then click AVEVA Insight Connections.

The Online Connections dialog box is displayed.

d) In the New Connection Name box, type the name of the connection, and then click Add.
AVEVA Insight Publisher is opened, the Register option is automatically selected, and the first page of
the registration wizard is displayed.

e) Use the registration wizard to sign in to your Insight account and then register the database gateway as
a new data source.

For more information about how to do this, follow the instructions in the registration wizard or go to:
https://sw.aveva.com/monitor-and-control/industrial-information-management/insight

https://sw.aveva.com/monitor-and-control/industrial-information-management/insight

Database Interface

Page 851

Note: If you are developing your project on a Windows Server computer, or if you plan to
run your project on a Windows Server computer after you have finished developing it, you
might need to turn off Internet Explorer Enhanced Security Configuration (IE ESC) in Server
Manager. IE ESC can interfere with attempts to sign in to AVEVA Insight, and adding AVEVA
Insight as a Trusted Site will not resolve the issue.

When you are done, the new connection is saved in the list of available connections in the Online
Connections dialog box.

f) Click Close to close the Online Connections dialog box.

g) In the Studio Database Gateway program window, on the File menu, click Exit.
The program window is closed.

You can repeat this step to create a list of available connections in the database gateway, but the database
gateway can use only one connection at a time (i.e., it can connect to only one Insight account at a time).
If you run multiple instances of the database gateway on the same computer, however, all of the instances
will share the same list of available connections and each instance can use a different connection.

Keep in mind that these connections are saved with the database gateway and not with your project files,
so you might need to repeat this step for each station on which you install the project runtime and then
run your project. You cannot copy connections from one station to another. As mentioned earlier, however,
you may choose to manually install and run the database gateway on separate computer and then have
multiple project runtimes use that database gateway. If you do that, then you need to create and save the
connections only once, for that database gateway.

2. In the project development environment, in the header of the worksheet, make sure Historian is selected as
the history format, and then click Historian Configuration.
The Historian dialog box is displayed.

3. In the Connection Settings area, in the Connection Type list, select AVEVA Insight (Publisher).
The settings for the selected connection type are displayed.

Database Interface

Page 852

4. In the Connection Name box, type the name of a connection that you previously created and saved in Studio
Database Gateway.
You can type a string expression for this setting (e.g., {MyConnection}), but the connection must be
reloaded whenever the connection settings change. See "Reload" below.

5. In the Database Settings area, in the Prefix box, type a prefix that will be added to the tags saved in the
database in order to keep them grouped together.
For example, if you are configuring the connection for Trend worksheet TREND001, you could make that the
prefix as well.
This setting is optional, but if you do not specify a prefix, the tags will be not be sorted together in the
database and therefore might be difficult to find. You can type a string expression for this setting (e.g.,
{MyPrefix}), but the connection must be reloaded whenever the connection settings change. See "Reload"
below.

6. If you want your project to store its historical data when it is not connected to the database and then
forward the stored data when it becomes connected again, select the Enable Store and Forward option.
The historical data will be saved in the project folder on the computer or device that hosts the project
runtime. This can use a large amount of hard drive space (or non-volatile memory) if the connection is
unavailable for a long time.

7. In the Run-time area, in the Status box, type the name of a project tag (Integer type) that will receive values
indicating the status of the connection during project run time.

This setting is optional. The specified tag can receive the following possible values:

Value Description

1 Connected to database server (AVEVA Insight or Historian).

2 Not connected to database server (AVEVA Insight or Historian).

8. In the Reload box, type the name of a project tag that will trigger a reload of the connection during project
run time.

When the value of this tag changes, all other connection settings that have been configured with string
expressions (see the preceding steps) will be updated and the connection will be reloaded using those
updated settings.

The connection is reloaded only after the settings have been updated, and the settings are updated only
when the value of the specified Reload tag changes. This is to make sure all of the settings are updated at
the same time, rather than when the value of any single string expression changes.

9. In the Gateway area, in the Host and Port boxes, type the host name or IP address and port number of the
database gateway that your project will use.
The default settings are for the database gateway running on localhost — that is, on the same computer or
device that hosts the project runtime.

10.Click OK to save the settings and close the dialog box.

If your project is configured to use a database gateway hosted on another computer, make sure it is running
before you try to run your project. If the database gateway is not running, your project will not be able to use
it to connect to the specified database.

In contrast, if your project is configured to use the database gateway hosted on the same computer that hosts
the project runtime, you do not need to do anything — when you run your project, it in turn will automatically
run the database gateway.

Connect to a Historian database located on-premises
Configure your project to connect to a Historian database located on-premises (i.e., a database server hosted
on a Windows computer on your own network).

This task is a supplement to other tasks that describe how to save historical data from your project; it
assumes you have an appropriate worksheet (e.g., Trend) open for editing, and it starts from that point.

Before you begin this task, you should know the host name or IP address of the Historian database server on
your network, and you should have the necessary credentials (i.e., user name and password) to access that
database.

Database Interface

Page 853

Your project will use Studio Database Gateway to manage communications between itself and the Historian
database server. In most cases, the database gateway is automatically installed and run on the same
Windows computer that hosts the project runtime. Depending on your network architecture or the nature of
your project, however, you may choose to manually install and run the database gateway on another Windows
computer — either the computer that hosts the database server or an entirely different computer. If you do
that, you should know the host name or IP address of that computer, as well as the TCP port number for the
database gateway. For more information, see Manually install Studio Database Gateway on page 839.

Multiple project runtimes can use the same database gateway, but that database gateway can connect to only
a single Historian database. If you need to connect to multiple databases, you can run multiple instances of
the database gateway on different TCP ports and then configure the worksheets in your project(s) to use the
appropriate instances. For more information, see Manually running Studio Database Gateway on page 841.

Note: The latest version of Studio Database Gateway is compatible only with Historian 2017 (a.k.a.
version 17.0) or later. If you want to connect to an earlier version of Historian, you must acquire
and install an earlier version of the database gateway. For more information about how to do this,
contact your software distributor.

To connect to a Historian database located on-premises:

1. In the project development environment, in the header of the worksheet, make sure Historian is selected as
the history format, and then click Historian Configuration.
The Historian dialog box is displayed.

2. In the Connection Settings area, in the Connection Type list, select Historian On-Premises if it is not already selected.

The settings for the selected connection type are displayed.

3. In the Server box, type the host name or IP address and port number of the Historian database server.
For example, HistorianDBServer:123.

Database Interface

Page 854

The port number is optional. If you did not change the port number in the Historian database settings, you
can omit it here and the default (port 32568) will be used. Otherwise, the port number must match the one
that is specified in the Historian database settings.

You can type a string expression for this setting (e.g., {MyServer}), but the connection must be reloaded
whenever the connection settings change. See "Reload" below.

4. In the User and Password boxes, type your credentials to access the Historian database.
You can type a string expression for the User setting (e.g., {MyUser}), but the connection must be reloaded
whenever the connection settings change. See "Reload" below.

5. In the Database Settings area, in the Prefix box, type a prefix that will be added to the tags saved in the
database in order to keep them grouped together.
For example, if you are configuring the connection for Trend worksheet TREND001, you could make that the
prefix as well.
This setting is optional, but if you do not specify a prefix, the tags will be not be sorted together in the
database and therefore might be difficult to find. You can type a string expression for this setting (e.g.,
{MyPrefix}), but the connection must be reloaded whenever the connection settings change. See "Reload"
below.

6. If you want your project to store its historical data when it is not connected to the database and then
forward the stored data when it becomes connected again, select the Enable Store and Forward option.
The historical data will be saved in the project folder on the computer or device that hosts the project
runtime. This can use a large amount of hard drive space (or non-volatile memory) if the connection is
unavailable for a long time.

7. In the Run-time area, in the Status box, type the name of a project tag (Integer type) that will receive values
indicating the status of the connection during project run time.

This setting is optional. The specified tag can receive the following possible values:

Value Description

1 Connected to database server (AVEVA Insight or Historian).

2 Not connected to database server (AVEVA Insight or Historian).

8. In the Reload box, type the name of a project tag that will trigger a reload of the connection during project
run time.

When the value of this tag changes, all other connection settings that have been configured with string
expressions (see the preceding steps) will be updated and the connection will be reloaded using those
updated settings.

The connection is reloaded only after the settings have been updated, and the settings are updated only
when the value of the specified Reload tag changes. This is to make sure all of the settings are updated at
the same time, rather than when the value of any single string expression changes.

9. In the Gateway area, in the Host and Port boxes, type the host name or IP address and port number of the
database gateway that your project will use.
The default settings are for the database gateway running on localhost — that is, on the same computer or
device that hosts the project runtime.

10.Click OK to save the settings and close the dialog box.

If your project is configured to use a database gateway hosted on another computer, make sure it is running
before you try to run your project. If the database gateway is not running, your project will not be able to use
it to connect to the specified database.

In contrast, if your project is configured to use the database gateway hosted on the same computer that hosts
the project runtime, you do not need to do anything — when you run your project, it in turn will automatically
run the database gateway.

Database Interface

Page 855

Database Troubleshooting
BOS database interface provides powerful tools that will help you to identify configuration problems with
databases. If you are having problems interfacing with a database, you should first enable the Database
Messages in the Logwindow. You can do so by following the steps below:

1. In the BOS Development environment, make sure to show the Output window (Output Window check box on
the View tab of the ribbon).

2. Right-click in the Outputwindow (usually located in the lower-right corner of the development
environment), and then click Settings on the shortcut menu:

3. In the Log Settings dialog, check the Database Messages option:

enabling Database Messages
After enabling this option, the Output window will display error messages related to the database. The FAQ
section below lists some common errors that you can see in the Output window.

GENERAL QUESTIONS
Q: I configured my database, but the runtime modules (Alarm, Trend, and Events) are not being saved to the
database. I only see the following error message in the Output window:
Database: Error: Error to add new register[CMD_ADD].

A: Most of the database errors in the Output window will be followed by additional information such as the
SQL command being executed, the Connection String and the Table name. Error messages such as the one
described above, will usually happen after a more detailed message. For example, if your Trend task fails to
add a register in the database because the cable is disconnected, you should first receive a network error;

Database Interface

Page 856

if the task tries to add more registers before the time specified in the Retry field (see Database Configuration
dialog), it will only display Database: Error: Error to add new register[CMD_ADD]. If you think that
your configuration is correct, and you want to debug this type of problem, reduce the Retry. Then you should
see more detailed information.

Q: When I try to access the MySQL database server, I get the following message:
Object is not set to an instance of an object.

A: This problem was detected under the following conditions:

• A known bug in MySQL Connector/Net v6.1.2 would not correctly specify the charset; and

• The database table you are trying to access doesn't exist.

To solve this problem, make sure you are using MySQL Connector/Net v6.2.0 and that the table you are
accessing exists in the database.

Q: Why is the Database Interface automatically closing some connections?

A: By default, the Database Interface can have a maximum of 1000 connections. When this maximum is
exceeded, the oldest connection is automatically closed to allow the new connection and the Output window
displays an extended message describing which connection was closed and what was the last command
executed.

To increase the maximum number of database connections, open the project file (<project name>.app) in a
text editor and change the following setting:

[StDB]
MaxConnections=number_of_connections

Keep in mind that increasing the maximum number of connections may decrease project performance.

Q: I configured my Connection String using the browser and the Data Link Properties Window. When I click
the Test button, it says "Test succeeded". However, when I run my project, the Database Interface displays
error messages, and I am not able to save data.

A: The Data Link Properties Window uses OLE DB to interface with the Database. BOS Database Interface
uses ADO.NET; therefore, you can have the OLE DB provider on your machine and be missing the ADO.NET
provider. It is also possible that you are using an ADO.NET provider that is not listed in the StADOSvr.ini file.
Please refer to Studio Database Gateway on page 831 for more information about adding ADO.NET providers
to the StADOSvr.ini file.

Q: Why, when I update information in one line in the Grid object, is it updating more than one line in my
database?

A: The grid object issues an update command in the database using the values in all the columns for the
specific row that you are trying to update. If you have rows with duplicate values, you might see this problem.
If your table has a primary key or any other unique field that you do not want to display in the Grid object,
you can add it to the Columns but specify the Width 0. This will fix the problem.

Q: Why do I have to use a separate Column to store the milliseconds on my database?

A: Some databases do not support milliseconds in the Time Stamp field. BOS Database interface, by default,
requires another column for the milliseconds. If your database can handle milliseconds, or if you do not want
to record the milliseconds, you can change the default behavior in the Advanced settings. Note that some
databases are able to store milliseconds, but they have lower precision. If you mix different databases with
different precisions in redundant mode, you can get synchronization problems.

Q: When I try to connect to the database, why do I receive the message, Error to create connection
class?

A: The .Net Provider that you are trying to use is not installed on your machine. This error message is usually
followed by the provider name; if you are using the Sybase database, for instance, the message is followed
by [iAnywhere.Data.AsaClient.AsaConnection]. The Provider is the iAnywhere.Data.AsaClient. You can
check if the provider is installed on your machine by going to the Control Panel > Administrative Tools > Microsoft .Net
Framework x.x Configuration. The provider should be listed in the Assembly Cache.

Q: What if I have the provider assembly (usually a .dll file) but it is not listed in the AssemblyCache?

Database Interface

Page 857

A: If your assembly has a strong name, you can register it in the Assembly Cache using the gcautil program.
Or it should work if you copy your assembly to the same folder as the StADOSvr.exe (usually the Pro-
face\BLUE Open Studio 2020\Bin folder).

Q: I am not able to access my table from the Grid when I use a specific condition. But if no condition is
applied, it works fine. Why is that?

A: You should check for the following items:

1. Follow the Troubleshooting steps, and look for error messages in the log. An error message can tell you
if you have made a mistake, such as entering with a wrong column name or specifying an invalid data
format.

2. Some databases have problems when you use reserved words as column names. Therefore, you should
avoid using column names such as Time, Date, Numeric, etc.

3. If your column name starts with AND or OR (e.g., ORange), enter the name surrounded by square
brackets. For example, instead of ORange=10, enter [ORange]=10.

4. If you are using SQL Server CE, you might have some problems when querying string fields. It has been
identified that filters do not work with NCHAR data types; however, they do work if you declare these fields
as NVARCHAR(<Number>). You might try to recreate your table by using this data type. An example of a
command that creates a table with strings that can be queried is displayed below:

CREATE TABLE Table1 (Name NVARCHAR(128), Age Numeric, Sex NVARCHAR(1))

MYSQL
Q: When I try to access the database from my local machine it works fine, but when I move my project to a
remote machine, it says Access Denied.

A: Each user on a MySQL database has a property associated with it that indicates the computer fromwhich
it can get access to the database. By default, this property is set to localhost, so you will only be able to
access the database if you are accessing from the local computer. You should read the MySQL manual for
information about changing this setting.

Q: Sometimes when I try to synchronize a remote MySQL database with a local MySQL database, or if I try to
use application redundancy, a connection to the ADO.NET interface is opened and never closed.

A: Go to the Database Configuration dialog and uncheck the Automatically Create option.

SYBASE
Q: I configured my Sybase database using the Browse button. When I click the test button, the test
succeeds, but when I try to run my project I get the following error: Database: Error: Parse error: DSN
'MyDatabase' does not exist. What am I doing wrong?

A: Please refer to Database Appendix F - Using Sybase for more information about this problem.

Q: Why, when I try to connect to the Sybase database, am I receiving the error Error to create
connection class [iAnywhere.Data.AsaClient.AsaConnection]?

A: You do not have the ADO.NET Provider installed on your computer. The database setup program has an
option to install the Provider. Rerun the setup program, and make sure to check that option.

SQL SERVER CE
Q: Why does the gateway show TypeLoad failure when I try to access my SQL Server CE database?

A: This problem usually happens when you do not have the SQL Server CE .NET Provider installed on your
CE Device.

Q: Why am I getting the error message, There is a file sharing violation. A different process
might be using the file?

A: You have another progarm with the SQL Server CE database open. For instance, this will happen if you are
using the SQL Server CE configuration software.

Database Interface

Page 858

Appendices

Using ODBC Databases
Almost every database provides an ODBC interface that can be used to interface with it. The database
features provided by BOS can be used with ODBC drivers through the ADO.NET interface for ODBC. In order
to use this capability, you must use Microsoft .NET Framework 1.1 or higher.

The Database Configuration dialog allows you to provide connection strings that will connect to an ODBC
DSN. The connection string can be built automatically by clicking on the Browse button (…). When the Data
Link window displays, you should select the option Microsoft OLE DB Provider for ODBC Drivers as shown
below:

Data Link Properties, Provider - ODBC

Database Interface

Page 859

When you click Next, the following window will display:

Data Link Properties, Provider - Connection

Select the DSN that you want to connect to and click OK. If you want to specify the user name and password
on this window instead of specifying on the Object Properties dialog, remember to check the Allow saving password
checkbox.

Using Microsoft SQL Server
BOS Database Interface allows you to retrieve and store information on Microsoft SQL Server relational
databases. You should follow the steps below in order to configure the SQL Server database:

Database Interface

Page 860

1. Click on the Browse button in the Database Configuration Dialog window. The following window will
display:

Data Link Properties, Provider - SQL Server

Database Interface

Page 861

2. Select the Microsoft OLE Provider for SQL Server and click Next. The following window will display:

Data Link Properties, Connection - SQL Server
3. Fill out the fields on this window with your database information. If you are not using Windows NT

Integrated security, remember to check the Allow saving password checkbox to save the password when the
Data Link Properties window is closed.

4. Click OK to finish the Connection String configuration.

Your connection string should be very similar to this one:

Provider=SQLOLEDB.1; Integrated Security=SSPI; Initial Catalog=MyDatabase; Data
 Source=192.168.23.200

Note: These procedures were tested using Microsoft SQL Server 2000.

Tip: The Database Gateway (StADOSvr.exe) now uses an updated time stamp when saving data to
Microsoft SQL Server databases, so that milliseconds do not need to be stored in a separate column.
However, this only works with Microsoft SQL Server 2008 or later, so if you are using an earlier
version of SQL Server, then you must edit the program settings to reverse the change:

1. If your project is running, stop it.

2. Locate the program settings file at: C:\Program Files (x86)\Pro-face\BLUE Open Studio
2020\Bin\StADOSvr.ini

3. Open the file with a text editor, such as Notepad.

Database Interface

Page 862

4. Delete the following line:

TimeStampType2=DATETIME2

5. Save your changes, and then exit the text editor.

Using Oracle Databases
Use the Data Link Properties dialog box to compose a connection string that will enable your project to
connect to an Oracle database instance via OLE DB.

This task is a supplement to other tasks that describe how to configure your project to connect to external
databases; it assumes you have already opened the Data Link Properties dialog box, which is a standard
Windows system interface, and it starts from that point. The Data Link Properties dialog box is invoked by
BLUE Open Studio 2020 — for example, from the Database Configuration dialog box — but it is not actually a
part of BLUE Open Studio 2020. For a more comprehensive description of the Data Link Properties dialog box,
go to: msdn.microsoft.com/en-us/library/79t8s5dk.aspx

Before you begin this task, you should download and install the latest version of 32-bit Oracle Data Access
Components (ODAC) for Windows, on both your project development workstation and the computer(s) that
will host the project runtime / database gateway. (BLUE Open Studio 2020 is a 32-bit application and
therefore requires 32-bit providers.) To download the software, go to: www.oracle.com/technetwork/database/
windows/downloads/utilsoft-087491.html

Most versions of Windows include Microsoft OLE DB Provider for Oracle, which is the provider that we recommended
in the past. More recently, however, we have observed issues when we use that provider to try to connect to
the latest version of Oracle, so we have determined it is better to use the providers that are made available by
Oracle itself. The procedure below reflects that.

Note: This task was last tested using Oracle 10g Release 1.

To compose a connection string for an Oracle database instance:

1. In the Provider tab of the Data Link Properties dialog box, in the OLE DB Provider(s) list, select Oracle Provider for
OLE DB.

2. Click Next.
The Connection tab of the Data Link Properties dialog box is displayed.

3. In the Data Source box, type the name of the data source using the following syntax:

<hostname or IP address>/<Oracle TNS name>

<hostname or IP address>
The hostname or IP address of the computer that hosts the Oracle database server.

<Oracle TNS name>
The Transparent Network Substrate (TNS) name for the specific database instance. This name
references an entry in the server's tnsnames.ora file, which contains additional information
about the database instances.

Example: 127.0.0.1/MyDatabase

4. In the User name and Password boxes, type your credentials for the database instance.

5. Select the Allow saving password option.

6. Click Test Connection.
A message is displayed to inform you if the test connection succeeded. If it did not, review your settings
and then try again.

7. Click OK to close the Data Link Properties dialog box.

https://msdn.microsoft.com/en-us/library/79t8s5dk.aspx
http://www.oracle.com/technetwork/database/windows/downloads/utilsoft-087491.html
http://www.oracle.com/technetwork/database/windows/downloads/utilsoft-087491.html

Database Interface

Page 863

The connection string, user name, and password are automatically pasted into the database configuration. An
example of the connection string is shown below:

Provider=OraOLEDB.Oracle.1; Data Source=127.0.0.1/MyDatabase

Using Microsoft Access or Microsoft Excel
Use the Data Link Properties dialog box to compose a connection string that will enable your project to
connect to a Microsoft Access database or Microsoft Excel workbook via OLE DB.

This task is a supplement to other tasks that describe how to configure your project to connect to external
databases; it assumes you have already opened the Data Link Properties dialog box, which is a standard
Windows system interface, and it starts from that point. The Data Link Properties dialog box is invoked by
BLUE Open Studio 2020 — for example, from the Database Configuration dialog box — but it is not actually a
part of BLUE Open Studio 2020. For a more comprehensive description of the Data Link Properties dialog box,
go to: msdn.microsoft.com/en-us/library/79t8s5dk.aspx

You do not need to have Microsoft Office installed on your computer in order to use Microsoft Access and
Microsoft Excel files with BLUE Open Studio 2020; your project can directly read from and write to existing
files, as long as the correct OLE DB provider is installed on both your project development workstation and
the computer(s) that will host the project runtime / database gateway.

You might need to install the 32-bit version of the OLE DB provider, however, because BLUE Open Studio
2020 is a 32-bit application and therefore requires 32-bit providers. Whether you need to do this depends on
which versions of Microsoft Windows and Microsoft Office you already have installed, and there are too many
possible combinations to cover in this documentation, so the only way for you to know for sure is if you can
select the correct provider (i.e., Microsoft Office 12.0 Access Database Engine OLE DB Provider) as described
in the first step of the procedure below. If you cannot, you need to install the provider.

In most cases, we recommend you download and install Microsoft Access Database Engine 2010
Redistributable (www.microsoft.com/en-US/download/details.aspx?id=13255). It is not the latest version of
that software, but it includes the correct OLE DB provider and it can be installed on top of the latest version
of Microsoft Office, if necessary. Make sure you download the 32-bit version (a.k.a. X86), not the 64-bit
version (a.k.a. X64).

Note: This task was last tested using Microsoft Office 2016.

To compose a connection string for a Microsoft Access database or Microsoft Excel workbook:

1. In the Provider tab of the Data Link Properties dialog box, in the OLE DB Provider(s) list, select Microsoft Office 12.0
Access Database Engine OLE DB Provider.

2. Click Next.
The Connection tab of the Data Link Properties dialog box is displayed.

3. In the Data Source box, type the absolute file path and name of the Microsoft Access database (.accdb) or
Microsoft Excel workbook (.xls or .xlsx).

The data source file should be located somewhere that can be accessed by both your project development
workstation and the computer(s) that will host the project runtime / database gateway. If the file is located
in your project folder, you might need to correct the file path when you download your project folder to
another computer.

4. If access to the data source file is restricted, so that you need a user name and/or password in order to
use it, do the following:
a) In the User name and Password boxes, type your credentials for the data source file.

You might need to clear the Blank password option before you can type the password.

b) Select the Allow saving password option.

5. If the data source file is a Microsoft Excel workbook (.xls or .xlsx), do the following:
a) Click the All tab of the Data Link Properties dialog box.

b) In the list of properties, double-click Extended Properties.
An Edit Property Value dialog box is displayed.

https://msdn.microsoft.com/en-us/library/79t8s5dk.aspx
https://www.microsoft.com/en-US/download/details.aspx?id=13255

Database Interface

Page 864

c) In the Property Value box, type one of the following:

File Extension Property Value

.xls Excel 12.0; Hdr=Yes

.xlsx Excel 12.0 Xml; Hdr=Yes

The first part of the property value indicates that the data source file is a Microsoft Excel workbook, as
opposed to a Microsoft Access database. The second part of the property value indicates that the data
source includes a header row with appropriate column names.

d) Click OK to save the property value and close the Edit Property Value dialog box.

e) Click the Connection tab of the Data Link Properties dialog box.

6. Click Test Connection.
A message is displayed to inform you if the test connection succeeded. If it did not, review your settings
and then try again.

7. Click OK to close the Data Link Properties dialog box.

The connection string, user name, and password are automatically pasted into the database configuration.
Examples of the connection string are shown below:

Provider=Microsoft.ACE.OLEDB.12.0; Data Source=C:\MyDatabase.accdb

Provider=Microsoft.ACE.OLEDB.12.0; Data Source=C:\MyWorkbook.xls; Extended
 Properties="Excel 12.0; Hdr=Yes"

Provider=Microsoft.ACE.OLEDB.12.0; Data Source=C:\MyWorkbook.xlsx; Extended
 Properties="Excel 12.0 Xml; Hdr=Yes"

You can manually edit the connection string to replace any part of it with a tag/expression enclosed in curly
brackets, so that part can be programmatically changed during project run time. This is typically done when
the data source file is located in the project folder — if you replace the absolute file path with an expression
that gets the file path of the project folder, you can ensure the connection string will work when you download
the project to another computer or device. For example:

Provider=Microsoft.ACE.OLEDB.12.0; Data Source={GetAppPath()}\MyWorkbook.xlsx; Extended
 Properties="Excel 12.0 Xml; Hdr=Yes"

As you finish the database configuration, there are a few other things you might need to do.

First, in the database configuration's advanced settings, select the Disable Primary Keys option. If you do not,
your project will not be able to connect to the data source. For more information, see Database Configuration
on page 106.

Second, if the data source file is a Microsoft Excel workbook, be aware that the sheets of the workbook are
equivalent to tables in a database, and when you need to specify a table in your database configuration, you
actually need to specify a sheet. The name of the sheet should be formatted as follows:

[<sheet name>$]

Third, make sure the specified sheet includes a header row with appropriate column names, because you will
need to reference those column names when you use the specified sheet with your project.

More generally, please keep in mind that Microsoft Access and Microsoft Excel are desktop office applications,
and they cannot efficiently handle large amounts of data. If you try to save all of your project's historical data
in a Microsoft Access database or Microsoft Excel workbook, the queries will become slower over time and
you might get unexpected results. Therefore, we recommend you use such a data source only as a Secondary
Database, with the Store and Forward option selected.

Database Interface

Page 865

To handle large amounts of historical data, we recommend you use either BLUE Open Studio 2020's
proprietary format or a dedicated relational database such as Microsoft SQL Server or Oracle.

Using Sybase
You need to install the AsaClient provider on your computer; the tests with BOS were performed using the
architecture explained in the topic Manually install Studio Database Gateway on page 839.

If you are using the browse button to automatically generate the connection string, the string returned will
have the following format:

Provider=ASAProv.90; Data Source=Test

This format requires that you create an ODBC DSN with the same name as the Data Source (in this case, Test)
in order to communicate with the database. If the DSN is not created, the following error will display in the
LogWin when connecting to the database:

Database: Error: Parse error: DSN 'Test' does not exist

To void an ODBC DSN, you can enter with the connection string manually as shown in the example below:

Provider=ASAProv.90; DBF=C:\ Test.db

Note: These procedures were tested using Sybase Server Anywhere 9.0.1.1751.

Using MySQL
BOS can interface with MySQL databases, but to do so, you must install an ADO.Net provider for MySQL.

The provider required by BOS is MySQL Connector/Net, and at the time of this writing, the necessary
software can be downloaded from the official MySQL site. (Please note that the linked site is beyond our
control and may change without notice.)

Once the provider is installed, you can use the Database Configuration property sheet to configure a MySQL
database connection. However, unlike for other database types, you cannot use the Data Link Properties dialog
(which is accessed by clicking ... to the right of the Connection string box) to form the connection string. Instead,
you must directly enter the connection string using this basic format:

Provider=MYSQLCLIENT; Server=myServerAddress; Database=myDataBase; Uid=myUsername;
 Pwd=myPassword;

The following optional parameters can be appended to the connection string:

Optional parameters for the MySQL Connector/Net connection string

Parameter Description

Port=number; Specifies what port to use for the connection. The default port is 3306, but any
port can be specified as long as it matches the server configuration.
If a port of -1 is specified, then the connection will use the named pipes network
protocol (see Protocol below).

Server=myServerAddress1 & myServerAddress2
& … & myServerAddressN;

Use any server in a replicated server configuration.

Encryption=true; Enables SSL encryption for all data sent between the client and the server. The
server must have a valid certificate installed.

Encrypt=true; An alternative to Encryption above, in case there are errors.

http://dev.mysql.com/downloads/connector/net/

Database Interface

Page 866

Parameter Description

Default Command Timeout=milliseconds; Specifies a default command timeout for the connection. This does not
supercede any timeout properties on individual commands.

Connection Timeout=seconds; Specifies how long the client will wait for a server connection before terminating
the attempt.

Ignore Prepare=true; Instructs the database provider to ignore Command.Prepare
statements, to prevent corruption from server-side prepared commands.

Protocol=myProtocol; Specifies which network protocol to use. The default is socket or tcp, but
you can specify pipe to use a named pipes connection or memory to use
a shared memory object.

Shared Memory Name=MySQL; Specifies the name of the shared memory object to be used for communication.
(This parameter applies only if the Protocol parameter above is set to
memory.)

CharSet=UTF8; Specifies which character set to use to encode queries to the server.
Please note that query results are encoded in the same character set that the
data itself is recorded.

Note: These procedures were tested using MySQL v5.1.11 and MySQL Connector/Net v6.2.0.

Troubleshooting

Page 867

Troubleshooting

Troubleshooting

Page 868

General Troubleshooting
If you do find yourself in need of technical assistance, there are certain things that you will need to know
before you contact technical support. Regardless of the problem, you will need to know the sequence of events
that led to you discovering the problem. It must be explained in as much detail as possible and you should be
careful not to ad-lib, as it may drastically affect troubleshooting time and procedures. It's also best to be in
front of the computer you are having problems with, and to keep a pen and paper handy.

Before Contacting Technical Support
Some things you should try before you contact technical support are:

• Check out the documentation
The application help and release notes can be accessed on the Help tab of the ribbon, and more
documentation is available on our website. You may find that your particular issue has already been
documented.

• Consider recent changes on your system
If something used to work, think about what may have changed. New software installation or general
system changes can affect performance and general functionality of other software on your system.

• Try reproducing the problem in a new file
If the problem can not be reproduced in a new test file, compare the new file with your original file to find
and eliminate the differences. This will help narrow down the cause of the issue.

• Try reproducing the problem on another machine
If the problem goes away on another machine, compare what is different between the two systems. If this
is the case, there is most likely a system conflict.

Verifying Your Project
If you change, reorder or delete any tags in the Tags database, or if you reconfigure any settings in the Web tab
of the Project Settings dialogue, then you must verify your project to realign all of your screens and worksheets
to the current state of your database. On the Home tab of the ribbon, in the Tools group, click Verify.

Related Documentation
The BLUE Open Studio 2020 Quick Start Guide is designed for first-time users. This guide contains
information about the basic functions of BLUE Open Studio 2020, and it is provided in the Documentation folder
on the BLUE Open Studio 2020 installation CD.

The communication driver user guides explain how to configure the direct communication drivers, according
to their individual specifications. One customized user guide is included with each driver. These guides are
provided in the drivers sub-folder of the BLUE Open Studio 2020 program folder (Pro-face\BLUE Open
Studio 2020\Drv), or they can be opened from the Help tab of the ribbon. (On the Help tab of the ribbon, in
the Documentation group, click Communication Drivers. When the list of drivers is displayed, select the driver that
you are using and then click Help.)

Contacting Technical Support
If you cannot find an answer to your technical question in the product documentation or help system, our
Technical Support Specialists are available to assist any customer with current product maintenance. The
telephone number is 1-800-289-9266 .

Please try to define the problem before you contact Technical Support so that you can repeat the steps that
led to the problem and specifically identify when and how the problem occurred. The support representative
will need to know exactly what the problem is in order to provide help. These steps will help us pinpoint and
solve your problem more quickly.

Please have the following information available:

• Hardware environment: available memory, processor type, output device

• Software environment: operating system, version of Windows®, network platform

• Product name, version number, and product registration number

Troubleshooting

Page 869

• Amount of memory installed on your system

• Amount of free hard disk space on your system

• Screen resolution (screen size in pixels, for example, 1024 by 768)

• Screen color depth (number of colors or bits, for example, 256 colors or 8-bit color)

• Graphics card manufacturer, model name, and driver version number

• Sound card manufacturer and model name

• A list of external devices connected to the computer

• Brief description of the problem or error, and the specific text of any error messages

• Description of the steps you have taken to troubleshoot the issue, for example, how many machines you
have tested on, and whether the issue is reproducible in a new file

• Steps to reproduce the issue, if it is reproducible. If the issue is not reproducible, it may be an
development issue rather than an issue with the product.

If your project crashes completely during runtime, it will generate a debugger report and save it to:

BLUE Open Studio 2020 Projects\<project name>\Web\Dump\WindDump.dmp

Please have this file ready to send to Technical Support for analysis.

When you contact us, please have your system information ready. You can get this by using the Support
Information command located in the Help menu.

If your problem or question is not urgent, please go to our website at: www.pro-face.com/trans/en/
manual/1015.html

http://www.pro-face.com/trans/en/manual/1015.html
http://www.pro-face.com/trans/en/manual/1015.html

Troubleshooting

Page 870

Frequently Asked Questions

Database & Security System
What does the Shared Tags folder store?

The Shared Tags folder stores the tags imported from the PC-based Control linked to the BOS
project. The PC-based Control is linked to the project by the New Project wizard.

How do I count how many tags are configured in the project database?
The number of tags currently used in the project is displayed in the status bar at the bottom
of the development environment. Individual array elements and class members are counted as
tags.

Graphics
How do I insert and configure an ActiveX object in a project?

To insert an ActiveX object in a project screen:

1. On the Graphics tab of the ribbon, in the Libraries group, click ActiveX Control.
2. Select the ActiveX control that you want to insert from the list, and then click OK. The

ActiveX object will then appear on the screen. (Unregistered ActiveX objects will not be
available in this list box.)

3. Double-click on the ActiveX object and assign a name to it (enter a value in the Name field).
The animations and methods list can be viewed by selecting the Methods button. The static
properties can be set by the Properties button (A detailed description about the objects
properties can be found in the component documentation, provided by the component
developer).

There are three functions to access the ActiveX component during runtime:

• XGet(strName,strProperties): Returns the value of the properties strProperties from
the object strName. The list of properties which can be read from the object are listed in the
Object Properties dialog from the object, with the syntax Properties Name(PropGet) (for
example, Color(PropGet)).

• XSet(strName,strProperties,Value): Writes the value Value to the properties
strProperties of the object strName. The list of properties which can be set to the object
are listed in the Object Properties dialog from the object, with the syntax Properties
Name(PropPut) (for example, Color(PropPut)).

• XRun(strName, strMethod, Parameter1, Parameter2, …, ParameterN): Executes
the method strMethod from the object strName, according to the parameters Parameter1,
Parameter2, …, ParameterN. The list of methods available in the object is listed in the Object
Properties dialog from the object, with the syntax Method Name(Method) (for example,
OpenFile(Method)).

Tip: Before inserting an ActiveX control (usually an OCX file) into the project,
make sure it has been properly registered in the computer. To register an ActiveX
control from with the development application, click Register Controls on the Home
tab of the ribbon.

Note: The amount of parameters set in the XRun function can vary from 0 up to
255 and it depends each the ActiveX component. It's possible to use tags to set
the parameters; however, the tag type must match the component parameter type
(Boolean, integer, string or real).

How do I designate one screen that will open each time I start the project?

Troubleshooting

Page 871

On the Project tab of the ribbon, in the Settings group, click Viewer, and then in the Project
Settings dialog, type the startup screen name in the Startup screen box.

How do I insert a background picture on the screen?
Right click on the screen and select the option Screen Attributes from the popup menu. Enable the
checkbox Enable Background and choose the picture format in the combo-box besides this label.
Copy the picture file to the Screen sub-folder of the project and rename it with the same name
of the screen (ScreenName.scc file). Using the Shared image option, it's possible to copy a bitmap
file to the Screen sub-folder and share this picture with more than one screen. In this case, it's
necessary to type the bitmap name in the Shared image field.

Tasks
How do I convert a trend history from the proprietary binary file to an ASCII text file?

In Windows, select the history file (*.HST) that you want to convert, and then drag it to
the HST2TXT utility in the program folder (Pro-face\BLUE Open Studio 2020\Bin
\HST2TXT.exe). The converted file will be automatically created in that folder.

Alternatively, you can use the HST2TXT function in a Script or Math worksheet to convert files
automatically during project run time.

How do I set a DATE field for an ODBC interface with an Oracle package?
Configure the "Column" cells in the ODBC worksheet with the syntax ColumnName.ts (for
example: MyDate.ts).

How do I execute a Math worksheet during the startup and another Math worksheet during the
project shutdown?

• Startup: Execute a Math worksheet during the startup by creating a Math worksheet and
filling in its Execution field with the expression <TagName>=0 (for example, StartTag=0). In
the last line of the Math worksheet, set the value 1 to the <TagName> tag. The <TagName>tag
type should be Boolean.

• Shutdown: Instead of executing the ShutDown() function directly, execute one Math
worksheet and configure the ShutDown() function in the last line of this Math worksheet.

Communication
How do I set a "communication error" alarm?

Configure a tag in the Write Status or Read Status field of the driver worksheets and configure an
alarm whenever this tag is not 0 (zero).

How do I start and stop communication drivers during project run time?
There are three functions you can use to manage the execution of the communication drivers:

• Use the StartTask function to start the Driver task itself, which in turn starts all of the
drivers that have been added to the project:

StartTask("Driver")

• Use the Exec function to start a single, specific driver that has been added to the project. The
command itself should use the following syntax:

"<runtime program folder>\Bin\Studio Manager.exe" "<runtime program
 folder>\Bin\Driver.dll" <driver name>

Note: When executing a command-line command, file paths that contain
spaces must be enclosed in quotes. However, unpaired quotes can interfere
with the concatenation of strings within a function call, so in the examples
below, each quote character is replaced by Asc2Str(34). The quote character

Troubleshooting

Page 872

has ASCII code 34, and the Asc function converts that code into the actual
character.

Then, call the WinExec function to compose and execute the command during project run
time. For example, to start the MODBU driver:

WinExec(Asc2Str(34) + "C:\Program Files (x86)\Pro-face\BLUE Open Studio
 2020\Bin\Studio Manager.exe" + Asc2Str(34) + " " + Asc2Str(34) + "C:
\Program Files (x86)\Pro-face\BLUE Open Studio 2020\Bin\Driver.dll" +
 Asc2Str(34) + " " + "MODBU")

Alternatively, you can call the GetProductPath function to get the location of the runtime
program folder and then reference a project tag for the driver name:

WinExec(Asc2Str(34) + GetProductPath() + "Bin\Studio Manager.exe" +
 Asc2Str(34) + " " + Asc2Str(34) + GetProductPath() + "Bin\Driver.dll" +
 Asc2Str(34) + " " + MyDriver)

• Use the EndTask function to stop a single, specific driver that has been added to the project:

EndTask("Driver<driver name>")

For example, to stop the MODBU driver:

EndTask("DriverMODBU")

Alternatively, you can reference a project tag for the driver name:

EndTask("Driver" + MyDriver)

Is the BOS OPC interface compliant with OPC specification v1.0a or v2.0?
The BOS OPC Client and OPC Server modules are compliant with both OPC specification v1.0a
and v2.0.

How do I get errors from Intellution / GE Fanuc iFIX applications?
If your project is communicating via TCP/IP with an iFIX application, then you should add the
following key to your project file (i.e., <project name>.APP):

[TCP]
SetQualityToBadOnError=1

After you do this, if the iFIX application generates an error during runtime, then the quality of
the affected tags in your project will be set to BAD. You can get this information by reading the
Quality tag field (i.e., tagname->Quality).

General
What operating systems are compatible with BLUE Open Studio 2020?

See About the BLUE Open Studio 2020 software components on page 35.

How do I automatically run my project when the computer or device is turned on?
If you are using the full SCADA software as your project runtime, you can use the RunStartUp
utility (RunStartUp.exe) that is included with the software. Assuming the software was
installed at its default location, the utility should be located at:

C:\Program Files (x86)\Pro-face\BLUE Open Studio 2020\Bin\RunStartUp.exe

Troubleshooting

Page 873

When you run this utility, it starts the project runtime and then runs the last opened project.
Therefore, to automatically run the project when the computer is turned on, create a shortcut to
the utility and then add the shortcut to the Startup folder in Windows.

Alternatively, you can configure the project to run as a Windows service. For more information,
see Run a project as a Windows service on page 136.

What are the main steps to create a Web-based application?
Follow the procedure below:

1. Develop the project locally. Don't use features that are not supported by Thin Clients for the
screens which will be saved as HTML format.

2. After saving the screens in the standard format (Save in the File menu), save the screens that
must be available for the Thin Client in HTML format (Save as HTML in the File menu).

3. On the Project tab of the ribbon, in the Web group, click Thin Client.
4. In the Data Server IP box, type the IP address of the Server station (i.e., the station where the

project is running).

5. On the Home tab of the ribbon, click Tasks, and then set the TCP/IP Server module as
Startup=Automatic.

6. Open the project tags database and set the option Server instead of Local in the Scope column
for all tags that must exchange value between the Server and the Thin Client station.

7. Verify the project (Verify on the Home tab of the ribbon) to update the HTML files with these
new settings.

8. If there is no Web Server running on the computer, copy the program NTWebServer.exe from
the Bin sub-folder of the program directory into the Web directory (e.g., \project name\Web)
and run it. The path where this Web Server program is executed will be the root directory
of the server. The Web Server is necessary to export data (web files) in HTTP protocol to the
Thin Clients.

9. Run the project on the Server station.

10.Using Internet Explorer on the client station, type the URL address to
download the screen that had been saved in HTML format (for example,
http://ServerIPAddress/ScreenName.html).

Note: The Thin Client requires an ActiveX component (ISSymbol.ocx) to
handle the screens on the browser. If the Thin Client is connected to the Internet,
this component is downloaded and registered automatically. Otherwise, it's
necessary to copy it to the \OSPath\System32 directory of the Thin Client and
register it by the command regsvr32 ISSymbol.ocx. This file can be found in
the \BIN folder from the BOS installation directory.

How do I maintain communication between a Thin Client connecting via proxy and a Web
Gateway application running on Microsoft IIS?

Microsoft Internet Information Services (IIS) has a configuration option to keep HTTP
connections alive. When this option is enabled, it may conflict with Thin Clients that are
connecting via proxy. To disable this option:

1. Start Internet Services Manager.

2. In the Internet Information Services window, open the local server (* server name).

3. Right-click on Default Web Sites and select Properties from the shortcut menu. The Default Web
Site Properties dialog is displayed.

4. Select the Web Site tab of the Default Web Site Properties dialog.

5. In the Connections pane of the Web Site tab, uncheck the HTTP Keep-Alives Enabled option.

6. Click OK to save the change and close the dialog.

Troubleshooting

Page 874

How do I send an email from the BOS project?
Follow the procedure below:

• Execute the function CNFEMail(strSMTP,strFrom,strPOP3,strUser,
strPassword,numTimeOut) to configure the overall parameters used to send emails. After
executing this function once, the parameters set by it are kept in the system until the project
is shut down. So, most projects execute this function just once, after starting the project;

• Execute the function SendEMail(strSubject,strMessage,strTO) and/
or SendEMailExt(strSubject,strMessage,strTO,strCC,strBCC,
strFile1,...,strFileN) each time that an email message must be sent. The main
difference between both functions are listed in the next table:

Characteristic SendEmail SendEmailExt

Execution Synchronous Asynchronous

Supports Subject text Y Y

Supports Message text Y Y

Supports TO addresses Y Y

Supports CC addresses N Y

Supports BCC addresses N Y

Supports attached files N Y

The runtime task (e.g., TCP/IP, OPC) does not work.
Make sure the runtime task is set to Automatic in the Runtime Tasks dialog (Tasks on the Home tab
of the ribbon). Select a runtime task that must be executed (for example, TCP/IP Server), click
Startup, and then set it as Automatic.

The browser of the Thin Client launches an error message missing the ISSymbol.ocx and does not
display the screens from the Server.

ISSymbol.ocx is the ActiveX object used by the browser from the Thin Client to view the web
pages. If the Thin Client is connected to the Internet, the ISSymbol.ocx control is automatically
downloaded and registered in the Thin Client station. Otherwise, it's necessary to copy it to the
\WinNT\System32 folder of the Thin Client station and register it manually. Once it is registered
your browser will be able to see the pages.

Note: Use the command regsvr32 ISSymbol32.ocx to register the ActiveX
component in the Thin Client.

The screens are shown on the Thin Client (Browser); however, the data (tags values) are not read
from the Server.

Make sure the parameter in the column Scope from the project tags database is set as Server
instead of Local. The tags set as Server keep the same value in the Server and in the Thin Client
(Browser). The tags set as Local have independent values in the Server and in the Thin Client
(Browser).

Note: It's necessary to verify the project (Verify on the Home tab of the ribbon)
after modifying the tags settings. Otherwise, the changes will not be updated in
the Web pages.

The "On Up" expressions configured in the Command animation are not executed.
The "On Up" expressions from the Command animation are not executed if the mouse pointer
is dragged out the object area before releasing it. If the checkbox Release from the Command Object

Troubleshooting

Page 875

Properties window is enabled, the On Up expression is executed even if the mouse pointer is
dragged out the object area before releasing it.

The Trend History does not work after adding or removing tags in the Trend worksheet.
When a tag is inserted or removed FROM a Trend worksheet, the format of the history files
(*.hst) is modified. The same .hst file cannot have two different formats; otherwise, the data
will not be retrieved from it properly by the Trend object. If you need to add or remove tags for
history files, there are two valid procedures: Create a new Trend worksheet or delete the old
*.hst files.

Troubleshooting

Page 876

Proxy Settings
If your project can communicate with other stations on your local network (e.g., PLCs, thin clients, external
databases) but it cannot access the Internet, you might need to configure proxy settings on the computer or
device that hosts the project runtime.

Some features of the project runtime use the command-line interface (CLI) to activate third-party tools, and
some of those tools connect to other services over the Internet, so the CLI itself often needs to be able to
access the Internet. If your local network uses a network gateway or proxy server to control access, however,
you might need to configure the proxy settings for the CLI — specifically, you need to set environment
variables for the protocols used by the CLI to access the Internet.

Please note the CLI has its own proxy settings separate from other applications on the same computer. Even if
you previously configured the proxy settings for the web browser, for example, you still need to configure the
proxy settings for the CLI.

Of course, you should do this only if your project actually needs to access the Internet — in other words, if
you have developed your project to take advantage of those features that access the Internet but it does not
behave as expected during project run time. Otherwise, you should leave the proxy settings unchanged in
order to maintain network security and privacy.

For more information, consult your network administrator.

Configure the proxy settings on a Windows computer or device
Configure the proxy settings for the command-line interface (CLI) on a Windows computer or device —
specifically, set the environment variables used by Command Prompt.

Before you begin this task, you should know the host name or IP address of your network gateway or
proxy server, as well as the port number (if any) of the proxy service. If you do not know, ask your network
administrator.

If the proxy service requires authentication, you should also know your user name and password for that
service.

You do not need Administrator privileges on the Windows computer or device in order to perform this task, as
long as you are logged on as the same user that runs the project runtime.

To configure the proxy settings:

1. Make sure you are logged on as the same user that runs the project runtime.

2. Open the Environment Variables control panel.

3. In the control panel, do the following:
a) In the User variables area of the control panel, click New.

A New User Variable dialog box is displayed.

b) In the Variable name box, type http_proxy.

c) In the Variable value box, type the URL of the proxy service. Remember to include the port number of the
service and/or your user name and password for that service, if necessary.

Examples of the URL:

http://proxy-server

http://proxy-server.mynetwork.com

http://gateway.mynetwork.com:3128

http://username:password@gateway.mynetwork.com:3128

d) Click OK.
The new variable is saved.

Troubleshooting

Page 877

4. Repeat the previous step for the variables https_proxy and ftp_proxy.

5. Click OK to close the Environment Variables control panel.

Once these environment variables are set, they will be available whenever a new Command Prompt window is
opened.

Troubleshooting

Page 878

Help tab
The Help tab of the ribbon provides additional help with using the software.

The tools are organized into the following groups:

• Documentation: Access the documentation for the development application, including this help file / technical
reference and notes for the individual communication drivers.

• Information: Access other information about BLUE Open Studio 2020, including the license agreement,
product website, and release notes, as well as support details that make it easier for us to assist you.

Help
To open the help manual for the BLUE Open Studio 2020 software, click Help on the Help tab of the ribbon.

Tip: This documentation is also available as a PDF.

Troubleshooting

Page 879

Communication Drivers
To see the available documentation for the communication drivers, click Communication Drivers on the Help tab of
the ribbon.

Communication Drivers dialog

From this dialog, you can select an installed driver then click the Help button to open Adobe Acrobat® Reader™

and display a detailed document about that driver in PDF format.

License Agreement
To display a PDF copy of the BLUE Open Studio 2020 software license, click License Agreement on the Help tab
of the ribbon.

Product Web Site
To go to the Pro-face company site, click Product Web Site on the Help tab of the ribbon.

Release Notes

To view the release notes for BLUE Open Studio 2020, click Release Notes on the Help tab of the ribbon. The
document will be opened in your default web browser.

Support
The Support Information dialog displays basic information about your computer's operating system, your
BLUE Open Studio 2020 installation and license, and your project settings. If you need to contact Customer
Support, then you should have this information ready to answer their questions.

Troubleshooting

Page 880

To open the dialog, click Support on the Help tab of the ribbon. The dialog will be displayed:

Support Information dialog

To copy the information to the Clipboard, click Copy. You can then paste the information into another window
or text field, such as the body of an email message.

To save the information to a file, click Save to File. A standard Save As dialog will be displayed.

When you are done, click Close.

About
To get more information about the BLUE Open Studio 2020 software, click About on the Help tab of the
browser.

Tutorial: Building a Simple Project

Page 881

Tutorial: Building a Simple Project
This section explains, using a step-by-step tutorial, how to build a simple project, as well as how to select and
configure an I/O driver.

Tutorial: Building a Simple Project

Page 882

Creating a new project
This part of the tutorial shows how to create a new project, including how to give it a name and then select
the target platform and system.

1. Go to File, and then click New.
The New dialog is displayed.

2. Click the Project tab, if it is not already selected.

3. In the Project name box, type the name of your project.
For this tutorial, type Tutorial.
The development application automatically creates a new directory of the same name and assigns your
project file to that directory. (Notice the Configuration file text box in the figure.) To put your project file
somewhere other than in the default projects folder, click Browse and navigate to the preferred location.

4. In the Product type list, select the type of project that you want to build.

5. Click OK.
The New dialog is closed and the Project Wizard dialog is displayed.

6. In the Resolution list, select 1024 x 768.

Specifying an empty Application with 1024x768 resolution
7. Click OK.

Tutorial: Building a Simple Project

Page 883

The Project Wizard dialog is closed, the project is created in the development environment, and the Security
System Configuration Wizard is displayed.

Security System Configuration Wizard
8. Use the Security System Configuration Wizard to set a Main Password for your project.

The security system is enabled by default for all new projects.

When you finish the Security System Configuration Wizard, your new project is ready for development.

Tutorial: Building a Simple Project

Page 884

Specifying the startup screen
This part of the tutorial shows how to open the project settings and then specify which screen should be
displayed on startup.

• Use the Information tab to provide information that identifies the project (such as project description,
revision number, Company name, Author's name, field equipment, and general notes).

• Use the Options tab to specify generic settings for the project, such as the Target System, Automatic
Translation, Alarm history and Events, Default Database and Shared Tags.

• Use the Viewer tab to enable/disable the run-time desktop parameters.

• Use the Communication tab to specify communication parameters relating to the project in general.

• Use the Preferences tab to enable/disable warning messages when using the development application.

To specify the startup screen:

1. On the Project tab of the ribbon, in the Settings group, click Viewer.
The Project Settings dialog is displayed with the Viewer tab selected.

2. In the Startup screen box, type main.scc.
When you run the project, it will automatically display the main screen (or whichever screen you specify)
first. You can specify a screen before you create it, but if the screen has been created, then you can also
select it from the list.

3. Click OK.

Tutorial: Building a Simple Project

Page 885

Creating tags
This part of the tutorial shows how to create new tags by adding them to the Project Tags datasheet.

A tag is any variable that holds a value. All tags created in a project are stored in the Project Tags folder, on
the Global tab of the Project Explorer.

Project Tags folder

1. In the Project Explorer, click the Global tab.

2. Double-click Project Tags to expand the folder.

3. Double-click Datasheet View to open the Project Tags datasheet.

4. Use the following parameters to create a tag for the sample project.
a) Name: Specify a unique tag name. For this tutorial, type Level.

b) Array Size: Specify the top array index of the tag. (Simple tags have an Array Size of 0.) For this tutorial,
type 3.

Each array index corresponds to one of the three tanks:

• Level[1] is the level of Tank #1

• Level[2] is the level of Tank #2

• Level[3] is the level of Tank #3

You will not use Level[0] in this tutorial, even though it is a valid tag. It is easier to understand if the
array indices match the tank numbers.

c) Type: Specify the data type of the tag: Boolean, Integer, Real, String, or Class. For this tutorial, select
Integer.

d) Description (optional): Type a description of the tag for documentation purposes only.

e) Scope: Specify how the tag is managed between the Server and the Thin Client stations.

• Select Local if you want the tag to have independent values on the Server and Client stations.

• Select Server if you want the tag to share the same value on the Server and Client stations.

Tutorial: Building a Simple Project

Page 886

For this tutorial, select Server.

Creating the Level tag
5. Save and close the Project Tags datasheet.

You will create additional tags as you build the project.

Tip: You can sort the data in the Project Tags datasheet or insert/remove additional columns by
right-clicking on it and then choosing the applicable option from the pop-up menu.

Tutorial: Building a Simple Project

Page 887

Creating the main screen
This part of the tutorial shows how to create your first screen, which will contain a single button that opens
another screen.

1. In the Project Explorer, click the Graphics tab.

2. Right-click Screens, and then click Insert on the shortcut menu.
The development application stores all screens created for a project in this Screens folder.

Tutorial: Building a Simple Project

Page 888

The Screen Attributes dialog is displayed.

Screen Attributes dialog
3. Use this dialog to set screen properties such as size and type.

For this tutorial, click OK to accept the default settings.
The Screen Attributes dialog is closed, and the new screen is opened in the workspace for editing.

4. On the Draw tab of the ribbon, in the Screen group, click Background Color.
A standard color picker is displayed.

5. In the color picker, select a light gray color.

Color picker

That color is applied to the screen.

Tutorial: Building a Simple Project

Page 889

Drawing the main screen's title
This part of the tutorial shows how to draw the main screen's title using a Text object.

1. On the Draw tab of the ribbon, in the Active Objects group, click Text.
Your mouse cursor changes from an arrow to a crosshair.

2. Click on the screen, type Welcome to the Tutorial Application, and then press Return.
This creates a new Text object with the specified text.

3. Double-click the object to open its Object Properties dialog.

Object Properties: Text dialog

• Double-clicking on any screen object opens an Object Properties dialog containing the properties for
that object. The properties shown in the dialog change depending on the type of object.

• The Object Properties dialog also contains a pin button that controls whether this dialog remains open.
The button changes state (and function) each time you click on it, as follows:

• When the pin button is released, the focus is passed to the object on the screen as soon as it
is selected. It is recommended that this button is kept released when you want to manipulate
the objects (Copy, Paste, Cut, or Delete). Although the Object Properties dialog is on the top, the
keyboard commands (Ctrl+C, Ctrl+V, Ctrl+X, or Del) are sent directly to the objects.

• When the pin button is pressed, the focus is kept on the Object Properties dialog, even when you
click the objects on the screen. We recommend you keep this button pressed when you want to
modify the settings of the objects. You can click an object and type the new property value directly
in the Object Properties dialog (it is not necessary to click on the window to bring focus to it). Also,
when the pin button is pressed, the Object Properties dialog does not automatically close when you
click on the screen.

4. Click Fonts to open Font dialog, and then specify the font settings.
For this tutorial…

• Font is Arial
• Font style is Regular
• Size is 20

Tutorial: Building a Simple Project

Page 890

• Color is Blue

Specifying the font settings
5. Click OK to close the Font dialog.

The font settings are applied to the Text object.

Font settings applied to Text object
6. Close the Object Properties dialog (i.e., click the Close button in the dialog box's top-right corner).

Tutorial: Building a Simple Project

Page 891

Drawing a button to open another screen
This part of the tutorial shows how to draw and configure a button that will open another screen.

1. On the Draw tab of the ribbon, in the Active Objects group, click Button.
Your mouse cursor changes from an arrow to a crosshair.

2. Click and hold on the screen, and then drag the cursor to draw the Button object.

3. Double-click the object to open its Object Properties dialog.

4. In the Caption box, type the following text: Click here to open the synoptic screen.

Adding a caption to the button
5. Click Command.

The Object Properties dialog changes to show the properties for the Command animation.

6. In the Type list, select Open Screen.

Tutorial: Building a Simple Project

Page 892

7. In the Open Screen box, type synoptic.scc.

Configuring an Open Screen command on the button

You can specify a screen that you have not yet created.

8. Close the Object Properties dialog.

Saving and closing the main screen
This part of the tutorial shows how to properly save and close a screen.

1. Go to File, and then select Save.
A standard Windows Save dialog is displayed.

2. In the File name box, type main.

3. Click Save.
The file is saved in your project folder (at <project name>\Screen\main.scc), and the Save dialog is
closed.

4. Go to File, and then select Close.

Tutorial: Building a Simple Project

Page 893

Creating the synoptic screen
This part of the tutorial show how to create your second screen, which will include an animated tank of liquid
and some basic controls for that tank.

1. In the Graphics tab of the Project Explorer, right-click the Screens folder, and then click Insert on the shortcut
menu.
The Screen Attributes dialog is displayed.

2. Use this dialog to set attributes such as size and type.
For this tutorial, click OK to accept the default settings.

3. Go to File, and then select Save As.
A standard Windows Save As dialog is displayed.

4. In the File name box, type synoptic.

5. Click Save.
The file is saved in your project folder (at <project name>\Screen\synoptic.scc), and the Save dialog is
closed.

Do not close the screen like you did the main screen when you saved it. You still need to draw the synoptic
screen.

Drawing the synoptic screen's title
As in a previous part, this part of the tutorial shows how to draw the synoptic screen's title using a Text
object.

1. On the Draw tab of the ribbon, in the Active Objects group, click Text.
2. Click on the screen, type Synoptic Screen, and then press Return.

3. Double-click the object to open its Object Properties dialog.

4. Click Fonts to open Font dialog, and then specify the font settings.
For this tutorial…

• Font is Arial
• Font style is Bold
• Size is 20
• Color is Blue

5. Click OK to save the font settings and close the dialog.

6. Close the Object Properties dialog.

7. Move the Text object to the top left corner of the screen.

8. Go to File, and then select Save.

This figure shows how your screen should look after you have drawn the screen title.

Finished screen title

Drawing "Date" and "Time" displays
This part of the tutorial shows how to draw "Date" and "Time" displays by linking Text objects to system tags.

Date and Time are system tags that hold the current date and time of the local station. These tags are
available to any project.

1. On the Draw tab of the ribbon, in the Active Objects group, click Text.

Tutorial: Building a Simple Project

Page 894

2. Click on the screen, type Date: ##########, and then press Return.

3. Double-click the object to open its Object Properties dialog.

4. Click Text Data Link.
The Object Properties dialog changes to show the properties for the Text Data Link animation.

5. In the Tag/Expression box, type Date.

Specifying the Date system tag

During run time, the project replaces the ########## characters of the Text object with the value of the
system tag Date.

6. Close the Object Properties dialog.

7. On the Draw tab of the ribbon, in the Active Objects group, click Text.
8. Click on the screen, type Time: ##########, and then press Return.

9. Double-click the object to open its Object Properties dialog.

10.Click Text Data Link.
The Object Properties dialog changes to show the properties for the Text Data Link animation.

11.In the Tag/Expression box, type Time.

Specifying the Time system tag

During run time, the project replaces the ########## characters of the Text object with the value of the
system tag Time.

12.Close the Object Properties dialog.

13.Go to File, and then select Save.

Tutorial: Building a Simple Project

Page 895

This figure shows how your screen should look after you have created the date and time objects.

Finished date and time objects

Placing an "Exit" icon
This part of the tutorial shows how to place an icon (by selecting and configuring a Linked Symbol) that allows
the user to exit the project, .

1. On the Draw tab of the ribbon, in the Libraries group, click Symbols.
The symbols library is displayed.

2. In the Symbols menu tree, open the System Symbols folder and then open the Icons sub-folder.

3. In the Icons sub-folder, select exit01.
The symbol will be displayed in the symbol viewer to the right of the menu tree.

Selecting the "exit01" symbol
4. Click on the symbol.

The mouse cursor will change to show that the symbol is ready to be placed in a screen.

5. Switch back to the screen where you want to place the symbol and then click in it.

Tutorial: Building a Simple Project

Page 896

The symbol is placed as a Linked Symbol object.

Placing the Linked Symbol object
6. With the object still selected, click Command (on the Draw tab of the ribbon, in the Animations group) to apply

this animation to the object.

7. Double-click the object to open its Object Properties dialog.

8. In the Type list, select VBScript.
9. In the On Down box, type $Shutdown().

Shutdown is one of BLUE Open Studio 2020's built-in scripting functions, but it can be used within
VBScript by prefacing it with a dollar sign ($).

Specifying the Shutdown command on the symbol
10.Close the Object Properties dialog.

11.Go to File, and then select Save.

Now, when a user clicks this icon during run time, the project will stop and exit to the station's desktop.

Testing the project
This part of the tutorial shows how to test the project so far.

1. Go to File, and then select Close All.
All open worksheets are closed.

2. On the Home tab of the ribbon, in the Local Management group, click Run.
The project runs and the startup screen is displayed.

3. Click the button to open the synoptic screen.
The synoptic screen is displayed.

4. Click the exit icon to shut down the project.

Tutorial: Building a Simple Project

Page 897

If any part of the project does not work as expected, switch back to the development application (ALT+TAB) and
then click Stop on the Home tab of the ribbon.

Placing an animated tank
This part of the tutorial shows how to select an animated tank from the Symbol Library and place it on the
screen (similar to how you selected and placed the "Exit" icon), then associate some project tags with the
tank's properties.

1. In the Graphics tab of the Project Explorer, expand the Screens folder.

2. Double-click synoptic.scc.
The synoptic screen worksheet is reopened for editing.

3. On the Draw tab of the ribbon, in the Libraries group, click Symbols.

4. In the Symbols menu tree, open the System Symbols folder and then open the Tanks sub-folder.

5. Browse the tank symbols and choose one.
You may choose any tank symbol that you like; they all function basically the same.

Choosing a tank symbol
6. Click the symbol.

The mouse cursor will change to show that the symbol is ready to be placed in a screen.

7. Switch back to the screen where you want to place the symbol and click in it.
The symbol is placed as a Linked Symbol object.

Tutorial: Building a Simple Project

Page 898

8. Double-click the object to open its Object Properties dialog.

The tank symbol's properties

A tank is an arrangement of different objects and animations (for example a rectangle, a bar graph, etc.),
all combined together as a Linked Symbol. You can modify the properties of this symbol by editing the
properties list. For this tutorial, you will modify the tag associated with the tank level.

9. For the property TagLevel, delete the existing value and then type Level[Index].
Note that you do not need to reopen the Project Tags datasheet to create tags as you develop the project.
Because you have not previously created the tag Index in the Project Tags database, an alert message
asks you if you would like to create it.

10.Click Yes.
A New Tag dialog is displayed.

11.Configure the new tag with Array as 0, Type as Integer, and Scope as Local.

Configuring a new tag
12.Click OK to close the New Tag dialog.

You can use the tag Index to set the array position of the tag Level, and show the level for any of the
three tanks in the same object:

• When Index equals 1, the tank object shows the level of Tank #1 (i.e., Level[1]);

• When Index equals 2, the tank object shows the level of Tank #2 (i.e., Level[2]); and

Tutorial: Building a Simple Project

Page 899

• When Index equals 3, the tank object shows the level of Tank #3 (i.e., Level[3]).

Also, because the tag scope is local, the tag can have different values for the Server and Client stations at
the same time. Consequently, the local user (i.e., the Server station) can be monitoring the level of Tank #1
while the remote user (i.e., the Client station) is monitoring the level of Tank #2.

13.Close the Object Properties dialog.

14.Go to File, and then select Save.

This figure shows how your screen should look after you've created the tank object.

Finished tank object

Placing a level slider
This part of the tutorial shows how to select a slider control from the Symbol Library and then connect it to
the animated tank.

1. On the Draw tab of the ribbon, in the Libraries group, click Symbols.

2. In the Symbols menu tree, open the System Symbols folder and then open the Sliders sub-folder.

Selecting a slider symbol
3. In the Sliders sub-folder, select a slider control.

Tutorial: Building a Simple Project

Page 900

You may select any slider you like; they all function basically the same way.

4. Click on the symbol.
The mouse cursor will change to show that the symbol is ready to be placed in a screen.

5. Switch back to the screen where you want to place the symbol and click in it.
The symbol is placed as a Linked Symbol object.

6. Double-click the object to open its Object Properties dialog.

7. For the property TagName, delete the existing value and then type Level[Index].
Just as with the tank, you need to modify the symbol property associated with the slider level.

8. Close the Object Properties dialog.

9. Go to File, and then select Save.

This figure shows how your screen should look after you've created the level slider object.

Finished level slider object

Drawing a tank selector
This part of the tutorial shows how to draw a text input box that can be used to change which real-world tank
is represented by the animated tank on the screen.

1. On the Draw tab of the ribbon, in the Active Objects group, click Text.
2. Click on the screen, type Tank: #, and then press Return.

3. Double-click the object to open its Object Properties dialog.

4. Click Text Data Link.
The Object Properties dialog changes to show the properties for the Text Data Link animation.

5. In the Tag/Expression box, type Index.

6. Select the Input Enabled option.
This lets the user enter a new value for the tag during run time.

7. In the Minimum Value box, type 1.

Tutorial: Building a Simple Project

Page 901

8. In the Maximum Value box, type 3.

Configuring the "Tank" text input
9. Close the Object Properties dialog.

10.Go to File, and then select Save.

This figure shows how your screen should look after you've created the tank selector object.

Finished tank selector object during run time

Testing the project
This part of the tutorial shows how to test the project again with the animated tank, the level slider, and the
tank selector.

1. Go to File, and then select Close All.
All open worksheets are closed.

2. On the Home tab of the ribbon, in the Local Management group, click Run.
The project runs and the startup screen is displayed.

3. Click the button to open the synoptic screen.
The synoptic screen is displayed.

4. Type the tank number (1, 2, or 3) in the Tank label, and then use the slider to adjust the tank level.
Note that you can view/adjust the level of each tank independently.

5. Click the exit icon to shut down the project.

If any part of the project does not work as expected, switch back to the development application (ALT+TAB) and
then click Stop on the Home tab of the ribbon.

Tutorial: Building a Simple Project

Page 902

Configuring the communication driver
This part of the tutorial shows how to select and configure a driver to communicate with an external I/O
device.

1. In the Project Explorer, click the Comm tab.

2. Right-click the Drivers folder, and the click Add/Remove Drivers on the shortcut menu.
The Communication Drivers dialog is displayed.

3. Select a driver from the Available drivers list, and then click Select.
For this tutorial, select MODBU.
The driver is moved to the Selected drivers list.

MODBU driver selected
4. Click OK.

The Communication Drivers dialog is closed, and the driver is added to the Drivers folder in the Project
Explorer.

5. In the Project Explorer, right-click the MODBU folder, and then click Settings on the shortcut menu.

Tutorial: Building a Simple Project

Page 903

The Communication Settings dialog is displayed.

Communication Settings dialog for MODBU driver
6. Configure the communication settings as needed for the target device.

For this tutorial, accept the default settings.

Note: For more information about a specific driver, click Communication Drivers on the Help tab of
the ribbon.

7. Click OK to close the dialog.

8. In the Project Explorer, right-click the MODBU folder and then click Insert on the shortcut menu.
A new driver worksheet named MODBU001.drv is created and opened for editing.

9. Configure the worksheet header:
a) In the Description box, type Tutorial Modbus.

This setting is for documentation only; it does not affect the project during run time.

b) In the Enable Read When Idle box, type 1.
This setting is a trigger that takes a Boolean value. A value of 1 — either entered manually as above or
evaluated from a tag/expression — forces your project to continue reading tag values from the target
device even when there are no changes in value.

c) In the Enable Write On Tag Change box, type 1.
This setting is also a trigger. A value of 1 forces your project to write tag values to the target device
only when those values change, rather than continuously. This saves system resources and improves
performance during rutime.

d) In the Station box, type 1.
This indicates the I/O device number to be accessed by this driver. Typically, the PLC is specified as
Device #1.

e) In the Header box, type 4X:0.

You must use a driver-specific format. The format for the MODBU driver is:

register_type:initial_offset

Register Type Description

0X Coil Status

1X Input Status

3X Input Register

Tutorial: Building a Simple Project

Page 904

Register Type Description

4X Holding Register

ID Slave ID Number

Completed worksheet header
10.In the worksheet body, enter the tags and their associated device addresses — for each tag:

a) In the Tag Name field, type the name of the project tag.

b) In the Address field, type the value to be added to the header to form the complete device address.

Tag Name Address Complete Device Address

Level[1] 1 4X:1 (Holding Register 1)

Level[2] 2 4X:2 (Holding Register 2)

Level[3] 3 4X:3 (Holding Register 3)

Completed worksheet body
11.Go to File, and then select Save.

12.When prompted to choose the driver sheet number, type 1 and then click OK.

Tutorial: Building a Simple Project

Page 905

Monitoring device I/O during run time
This part of the tutorial shows how to monitor device I/O during run time by using the Log window.

1. On the Home tab of the ribbon, in the Local Management group, click Run.
The project runs and the startup screen is displayed.

2. Press ALT+TAB to switch back to the development application.

3. Right-click in the Output window, and then click Settings.
The Log Settings dialog is displayed.

4. Select the Field Read Commands, Field Write Commands, and Protocol Analyzer options.

5. Click OK to close the Log Settings dialog.

You can now monitor the device I/O during run time.

Appendix: Security Guidelines

Page 906

Appendix: Security Guidelines
This section provides a general overview on how to securely deploy BLUE Open Studio 2020 as an Industrial
Control Systems (ICS) application.

This approach to securing site networks and ICS software is driven by the following principles:

• View security from both Management and Technical perspectives

• Ensure that security is addressed from both IT and ICS perspectives.

• Design and develop multiple network, system and software security layers.

• Ensure industry, regulatory and international standards are taken into account.

• Aim to prevent security breaches, supported by detection and mitigation.

These principles are realized by implementing the following security recommendations:

• Prevent security breaches using the following components:

• Firewalls

• Network-based intrusion prevention/detection

• Host-based intrusion prevention/detection

• Segregate IT and Plant networks

• Include a clearly defined and clearly communicated change management policy. For example, firewall
configuration changes.

This section is not meant to be comprehensive, and it does not provide any detailed instructions. It is only
a collection of basic concepts and recommendations that you can use as a checklist to secure your own
systems. If you need help with a specific item in this guide, see the official documentation for that item — for
example, if you need help with your anti-virus software, see the documentation for that software.

Note: We strongly recommend that you follow the guidelines prescribed by the U.S. Department
of Commerce for securing ICS software. The document "Guide to Industrial Control Systems
(ICS) Security" NIST Special Publication 800-82 Revision 2 (https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-82r2.pdf) provides detailed information about ICS, typical system
topologies, security threats and vulnerabilities, and recommendations for implementing security
measures.

Appendix: Security Guidelines

Page 907

Securing the Host
Given the sensitive nature of industrial control, it is important to secure not only the ICS software, but also:

• the host on which it runs

• the network to which it is connected

• the hardware used for the ICS software.

Note: The "host" is the Windows computer or Windows Embedded device on which your ICS
software is installed and running.

There are several factors to consider for securing the host including:

• Access to the host

• Keeping track of and applying the latest Windows updates

• Keeping the host computer free of viruses and malware

• Protecting the applications and content on the host

Each of these factors is covered in the sections below.

General Guidelines for Securing the Host
Here are a few guidelines to secure the host:

• Use an account with administrative privileges to install the ICS software, and one without administrative
privileges to run the ICS software.

• Restrict configuration of ICS to a limited set of users or groups.

• Consider running the ICS software as a Windows service, if that option is feasible. If the ICS software is
run as a service, run it as a low privileged virtual service account.

• Once the host is fully configured and placed in its permanent location, restrict physical access and remote
access to it so that only authorized personnel (for example, system administrators, application engineers,
run-time operators) can use it.

• Consider disabling or removing physical ports (for example, USB, memory card) that might be used to
connect external storage devices and then transfer data.

Windows Updates
Check that the Windows operating system on the host is a version that is under what Microsoft calls
"mainstream support", which means Microsoft actively maintains and releases updates for it. Older
versions of Windows are under Microsoft "extended support", which means they are not actively maintained
and therefore might become vulnerable without notice. For more information about the different
versions of Windows and the different levels of support, see [Windows lifecycle fact sheet](https://
support.microsoft.com/en-us/help/13853/windows-lifecycle-fact-sheet).

Automate Microsoft product updates using Microsoft Windows Server Update Services (WSUS), which enables
you to manage and distribute updates to computers on your network. For more information about WSUS,
see [Windows Server Update Services](https://docs.microsoft.com/en-us/windows-server/administration/
windows-server-update-services/get-started/windows-server-update-services-wsus). If the host does not or
will not have a reliable connection to the WSUS server, perhaps because it is located on a private network,
you can either develop a procedure to manually apply updates or consider changing the operating system to a
Long-Term Servicing Channel (LTSC) version of Windows, which is updated less frequently.

ICS Software Updates
Check that the ICS software on the host has all the recommended patches and hot fixes installed. Some
applications release regular updates, which should be applied as soon as possible as they may contain
security-related fixes.

Appendix: Security Guidelines

Page 908

Scanning the Host
Use both anti-virus and anti-malware software and file integrity checking software to regularly scan the host.

Windows includes Windows Defender by default, but you may choose to install and use additional software
that scans for more types of malware or performs other functions. If you do that, make sure the software is
provided by a reputable company. And, as with the operating system, if the host does not or will not have
reliable access to the software's update service, develop a procedure to manually apply updates. If you develop
a manual update procedure, it should account for all devices on a network or at a site, because a single
outdated device can leave the entire network or site vulnerable.

Protecting the Applications and Content on the Host
To protect the applications and content on the host:

• Enable Windows Firewall, and configure it to close all ports that are not used by the ICS software. For
more information about port usage, see Managing Network Services and Ports.

• Disable Windows features like remote desktop and file sharing, and remove unnecessary programs like
games and social media.

• Restrict access to the files, databases, resgistry and other resources on the host.

• Use Windows BitLocker to encrypt the hard drive of computers that are either mobile or not located in a
secure facility. However, BitLocker may impact the performance of computers.

• Consider using server-class storage (SANs) infrastructure to avoid storing sensitive data on mobile devices.

Appendix: Security Guidelines

Page 909

Securing the Network
The ICS network itself can be either physically separated or logically segmented from your other corporate
networks. A physically separated network is by definition the most secure. The network hardware and all
computers and devices connected to it form a single closed network with no physical connection to any other
network, so an intruder cannot access the network unless they also have access to the physical location.

In contrast, a logically segmented network is physically connected to your other corporate networks and/or
the public internet, but it uses various methods to segregate ICS network traffic from other network traffic.
This may include:

• Using a unidirectional gateway

• Implementing a Demilitarized Zone (DMZ) network architecture with firewalls to prevent network traffic
from passing directly between the corporate and ICS networks

• Having different authentication mechanisms and credentials for users of the corporate and ICS networks.

• The ICS should also use a network topology that has multiple layers, with the most critical
communications occurring in the most secure and reliable layer.

Given below is a sample deployment topology.

ICS Networks
The ICS network itself can be either physically separated or logically segmented from your other corporate
networks. A physically separated network is by definition the most secure. The network hardware and all
computers and devices connected to it form a single closed network with no physical connection to any other
network, so an intruder cannot access the network unless they also have access to the physical location.

In contrast, a logically segmented network is physically connected to your other corporate networks and/or
the public internet, but it uses various methods to segregate ICS network traffic from other network traffic.
This may include:

• Using a unidirectional gateway

• Implementing a Demilitarized Zone (DMZ) network architecture with firewalls to prevent network traffic
from passing directly between the corporate and ICS networks

• Having different authentication mechanisms and credentials for users of the corporate and ICS networks.

• The ICS should also use a network topology that has multiple layers, with the most critical
communications occurring in the most secure and reliable layer.

Given below is a sample deployment topology.

Managing Network Services and Ports
A network port is an endpoint of communication in an operating system. While the term is also used for
hardware devices, in software it is a logical construct that identifies a specific process or a type of service. In
other words, a network port is conceptually different from hardware ports like USB, memory card, and even
the wired network connection.

Computers and devices can access many different network services at the same time by communicating on
different network ports. Each network service or communication protocol has an associated port number.
Some port numbers are specified by international standards, and therefore they are universally recognized.
Other port numbers are claimed by proprietary software, and in most cases they can be changed in the
software settings if there is a conflict with other software or services.

Firewalls control network traffic by either accepting or refusing communication on these network ports. If a
port is open, it accepts communication, and if a port is closed, it refuses communication. Almost every layer
of a network -- from the operating system on an individual computer or device, to the router that manages
traffic within a network, to the gateway that manages traffic between networks -- has its own firewall.

The documentation for your ICS software should include a list of network ports that are commonly used by
the software. Given the nature of ICS, the list typically includes services like web, email, file transfer, external
databases, device drivers, and the ICS software itself for server-client communications. Configure the firewalls
to open only those network ports that are actually used by your ICS. Disable all unused services and close all
unused ports.

Appendix: Security Guidelines

Page 910

Securing Communication between the Client and Server
Like most server-client applications, your ICS software should support secure communication between the
server and client in order to prevent the messages sent between those two stations from being read by any
other stations on the same network. Note that this is different from securing the network itself in order to
prevent unauthorized access to the network.

This sort of communication is also sometimes known as "Encrypted Channel" because it uses the Transport
Layer Security (TLS) standard to encrypt the server-client messages. The latest version of the standard is TLS
1.3 (released August 2018), but it is not yet in common use. The latest version of the standard in common use
is TLS 1.2 (released August 2008). TLS supersedes the earlier Secure Sockets Layer (SSL) standard, although
SSL is still used in older applications.

Certificates

TLS and SSL use a system of certificates and keys to digitally "sign" the messages sent between the server and
client. When the server establishes communication with the client (and vice versa), it presents its certificate
which identifies its name, network address, organization, physical location, and so on. The client can then
choose to either accept or refuse the certificate as presented. If it accepts the certificate, it agrees to accept
messages encrypted with the same certificate, and it uses the associated key to decrypt those messages.

When you configure this sort of communication, you need to choose one of the following:

• Using self-signed certificates

• Using certificates signed by a Public Certificate Authority (CA)

• Using Domain-issued certificates like Microsoft Active Directory Certificate Service (AD CS)

A self-signed certificate is issued and signed by the same application that presents it. Self-signed certificates
are easy to create and manage, but they are secure only if you control both the server and the client and
therefore control which certificates are installed on each.

In contrast, CA-signed certificates are slightly difficult and expensive to acquire, but they are more flexible
than self-signed certificates because you do not need to control both the server and the client. If you configure
the server to present a CA-signed certificate, the client will accept the certificate because it recognizes the
Certificate Authority.

Domain-issued certificates are internal certificates typically managed by your IT department. They are issued
and validated by an Active Directory Certificate Authority. Domain-issued certificates are free and can be
issued instantly.

You need to renew certificates at regular intervals.

For more information about how to enable Encrypted Channel features and manage self-signed certificates in
your ICS software, see the documentation for that software. However, acquiring a CA-signed certificate and
then using it to sign other certificates is typically beyond the scope of ICS software documentation.

Note: Encrypted and unencrypted communications typically use different network ports.

Appendix: Security Guidelines

Page 911

Cloud-based Systems
It is possible that your ICS software might access cloud-based solutions, or might itself be hosted on the
Cloud.It is important to mitigate the risks associated with cloud-based access and hosting.

Accessing Cloud-Based Solutions

Many applications are now being made available through the Cloud, and ICS software may need to connect to
these applications. One of the main risks associated with accessing cloud-based applications is unauthorized
access. Connecting ICS software to Cloud solutions must be done in a secure manner, and needs to use
secure protocols such as Transport Layer Security (TLS).

It is important that data integrity is maintained at all times. Use data classification to identify data that is
sensitive and data that can be made public. Secure machines,storage and networking in order to secure the
data that is stored and transmitted. Work with your Cloud Service Provider (CSP) to configure users, assign
access levels and monitor and control access. Ensure that the CSP's buildings are physically secure and
protected from unauthorized access.

Cloud-based ICS Software

While hosting ICS software on the Cloud provides several benefits such as flexibility, scalability and
availability, it is also fraught with security risks such as susceptibility to hacking resulting in damage to
the organization's reputation . Therefore, it is important to implement a security strategy before you make
your ICS software accessible on the Cloud. For securing ICS software on the Cloud, you need to consider the
following:

• Securing access points by putting in place authentication, monitoring and support mechanisms.

• Implementing cloud-based, centralized security measures including encrypting communications using
TLS.

Note: It is recommended that you review the NIST Cybersecurity Framework for additional information.

https://www.nist.gov/cyberframework

Appendix: Security Guidelines

Page 912

Securing Systems through Authentication and Authorization
Typically, ICS software is comprised of a large number of systems, each accessed by a variety of users
including engineers, operators and managers. The level of access that each type of user requires is different.
So, it is necessary to manage user authentication and authorization to secure the system.

Authentication

Authentication is the process of verifying a user's/system's identity. Authentication can be managed in the
following ways:

• Within the ICS software through application accounts

• Through Windows accounts, which can be local to a single computer

• Through Authentication systems (see the next section for details)

While ICS software allows for user and role management, it can become cumbersome and complicated to
manage a large number of user accounts as employees and roles change. Because of this, use of Windows
accounts is generally preferred.

Authentication Systems

Authentication systems such as Active Directory and Lightweight Directory Access Protocol (LDAP), referred to
as authentication servers, are a repository of and provide centralized management for all system accounts and
individual user accounts. An authentication protocol is used for all communication between authentication
servers and the user or server requesting authentication.

Even though use of authentication systems provides improved scalability, the following factors must be
considered depending upon the size and complexity of your operations:

• It is important that the authentication servers are highly secured.

• The authentication server system creates a single system for managing all system accounts. Therefore, it
requires to be available at all times. To ensure minimal disruption during an emergency, redundancy must
be considered.

• Permit caching of user credentials only for users who have authenticated their identity recently.

• Networks that support the authentication protocol must be reliable and secure to assist in trouble-free
authentication.

It may also be worthwhile implementing two-factor authentication using additional applications such as
PingID.

Authorization

Authorization is the process of providing the correct level of privileges to users by applying access rules to
authenticated users, systems (HMIs, field devices and SCADA servers) and networks (remote sites' LANs).

Managing Users and Groups Through Windows
When you configure security, you may choose to do one of the following:

• Keep the configuration local to a single application.

• Share the configuration between multiple applications.

• Manage the configuration as part of the network domain (for example, using Active Directory). This option
typically allows users to have the same user account for the network, the host, and the ICS software.
Using Active Directory gives you the following advantages:

• A centralized repository for user and group data, enabling effective implementation of security policies
and procedures.

• Provides a single point of access to all network resources after the user is identified and authenticated.

To manage users and groups:

• First define a specific role for each group, and then configure the group privileges to fit that role.

• Groups may overlap, but it is often better to have clearly separate groups and then assign individual users
to multiple groups, if necessary.

Appendix: Security Guidelines

Page 913

• Set or change the password for the ICS software's default user (e.g., "guest").

• Define stringent password policies to force users to create strong passwords.

Managing Users and Groups Through ICS Software
Your ICS software should have a built-in security system that controls who may use the software and what
privileges they have.

Users should be assigned permissions that determine what each user is authorized to do within the ICS
system. Permissions can be managed either on a per-account basis or on a group basis by making use of
roles. Group or role-based access control is preferred as it greatly simplifies management. Users can be moved
from one role to another as the organization's needs change, and can also be members of multiple roles if
required.

Each user should have their own user account with a unique user name and a strong password. The user
account can then be assigned to one or more groups.

Accounts should always be assigned the least privileges necessary to perform their functions. Accounts with
Windows Administrator permissions should be reduced to the minimum, and typically only used to install
and configure the software. Likewise, accounts with SQL Server SysAdmin privileges should be reduced to the
minimum, and typically only used to install and configure the software.

In most cases, the ICS software will allow associating Windows Groups with roles within the product. While
defining and assigning roles, consider the following:

• Roles should be defined to have the least privileges necessary for their functionality.

• Roles should be limited to a single purpose in order to simplify the permissions assigned to them.

• Users can be members of multiple roles if necessary.

Appendix: Security Guidelines

Page 914

Contingency Planning
Incidents are inevitable. It is, therefore, important to develop a strategy to detect an incident quickly and
respond to it in a timely manner in order to minimize loss and protect your system. An organization must
consider contingencies arising from incidents such as fire, flood and so on, and those arising from failure of
hardware or software components. Cyber attacks such as ransomware are becoming more common and must
also be considered.

An organization should have contingency plans in place to cover the entire range of failures and eventualities.
Employees should be trained and be familiar with the contents of the contingency plans.

Auditing and logging processes should be in place to track all activities by user, computer and network.

As part of planning for contingencies, it is important to establish a site, physically separated from the central
one, that has replication capability. Doing so will ensure the integrity of an operational system where the
central site is at risk from fire, floods or other disasters. The replication capability includes having duplicated
hardware, and requires software configuration and key state information to be periodically propagated
from the central site to the recovery site. Each recovery scenario is unique, so it is important to consult
with system integration experts regarding the design of communications equipment, hardware and the
configuration of the software.

Protecting the data stored in your system is also of paramount importance. Full and incremental backups
must be scheduled on a regular basis. Backups should be verified by running tests to restore from backed up
data. Backups should be stored offline so that they are safe from cyber attacks such as ransomware.

Organizations should also have business continuity and disaster recovery plans that are similar to
contingency plans. These plans are covered briefly in the sections to follow.

Auditing and Logging
As part of implementing security for ICS software, it is important to incorporate auditing and logging activities
on various systems and networks.

Auditing and logging provide information on the current state of your ICS, and help to ensure that the system
is functioning as expected. If an incident occurs, you can use the activity logs to trace the origin of the
incident to a computer, user or network. Auditing and logging can also help with troubleshooting issues.

If you are connecting to cloud-based solutions, audit all virtual machines to ensure data integrity.

Business Continuity Planning
Business continuity planning addresses strategies to maintain or re-establish production in the event of any
disruption. These disruptions may be caused by a natural disaster (flood, earthquake, etc), by an intentional
or unintentional man-made event (arson, operator error, power outage, etc), or by system failure.

Depending upon the duration of the potential ICS application outage caused by a disruption, operational
recovery plans for short-term outages and disaster recovery plans for long-term outages must be formulated.
It is also important to employ physical security for areas of a production site that house data acquisition and
control systems that might have higher-level risks. Your business continuity plan should specify system and
data recovery procedures for your systems. Once the recovery procedures are documented, a schedule should
be developed to test the recovery procedures. Particular attention must be paid to the verification of backups
of system configuration data and product or production data. The procedures should be reviewed periodically.

If you are accessing cloud-based solutions, ensure that systems are available at all times. In case of a
disaster, services should switch to a new physical location to provide continued service.

Disaster Recovery Planning
A disaster recovery plan (DRP) is a set of procedures to protect and recover an IT infrastructure in case of a
disaster. It contains the procedures to follow before, during and after a disaster. Disasters can be natural,
environmental or man-made (intentional or unintentional).

A DRP is essential for continued availability of the ICS, and should cover the following:

• When the DRP should be activated depending upon an event, its duration and its severity.

• Detailed course of action for operating the ICS manually until external connections are secured.

• Personnel responsible for each procedure.

Appendix: Security Guidelines

Page 915

• Processes for securely backing up data and restoring it. This should cover:

• Requirements for building redundancy.

• File backup procedures.

• Frequency of backups.

• Storage mechanism for full and incremental backups.

• Safe storage of installation media, license keys and configuration information.

• List of individuals responsible for performing, testing, maintaining and restoring backups.

• List of personnel with physical and virtual access to the ICS.

• Detailed configuration information about the components of the ICS.

• Schedule for testing the DRP.

Appendix: Security Guidelines

Page 916

Conclusion
Security lapses present a serious threat to ICS software and infrastructure. Therefore, it is important for every
organization to:

• Be proactive about preventing security lapses

• Identify potential lapses

• Detect them in a timely manner when they occur

• Address lapses to ensure minimum disruption and maximum availability

To this end:

• Computers and networks must be secured

• Users and groups must be authenticated and authorized

• Contingency plans must be in place to recover from untoward or intentional events

Refer to the document "Guide to Industrial Control Systems (ICS) Security" NIST Special Publication 800-82
Revision 2 (https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf) for additional
details and recommendations.

Appendix: Built-in Language

Page 917

Appendix: Built-in Language
This section describes the functions that make up the Built-in Language. Each function description includes
complete syntax, possible returned values, and examples of usage.

Appendix: Built-in Language

Page 918

Logic and arithmetic operators
The Built-in Language supports the following logic and arithmetic operators.

Logic operators

Operator Usage Description

AND A AND B TRUE if A and B are both TRUE

OR A OR B TRUE if A is TRUE, or B is TRUE, or both

XOR A XOR B TRUE if A is TRUE, or B is TRUE, but not both

NOT NOT A TRUE if A is FALSE

= X = Y TRUE if X is equal to Y

> X > Y TRUE if X is greater than Y

>= X >= Y TRUE if X is greater than or equal to Y

< X < Y TRUE if X is less than Y

<= X <= Y TRUE if X is less than or equal to Y

<> X <> Y TRUE if X is not equal to Y

& X & Y Bitwise AND:

 0101 (decimal 5)
AND 0011 (decimal 3)
 = 0001 (decimal 1)

| X | Y Bitwise OR:

 0101 (decimal 5)
 OR 0011 (decimal 3)
 = 0111 (decimal 7)

^ X ^ Y Bitwise XOR:

 0101 (decimal 5)
XOR 0011 (decimal 3)
 = 0110 (decimal 6)

~ ~ X Bitwise NOT:

NOT 0101 (decimal 5)
 = 1010 (decimal 10)

>> n X >> Y Rotate n bits to right:

 0110 (decimal 6)
 ROTATE RIGHT
 = 0011 (decimal 3)

<< n X << Y Rotate n bits to left:

 0110 (decimal 6)
 ROTATE LEFT

Appendix: Built-in Language

Page 919

Operator Usage Description
 = 1100 (decimal 12)

Tip: For more complex logic, try the Logical and Loop functions.

Arithmetic operators

Operator Usage Description

+ X + Y Add (plus)

- X - Y Subtract (minus)

* X * Y Multiply by

/ X / Y Divide by

Arithemtic operators are resolved according to the standard order of operations. To change the order, enclose
in parentheses the part of the expression to be resolved first. For example, the following expression gives a
result of 11 because multiplication is resolved before addition:

5+2*3

If you enclose the addition in parentheses, so that it is resolved before the multiplication, the expression gives
a result of 21:

(5+2)*3

For more complex math, try the Arithmetic, Statistical, Logarithmic and Trigonometric functions.

Appendix: Built-in Language

Page 920

String expressions
A string expression is a way of specifying a dynamic value (i.e., a value that can change during project run
time) instead of a static value for a setting or property that requires a string.

There are many settings and properties throughout a project that require strings. One of the most common
is the caption on a Button object. When you insert a Button object in a project screen, you can edit its
properties in order to add a caption, and that caption must be a string of some kind. Even if the caption
consists entirely of numerals, those numerals are handled and displayed as a string rather than as an integer
or real number.

An example of a static value for the caption might be START, on a button that starts a device:

This works well enough if you have separate buttons for START and STOP, but you might want to have a single
button with a caption that changes depending on the current state of the device: START when the device is
stopped, and STOP when the device is started. In other words, you might want to specify a dynamic value for
the caption.

To do this, you must first select a tag or compose an expression that determines the value. In this example,
the actual purpose of the button is to start and stop the device, so the object is probably configured to toggle
the value of a tag (e.g., Device_1.State) when the button is clicked/tapped:

Appendix: Built-in Language

Page 921

The value toggles between two possible values: 0 (FALSE) for stopped, and 1 (TRUE) for started. Therefore, you
need to compose an expression that gets the value and then determines the appropriate caption. There are
many ways to do this using the built-in language, so here is just one example that uses the If function:

If(Device_1.State,"STOP","START")

Please note that in this example, you are not using the If function to determine the current state of the
device. You are using it to determine what the caption should be given the current state. That is why the
strings seem to be reversed: "STOP" if the value is TRUE (i.e., the device is started), and "START" if the value
is FALSE (i.e., the device is stopped).

Now, if you type this example without additional formatting in the Caption box, it will be displayed as a literal
string because there is nothing to indicate it is an expression that should be evaluated before it is displayed.
To indicate that, you must enclose the expression in braces ({}):

Appendix: Built-in Language

Page 922

When the project screen is opened and the button is displayed, the string expression is evaluated and the
caption is determined.

Taking this a step further, you can combine a string expression with plain text to form a longer string. Only
the string expression — that is, only the contents of the braces — will be evaluated before it is displayed. The
plain text will be displayed as is. For example:

Keep in mind that this method of enclosing a string expression in braces only works for settings and
properties that normally require strings. There are other settings and properties (e.g., triggers) that explicitly
require expressions, and those expressions should not be enclosed in braces. The description of each setting
or property should make clear which type of input it accepts.

Note: Braces are sometimes also known colloquially as "curly brackets", but that is not correct in
the context of programming languages. Any occurences of the term "curly brackets" that appear
elsewhere in this documentation are artifacts that will be corrected or removed as we continue to
revise this documentation.

Appendix: Built-in Language

Page 923

How to read function descriptions
This is a key to reading the descriptions of the built-in functions.

Each function description is broken into several sections.

Function attributes
Every function has certain attributes that are described in a single-row table:

Function Group Execution String Exp. Windows Thin Clients Mobile Access

function name group name synchronous or
asynchronous

yes or no supported or not
supported

supported or not
supported

supported or not
supported

First, obviously, the exact name of the function as it should be used in your project.

Next, the functions are organized into groups according to the type of calculcation they perform or the part of
your project upon which they act. You can use the group names to find the functions you want in the Object
Finder and in this documentation.

Next, the execution of the function is either synchronous or asynchronous:
Synchronous

When the function is executed on either the project server or the project client, that station
requires some response or acknowledgement from the other. The project pauses, however
briefly, while it waits for the response. In other words, the server and client must remain
synchronized.

This is normally not an issue because most functions are executed almost instantly, but if a
client makes unusually frequent function calls or your network is slow, your project may suffer
decreased performance.

Asynchronous
The function can be executed on either the project server or the project client without waiting for
the other. The project continues to run without interruption.

Next, the function either can (yes) or cannot (no) be used in string expressions.

Finally, the function is either supported or unsupported on each target platform:
Windows

Projects running in the full BLUE Open Studio 2020 software on a Windows or Windows
Server computer, when the software is licensed and used as a project runtime server. For more
information, see About the BLUE Open Studio 2020 software components on page 35.

Thin Client
Project screens viewed with the Thin Client software for Windows. Specifically, if the function
is supported, it can be called in a project screen on the client station — for example, when a
Command animation is triggered or the Screen Script is run. For more information, see Thin
Clients on page 742.

Mobile Access
Project screens viewed in the browser via the Mobile Access web interface. For more information,
see Mobile Access on page 769.

Note: Some functions are described as "Executed on Server", which means that when the function
is called in a project screen on a thin client, it is actually executed on the project runtime server
using the server's local settings and resources. This most often applies to functions that perform
date/time, file, and database operations.

Syntax diagram and parameters
A basic syntax diagram shows how the function should be entered and what parameters it takes.

In most cases, a parameter can take either a literal value or the name of a project tag that contains the value.
The data type of the parameter is indicated by its prefix:

Appendix: Built-in Language

Page 924

bool
The parameter can take either a literal Boolean value or the name of a Boolean tag. For example,
either 0 or MyBoolTag.

num
The parameter can take either a literal numeric value or the name of an Integer or Real tag. For
example, either 45.6543 or MyNumTag.

str
The parameter can take either a text string enclosed in quotation marks or the name of a String
tag. For example, either "My string" or MyStrTag.

The additional prefix opt indicates that a parameter is optional. If you do not specify a value for the
parameter, the function will take the default value mentioned in the parameter description.

In the few cases where a parameter must take a project tag or some other special input, it will be fully
explained in the parameter description.

Return value
This section describes the value returned by the function, if any.

Some functions return a calculated value, depending on the nature of the function.

Other functions return an error code that indicates how well the function was executed. The possible codes
and their meanings are provided in a table.

Notes
This section describes any additional notes or cautions on the use of the function.

Examples
This section shows how the function can be called in your project. Multiple examples are provided to show
how the function can take both literal values and project tags, as well as how the function may be called if it
has optional parameters.

Appendix: Built-in Language

Page 925

List of available functions
This is a complete list of the built-in functions that are available for use in scripts and expressions.

ActiveX and .NET Control

Function Execution String Exp. Windows Thin Clients Mobile Access

XGet Asynchronous Yes Supported Supported Not supported

XRun Asynchronous No Supported Supported Not supported

XSet Asynchronous No Supported Supported Not supported

Arithmetic

Function Execution String Exp. Windows Thin Clients Mobile Access

Abs Synchronous Yes Supported Supported Supported

Div Synchronous Yes Supported Supported Supported

Format Synchronous Yes Supported Supported Supported

GetBit Synchronous Yes Supported Supported Supported

Mod Synchronous Yes Supported Supported Supported

Pow Synchronous Yes Supported Supported Supported

ResetBit Synchronous No Supported Supported Supported

Round Synchronous Yes Supported Supported Supported

SetBit Synchronous No Supported Supported Supported

Sqrt Synchronous Yes Supported Supported Supported

Swap16 Synchronous Yes Supported Supported Supported

Swap32 Synchronous Yes Supported Supported Supported

Trunc Synchronous Yes Supported Supported Supported

Database/ERP

Function Execution String Exp. Windows Thin Clients Mobile Access

DBCursorCloseSynchronous No Supported Supported Supported

DBCursorColumnCountSynchronous Yes Supported Supported Supported

DBCursorColumnInfoSynchronous Yes Supported Supported Supported

DBCursorCurrentRowSynchronous Yes Supported Supported Supported

DBCursorGetValueSynchronous Yes Supported Supported Supported

DBCursorMoveToSynchronous No Supported Supported Supported

DBCursorNextSynchronous No Supported Supported Supported

DBCursorOpenSynchronous No Supported Supported Supported

DBCursorOpenSQLSynchronous No Supported Supported Supported

DBCursorPreviousSynchronous No Supported Supported Supported

DBCursorRowCountSynchronous Yes Supported Supported Supported

DBDelete Synchronous No Supported Supported Supported

DBExecute Synchronous No Supported Supported Supported

Appendix: Built-in Language

Page 926

Function Execution String Exp. Windows Thin Clients Mobile Access

DBInsert Synchronous No Supported Supported Supported

DBSelect Synchronous No Supported Supported Supported

DBUpdate Synchronous No Supported Supported Supported

SyncAlarm Asynchronous No Supported Executed on
Server

Executed on
Server

SyncAlarmStatusSynchronous Yes Supported Executed on
Server

Executed on
Server

SyncEvent Asynchronous No Supported Executed on
Server

Executed on
Server

SyncEventStatusSynchronous Yes Supported Executed on
Server

Executed on
Server

SyncTrend Asynchronous No Supported Executed on
Server

Executed on
Server

SyncTrendStatusSynchronous Yes Supported Executed on
Server

Executed on
Server

Date & Time

Function Execution String Exp. Windows Thin Clients Mobile Access

ClockGetDateSynchronous Yes Supported Supported Executed on
Server

ClockGetDayOfWeekSynchronous Yes Supported Supported Executed on
Server

ClockGetTimeSynchronous Yes Supported Supported Executed on
Server

DateTime2ClockSynchronous Yes Supported Supported Executed on
Server

DateTime2UTCSynchronous Yes Supported Supported Executed on
Server

GetClock Synchronous Yes Supported Supported Executed on
Server

GetTimeZone Synchronous Yes Supported Supported Executed on
Server

GetTimeZoneCountSynchronous Yes Supported Supported Executed on
Server

GetUTC Synchronous Yes Supported Supported Executed on
Server

Hour2Clock Synchronous Yes Supported Supported Executed on
Server

SetSystemDateSynchronous No Supported Supported Not supported

SetSystemTimeSynchronous No Supported Supported Not supported

SetTimeZone Synchronous No Supported Supported Not supported

UTC2DateTimeSynchronous Yes Supported Supported Executed on
Server

Appendix: Built-in Language

Page 927

Email

Function Execution String Exp. Windows Thin Clients Mobile Access

CnfEmail Synchronous No Supported Supported Executed on
Server

GetStatusSendEmailExtSynchronous Yes Supported Supported Not supported

SendEmail Synchronous No Supported Supported (see
notes)

Executed on
Server

SendEmailExtAsynchronous No Supported Supported Not supported

Event Logger

Function Execution String Exp. Windows Thin Clients Mobile Access

SendEvent Synchronous No Supported Supported Supported

File

Function Execution String Exp. Windows Thin Clients Mobile Access

DeleteOlderFilesSynchronous No Supported Executed on
Server (see
notes)

Not supported

DirCreate Synchronous No Supported Executed on
Server (see
notes)

Supported

DirDelete Synchronous No Supported Executed on
Server (see
notes)

Supported

DirLength Synchronous No Supported Executed on
Server (see
notes)

Supported

DirRename Synchronous No Supported Executed on
Server (see
notes)

Supported

FileCopy Synchronous No Supported Executed on
Server (see
notes)

Not supported

FileDelete Synchronous No Supported Executed on
Server (see
notes)

Supported

FileLength Synchronous Yes Supported Executed on
Server (see
notes)

Not supported

FileReadFieldsSynchronous Yes Supported Not supported Supported

FileReadMessageSynchronous Yes Supported Not supported Supported

FileRename Synchronous No Supported Executed on
Server (see
notes)

Supported

FileWrite Synchronous No Supported Executed on
Server (see
notes)

Supported

FileWriteFieldsSynchronous No Supported Not supported Supported

FileWriteMessageSynchronous No Supported Not supported Supported

Appendix: Built-in Language

Page 928

Function Execution String Exp. Windows Thin Clients Mobile Access

FindFile Synchronous Yes Supported Executed on
Server (see
notes)

Not supported

FindPath Synchronous Yes Supported Executed on
Server (see
notes)

Not supported

GetFileAttributesSynchronous Yes Supported Executed on
Server (see
notes)

Not supported

GetFileTime Synchronous Yes Supported Executed on
Server (see
notes)

Not supported

GetHSTInfo Synchronous Yes Supported Supported Not supported

GetLine Synchronous Yes Supported Supported Supported

HST2TXT Asynchronous No Supported Executed on
Server (see
notes)

Not supported

HST2TXTIsRunningSynchronous Yes Supported Executed on
Server

Not supported

ImportXML Synchronous No Supported (see
notes)

Not supported Not supported

LookupContainsSynchronous Yes Supported Not supported Supported

LookupGet Synchronous Yes Supported Not supported Not supported

LookupLoad Synchronous Yes Supported Not supported Not supported

PDFCreate Synchronous No Supported Supported Not supported

Print Asynchronous No Supported Supported Not supported

RDFileN Synchronous No Supported Executed on
Server (see
notes)

Not supported

WebGetFile Synchronous No Supported Supported Not supported

FTP

Function Execution String Exp. Windows Thin Clients Mobile Access

CnfFTP Synchronous No Supported Supported Not supported

FTPGet Asynchronous No Supported Supported (see
notes)

Not supported

FTPPut Asynchronous No Supported Supported (see
notes)

Not supported

FTPStatus Synchronous Yes Supported Supported (see
notes)

Not supported

Graphic

Function Execution String Exp. Windows Thin Clients Mobile Access

AutoFormat Synchronous Yes Supported Supported Not supported

GetScrInfo Synchronous Yes Supported Supported Not supported

PrintSetup Asynchronous No Supported Supported Not supported

PrintWindow Asynchronous No Supported Supported Not supported

Appendix: Built-in Language

Page 929

Function Execution String Exp. Windows Thin Clients Mobile Access

ResetDecimalPointsTableSynchronous No Supported Supported Not supported

RGBColor Synchronous Yes Supported Supported Supported

RGBComponentSynchronous Yes Supported Supported Supported

SaveScreenShotSynchronous No Supported Supported (see
notes)

Not supported

SetDecimalPointsSynchronous No Supported Supported Not supported

SetDisplayUnitSynchronous No Supported Supported Not supported

SetTagDisplayUnitSynchronous No Supported Supported Not supported

Log Message

Function Execution String Exp. Windows Thin Clients Mobile Access

Trace Synchronous No Supported Not supported Supported (see
notes)

Logarithmic

Function Execution String Exp. Windows Thin Clients Mobile Access

Exp Synchronous Yes Supported Supported Supported

Log Synchronous Yes Supported Supported Supported

Log10 Synchronous Yes Supported Supported Supported

Logical

Function Execution String Exp. Windows Thin Clients Mobile Access

False Synchronous Yes Supported Supported Supported

If Synchronous Yes Supported Supported Supported

Toggle Synchronous Yes Supported Supported Supported

True Synchronous Yes Supported Supported Supported

Loop

Function Execution String Exp. Windows Thin Clients Mobile Access

For N/A No Supported Supported Not supported

Module Activity

Function Execution String Exp. Windows Thin Clients Mobile Access

AppActivate Asynchronous No Supported Supported Not supported

AppIsRunningSynchronous Yes Supported Supported Not supported

AppPostMessageSynchronous No Supported Supported Not supported

AppSendKeys Synchronous No Supported Supported Not supported

CleanReadQueueSynchronous No Supported Supported Executed on
Server

CloseSplashWindowSynchronous No Supported Executed on
Server

Executed on
Server

Appendix: Built-in Language

Page 930

Function Execution String Exp. Windows Thin Clients Mobile Access

DisableMath Asynchronous No Supported Supported Executed on
Server

EnableMath Asynchronous No Supported Supported Executed on
Server

EndTask Asynchronous No Supported Executed on
Server

Executed on
Server

Exec Synchronous or
Asynchronous

No Supported Supported Not supported

ExecIsRunningSynchronous Yes Supported Supported Not supported

ExitWindows Asynchronous No Supported Supported Not supported

IsScreenOpenAsynchronous Yes Supported Supported Not supported

IsTaskRunningSynchronous Yes Supported Executed on
Server

Executed on
Server

IsViewerInFocusSynchronous Yes Supported Not supported Not supported

KeyPad Asynchronous No Supported Supported Supported

LogOff Asynchronous No Supported Supported Supported

LogOn Asynchronous No Supported Supported Supported

Math Synchronous No Supported Supported Executed on
Server

PostKey Synchronous No Supported Supported Not supported

Recipe Synchronous No Supported Executed on
Server (see
notes)

Executed on
Server (see
notes)

Report Synchronous No Supported Supported Executed on
Server

RunGlobalProcedureAsyncAsynchronous No Supported Not supported
(see notes)

Not supported

RunGlobalProcedureAsyncGetCurrentSynchronous No Supported Not supported
(see notes)

Not supported

RunGlobalProcedureAsyncGetStatusSynchronous No Supported Not supported
(see notes)

Not supported

RunGlobalProcedureOnFalseSynchronous No Supported Supported Not supported

RunGlobalProcedureOnServerSynchronous No Supported Supported Supported

RunGlobalProcedureOnTriggerSynchronous No Supported Supported Not supported

RunGlobalProcedureOnTrueSynchronous No Supported Supported Not supported

RunVBScript Synchronous No Supported Supported Not supported

SecureViewerReloadSynchronous No Not supported Secure Viewer
only

Not supported

SendKeyObjectSynchronous No Supported Supported Not supported

SetAppPath Synchronous No Supported Executed on
Server

Not supported

SetViewerInFocusSynchronous No Supported Supported Not supported

SetViewerPosSynchronous No Supported Supported Not supported

ShutDown Asynchronous No Supported Supported (see
notes)

Supported (see
notes)

Appendix: Built-in Language

Page 931

Function Execution String Exp. Windows Thin Clients Mobile Access

StartTask Asynchronous No Supported Executed on
Server

Executed on
Server

TaskUpdateConfigAsynchronous No Supported Not supported Not supported

ViewerPostMessageAsynchronous No Supported Supported Not supported

Wait Synchronous No Supported Supported Supported

Multimedia

Function Execution String Exp. Windows Thin Clients Mobile Access

Play Asynchronous No Supported Supported Not supported

Screen

Function Execution String Exp. Windows Thin Clients Mobile Access

Close Asynchronous No Supported Supported Supported

Open Asynchronous No Supported Supported Supported (see
notes)

OpenPreviousAsynchronous No Supported Supported Supported

ShowInplaceInputAsynchronous No Supported Supported Not supported

ShowMessageBoxSynchronous No Supported Supported Supported

Security

Function Execution String Exp. Windows Thin Clients Mobile Access

BlockUser Synchronous No Supported Supported Not supported

CheckESign Synchronous No Supported Supported Supported

CheckSecurityLevelSynchronous Yes Supported Supported Supported

CreateUser Synchronous No Supported Supported Not supported

ExportSecuritySystemSynchronous No Supported Not supported Not supported

GetLastESignUserSynchronous Yes Supported Supported Supported

GetSecuritySystemStatusSynchronous Yes Supported Supported Not supported

GetUserFullNameSynchronous Yes Supported Supported Not supported

GetUserNamesSynchronous No Supported Executed on
Server

Not supported

GetUserPwdAgingSynchronous Yes Supported Supported Not supported

GetUserStateSynchronous Yes Supported Supported Not supported

ImportSecuritySystemSynchronous No Supported Not supported Not supported

RemoveUser Synchronous No Supported Supported Not supported

SetPassword Synchronous No Supported Supported Not supported

SetUserGroupSynchronous No Supported Supported Not supported

UnblockUser Synchronous No Supported Supported Not supported

Appendix: Built-in Language

Page 932

Statistical

Function Execution String Exp. Windows Thin Clients Mobile Access

Avg Synchronous Yes Supported Supported Supported

Max Synchronous Yes Supported Supported Supported

Min Synchronous Yes Supported Supported Supported

Rand Synchronous Yes Supported Supported Supported

String

Function Execution String Exp. Windows Thin Clients Mobile Access

Asc2Str Synchronous Yes Supported Supported Supported

CharToValue Synchronous No Supported Supported Supported

CharToValueWSynchronous No Supported Supported Supported

ClassMembersToStrVectorSynchronous No Supported Supported Not supported

DecryptData Synchronous Yes Supported Supported Executed on
Server

EncryptData Synchronous Yes Supported Supported Executed on
Server

NCopy Synchronous No Supported Supported Supported

Num Synchronous Yes Supported Supported Supported

Str Synchronous Yes Supported Supported Supported

Str2Asc Synchronous Yes Supported Supported Supported

StrCompare Synchronous Yes Supported Supported Supported

StrCompareNoCaseSynchronous Yes Supported Supported Supported

StrFromInt Synchronous Yes Supported Supported Supported

StrFromReal Synchronous Yes Supported Supported Supported

StrFromTime Synchronous Yes Supported Supported Executed on
Server

StrGetElementSynchronous Yes Supported Supported Supported

StrLeft Synchronous Yes Supported Supported Supported

StrLen Synchronous Yes Supported Supported Supported

StrLower Synchronous Yes Supported Supported Supported

StrRChr Synchronous Yes Supported Supported Supported

StrRight Synchronous Yes Supported Supported Supported

StrSetElementSynchronous No Supported Supported Supported

StrStr Synchronous Yes Supported Supported Supported

StrStrPos Synchronous Yes Supported Supported Supported

StrTrim Synchronous Yes Supported Supported Supported

StrTrimAll Synchronous Yes Supported Supported Supported

StrUpper Synchronous Yes Supported Supported Supported

ValueToChar Synchronous Yes Supported Supported Supported

ValueWToCharSynchronous Yes Supported Supported Supported

Appendix: Built-in Language

Page 933

System Info

Function Execution String Exp. Windows Thin Clients Mobile Access

DBVersion Synchronous Yes Supported Supported Executed on
Server

GetAppHorizontalResolutionSynchronous Yes Supported Supported Executed on
Server

GetAppPath Synchronous Yes Supported Executed on
Server

Executed on
Server

GetAppVerticalResolutionSynchronous Yes Supported Supported Executed on
Server

GetComputerIPSynchronous Yes Supported Supported Not supported

GetComputerNameSynchronous Yes Supported Supported Not supported

GetCursorX Synchronous Yes Supported Supported Not supported

GetCursorY Synchronous Yes Supported Supported Not supported

GetDisplayHorizontalResolutionSynchronous Yes Supported Supported Not supported

GetDisplayVerticalResolutionSynchronous Yes Supported Supported Not supported

GetHardKeyModelSynchronous Yes Supported Supported Executed on
Server

GetHardKeySNSynchronous Yes Supported Supported Executed on
Server

GetIPAll Synchronous Yes Supported Supported Not supported

GetNetMACID Synchronous Yes Supported Supported Not supported

GetOS Synchronous Yes Supported Supported Not supported

GetPerformanceMetricSynchronous Yes Supported Supported Not supported

GetPrivateProfileStringSynchronous Yes Supported Supported Not supported

GetProductPathSynchronous Yes Supported Supported Executed on
Server

GetRegValue Synchronous Yes Supported Not supported Not supported

GetRegValueTypeSynchronous Yes Supported Not supported Not supported

GetServerHostNameSynchronous Yes Not supported Supported Executed on
Server

GetTickCountSynchronous Yes Supported Supported Not supported

InfoAppAlrDirSynchronous Yes Supported Supported Executed on
Server

InfoAppHstDirSynchronous Yes Supported Supported Executed on
Server

InfoDiskFreeSynchronous Yes Supported Supported Not supported

InfoResourcesSynchronous Yes Supported Supported Not supported

IsActiveXRegSynchronous Yes Supported Supported Not supported

IsAppChangedOnServerSynchronous Yes Supported Supported Not supported

NoInputTime Synchronous Yes Supported Keyboard input
only

Not supported

ProductVersionSynchronous Yes Supported Supported Executed on
Server

ReloadAppFromServerSynchronous No Supported Supported Not supported

Appendix: Built-in Language

Page 934

Function Execution String Exp. Windows Thin Clients Mobile Access

SaveAlarmFileSynchronous No Supported Not supported Not supported

SetAppAlarmPathSynchronous No Supported Executed on
Server

Executed on
Server

SetAppHstPathSynchronous No Supported Executed on
Server

Executed on
Server

SetDateFormatSynchronous No Supported Supported Not supported

SetKeyboardLanguageSynchronous No Supported Supported Not supported

SetRegValue Synchronous No Supported Not supported Not supported

SNMPGet Synchronous Yes Supported Supported Not supported

SNMPSet Synchronous No Supported Supported Not supported

WritePrivateProfileStringSynchronous No Supported Supported Executed on
Server

Tags Database

Function Execution String Exp. Windows Thin Clients Mobile Access

ExecuteAlarmAckSynchronous No Supported Supported Executed on
Server

ForceTagChangeSynchronous No Supported Supported Not supported

GetAlarmCountSynchronous Yes Supported Not supported Not supported

GetAlarmInfoSynchronous Yes Supported Not supported
(see notes)

Not supported
(see notes)

GetTagValue Synchronous Yes Supported Supported Supported

SetTagValue Synchronous No Supported Supported Supported

TagsDBAddClassSynchronous No Supported (see
notes)

Not supported Not supported

TagsDBAddClassMemberSynchronous No Supported (see
notes)

Not supported Not supported

TagsDBAddTagSynchronous No Supported (see
notes)

Not supported Not supported

TagsDBBeginEditSynchronous No Supported (see
notes)

Not supported Not supported

TagsDBEndEditSynchronous No Supported (see
notes)

Not supported Not supported

TagsDBGetAlarmSynchronous Yes Supported (see
notes)

Not supported Not supported

TagsDBGetClassMemberSynchronous Yes Supported (see
notes)

Not supported Not supported

TagsDBGetClassMemberCountSynchronous Yes Supported (see
notes)

Not supported Not supported

TagsDBGetFirstClassSynchronous Yes Supported (see
notes)

Not supported Not supported

TagsDBGetFirstClassMemberSynchronous Yes Supported (see
notes)

Not supported Not supported

TagsDBGetFirstTagSynchronous Yes Supported (see
notes)

Not supported Not supported

TagsDBGetLoadStatusSynchronous Yes Not supported Supported Not supported

Appendix: Built-in Language

Page 935

Function Execution String Exp. Windows Thin Clients Mobile Access

TagsDBGetNextClassSynchronous Yes Supported (see
notes)

Not supported Not supported

TagsDBGetNextClassMemberSynchronous Yes Supported (see
notes)

Not supported Not supported

TagsDBGetNextTagSynchronous Yes Supported (see
notes)

Not supported Not supported

TagsDBGetPreloadCountSynchronous Yes Not supported Supported Not supported

TagsDBGetTagCountSynchronous Yes Supported (see
notes)

Not supported Not supported

TagsDBGetTagPropertySynchronous Yes Supported (see
notes)

Not supported Not supported

TagsDBGetTrendSynchronous Yes Supported (see
notes)

Not supported Not supported

TagsDBPreloadSynchronous No Not supported Supported Not supported

TagsDBPreloadWaitSynchronous No Not supported Supported Not supported

TagsDBRemoveAlarmSynchronous No Supported (see
notes)

Not supported Not supported

TagsDBRemoveClassSynchronous No Supported (see
notes)

Not supported Not supported

TagsDBRemoveClassMemberSynchronous No Supported (see
notes)

Not supported Not supported

TagsDBRemoveTagSynchronous No Supported (see
notes)

Not supported Not supported

TagsDBRemoveTrendSynchronous No Supported (see
notes)

Not supported Not supported

TagsDBSetAlarmSynchronous No Supported (see
notes)

Not supported Not supported

TagsDBSetTagPropertySynchronous No Supported (see
notes)

Not supported Not supported

TagsDBSetTrendSynchronous No Supported (see
notes)

Not supported Not supported

TagsDBSync Synchronous No Not supported Supported Not supported

Translation

Function Execution String Exp. Windows Thin Clients Mobile Access

Ext Synchronous Yes Supported Supported Supported

SetLanguage Synchronous No Supported Supported Supported

TranslationLoadSynchronous No Supported Not supported
(see notes)

Executed on
Server (see
notes)

TranslationLookupCloseSynchronous No Supported Not supported Supported

TranslationLookupGetSynchronous Yes Supported Not supported Supported

TranslationLookupLoadSynchronous No Supported Not supported
(see notes)

Executed on
Server (see
notes)

Appendix: Built-in Language

Page 936

Trigonometric

Function Execution String Exp. Windows Thin Clients Mobile Access

ACos Synchronous Yes Supported Supported Supported

ASin Synchronous Yes Supported Supported Supported

ATan Synchronous Yes Supported Supported Supported

Cos Synchronous Yes Supported Supported Supported

Cot Synchronous Yes Supported Supported Supported

Pi Synchronous Yes Supported Supported Supported

Sin Synchronous Yes Supported Supported Supported

Tan Synchronous Yes Supported Supported Supported

Appendix: Built-in Language

Page 937

ActiveX and .NET Control functions
These functions are used to directly run ActiveX and .NET Control objects in the project, as well as to get and
set property values on those objects.

XGet
The function XGet gets the current value of a Property on an ActiveX Control or .NET Control object.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

XGet ActiveX and .NET
Control

Asynchronous Yes Supported Supported Not supported

Syntax

XGet(strName,strProperties)

XGet(strName,strProperties)
strName

The unique name of the ActiveX Control or .NET Control object, as specified in the Name box in
the Object Properties dialog box.

strProperties
The Property for which you want to get the value. Available Properties are listed in the
Configuration (for an ActiveX Control) or Members (for a .NET Control) dialog box.

Returned value
This function returns the value of the specified Property.

Notes
If the Enforce Web functionality equivalence in local project screens option is selected in the project settings, this function
cannot be called in Global Procedures, Script worksheets, or other background tasks. This is because
the function behaves differently depending on whether you view project screens locally (i.e., on the same
computer that hosts the project runtime) or remotely. For more information, see Preferences tab on page 127.

Examples
Get the current value of the Color property on the ActiveX Control object named "ActXRec":

XGet("ActXRec","Color")

XRun
The function XRun runs a Method on an ActiveX Control or .NET Control object.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

XRun ActiveX and .NET
Control

Asynchronous No Supported Supported Not supported

Syntax

XRun(strName,strMethod,Parameter1,…,ParameterN)

XRun(strName,strMethod,Parameter1,ParameterN)
strName

Appendix: Built-in Language

Page 938

The unique name of the ActiveX Control or .NET Control object, as specified in the Name box in
the Object Properties dialog box.

strMethod
The Method that you want to run. Available Methods are listed in the Configuration (for an
ActiveX Control) or Members (for a .NET Control) dialog box.

Parameter(1…N)
Data of various types that are required by the Method to run. The number of parameters can
range from 0 to 255 and depends on the specified Method. The data types (e.g., Boolean, Integer,
Real or String) of referring tags must match the parameters on the Method.

Returned value
This function returns the Method result as reported by the ActiveX Control or .NET Control object. Not all
Methods return results.

Notes
If the Enforce Web functionality equivalence in local project screens option is selected in the project settings, this function
cannot be called in Global Procedures, Script worksheets, or other background tasks. This is because
the function behaves differently depending on whether you view project screens locally (i.e., on the same
computer that hosts the project runtime) or remotely. For more information, see Preferences tab on page 127.

Examples
Run the XPos method on the ActiveX Control named "ActXCir," with four original values passed to the
method:

XRun("ActXCir","XPos",FALSE,12,4.6,"This is my text.")

Run the XPos method on the ActiveX Control named "ActXCir," with four referring tags passed to the method:

XRun("ActXCir","XPos",TagA,TagB,TagC,TagD)

XSet
The function XSet sets the value of a Property on an ActiveX Control or .NET Control object.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

XSet ActiveX and .NET
Control

Asynchronous No Supported Supported Not supported

Syntax

XSet(strName,strProperties,Value)

XSet(strName,strProperties,Value)
strName

The unique name of the ActiveX Control or .NET Control object, as specified in the Name box in
the Object Properties dialog box.

strProperties
The Property that you want to set the value of. Available Properties are listed in the
Configuration (for an ActiveX Control) or Members (for a .NET Control) dialog box.

Value
A tag, expression, or data value of any type; the value to which you want to set the Property.

Appendix: Built-in Language

Page 939

Return value
This function returns no value.

Notes
If the Enforce Web functionality equivalence in local project screens option is selected in the project settings, this function
cannot be called in Global Procedures, Script worksheets, or other background tasks. This is because
the function behaves differently depending on whether you view project screens locally (i.e., on the same
computer that hosts the project runtime) or remotely. For more information, see Preferences tab on page 127.

Examples
Set the value of the Display property on the ActiveX Control named "ActXDisplay" to "Status Normal":

XSet("ActXDisplay","Display","Status Normal")

Appendix: Built-in Language

Page 940

Arithmetic functions
These functions are used to perform advanced arithmetic operations and bit manipulation on numeric values.

Abs
Abs is a built-in function that gets the absolute value of a specified numeric value.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Abs Arithmetic Synchronous Yes Supported Supported Supported

Syntax

Abs(numValue)

Abs(numValue)
numValue

The numeric value of which the absolute value will be gotten.

Returned value
The absolute value of the specified numeric value.

Examples
Get the absolute value of -54.9788:

Abs(-54.9788)

Get the absolute value of the numeric value stored in a project tag:

Abs(MyReal)

Div
This function returns the dividend of two whole numbers.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Div Arithmetic Synchronous Yes Supported Supported Supported

Syntax

Div(numNumerator,numDenominator)

Div(numNumerator,numDenominator)
numNumerator

The numerator of the division operation. Please note that if you specify a decimal value, then it
will be truncated.

numDenominator
The denominator of the division operation. Please note that if you specify a decimal value, then
it will be truncated.

Appendix: Built-in Language

Page 941

Return value
This function returns the dividend only as a whole number. The remainder is omitted.

Tip: To get the remainder instead of the dividend, use the function Mod.

Examples

Tag Name Expression

numValue Div(100, 8) // Returns the value 12

numValue Div(16, 4) // Returns the value 4

numValue Div(100, 2.5) // Returns the value 50

Format
Format is a built-in scripting function that formats a numeric value and returns it as a string.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Format Arithmetic Synchronous Yes Supported Supported Supported

Syntax

Format(strFlag,numValue,optStrDecimalMark,optStrThousandSep)

Format(strFlag,numValue{ | ,optStrDecimalMark{ | ,optStrThousandSep } })
strFlag

A description of how the given numeric value should be formatted, according to the syntax
%length.precisionFormat, where:

• length is the minimum number of characters to be returned by the function — that is, the
minimum length of the resulting string. If the value to be returned is shorter than this, it is
padded with either blank spaces (" ") or zeroes ("0"); see "Examples" below. The value is not
truncated even if the result is longer than the specified length. Applicable to formats d, x, X,
o, b, f, e, E, g, G, s, c, and h.

• .precision is the number of decimal places for a floating-point number. Applicable for formats
f, e, E, g, and G.

• Format is the specific format:

Format Description

d Decimal

x Hexadecimal (alphabetic characters in lowercase)

X Hexadecimal (alphabetic characters in uppercase)

o Octal

b Binary

f Floating-point

e Scientific notation (e in lowercase)

E Scientific notation (E in uppercase)

g Rounded, in scientific notation when applicable (e in lowercase)

Appendix: Built-in Language

Page 942

Format Description

G Rounded, in scientific notation when applicable (E in uppercase)

s String (i.e., no change in number)

c ASCII character (i.e., the numeric value is interpreted as an ASCII
character code)

h Hour (hh:mm:ss)

Alternatively, the format can be set using the syntax ##.###, where the numeric value is
rounded to the specified number of decimal places.

numValue
The numeric value to be formatted.

optStrDecimalMark

The character used as the decimal mark, which separates the integer and fractional parts of the
numeric value.

This is an optional parameter; if no value is specified, then the default is a period (.). For
example: "123.45"

optStrThousandSep

The character used as the thousands separator, which separates the hundreds and thousands
digits of the numeric value.

This is an optional parameter; if no value is specified, then the default is a comma (,). For
example: "12,345"

Return value
This function returns a string that contains the formatted numeric value. See "Examples" below.

Notes
Format is similar to the printf function in other programming languages, and it allows most of the same
formatting options. However, unlike printf, Format can be used to format only one numeric value at a time.

This function is particularly useful for formatting values to be printed in reports.

Examples

Expression Return value

Format("%d",12.34) 12

Format("%04d",12.34) 0012

Format("%4d",12.34) 12

Expression Return value

Format("%x",26) 1a

Format("%04x",26) 001a

Format("%4x",26) 1a

Expression Return value

Format("%X",26) 1A

Format("%04X",26) 001A

Format("%4X",26) 1A

Appendix: Built-in Language

Page 943

Expression Return value

Format("%o",16) 20

Format("%04o",16) 0020

Format("%4o",16) 20

Expression Return value

Format("%b",2) 10

Format("%4b",2) 0010

Format("%04b",2) 0010

Expression Return value

Format("%0.1f",12.34) 12.3

Format("%06.1f",12.34) 0012.3

Format("%6.1f",12.34) 12.3

Expression Return value

Format("%e",12.34) 1.234000e+001

Format("%0.1e",12.34) 1.2e+001

Format("%09.1e",12.34) 01.2e+001

Format("%9.1e",12.34) 1.2e+001

Expression Return value

Format("%E",12.34) 1.234000E+001

Format("%0.1E",12.34) 1.2E+001

Format("%09.1E",12.34) 01.2E+001

Format("%9.1E",12.34) 1.2E+001

Expression Return value

Format("%0.1g",12.34) 1e+001

Format("%0.2g",12.34) 12

Format("%0.3g",12.34) 12.3

Format("%05.3g",12.34) 012.3

Format("%5.3g",12.34) 12.3

Expression Return value

Format("%0.1G",12.34) 1E+001

Format("%0.2G",12.34) 12

Format("%0.3G",12.34) 12.3

Format("%05.3G",12.34) 012.3

Format("%5.3G",12.34) 12.3

Expression Return value

Format("%s",12.34) 12

Appendix: Built-in Language

Page 944

Expression Return value

Format("%04s",12.34) 0012

Format("%4s",12.34) 12

Expression Return value

Format("%c",97) a

Format("%4c",97) a

Format("%04c",97) 000a

Expression Return value

Format("%h",30) 00:00:30

Format("%h",60) 00:01:00

Format("%h",90) 00:01:30

Format("%h",3600) 01:00:00

Expression Return value

Format("##.#",26.56789) 26.6

Format("#.##",26.56789) 26.57

Format("##.##",26.56789) 26.57

GetBit
GetBit is a built-in function that gets a specific bit in the value of a project tag.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetBit Arithmetic Synchronous Yes Supported Supported Supported

Syntax

GetBit("tagName",numBitNumber)

GetBit("tagName",numBitNumber)
tagName

The name of the project tag.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

numBitNumber
The number or position (0…31) of the bit to get.

Return value
If this function is executed successfully, it returns the value — either 0 or 1 — of the specified bit. Otherwise,
it returns one of the following possible values:

Value Description

2 Specified tag does not exist.

Appendix: Built-in Language

Page 945

Notes
You can also reference the Bit property of a project tag in order to get/set a specific bit in the value of that
tag. For more information, see Reference a tag property instead of a project tag on page 167.

Examples
Get the bit in the fifth position (i.e., position 4) of MyInteger:

GetBit("MyInteger",4)

If the value of MyInteger is 14, the function returns 0. If the value of MyInteger is 19, the function returns
1.

Mod
Mod is a built-in scripting function that gets the remainder from a division operation.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Mod Arithmetic Synchronous Yes Supported Supported Supported

Syntax

Mod(numNumerator, numDenominator)

numNumerator
Integer or Real tag containing the Numerator of the function.

numDenominator
Integer or Real tag containing the Denominator of the function.

Return value
Returns the remainder (as a real number) after dividing numNumerator by numDenominator.

Tip: Use the Div function to get the whole number dividend of the operation.

Examples

Tag Name Expression

Tag Mod(50, 4) // Returned value = 2

Tag Mod(16, 4) // Returned value = 0

Tag Mod(100, 8.2) // Returned value = 1.600

Pow
Pow is a built-in scripting function that gets the result of raising a numeric value to a specified exponent.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Pow Arithmetic Synchronous Yes Supported Supported Supported

Syntax

Pow(numBase, numExponent)

Appendix: Built-in Language

Page 946

numBase
Integer or Real tag containing the Base of the function.

numExponent
Integer or real tag containing the Exponent of the function.

Returned value
Returns the result of raising the base to the exponent.

Examples

Tag Name Expression

Tag Pow(2, 3) // Returned value = 8

Tag Pow(10, 4) // Returned value = 10000

ResetBit
Resets a single bit in an Integer tag to 0.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

ResetBit Arithmetic Synchronous No Supported Supported Supported

Syntax

ResetBit(tagName,numBitNumber)

tagName

The name of an Integer tag where the bit value will be reset.

Note: To directly specify the name of a tag, rather than take the value of
the tag, you must enclose the tag name in double-quotes. For example,
ResetBit("Second", 1).

numBitNumber
A numeric tag or value specifying the position (0…31) of the bit to reset.

Return value

0 No error

1 Invalid parameter

2 Tag does not exist

Notes
You can use the Bit field to read/write values from specific bits in an integer tag. For example, enter Second-
>b0 to access the LSB (Least Significant Bit of the Second tag), and Second->b31 to access the MSB (Most
Significant Bit of the Second tag).

Examples

Tag Name Expression

Tag ResetBit("numSource",4) // If the tag numSource held a value of 16, then the function returns 0 and
numSource holds a new value of 0.

Appendix: Built-in Language

Page 947

Tag Name Expression

Tag ResetBit("numSource",1) // If the tag numSource held the value 19, then the function returns 0 and
numSource holds a new value of 17.

Round
Rounds numValue to the nearest integer.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Round Arithmetic Synchronous Yes Supported Supported Supported

Syntax

Round(numValue)

numValue
A Real tag that holds the value to be rounded.

Returned value
Returns the integer result of the round function.

Examples

Tag Name Expression

Tag Round("345.87") // Returned value = 346

Tag Round("65.323") // Returned value = 65

SetBit
SetBit is a built-in function that sets (i.e., toggles) a specific bit in the value of a project tag.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SetBit Arithmetic Synchronous No Supported Supported Supported

Syntax

SetBit("tagName",numBitNumber)

SetBit("tagName",numBitNumber)
tagName

The name of the project tag.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

numBitNumber
The number or position (0…31) of the bit to set.

Return value
This function returns one of the following possible values:

Appendix: Built-in Language

Page 948

Value Description

0 Success (i.e., no error).

1 Invalid parameter.

2 Specified tag does not exist.

Notes
You can also reference the Bit property of a project tag in order to get/set a specific bit in the value of that
tag. For more information, see Reference a tag property instead of a project tag on page 167.

Examples
Set the bit in the fifth position (i.e., position 4) of MyInteger:

SetBit("MyInteger",4)

If the old value of MyInteger was 14, the new value is 30. If the old value of MyInteger is 19, the new value
is 3.

Sqrt
Takes the square root of numValue.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Sqrt Arithmetic Synchronous Yes Supported Supported Supported

Syntax

Sqrt(numValue)

numValue
Integer or Real tag to be square rooted.

Returned value
Returns the square root of the value in the numValue tag.

Note: If numValue has a negative value, then this function returns the value 0 and sets the quality
of the returned tag to BAD.

Examples

Tag Name Expression

Tag SQRT(25) // Returns the value 5

Tag SQRT(67) // Returns the value 8.185353

Swap16
Swaps the two lower bytes of a tag.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Swap16 Arithmetic Synchronous Yes Supported Supported Supported

Appendix: Built-in Language

Page 949

Syntax

Swap16(numValue)

numValue
Integer tag that holds the numeric value of the bytes to be swapped.

Returned value
Returns the numeric value after swapping the bytes.

Examples

Tag Name Expression

Tag Swap16(16) // 16 = 0000000000010000 in binary. Returned value = 4096 = 0001000000000000 in binary.

Tag Swap16(43760) // 43760 = 1010010111110000 in binary. Returned value = 61610 = 1111000010100101 in binary.

Swap32
Swaps two words in a tag.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Swap32 Arithmetic Synchronous Yes Supported Supported Supported

Syntax

Swap32(numValue)

numValue
Integer tag that holds the numeric value of the words to be swapped.

Returned value
Returns the numeric value after swapping the words.

Examples

Tag Name Expression

Tag Swap32(16) // 16 = 00000000000000000000000000010000 in binary. Returned value = 1048576 =
00000000000100000000000000000000 in binary.

Tag Swap32(246333120) // 286333120 = 1010101010101010101111111100000000 in binary. Returned value =
-1094709586= 11111111000000001010101010101010 in binary.

Trunc
Truncates the value of numValue.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Trunc Arithmetic Synchronous Yes Supported Supported Supported

Syntax

Trunc(numValue)

Appendix: Built-in Language

Page 950

numValue
Real tag to be truncated.

Returned value
Returns the integer portion of the real number value of numValue.

Examples

Tag Name Expression

 Trunc(234.987) // Returned value = 234

 Trunc(-3465.9) // Returned value = -3465

Appendix: Built-in Language

Page 951

Database/ERP functions
These functions are used interact with external databases and ERP systems using SQL-like commands.

DBCursorClose
DBCursorClose is a built-in function that closes an open database cursor and releases the SQL result set.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

DBCursorCloseDatabase/ERP Synchronous No Supported Supported Supported

Syntax

DBCursorClose(numCur,"optStrErrorTag")

DBCursorClose(numCur{ | ,"optStrErrorTag" })
numCur

The cursor handle for the result set, which was returned by DBCursorOpen or
DBCursorOpenSQL.

optStrErrorTag
The name of a project tag that will receive detailed error messages, if errors occur during project
run time.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

This parameter is optional.

Return value
In the case of success, this function returns 0.

In the case of error, this function returns one of the following possible values:

Value Error Message

-1 DBERROR_DATABASE_ERROR

-2 DBERROR_CONNECTION_OPEN_ERROR

-3 DBERROR_CURSOREMPTY_FAILURE

-4 DBERROR_CURSORMOVE_FAILURE

-5 DBERROR_CURSORFETCH_FAILURE

-6 DBERROR_CURSORNOTOPEN_FAILURE

-7 DBERROR_CURSOR_EOF

-8 DBERROR_CURSOR_BOF

-9 DBERROR_INVALID_COMMAND

-10 DBERROR_INVALID_CURSOR

-100 DBERROR_NOT_ENOUGH_PARAMETERS

-101 DBERROR_INVALID_PARAMETER_DB

-102 DBERROR_INVALID_PARAMETER_TABLE

-103 DBERROR_INVALID_PARAMETER_COLLIST

Appendix: Built-in Language

Page 952

Value Error Message

-104 DBERROR_INVALID_PARAMETER_CONDITION

-105 DBERROR_INVALID_PARAMETER_ORDER

-106 DBERROR_INVALID_PARAMETER_SQL

-107 DBERROR_INVALID_PARAMETER_CURSOR

-108 DBERROR_INVALID_PARAMETER_VALUELIST

-109 DBERROR_INVALID_PARAMETER_TAGLIST

-110 DBERROR_INVALID_PARAMETER_ERRORTAG

-111 DBERROR_INVALID_PARAMETER_MAXROWS

-112 DBERROR_INVALID_PARAMETER_SQL_QUERY

-113 DBERROR_INVALID_PARAMETER_ROW

-114 DBERROR_INVALID_PARAMETER_COLUMNNUMBER

-115 DBERROR_INVALID_PARAMETER_COLUMNINFO

-199 DBERROR_TOO_MANY_PARAMETERS

-200 DBERROR_TCP_COMM_FAILURE

-201 DBERROR_EXCEEDED_OPEN_BUFFER

-202 DBERROR_EXECUTING_ONLY_CLEANUP_COMMANDS

Notes
Database/ERP functions emulate Structured Query Language (SQL) database operations. Before you use
these functions, you should be familiar with how SQL statements are formed and executed.

When a cursor is closed, it is destroyed and cannot be used again. You must open a new cursor by calling
either DBCursorOpen or DBCursorOpenSQL.

You can use the Database Gateway (StADOSvr) to directly monitor database connections for leaks and errors.
For more information, see Database Interface on page 828.

Examples

DBCursorClose(nCursor)

DBCursorClose(nCursor,"TagError")

DBCursorColumnCount
DBCursorColumnCount is a built-in function that gets the total number of columns in a SQL result set.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

DBCursorColumnCountDatabase/ERP Synchronous Yes Supported Supported Supported

Syntax

DBCursorColumnCount(numCur,"optStrErrorTag")

DBCursorColumnCount(numCur{ | ,"optStrErrorTag" })
numCur

The cursor handle for the result set, which was returned by DBCursorOpen or
DBCursorOpenSQL.

Appendix: Built-in Language

Page 953

optStrErrorTag
The name of a project tag that will receive detailed error messages, if errors occur during project
run time.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

This parameter is optional.

Return value
In case of success, this function returns the number of columns in the SQL result set.

In the case of error, this function returns one of the following possible values:

Value Error Message

-1 DBERROR_DATABASE_ERROR

-2 DBERROR_CONNECTION_OPEN_ERROR

-3 DBERROR_CURSOREMPTY_FAILURE

-4 DBERROR_CURSORMOVE_FAILURE

-5 DBERROR_CURSORFETCH_FAILURE

-6 DBERROR_CURSORNOTOPEN_FAILURE

-7 DBERROR_CURSOR_EOF

-8 DBERROR_CURSOR_BOF

-9 DBERROR_INVALID_COMMAND

-10 DBERROR_INVALID_CURSOR

-100 DBERROR_NOT_ENOUGH_PARAMETERS

-101 DBERROR_INVALID_PARAMETER_DB

-102 DBERROR_INVALID_PARAMETER_TABLE

-103 DBERROR_INVALID_PARAMETER_COLLIST

-104 DBERROR_INVALID_PARAMETER_CONDITION

-105 DBERROR_INVALID_PARAMETER_ORDER

-106 DBERROR_INVALID_PARAMETER_SQL

-107 DBERROR_INVALID_PARAMETER_CURSOR

-108 DBERROR_INVALID_PARAMETER_VALUELIST

-109 DBERROR_INVALID_PARAMETER_TAGLIST

-110 DBERROR_INVALID_PARAMETER_ERRORTAG

-111 DBERROR_INVALID_PARAMETER_MAXROWS

-112 DBERROR_INVALID_PARAMETER_SQL_QUERY

-113 DBERROR_INVALID_PARAMETER_ROW

-114 DBERROR_INVALID_PARAMETER_COLUMNNUMBER

-115 DBERROR_INVALID_PARAMETER_COLUMNINFO

-199 DBERROR_TOO_MANY_PARAMETERS

-200 DBERROR_TCP_COMM_FAILURE

-201 DBERROR_EXCEEDED_OPEN_BUFFER

Appendix: Built-in Language

Page 954

Value Error Message

-202 DBERROR_EXECUTING_ONLY_CLEANUP_COMMANDS

Notes
See also DBCursorRowCount.

Database/ERP functions emulate Structured Query Language (SQL) database operations. Before you use
these functions, you should be familiar with how SQL statements are formed and executed.

You can use the Database Gateway (StADOSvr) to directly monitor database connections for leaks and errors.
For more information, see Database Interface on page 828.

Examples
Get the number of columns in the SQL result set that is represented by the cursor handle stored in nCursor:

DBCursorColumnCount(nCursor)

DBCursorColumnInfo
DBCursorColumnInfo is a built-in function that gets information about a column in a SQL result set. The
column is specified by number rather than by name, so this function can be used to retrieve unknown
column names.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

DBCursorColumnInfoDatabase/ERP Synchronous Yes Supported Supported Supported

Syntax

DBCursorColumnInfo(numCur, numColumn, numTypeInfo, "optStrErrorTag")

numCur
The cursor handle of the result set. The cursor handle is returned by DBCursorOpen or
DBCursorOpenSQL.

numColumn
The number of the column about which you want to get information. Remember that a result set
may include only some of the columns in the original database table.

numTypeInfo
The type of information you want to get about the column:

Value Description

0 Column name

1 Column data type

optStrErrorTag
The name of a String tag that will receive detailed error messages, if errors occur during run
time.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

This parameter is optional.

Appendix: Built-in Language

Page 955

Return value
In the case of success, this function returns 0.

In the case of error, this function returns one of the following possible values:

Value Error Message

-1 DBERROR_DATABASE_ERROR

-2 DBERROR_CONNECTION_OPEN_ERROR

-3 DBERROR_CURSOREMPTY_FAILURE

-4 DBERROR_CURSORMOVE_FAILURE

-5 DBERROR_CURSORFETCH_FAILURE

-6 DBERROR_CURSORNOTOPEN_FAILURE

-7 DBERROR_CURSOR_EOF

-8 DBERROR_CURSOR_BOF

-9 DBERROR_INVALID_COMMAND

-10 DBERROR_INVALID_CURSOR

-100 DBERROR_NOT_ENOUGH_PARAMETERS

-101 DBERROR_INVALID_PARAMETER_DB

-102 DBERROR_INVALID_PARAMETER_TABLE

-103 DBERROR_INVALID_PARAMETER_COLLIST

-104 DBERROR_INVALID_PARAMETER_CONDITION

-105 DBERROR_INVALID_PARAMETER_ORDER

-106 DBERROR_INVALID_PARAMETER_SQL

-107 DBERROR_INVALID_PARAMETER_CURSOR

-108 DBERROR_INVALID_PARAMETER_VALUELIST

-109 DBERROR_INVALID_PARAMETER_TAGLIST

-110 DBERROR_INVALID_PARAMETER_ERRORTAG

-111 DBERROR_INVALID_PARAMETER_MAXROWS

-112 DBERROR_INVALID_PARAMETER_SQL_QUERY

-113 DBERROR_INVALID_PARAMETER_ROW

-114 DBERROR_INVALID_PARAMETER_COLUMNNUMBER

-115 DBERROR_INVALID_PARAMETER_COLUMNINFO

-199 DBERROR_TOO_MANY_PARAMETERS

-200 DBERROR_TCP_COMM_FAILURE

-201 DBERROR_EXCEEDED_OPEN_BUFFER

-202 DBERROR_EXECUTING_ONLY_CLEANUP_COMMANDS

Notes
This feature emulates SQL (Structured Query Language) database operations. You should be familiar with
how SQL commands are formed and executed before you use this feature.

You can use the Database Gateway (StADOSvr) to directly monitor database connections for leaks and errors.
For more information, see Database Interface on page 828.

Appendix: Built-in Language

Page 956

Examples
As used in a Math worksheet:

Tag Name Expression

nErrorCode DBCursorColumnInfo(nCursor, 2, 0) // Gets the column name of the second column in the result set.

DBCursorCurrentRow
DBCursorCurrentRow is a built-in function that gets the number of the current row (i.e., the cursor position)
in a SQL result set.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

DBCursorCurrentRowDatabase/ERP Synchronous Yes Supported Supported Supported

Syntax

DBCursorCurrentRow(numCur, "optStrErrorTag")

numCur
The cursor handle of the result set. The cursor handle is returned by DBCursorOpen or
DBCursorOpenSQL.

optStrErrorTag
The name of a String tag that will receive detailed error messages, if errors occur during run
time.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

This parameter is optional.

Return value
In the case of success, this function returns the number of the current row.

In the case of error, this function returns one of the following possible values:

Value Error Message

-1 DBERROR_DATABASE_ERROR

-2 DBERROR_CONNECTION_OPEN_ERROR

-3 DBERROR_CURSOREMPTY_FAILURE

-4 DBERROR_CURSORMOVE_FAILURE

-5 DBERROR_CURSORFETCH_FAILURE

-6 DBERROR_CURSORNOTOPEN_FAILURE

-7 DBERROR_CURSOR_EOF

-8 DBERROR_CURSOR_BOF

-9 DBERROR_INVALID_COMMAND

-10 DBERROR_INVALID_CURSOR

-100 DBERROR_NOT_ENOUGH_PARAMETERS

-101 DBERROR_INVALID_PARAMETER_DB

-102 DBERROR_INVALID_PARAMETER_TABLE

Appendix: Built-in Language

Page 957

Value Error Message

-103 DBERROR_INVALID_PARAMETER_COLLIST

-104 DBERROR_INVALID_PARAMETER_CONDITION

-105 DBERROR_INVALID_PARAMETER_ORDER

-106 DBERROR_INVALID_PARAMETER_SQL

-107 DBERROR_INVALID_PARAMETER_CURSOR

-108 DBERROR_INVALID_PARAMETER_VALUELIST

-109 DBERROR_INVALID_PARAMETER_TAGLIST

-110 DBERROR_INVALID_PARAMETER_ERRORTAG

-111 DBERROR_INVALID_PARAMETER_MAXROWS

-112 DBERROR_INVALID_PARAMETER_SQL_QUERY

-113 DBERROR_INVALID_PARAMETER_ROW

-114 DBERROR_INVALID_PARAMETER_COLUMNNUMBER

-115 DBERROR_INVALID_PARAMETER_COLUMNINFO

-199 DBERROR_TOO_MANY_PARAMETERS

-200 DBERROR_TCP_COMM_FAILURE

-201 DBERROR_EXCEEDED_OPEN_BUFFER

-202 DBERROR_EXECUTING_ONLY_CLEANUP_COMMANDS

Notes
This feature emulates SQL (Structured Query Language) database operations. You should be familiar with
how SQL commands are formed and executed before you use this feature.

You can use the Database Gateway (StADOSvr) to directly monitor database connections for leaks and errors.
For more information, see Database Interface on page 828.

Examples
As used in a Math worksheet:

Tag Name Expression

nRow DBCursorCurrentRow(nCursor)

DBCursorGetValue
DBCursorGetValue is a built-in function that gets the value in the specified column of the current row (i.e.,
the cursor position) in a SQL result set.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

DBCursorGetValueDatabase/ERP Synchronous Yes Supported Supported Supported

Syntax

DBCursorGetValue(numCur,strColumn,"optStrErrorTag")

DBCursorGetValue(numCur,strColumn{ | ,"optStrErrorTag" })
numCur

The cursor handle for the result set, which was returned by DBCursorOpen or
DBCursorOpenSQL.

Appendix: Built-in Language

Page 958

strColumn
The name of the column.

optStrErrorTag
The name of a project tag that will receive detailed error messages, if errors occur during project
run time.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

This parameter is optional.

Return value
This function returns the value in the specified column of the current row. If the value is NULL or the cursor
is invalid, this function returns an empty string with BAD quality.

Notes
Database/ERP functions emulate Structured Query Language (SQL) database operations. Before you use
these functions, you should be familiar with how SQL statements are formed and executed.

You can use the Database Gateway (StADOSvr) to directly monitor database connections for leaks and errors.
For more information, see Database Interface on page 828.

Examples

DBCursorGetValue(nCursor,"Column1")

DBCursorGetValue(nCursor,"Column1","TagError")

DBCursorMoveTo
DBCursorMoveTo is a built-in function that moves the cursor to the specified row in a SQL result set and
then copies that row's values to the mapped tags. If the specified row doesn't exist — that is, if it's outside the
range of the result set — then the function returns an error code and doesn't change the mapped tags.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

DBCursorMoveToDatabase/ERP Synchronous No Supported Supported Supported

Syntax

DBCursorMoveTo(numCur, numRow, "optStrErrorTag")

numCur
The cursor handle of the result set. The cursor handle is returned by DBCursorOpen or
DBCursorOpenSQL.

numRow
The row of the result set to which the cursor will be moved.

optStrErrorTag
The name of a String tag that will receive detailed error messages, if errors occur during run
time.

Appendix: Built-in Language

Page 959

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

This parameter is optional.

Return value
In the case of success, this function returns 0.

In the case of error, this function returns one of the following possible values:

Value Error Message

-1 DBERROR_DATABASE_ERROR

-2 DBERROR_CONNECTION_OPEN_ERROR

-3 DBERROR_CURSOREMPTY_FAILURE

-4 DBERROR_CURSORMOVE_FAILURE

-5 DBERROR_CURSORFETCH_FAILURE

-6 DBERROR_CURSORNOTOPEN_FAILURE

-7 DBERROR_CURSOR_EOF

-8 DBERROR_CURSOR_BOF

-9 DBERROR_INVALID_COMMAND

-10 DBERROR_INVALID_CURSOR

-100 DBERROR_NOT_ENOUGH_PARAMETERS

-101 DBERROR_INVALID_PARAMETER_DB

-102 DBERROR_INVALID_PARAMETER_TABLE

-103 DBERROR_INVALID_PARAMETER_COLLIST

-104 DBERROR_INVALID_PARAMETER_CONDITION

-105 DBERROR_INVALID_PARAMETER_ORDER

-106 DBERROR_INVALID_PARAMETER_SQL

-107 DBERROR_INVALID_PARAMETER_CURSOR

-108 DBERROR_INVALID_PARAMETER_VALUELIST

-109 DBERROR_INVALID_PARAMETER_TAGLIST

-110 DBERROR_INVALID_PARAMETER_ERRORTAG

-111 DBERROR_INVALID_PARAMETER_MAXROWS

-112 DBERROR_INVALID_PARAMETER_SQL_QUERY

-113 DBERROR_INVALID_PARAMETER_ROW

-114 DBERROR_INVALID_PARAMETER_COLUMNNUMBER

-115 DBERROR_INVALID_PARAMETER_COLUMNINFO

-199 DBERROR_TOO_MANY_PARAMETERS

-200 DBERROR_TCP_COMM_FAILURE

-201 DBERROR_EXCEEDED_OPEN_BUFFER

-202 DBERROR_EXECUTING_ONLY_CLEANUP_COMMANDS

Appendix: Built-in Language

Page 960

Notes
This feature emulates SQL (Structured Query Language) database operations. You should be familiar with
how SQL commands are formed and executed before you use this feature.

You can use the Database Gateway (StADOSvr) to directly monitor database connections for leaks and errors.
For more information, see Database Interface on page 828.

Examples
As used in a Math worksheet:

Tag Name Expression

nErrorCode DBCursorMoveTo(nCursor, 4) // Moves the cursor to the fourth row of the result set and copies those values.

DBCursorNext
DBCursorNext is a built-in function that moves the cursor to the next row in a SQL result set and then copies
that row's values to the mapped tags. If there is no next row — that is, if the current row is the last — the
function returns an error code and doesn't change the mapped tags.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

DBCursorNext Database/ERP Synchronous No Supported Supported Supported

Syntax

DBCursorNext(numCur,"optStrErrorTag")

DBCursorNext(numCur{ | ,"optStrErrorTag" })
numCur

The cursor handle for the result set, which was returned by DBCursorOpen or
DBCursorOpenSQL.

optStrErrorTag
The name of a project tag that will receive detailed error messages, if errors occur during project
run time.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

This parameter is optional.

Return value
In the case of success, this function returns 0.

In the case of error, this function returns one of the following possible values:

Value Error Message

-1 DBERROR_DATABASE_ERROR

-2 DBERROR_CONNECTION_OPEN_ERROR

-3 DBERROR_CURSOREMPTY_FAILURE

-4 DBERROR_CURSORMOVE_FAILURE

-5 DBERROR_CURSORFETCH_FAILURE

-6 DBERROR_CURSORNOTOPEN_FAILURE

-7 DBERROR_CURSOR_EOF

Appendix: Built-in Language

Page 961

Value Error Message

-8 DBERROR_CURSOR_BOF

-9 DBERROR_INVALID_COMMAND

-10 DBERROR_INVALID_CURSOR

-100 DBERROR_NOT_ENOUGH_PARAMETERS

-101 DBERROR_INVALID_PARAMETER_DB

-102 DBERROR_INVALID_PARAMETER_TABLE

-103 DBERROR_INVALID_PARAMETER_COLLIST

-104 DBERROR_INVALID_PARAMETER_CONDITION

-105 DBERROR_INVALID_PARAMETER_ORDER

-106 DBERROR_INVALID_PARAMETER_SQL

-107 DBERROR_INVALID_PARAMETER_CURSOR

-108 DBERROR_INVALID_PARAMETER_VALUELIST

-109 DBERROR_INVALID_PARAMETER_TAGLIST

-110 DBERROR_INVALID_PARAMETER_ERRORTAG

-111 DBERROR_INVALID_PARAMETER_MAXROWS

-112 DBERROR_INVALID_PARAMETER_SQL_QUERY

-113 DBERROR_INVALID_PARAMETER_ROW

-114 DBERROR_INVALID_PARAMETER_COLUMNNUMBER

-115 DBERROR_INVALID_PARAMETER_COLUMNINFO

-199 DBERROR_TOO_MANY_PARAMETERS

-200 DBERROR_TCP_COMM_FAILURE

-201 DBERROR_EXCEEDED_OPEN_BUFFER

-202 DBERROR_EXECUTING_ONLY_CLEANUP_COMMANDS

Notes
Database/ERP functions emulate Structured Query Language (SQL) database operations. Before you use
these functions, you should be familiar with how SQL statements are formed and executed.

You can use the Database Gateway (StADOSvr) to directly monitor database connections for leaks and errors.
For more information, see Database Interface on page 828.

Examples

DBCursorNext(nCursor)

DBCursorNext(nCursor,"TagError")

DBCursorOpen
DBCursorOpen in a built-in function that selects a set of rows and columns in a database table, initializes the
cursor at the first row of the result set, copies that row's values to mapped tags, and then returns a cursor
handle that can be referenced by other Database/ERP functions.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

DBCursorOpen Database/ERP Synchronous No Supported Supported Supported

Appendix: Built-in Language

Page 962

Syntax

DBCursorOpen(strDBConn,strTable,optStrCondition,optStrColumns, optStrTags,optStrOrder,"optStrErrorTag")

DBCursorOpen(strDBConn,strTable{ | ,optStrCondition{ | ,optStrColumns{ | ,optStrTags{ |
,optStrOrder{ | ,"optStrErrorTag" } } } } })
strDBConn

The name of the database connection. Connections are configured in the Database/ERP folder.

strTable
The name of the table in the database.

optStrCondition
A string specifying which rows of the table to select. This is equivalent to the SQL WHERE
clause, and the string should follow the same syntax.

This parameter is optional; if no rows are specified, all rows of the table will be selected.

optStrColumns
A string specifying which columns of the table to select. This list of column names should be
comma-delimited.

This parameter is optional; if no columns are specified, all columns of the table will be selected.

optStrTags
A string specifying the project tags to which the columns will be mapped. This list of tag names
should be comma-delimited and in the same order as the columns specified by optStrColumns.
As the cursor is moved through the result set, the values in the current row are copied to these
tags.

This parameter is optional; if no tags are specified, no values will be copied.

optStrOrder
The order in which the rows will be sorted. This is equivalent to the SQL ORDER BY clause, and
the string should follow the same syntax.

This parameter is optional; if no order is specified, the rows will be left in the default order of the
table.

optStrErrorTag
The name of a String tag that will receive detailed error messages, if errors occur during run
time.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

This parameter is optional.

Return value
In the case of success, this function returns a numeric value that can be used as a cursor handle in other
Database/ERP functions.

In the case of error, this function returns one of the following possible values:

Value Error Message

-1 DBERROR_DATABASE_ERROR

-2 DBERROR_CONNECTION_OPEN_ERROR

-3 DBERROR_CURSOREMPTY_FAILURE

Appendix: Built-in Language

Page 963

Value Error Message

-4 DBERROR_CURSORMOVE_FAILURE

-5 DBERROR_CURSORFETCH_FAILURE

-6 DBERROR_CURSORNOTOPEN_FAILURE

-7 DBERROR_CURSOR_EOF

-8 DBERROR_CURSOR_BOF

-9 DBERROR_INVALID_COMMAND

-10 DBERROR_INVALID_CURSOR

-100 DBERROR_NOT_ENOUGH_PARAMETERS

-101 DBERROR_INVALID_PARAMETER_DB

-102 DBERROR_INVALID_PARAMETER_TABLE

-103 DBERROR_INVALID_PARAMETER_COLLIST

-104 DBERROR_INVALID_PARAMETER_CONDITION

-105 DBERROR_INVALID_PARAMETER_ORDER

-106 DBERROR_INVALID_PARAMETER_SQL

-107 DBERROR_INVALID_PARAMETER_CURSOR

-108 DBERROR_INVALID_PARAMETER_VALUELIST

-109 DBERROR_INVALID_PARAMETER_TAGLIST

-110 DBERROR_INVALID_PARAMETER_ERRORTAG

-111 DBERROR_INVALID_PARAMETER_MAXROWS

-112 DBERROR_INVALID_PARAMETER_SQL_QUERY

-113 DBERROR_INVALID_PARAMETER_ROW

-114 DBERROR_INVALID_PARAMETER_COLUMNNUMBER

-115 DBERROR_INVALID_PARAMETER_COLUMNINFO

-199 DBERROR_TOO_MANY_PARAMETERS

-200 DBERROR_TCP_COMM_FAILURE

-201 DBERROR_EXCEEDED_OPEN_BUFFER

-202 DBERROR_EXECUTING_ONLY_CLEANUP_COMMANDS

Notes
This feature emulates SQL (Structured Query Language) database operations. You should be familiar with
how SQL commands are formed and executed before you use this feature.

This function is equivalent to a SQL SELECT statement, except that it breaks the clauses of the statement
into separate function parameters. If you know SQL and want to compose your own SELECT statement, you
can use the function DBCursorOpenSQL instead.

By default, the database interface can have a maximum of 1000 database connections — including cursor
handles — open at the same time. If this limit is reached, the database interface will automatically close the
oldest connection before it opens a new one. As such, you should use the function DBCursorClose to close
open cursor handles as soon as you have finished with them.

You can also increase the maximum number of database connections, if necessary. To do that, use a
text editor to open your project file (typically located at BLUE Open Studio 2020 Projects\<project
name>\<project name>.app) and edit the following property:

[StDB]

Appendix: Built-in Language

Page 964

MaxConnections=<from 1 to 32767>

Please note that having a large number of database connections open at the same time can affect run-time
performance.

You can use the Database Gateway (StADOSvr) to directly monitor database connections for leaks and errors.
For more information, see Database Interface on page 828.

Examples
Open Table1 of DB1 and select all rows where Column1 has a value greater than 3; map Column1 to Tag1
and Column2 to Tag2; order the rows first by Column1, then by Column2, in descending order; and write
error messages to TagError:

DBCursorOpen("DB1","Table1","Column1 > 3","Column1, Column2","Tag1, Tag2","Column1,
 Column2 DESC","TagError")

DBCursorOpenSQL
DBCursorOpenSQL is a built-in function that selects a set of rows and columns in a database table, initializes
the cursor at the first row of the result set, copies that row's values to mapped tags, and then returns a
cursor handle that can be referenced by other Database/ERP functions. (This function is equivalent to a SQL
SELECT statement.)

Function Group Execution String Exp. Windows Thin Clients Mobile Access

DBCursorOpenSQLDatabase/ERP Synchronous No Supported Supported Supported

Syntax

DBCursorOpenSQL(strDBConn,strSQL,optStrTags,"optStrErrorTag")

DBCursorOpenSQL(strDBConn,strSQL{ | ,optStrTags{ | ,"optStrErrorTag" } })
strDBConn

The name of the database connection. Connections are configured in the Database/ERP folder, in
the Project Explorer. For more information, see Database/ERP worksheet on page 521.

strSQL

A complete, syntactically correct SQL SELECT statement. Unicode characters, including
symbols and accented letters, are not supported in this statement.

Note:

Braces ({}) can be used as escape characters in many programming languages,
to enclose some part of a text string that should be handled differently during
execution. In SQL, a statement might include literal text that should not be
parsed or executed as part of the statement. The following example shows a valid
SQL statement, with braces used to enclose the literal text:

SELECT * INTO inmates FROM OPENROWSET
 ('MSDASQL','Driver={Microsoft Text Driver (*.txt;
 *.csv)};DEFAULTDIR=C:\;Extensions=CSV;','SELECT * FROM
 flat.csv')

In Studio, however, braces can be used to enclose project tags and expressions
that should be evaluated in text strings that are not normally evaluated (e.g.,
in the caption of a Button object). As such, if you pass a SQL statement that
includes braces to this function, the contents of the braces will be evaluated as
a tag/expression rather than as part of the SQL statement, and the function will
fail.

Appendix: Built-in Language

Page 965

To pass the SQL statement so that it will be handled correctly by this function,
create a new project tag that contains the literal text and then reference that tag
in the SQL statement. For example:

$AuxTag = "{Microsoft Text Driver (*.txt; *.csv)}"

$DBCursorOpenSQL("inmates","SELECT * INTO inmates FROM
 OPENROWSET ('MSDASQL','Driver={AuxTag};DEFAULTDIR=C:
\;Extensions=CSV;','SELECT * FROM flat.csv')")

This note applies only to the DBCursorOpenSQL and DBExecute functions. Braces
cannot be used like this in any other function calls in Studio.

optStrTags

A string that lists the project tags to which the columns will be mapped. This list of tag names
should be comma-separated and in the same order as the columns specified by the WHERE
clause of strSQL. As the cursor is moved through the result set, the values in the current row
are copied to these tags.

This parameter is optional; if no tags are specified, no values will be copied.

optStrErrorTag
The name of a project tag that will receive detailed error messages, if errors occur during project
run time.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

This parameter is optional.

Return value
In the case of success, this function returns a numeric value that can be used as a cursor handle in other
Database/ERP functions.

In the case of error, this function returns one of the following possible values:

Value Error Message

-1 DBERROR_DATABASE_ERROR

-2 DBERROR_CONNECTION_OPEN_ERROR

-3 DBERROR_CURSOREMPTY_FAILURE

-4 DBERROR_CURSORMOVE_FAILURE

-5 DBERROR_CURSORFETCH_FAILURE

-6 DBERROR_CURSORNOTOPEN_FAILURE

-7 DBERROR_CURSOR_EOF

-8 DBERROR_CURSOR_BOF

-9 DBERROR_INVALID_COMMAND

-10 DBERROR_INVALID_CURSOR

-100 DBERROR_NOT_ENOUGH_PARAMETERS

-101 DBERROR_INVALID_PARAMETER_DB

-102 DBERROR_INVALID_PARAMETER_TABLE

-103 DBERROR_INVALID_PARAMETER_COLLIST

-104 DBERROR_INVALID_PARAMETER_CONDITION

Appendix: Built-in Language

Page 966

Value Error Message

-105 DBERROR_INVALID_PARAMETER_ORDER

-106 DBERROR_INVALID_PARAMETER_SQL

-107 DBERROR_INVALID_PARAMETER_CURSOR

-108 DBERROR_INVALID_PARAMETER_VALUELIST

-109 DBERROR_INVALID_PARAMETER_TAGLIST

-110 DBERROR_INVALID_PARAMETER_ERRORTAG

-111 DBERROR_INVALID_PARAMETER_MAXROWS

-112 DBERROR_INVALID_PARAMETER_SQL_QUERY

-113 DBERROR_INVALID_PARAMETER_ROW

-114 DBERROR_INVALID_PARAMETER_COLUMNNUMBER

-115 DBERROR_INVALID_PARAMETER_COLUMNINFO

-199 DBERROR_TOO_MANY_PARAMETERS

-200 DBERROR_TCP_COMM_FAILURE

-201 DBERROR_EXCEEDED_OPEN_BUFFER

-202 DBERROR_EXECUTING_ONLY_CLEANUP_COMMANDS

Notes
Database/ERP functions emulate Structured Query Language (SQL) database operations. Before you use
these functions, you should be familiar with how SQL statements are formed and executed.

By default, the database interface can have a maximum of 1000 database connections — including cursor
handles — open at the same time. If this limit is reached, the database interface will automatically close the
oldest connection before it opens a new one. As such, you should use the DBCursorClose function to close
open cursor handles as soon as you are done with them.

You can also increase the maximum number of database connections, if necessary. To do that, use a
text editor to open your project file (typically located at BLUE Open Studio 2020 Projects\<project
name>\<project name>.app) and edit the following property:

[StDB]
MaxConnections=<from 1 to 32767>

Please note that having a large number of database connections open at the same time can affect run-time
performance.

You can use the Database Gateway (StADOSvr) to directly monitor database connections for leaks and errors.
For more information, see Database Interface on page 828.

Examples
Open Table1 of DB1 and select all rows where Column1 has a value greater than 3; map Column1 to Tag1
and Column2 to Tag2; order the rows first by Column1, then by Column2, in descending order; and write
error messages to TagError:

DBCursorOpenSQL("DB1","SELECT Column1, Column2 FROM Table1 WHERE Column1 > 3 ORDER BY
 Column1, Column2 DESC","Tag1, Tag2","TagError")

Appendix: Built-in Language

Page 967

DBCursorPrevious
DBCursorPrevious is a built-in function that moves the cursor to the previous row of the result set and then
copies that row's values to the mapped tags. If there is no previous row — that is, if the current row is the first
— then the function returns an error code and doesn't change the mapped tags.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

DBCursorPreviousDatabase/ERP Synchronous No Supported Supported Supported

Syntax

DBCursorPrevious(numCur, "optStrErrorTag")

numCur
The cursor handle of the result set. The cursor handle is returned by DBCursorOpen or
DBCursorOpenSQL.

optStrErrorTag
The name of a String tag that will receive detailed error messages, if errors occur during run
time.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

This parameter is optional.

Return value
In the case of success, this function returns 0.

In the case of error, this function returns one of the following possible values:

Value Error Message

-1 DBERROR_DATABASE_ERROR

-2 DBERROR_CONNECTION_OPEN_ERROR

-3 DBERROR_CURSOREMPTY_FAILURE

-4 DBERROR_CURSORMOVE_FAILURE

-5 DBERROR_CURSORFETCH_FAILURE

-6 DBERROR_CURSORNOTOPEN_FAILURE

-7 DBERROR_CURSOR_EOF

-8 DBERROR_CURSOR_BOF

-9 DBERROR_INVALID_COMMAND

-10 DBERROR_INVALID_CURSOR

-100 DBERROR_NOT_ENOUGH_PARAMETERS

-101 DBERROR_INVALID_PARAMETER_DB

-102 DBERROR_INVALID_PARAMETER_TABLE

-103 DBERROR_INVALID_PARAMETER_COLLIST

-104 DBERROR_INVALID_PARAMETER_CONDITION

-105 DBERROR_INVALID_PARAMETER_ORDER

-106 DBERROR_INVALID_PARAMETER_SQL

Appendix: Built-in Language

Page 968

Value Error Message

-107 DBERROR_INVALID_PARAMETER_CURSOR

-108 DBERROR_INVALID_PARAMETER_VALUELIST

-109 DBERROR_INVALID_PARAMETER_TAGLIST

-110 DBERROR_INVALID_PARAMETER_ERRORTAG

-111 DBERROR_INVALID_PARAMETER_MAXROWS

-112 DBERROR_INVALID_PARAMETER_SQL_QUERY

-113 DBERROR_INVALID_PARAMETER_ROW

-114 DBERROR_INVALID_PARAMETER_COLUMNNUMBER

-115 DBERROR_INVALID_PARAMETER_COLUMNINFO

-199 DBERROR_TOO_MANY_PARAMETERS

-200 DBERROR_TCP_COMM_FAILURE

-201 DBERROR_EXCEEDED_OPEN_BUFFER

-202 DBERROR_EXECUTING_ONLY_CLEANUP_COMMANDS

Notes
This feature emulates SQL (Structured Query Language) database operations. You should be familiar with
how SQL commands are formed and executed before you use this feature.

You can use the Database Gateway (StADOSvr) to directly monitor database connections for leaks and errors.
For more information, see Database Interface on page 828.

Examples
As used in a Math worksheet:

Tag Name Expression

nErrorCode DBCursorPrevious(nCursor)

DBCursorRowCount
DBCursorRowCount is a built-in function that gets the total number of rows in a SQL result set.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

DBCursorRowCountDatabase/ERP Synchronous Yes Supported Supported Supported

Syntax

DBCursorRowCount(numCur,"optStrErrorTag")

DBCursorRowCount(numCur{ | ,"optStrErrorTag" })
numCur

The cursor handle for the result set, which was returned by DBCursorOpen or
DBCursorOpenSQL.

optStrErrorTag
The name of a project tag that will receive detailed error messages, if errors occur during project
run time.

Appendix: Built-in Language

Page 969

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

This parameter is optional.

Return value
In case of success, this function returns the number of rows in the SQL result set.

In the case of error, this function returns one of the following possible values:

Value Error Message

-1 DBERROR_DATABASE_ERROR

-2 DBERROR_CONNECTION_OPEN_ERROR

-3 DBERROR_CURSOREMPTY_FAILURE

-4 DBERROR_CURSORMOVE_FAILURE

-5 DBERROR_CURSORFETCH_FAILURE

-6 DBERROR_CURSORNOTOPEN_FAILURE

-7 DBERROR_CURSOR_EOF

-8 DBERROR_CURSOR_BOF

-9 DBERROR_INVALID_COMMAND

-10 DBERROR_INVALID_CURSOR

-100 DBERROR_NOT_ENOUGH_PARAMETERS

-101 DBERROR_INVALID_PARAMETER_DB

-102 DBERROR_INVALID_PARAMETER_TABLE

-103 DBERROR_INVALID_PARAMETER_COLLIST

-104 DBERROR_INVALID_PARAMETER_CONDITION

-105 DBERROR_INVALID_PARAMETER_ORDER

-106 DBERROR_INVALID_PARAMETER_SQL

-107 DBERROR_INVALID_PARAMETER_CURSOR

-108 DBERROR_INVALID_PARAMETER_VALUELIST

-109 DBERROR_INVALID_PARAMETER_TAGLIST

-110 DBERROR_INVALID_PARAMETER_ERRORTAG

-111 DBERROR_INVALID_PARAMETER_MAXROWS

-112 DBERROR_INVALID_PARAMETER_SQL_QUERY

-113 DBERROR_INVALID_PARAMETER_ROW

-114 DBERROR_INVALID_PARAMETER_COLUMNNUMBER

-115 DBERROR_INVALID_PARAMETER_COLUMNINFO

-199 DBERROR_TOO_MANY_PARAMETERS

-200 DBERROR_TCP_COMM_FAILURE

-201 DBERROR_EXCEEDED_OPEN_BUFFER

-202 DBERROR_EXECUTING_ONLY_CLEANUP_COMMANDS

Appendix: Built-in Language

Page 970

Notes
Database/ERP functions emulate Structured Query Language (SQL) database operations. Before you use
these functions, you should be familiar with how SQL statements are formed and executed.

You can use the Database Gateway (StADOSvr) to directly monitor database connections for leaks and errors.
For more information, see Database Interface on page 828.

See also DBCursorColumnCount.

Examples

DBCursorRowCount(nCursor)

DBCursorRowCount(nCursor,"TagError")

DBDelete
DBDelete is a built-in function that deletes selected rows from a database table. (This function is equivalent
to a SQL DELETE statement.)

Function Group Execution String Exp. Windows Thin Clients Mobile Access

DBDelete Database/ERP Synchronous No Supported Supported Supported

Syntax

DBDelete(strDBConn, strTable, strCondition, "optStrErrorTag")

strDBConn
The name of the database connection. Connections are configured in the Database/ERP folder.

strTable
The name of the table in the database.

strCondition
A string that specifies which rows of the table to select. This is equivalent to the SQL WHERE
clause, and the string should follow the same syntax.

Tip: To delete all rows in the table, make the condition statement a single space
(" ").

optStrErrorTag
The name of a String tag that will receive detailed error messages, if errors occur during run
time.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

This parameter is optional.

Return value
In the case of success, this function returns the number of rows that were deleted from the database table.

In the case of error, this function returns one of the following possible values:

Appendix: Built-in Language

Page 971

Value Error Message

-1 DBERROR_DATABASE_ERROR

-2 DBERROR_CONNECTION_OPEN_ERROR

-3 DBERROR_CURSOREMPTY_FAILURE

-4 DBERROR_CURSORMOVE_FAILURE

-5 DBERROR_CURSORFETCH_FAILURE

-6 DBERROR_CURSORNOTOPEN_FAILURE

-7 DBERROR_CURSOR_EOF

-8 DBERROR_CURSOR_BOF

-9 DBERROR_INVALID_COMMAND

-10 DBERROR_INVALID_CURSOR

-100 DBERROR_NOT_ENOUGH_PARAMETERS

-101 DBERROR_INVALID_PARAMETER_DB

-102 DBERROR_INVALID_PARAMETER_TABLE

-103 DBERROR_INVALID_PARAMETER_COLLIST

-104 DBERROR_INVALID_PARAMETER_CONDITION

-105 DBERROR_INVALID_PARAMETER_ORDER

-106 DBERROR_INVALID_PARAMETER_SQL

-107 DBERROR_INVALID_PARAMETER_CURSOR

-108 DBERROR_INVALID_PARAMETER_VALUELIST

-109 DBERROR_INVALID_PARAMETER_TAGLIST

-110 DBERROR_INVALID_PARAMETER_ERRORTAG

-111 DBERROR_INVALID_PARAMETER_MAXROWS

-112 DBERROR_INVALID_PARAMETER_SQL_QUERY

-113 DBERROR_INVALID_PARAMETER_ROW

-114 DBERROR_INVALID_PARAMETER_COLUMNNUMBER

-115 DBERROR_INVALID_PARAMETER_COLUMNINFO

-199 DBERROR_TOO_MANY_PARAMETERS

-200 DBERROR_TCP_COMM_FAILURE

-201 DBERROR_EXCEEDED_OPEN_BUFFER

-202 DBERROR_EXECUTING_ONLY_CLEANUP_COMMANDS

Notes
This feature emulates SQL (Structured Query Language) database operations. You should be familiar with
how SQL commands are formed and executed before you use this feature.

You can use the Database Gateway (StADOSvr) to directly monitor database connections for leaks and errors.
For more information, see Database Interface on page 828.

Examples
As used in a Math worksheet:

Appendix: Built-in Language

Page 972

Tag Name Expression

nRowsDeleted DBDelete("DB1", "Table1", "Column1 > 1000", "TagError") // Deletes all rows
in Table1 where the value of Column1 is greater than 1000. The returned value (i.e., the number of rows deleted) is written to
TagError.

Tag DBDelete("DB1", "Table1", " ") // Deletes all rows of Table1.

DBExecute
DBExecute is a built-in scripting function that executes a custom SQL statement on an external database. If
the statement is a query (e.g., SELECT), the database values are copied to specified array tags.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

DBExecute Database/ERP Synchronous No Supported Supported Supported

Syntax

DBExecute(strDBConn,strSQL,opStrTags,optNumMaxRows,optStrErrorTag)

DBExecute(strDBConn,strSQL{ | ,optStrTags,optNumMaxRows{ | ,optStrErrorTag } })
strDBConn

The name of the database connection. Connections are configured in the Database/ERP folder, in
the Project Explorer. For more information, see Database/ERP worksheet on page 521.

strSQL
A complete, syntactically correct SQL statement. Unicode characters, including symbols and
accented letters, are not supported in this statement.

Note: Curly brackets ({}) can be used as escape characters in many
programming languages, to enclose some part of a text string that should be
handled differently during execution. In SQL, a statement might include literal
text that should not be parsed or executed as part of the statement. The following
example shows a valid SQL statement, with curly brackets used to enclose the
literal text:

SELECT * INTO inmates FROM OPENROWSET
 ('MSDASQL','Driver={Microsoft Text Driver (*.txt;
 *.csv)};DEFAULTDIR=C:\;Extensions=CSV;','SELECT * FROM
 flat.csv')

In Studio, however, curly brackets can be used to enclose project tags and
expressions that should be evaluated in text strings that are not normally
evaluated (e.g., in the caption of a Button object). As such, if you pass a SQL
statement that includes curly brackets to this function, the contents of the curly
brackets will be evaluated as a tag/expression rather than as part of the SQL
statement, and the function will fail.

To pass the SQL statement so that it will be handled correctly by this function,
create a new project tag that contains the literal text and then reference that tag
in the SQL statement. For example:

$AuxTag = "{Microsoft Text Driver (*.txt; *.csv)}"

$DBExecute("inmates","SELECT * INTO inmates FROM
 OPENROWSET ('MSDASQL','Driver={AuxTag};DEFAULTDIR=C:
\;Extensions=CSV;','SELECT * FROM flat.csv')")

Appendix: Built-in Language

Page 973

This note applies only to the DBCursorOpenSQL and DBExecute functions. Curly
brackets cannot be used like this in any other function calls in Studio.

optStrTags
A comma-separated list of the names of array tags in your project, to which the columns of a
SQL SELECT result set will be mapped. The database values will be copied to these array tags,
with the first row of the result set being copied to array index 0. Make sure the arrays are large
enough to receive all of the rows in the result set.

This parameter is required only when strSQL contains a SQL SELECT statement. For all other
types of statements, this parameter is ignored and can be omitted. However, if you need to
maintain the syntax of the function in order to continue through to optStrErrorTag, give this
parameter an empty string ("").

optNumMaxRows
The maximum number of rows to be copied from a SQL SELECT result set. In most cases, to
copy all of the rows, specify a number greater than the expected number of rows in the result
set.

This parameter is required only when strSQL contains a SQL SELECT statement. For all other
types of statements, this parameter is ignored and can be omitted. However, if you need to
maintain the syntax of the function in order to continue through to optStrErrorTag, give this
parameter a value of 0.

optStrErrorTag
The name of a project tag that will receive detailed error messages, if errors occur during project
run time.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

This parameter is optional.

Return value
In the case of success, this function returns the total number of rows that were affected by the SQL
statement.

In the case of error, this function returns one of the following possible values:

Value Error Message

-1 DBERROR_DATABASE_ERROR

-2 DBERROR_CONNECTION_OPEN_ERROR

-3 DBERROR_CURSOREMPTY_FAILURE

-4 DBERROR_CURSORMOVE_FAILURE

-5 DBERROR_CURSORFETCH_FAILURE

-6 DBERROR_CURSORNOTOPEN_FAILURE

-7 DBERROR_CURSOR_EOF

-8 DBERROR_CURSOR_BOF

-9 DBERROR_INVALID_COMMAND

-10 DBERROR_INVALID_CURSOR

-100 DBERROR_NOT_ENOUGH_PARAMETERS

-101 DBERROR_INVALID_PARAMETER_DB

-102 DBERROR_INVALID_PARAMETER_TABLE

Appendix: Built-in Language

Page 974

Value Error Message

-103 DBERROR_INVALID_PARAMETER_COLLIST

-104 DBERROR_INVALID_PARAMETER_CONDITION

-105 DBERROR_INVALID_PARAMETER_ORDER

-106 DBERROR_INVALID_PARAMETER_SQL

-107 DBERROR_INVALID_PARAMETER_CURSOR

-108 DBERROR_INVALID_PARAMETER_VALUELIST

-109 DBERROR_INVALID_PARAMETER_TAGLIST

-110 DBERROR_INVALID_PARAMETER_ERRORTAG

-111 DBERROR_INVALID_PARAMETER_MAXROWS

-112 DBERROR_INVALID_PARAMETER_SQL_QUERY

-113 DBERROR_INVALID_PARAMETER_ROW

-114 DBERROR_INVALID_PARAMETER_COLUMNNUMBER

-115 DBERROR_INVALID_PARAMETER_COLUMNINFO

-199 DBERROR_TOO_MANY_PARAMETERS

-200 DBERROR_TCP_COMM_FAILURE

-201 DBERROR_EXCEEDED_OPEN_BUFFER

-202 DBERROR_EXECUTING_ONLY_CLEANUP_COMMANDS

Please note this is the value returned by the function itself; in the case of a SQL SELECT statement, the
database values are copied to the array tags specified by optStrTags.

Notes
Database/ERP functions emulate Structured Query Language (SQL) database operations. Before you use
these functions, you should be familiar with how SQL statements are formed and executed.

Examples

DBExecute("DB1","INSERT INTO Table1(Column1,Column2) values(1,1)")

DBExecute("DB1","SELECT max(Column1),max(Column2) FROM
 Table1","MyArray1,MyArray2",1,"TagError")

DBInsert
DBInsert is a built-in function that inserts one new row into a database table. (This function is equivalent to
a SQL INSERT statement.)

Function Group Execution String Exp. Windows Thin Clients Mobile Access

DBInsert Database/ERP Synchronous No Supported Supported Supported

Syntax

DBInsert(strDBConn, strTable, strValues, optStrColumns, "optStrErrorTag")

strDBConn

Appendix: Built-in Language

Page 975

The name of the database connection. Connections are configured in the Database/ERP folder in
the Project Explorer.

strTable
The name of the table in the database.

strValues
A string that lists the values to be written in the new row. This list of values should be comma-
delimited, and string values must be enclosed in single quotes.

optStrColumns
A string that lists the columns into which the values will be written. This list of column names
should be comma-delimited and in the same order as the values specified by strValues.

This parameter is optional. If no columns are specified, the values will be written in the default
column order of the database table.

optStrErrorTag
The name of a String tag that will receive detailed error messages, if errors occur during run
time.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

This parameter is optional.

Return value
In the case of success, this function returns 1.

In the case of error, this function returns one of the following possible values:

Value Error Message

-1 DBERROR_DATABASE_ERROR

-2 DBERROR_CONNECTION_OPEN_ERROR

-3 DBERROR_CURSOREMPTY_FAILURE

-4 DBERROR_CURSORMOVE_FAILURE

-5 DBERROR_CURSORFETCH_FAILURE

-6 DBERROR_CURSORNOTOPEN_FAILURE

-7 DBERROR_CURSOR_EOF

-8 DBERROR_CURSOR_BOF

-9 DBERROR_INVALID_COMMAND

-10 DBERROR_INVALID_CURSOR

-100 DBERROR_NOT_ENOUGH_PARAMETERS

-101 DBERROR_INVALID_PARAMETER_DB

-102 DBERROR_INVALID_PARAMETER_TABLE

-103 DBERROR_INVALID_PARAMETER_COLLIST

-104 DBERROR_INVALID_PARAMETER_CONDITION

-105 DBERROR_INVALID_PARAMETER_ORDER

-106 DBERROR_INVALID_PARAMETER_SQL

-107 DBERROR_INVALID_PARAMETER_CURSOR

Appendix: Built-in Language

Page 976

Value Error Message

-108 DBERROR_INVALID_PARAMETER_VALUELIST

-109 DBERROR_INVALID_PARAMETER_TAGLIST

-110 DBERROR_INVALID_PARAMETER_ERRORTAG

-111 DBERROR_INVALID_PARAMETER_MAXROWS

-112 DBERROR_INVALID_PARAMETER_SQL_QUERY

-113 DBERROR_INVALID_PARAMETER_ROW

-114 DBERROR_INVALID_PARAMETER_COLUMNNUMBER

-115 DBERROR_INVALID_PARAMETER_COLUMNINFO

-199 DBERROR_TOO_MANY_PARAMETERS

-200 DBERROR_TCP_COMM_FAILURE

-201 DBERROR_EXCEEDED_OPEN_BUFFER

-202 DBERROR_EXECUTING_ONLY_CLEANUP_COMMANDS

Notes
This feature emulates SQL (Structured Query Language) database operations. You should be familiar with
how SQL commands are formed and executed before you use this feature.

You can use the Database Gateway (StADOSvr) to directly monitor database connections for leaks and errors.
For more information, see Database Interface on page 828.

Examples
As used in a Math worksheet:

Tag Name Expression

nErrorCode DBInsert("DB1", "Table1", "1, 'one'", "Column1, Column2")

DBSelect
DBSelect is a built-in function that selects a result set from an external database (equivalent to a SQL
SELECT statement), maps the columns of the result set to array tags in your project, and then copies the
values from the result set to the array tags.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

DBSelect Database/ERP Synchronous No Supported Supported Supported

Syntax

DBSelect(strDBConn,strTable,strTags,strColumns,strCondition,strOrder,optNumMaxRows,optStrErrorTag)

DBSelect(strDBConn,strTable,strTags,strColumns,strCondition,strOrder{ | ,optNumMaxRows{ |
,optStrErrorTag } })
strDBConn

The name of the database connection. Connections are configured in the Database/ERP folder in
the Project Explorer.

strTable
The name of the database table or view from which you want to select.

strTags

Appendix: Built-in Language

Page 977

A comma-separated list of the names of array tags in your project, to which the columns of the
database table or view will be mapped. The database values will be copied to these array tags,
with the first row of the result set being copied to array index 0. Make sure the arrays are large
enough to receive all of the rows in the result set.

strColumns
A comma-separated list of which columns you want to select in the database table or view. The
order of this list should correlate with the order of the list that you specified for strTags.

To select all of the columns in the table or view, in their original order, specify an empty string
("") for this parameter.

For more information about selecting columns in a view, see "Notes" below.

strCondition
A statement specifying which rows in the database table or view to select. This is equivalent to
the SQL WHERE clause and must follow the same syntax.

To select all of the rows in the table or view, specify an empty string ("") for this parameter.

strOrder
A statement specifying the order in which the rows should be sorted. This is equivalent to the
SQL ORDER BY clause and must follow the same syntax.

To leave the rows in their original order, specify an empty string ("") for this parameter.

optNumMaxRows
The maximum number of rows to be copied. In most cases, to copy all of the rows, specify a
number greater than the expected number of rows in the result set.

This parameter is optional; if no value is specified, only the first row of the result set will be
copied.

optStrErrorTag
The name of a String tag that will receive detailed error messages, if errors occur during run
time.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

This parameter is optional.

Return value
In the case of success, this function returns the total number of rows in the SQL result set.

In the case of error, this function returns one of the following possible values:

Value Error Message

-1 DBERROR_DATABASE_ERROR

-2 DBERROR_CONNECTION_OPEN_ERROR

-3 DBERROR_CURSOREMPTY_FAILURE

-4 DBERROR_CURSORMOVE_FAILURE

-5 DBERROR_CURSORFETCH_FAILURE

-6 DBERROR_CURSORNOTOPEN_FAILURE

-7 DBERROR_CURSOR_EOF

-8 DBERROR_CURSOR_BOF

-9 DBERROR_INVALID_COMMAND

Appendix: Built-in Language

Page 978

Value Error Message

-10 DBERROR_INVALID_CURSOR

-100 DBERROR_NOT_ENOUGH_PARAMETERS

-101 DBERROR_INVALID_PARAMETER_DB

-102 DBERROR_INVALID_PARAMETER_TABLE

-103 DBERROR_INVALID_PARAMETER_COLLIST

-104 DBERROR_INVALID_PARAMETER_CONDITION

-105 DBERROR_INVALID_PARAMETER_ORDER

-106 DBERROR_INVALID_PARAMETER_SQL

-107 DBERROR_INVALID_PARAMETER_CURSOR

-108 DBERROR_INVALID_PARAMETER_VALUELIST

-109 DBERROR_INVALID_PARAMETER_TAGLIST

-110 DBERROR_INVALID_PARAMETER_ERRORTAG

-111 DBERROR_INVALID_PARAMETER_MAXROWS

-112 DBERROR_INVALID_PARAMETER_SQL_QUERY

-113 DBERROR_INVALID_PARAMETER_ROW

-114 DBERROR_INVALID_PARAMETER_COLUMNNUMBER

-115 DBERROR_INVALID_PARAMETER_COLUMNINFO

-199 DBERROR_TOO_MANY_PARAMETERS

-200 DBERROR_TCP_COMM_FAILURE

-201 DBERROR_EXCEEDED_OPEN_BUFFER

-202 DBERROR_EXECUTING_ONLY_CLEANUP_COMMANDS

Please note this is the value returned by the function itself; the database values are copied to the array tags
specified by strTags.

Notes
This feature emulates Structured Query Language (SQL) database operations. You should be familiar with
how SQL statements are formed and executed before you use this feature.

For this function, you can select from either an entire database table or a specific database view. A view is
a virtual table that is created by a stored query; users can query the view just as they would query a table.
If you select from a view, however, you must select all of the columns in the view. In other words, when you
specify the list of columns for strColumns, you must include all of the columns in the view, albeit in the order
you choose. It is assumed that the view was created to include only the columns you need for this function.

As an alternative to this function, you can use the DBCursorOpenSQL function which allows you to compose
your own SQL SELECT statement without the limitations of this function.

Examples

DBSelect("DB1","Table1","Array1,Array2","Column1,Column2","","")

DBSelect("DB1","Table1","Array1,Array2","Column1,Column2","Column2 <
 Column1","Column1",4,"TagError")

Appendix: Built-in Language

Page 979

DBUpdate
DBUpdate is a built-in function that selects a result set and then writes the same value to all rows of a
specified column. (This function is equivalent to a SQL UPDATE statement.)

Function Group Execution String Exp. Windows Thin Clients Mobile Access

DBUpdate Database/ERP Synchronous No Supported Supported Supported

Syntax

DBUpdate(strDBConn, strTable, strValues, strColumns, optStrCondition,
 "optStrErrorTag")

strDBConn
The name of the database connection. Connections are configured in the Database/ERP folder in
the Project Explorer.

strTable
The name of the table in the database.

strValues
A string that lists the values to be written to the columns. This list of values should be comma-
delimited, and string values must be enclosed in single quotes.

strColumns
A string that lists the columns into which the values will be written. This list of column names
should be comma-delimited and in the same order as the values specified by strValues.

optStrCondition
A string that specifies which rows of the table to select. This is equivalent to the SQL WHERE
clause, and the string should follow the same syntax.

This parameter is optional. If no rows are specified, all rows of the table will be selected.

optStrErrorTag
The name of a String tag that will receive detailed error messages, if errors occur during run
time.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

This parameter is optional.

Return value
In the case of success, this function returns the number of rows that were updated.

In the case of error, this function returns one of the following possible values:

Value Error Message

-1 DBERROR_DATABASE_ERROR

-2 DBERROR_CONNECTION_OPEN_ERROR

-3 DBERROR_CURSOREMPTY_FAILURE

-4 DBERROR_CURSORMOVE_FAILURE

-5 DBERROR_CURSORFETCH_FAILURE

-6 DBERROR_CURSORNOTOPEN_FAILURE

Appendix: Built-in Language

Page 980

Value Error Message

-7 DBERROR_CURSOR_EOF

-8 DBERROR_CURSOR_BOF

-9 DBERROR_INVALID_COMMAND

-10 DBERROR_INVALID_CURSOR

-100 DBERROR_NOT_ENOUGH_PARAMETERS

-101 DBERROR_INVALID_PARAMETER_DB

-102 DBERROR_INVALID_PARAMETER_TABLE

-103 DBERROR_INVALID_PARAMETER_COLLIST

-104 DBERROR_INVALID_PARAMETER_CONDITION

-105 DBERROR_INVALID_PARAMETER_ORDER

-106 DBERROR_INVALID_PARAMETER_SQL

-107 DBERROR_INVALID_PARAMETER_CURSOR

-108 DBERROR_INVALID_PARAMETER_VALUELIST

-109 DBERROR_INVALID_PARAMETER_TAGLIST

-110 DBERROR_INVALID_PARAMETER_ERRORTAG

-111 DBERROR_INVALID_PARAMETER_MAXROWS

-112 DBERROR_INVALID_PARAMETER_SQL_QUERY

-113 DBERROR_INVALID_PARAMETER_ROW

-114 DBERROR_INVALID_PARAMETER_COLUMNNUMBER

-115 DBERROR_INVALID_PARAMETER_COLUMNINFO

-199 DBERROR_TOO_MANY_PARAMETERS

-200 DBERROR_TCP_COMM_FAILURE

-201 DBERROR_EXCEEDED_OPEN_BUFFER

-202 DBERROR_EXECUTING_ONLY_CLEANUP_COMMANDS

Notes
This feature emulates SQL (Structured Query Language) database operations. You should be familiar with
how SQL commands are formed and executed before you use this feature.

Examples
As used in a Math worksheet:

Tag Name Expression

Tag DBUpdate("DB1", "Table1", "'X'", "Column2", "Column1 = 1",
"TagError") // In Table1 of DB1, for all rows where Column1 equals 1, writes "X" to Column2.

SyncAlarm
Synchronizes the alarm database.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SyncAlarm Database/ERP Asynchronous No Supported Executed on Server Executed on Server

Appendix: Built-in Language

Page 981

Syntax

SyncAlarm(optStrStartDate, optStrEndDate)

optStrStartDate
The start date, formatted according to the current date format on the project runtime server. For
more information, see About the date format and how to change it on page 707.

This parameter is optional; if no value is specified, the current date is used by default.

optStrEndDate
The end date, formatted according to the current date format on the project runtime server. For
more information, see About the date format and how to change it on page 707.

This parameter is optional; if no value is specified, the start date is used by default.

Returned value

Value Description

1 Fail to start synchronization; the database is probably being synchronized.

0 Success

-1 Invalid group number

-2 The format is not set to "Database".

-4 Start date specified is invalid.

-5 End date specified is invalid.

-6 Start date is greater than the end date.

Notes
This function is executed asynchronously, so it does not return the result of the synchronization. To get that
information, use the SyncAlarmStatus function.

Examples

Tag Name Expression

Tag SyncAlarm() // Synchronizes the database using the current date

Tag SyncAlarm("10/20/2004") // Synchronizes the database only for the day 10/20/2004

Tag SyncAlarm("10/20/2004", "10/28/2004") // Synchronizes the database from 10/20/2004 to 10/28/2004

SyncAlarmStatus
Returns the status of a previously called SyncAlarm function.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SyncAlarmStatusDatabase/ERP Synchronous Yes Supported Executed on Server Executed on Server

Syntax
SyncAlarmStatus()

This function takes no parameters.

Appendix: Built-in Language

Page 982

Returned value

Value Description

3 Synchronization has finished.

2 Fail synchronizing

1 Still synchronizing

0 No synchronization is being executed.

-1 The format is not set to "Database".

Examples

Tag Name Expression

Tag SyncAlarmStatus()

SyncEvent
Synchronizes the event database.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SyncEvent Database/ERP Asynchronous No Supported Executed on Server Executed on Server

Syntax

SyncEvent(optStrStartDate, optStrEndDate)

optStrStartDate
The start date, formatted according to the current date format on the project runtime server. For
more information, see About the date format and how to change it on page 707.

This parameter is optional; if no value is specified, the current date is used by default.

optStrEndDate
The end date, formatted according to the current date format on the project runtime server. For
more information, see About the date format and how to change it on page 707.

This parameter is optional; if no value is specified, the start date is used by default.

Returned value

Value Description

1 Fail to start synchronization; the database is probably being synchronized.

0 Success

-1 Invalid group number

-2 The format is not set to "Database".

-4 Start date specified is invalid.

-5 End date specified is invalid.

-6 Start date is greater than the end date.

Notes
This function is executed asynchronously, so it doesn't return the result of the synchronization. To get that
information, use the SyncEventStatus function.

Appendix: Built-in Language

Page 983

Examples

Tag Name Expression

Tag SyncEvent() // Synchronizes the database using the current date

Tag SyncEvent("10/20/2004") // Synchronizes the database only for the day 10/20/2004

Tag SyncEvent("10/20/2004", "10/28/2004") // Synchronizes the database from 10/20/2004 to 10/28/2004

SyncEventStatus
Returns the status of a previously called SyncEvent function.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SyncEventStatusDatabase/ERP Synchronous Yes Supported Executed on Server Executed on Server

Syntax
SyncEventStatus()

This function takes no parameters.

Returned value

Value Description

3 Synchronization has finished.

2 Fail synchronizing

1 Still synchronizing

0 No synchronization is being executed.

-1 The format is not set to "Database".

Examples

Tag Name Expression

Tag SyncEventStatus()

SyncTrend
Synchronizes the trend database.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SyncTrend Database/ERP Asynchronous No Supported Executed on Server Executed on Server

Syntax

SyncTrend(numGroup, optStrStartDate, optStrEndDate)

numGroup
Trend group/worksheet number.

optStrStartDate
The start date, formatted according to the current date format on the project runtime server. For
more information, see About the date format and how to change it on page 707.

This parameter is optional; if no value is specified, the current date is used by default.

Appendix: Built-in Language

Page 984

optStrEndDate
The end date, formatted according to the current date format on the project runtime server. For
more information, see About the date format and how to change it on page 707.

This parameter is optional; if no value is specified, the start date is used by default.

Returned value

Value Description

1 Fail to start synchronization; the database is probably being synchronized.

0 Success

-1 Invalid group number

-2 The format is not set to "Database".

-4 Start date specified is invalid.

-5 End date specified is invalid.

-6 Start date is greater than the end date.

Notes
This function is executed asynchronously, so it doesn't return the result of the synchronization. To get that
information, use the SyncTrendStatus function.

Examples

Tag Name Expression

Tag SyncTrend(1) // Synchronizes the group 1 database using the current date

Tag SyncTrend(1, "10/20/2004") // Synchronizes the group 1 database only for the day 10/20/2004

Tag SyncTrend(1, "10/20/2004", "10/28/2004") // Synchronizes the group 1 database from 10/20/2004
to 10/28/2004

SyncTrendStatus
Returns the status of a previously called SyncTrend function.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SyncTrendStatusDatabase/ERP Synchronous Yes Supported Executed on Server Executed on Server

Syntax
SyncTrendStatus(numGroup)
numGroup

Trend group/worksheet number.

Returned value

Value Description

3 Synchronization has finished.

2 Fail synchronizing

1 Still synchronizing

0 No synchronization is being executed.

-1 The format is not set to "Database".

Appendix: Built-in Language

Page 985

Examples

Tag Name Expression

Tag SyncTrendStatus(1)

Appendix: Built-in Language

Page 986

Date & Time functions
These functions are used to interact with the system clock or manipulate timestamps.

ClockGetDate
ClockGetDate is a built-in function that calculates the date that corresponds to a specified number of seconds
that have elapsed since 12:00 AM GMT on January 1, 1970.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

ClockGetDate Date & Time Synchronous Yes Supported Supported Executed on Server

Syntax

ClockGetDate(numSeconds, optTimeZone)

ClockGetDate(numSeconds{ | ,optTimeZone })
numSeconds

A number of seconds that have elapsed since 12:00 AM GMT on January 1, 1970. This number
is typically provided by the function GetClock, but it can be any number.

optTimeZone

A time zone name (string) or index (integer).

Value Description

-i A time zone index (i), up to the maximum index returned by the
function GetTimeZoneCount.

0 The current time zone in either the project runtime server or the
project thin client, depending on where the function is called.

This might be different from the current time zone in the local
computer's system settings, if the function SetTimeZone was
previously executed.

1 Coordinated Universal Time (UTC).

2 The current time zone in the local computer's system settings.

"timezone" The full name of a time zone (e.g., "Central Standard
Time").

This paramater is optional; if no value is specified, the default value is 0.

Returned value
If this function is executed successfully, it returns a string that contains the date that corresponds to the
specified number of seconds. If a time zone is specified, the date is adjusted to reflect the difference between
the current time zone and the specified time zone.

The date string is formatted according to the current date format. For more information, see About the date
format and how to change it on page 707.

If this function is not executed successfully — for example, if the specified time zone is invalid — it returns a
value of 0.

Notes
If this function is called in a project screen on Mobile Access, it is executed using the system clock and date/
time settings on the computer that hosts the project runtime server.

Appendix: Built-in Language

Page 987

Examples
Get the date when the system clock started counting (i.e., 01/01/1970):

ClockGetDate(0,"Greenwich Mean Time")

Get a returned value of 04/15/2002:

ClockGetDate(1018886359)

Get the current number of seconds elapsed since 12:00 AM GMT on January 1, 1970, then format that as a
date, then adjust it from the current time zone to Central Standard Time:

ClockGetDate(GetClock(),"Central Standard Time")

ClockGetDayOfWeek
This function calculates the day of the week that corresponds to a specified number of seconds that have
elapsed since 12:00 AM GMT on January 1, 1970.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

ClockGetDayOfWeekDate & Time Synchronous Yes Supported Supported Executed on Server

Syntax

ClockGetDayOfWeek(numSeconds, optTimeZone)

ClockGetDayOfWeek(numSeconds{ | ,optTimeZone })
numSeconds

A number of seconds that have elapsed since 12:00 AM GMT on January 1, 1970. This number
is typically provided by the function GetClock, but it can be any number.

optTimeZone

A time zone name (string) or index (integer).

Value Description

-i A time zone index (i), up to the maximum index returned by the
function GetTimeZoneCount.

0 The current time zone in either the project runtime server or the
project thin client, depending on where the function is called.

This might be different from the current time zone in the local
computer's system settings, if the function SetTimeZone was
previously executed.

1 Coordinated Universal Time (UTC).

2 The current time zone in the local computer's system settings.

"timezone" The full name of a time zone (e.g., "Central Standard
Time").

This paramater is optional; if no value is specified, the default value is 0.

Returned value
If this function is executed successfully, it returns the day of the week as an integer:

Appendix: Built-in Language

Page 988

Value Description

0 Sunday

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday

If a time zone is specified, the day is adjusted to reflect the change from the current time zone to the specified
time zone.

Notes
If this function is called in a project screen on Mobile Access, it is executed using the system clock and date/
time settings on the computer that hosts the project runtime server.

Examples
Get the day of the week when the system clock started counting (i.e., Wednesday):

ClockGetTime(0)

Get a returned value of 1 (Monday):

ClockGetDayOfWeek(1018886359)

Get the current number of seconds elapsed since 12:00 AM GMT on January 1, 1970, and then calculate the
day of the week:

ClockGetDayOfWeek(GetClock())

ClockGetTime
This function calculates the time that corresponds to a specified number of seconds that have elapsed since
12:00 AM GMT on January 1, 1970.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

ClockGetTime Date & Time Synchronous Yes Supported Supported Executed on Server

Syntax

ClockGetTime(numSeconds, optTimeZone)

ClockGetTime(numSeconds{ | ,optTimeZone })
numSeconds

A number of seconds that have elapsed since 12:00 AM GMT on January 1, 1970. This number
is typically provided by the function GetClock, but it can be any number.

optTimeZone

A time zone name (string) or index (integer).

Appendix: Built-in Language

Page 989

Value Description

-i A time zone index (i), up to the maximum index returned by the
function GetTimeZoneCount.

0 The current time zone in either the project runtime server or the
project thin client, depending on where the function is called.

This might be different from the current time zone in the local
computer's system settings, if the function SetTimeZone was
previously executed.

1 Coordinated Universal Time (UTC).

2 The current time zone in the local computer's system settings.

"timezone" The full name of a time zone (e.g., "Central Standard
Time").

This paramater is optional; if no value is specified, the default value is 0.

Returned value
If this function is executed successfully, it returns a string that contains the time that corresponds to the
specified number of seconds. If a time zone is specified, the time is adjusted to reflect the change from the
current time zone to the specified time zone. The time is formatted as HH:MM:SS.

If this function is not executed successfully — for example, if the specified time zone is invalid — it returns a
value of 0.

Notes
If this function is called in a project screen on Mobile Access, it is executed using the system clock and date/
time settings on the computer that hosts the project runtime server.

Examples
Get the time when the system clock started counting (i.e., 00:00:00):

ClockGetTime(0,"Greenwich Mean Time")

Get a returned value of 10:59:19:

ClockGetTime(1018886359)

Get the current number of seconds elapsed since 12:00 AM GMT on January 1, 1970, then format that as a
time, then adjust it from the current time zone to Central Standard Time:

ClockGetTime(GetClock(),"Central Standard Time")

DateTime2Clock
This function calculates how many seconds have elapsed since 12:00 AM GMT on January 1, 1970, given a
specified date and time.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

DateTime2ClockDate & Time Synchronous Yes Supported Supported Executed on Server

Syntax

DateTime2Clock(strDate, strTime, optTimeZone)

Appendix: Built-in Language

Page 990

DateTime2Clock(strDate,strTime{ | ,optTimeZone })
strDate

The date to be used in the calculation, formatted according to the current date format. For more
information, see About the date format and how to change it on page 707.

strTime
The time to be used in the calculation, formatted as HH:MM:SS.

optTimeZone

A time zone name (string) or index (integer).

Value Description

-i A time zone index (i), up to the maximum index returned by the
function GetTimeZoneCount.

0 The current time zone in either the project runtime server or the
project thin client, depending on where the function is called.

This might be different from the current time zone in the local
computer's system settings, if the function SetTimeZone was
previously executed.

1 Coordinated Universal Time (UTC).

2 The current time zone in the local computer's system settings.

"timezone" The full name of a time zone (e.g., "Central Standard
Time").

This paramater is optional; if no value is specified, the default value is 0.

Returned value
This function returns the number of seconds that have elapsed since 12:00 AM GMT on January 1, 1970,
given the specified date and time. If a time zone is specified, then the number of seconds is adjusted to reflect
the change from the current time zone to the specified time zone.

Notes
If this function is called in a project screen on Mobile Access, it is executed using the system clock and date/
time settings on the computer that hosts the project runtime server.

Examples
Get the number of seconds elapsed when the system clock started counting:

DateTime2Clock("01/01/1970","00:00:00","Greenwich Mean Time")

Get the number of seconds elapsed at 10:59:19 AM on April 15, 2002, in the current time zone:

DateTime2Clock("04/15/2002","10:59:19")

DateTime2UTC
This function converts a date and time from the specified time zone to Coordinated Universal Time (UTC).

Function Group Execution String Exp. Windows Thin Clients Mobile Access

DateTime2UTC Date & Time Synchronous Yes Supported Supported Executed on Server

Appendix: Built-in Language

Page 991

Syntax

DateTime2UTC(strDateTime, optTimeZone)

DateTime2UTC(strDateTime{ | ,optTimeZone })
strDateTime

The date and time to be converted. The date must be formatted according to the current date
format; for more information, see About the date format and how to change it on page 707. The
time must be formatted as HH:MM:SS.

optTimeZone

A time zone name (string) or index (integer).

Value Description

-i A time zone index (i), up to the maximum index returned by the
function GetTimeZoneCount.

0 The current time zone in either the project runtime server or the
project thin client, depending on where the function is called.

This might be different from the current time zone in the local
computer's system settings, if the function SetTimeZone was
previously executed.

1 Coordinated Universal Time (UTC).

2 The current time zone in the local computer's system settings.

"timezone" The full name of a time zone (e.g., "Central Standard
Time").

This paramater is optional; if no value is specified, the default value is 0.

Returned value
If this function is executed successfully, it returns a string that contains the specified date and time converted
from the specified time zone to UTC. Otheriwse, it returns one of the following possible values:

Value Description

-5 Invalid time zone name or index.

-4 Invalid or improperly formatted date/time.

-3 The specified value is not a string.

-2 Invalid number of parameters.

Notes
The list of available time zones varies by operating system version and configuration. If necessary, you can
use the functions GetTimeZoneCount and GetTimeZone to generate a list that is specific to your computer.

If this function is called in a project screen on Mobile Access, it is executed using the system clock and date/
time settings on the computer that hosts the project runtime server.

Examples
Convert the specified date and time from the current time zone to UTC:

DateTime2UTC("07/15/2013 19:54:46")

Appendix: Built-in Language

Page 992

Convert the specified date and time from Central Standard Time to UTC:

DateTime2UTC("07/15/2013 19:54:46","Central Standard Time")

GetClock
GetClock is a built-in function that gets how many seconds have elapsed since 12:00 AM GMT on January 1,
1970, according to the system clock.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetClock Date & Time Synchronous Yes Supported Supported Executed on Server

Syntax

GetClock(optTimeZone)

GetClock({ | optTimeZone })
optTimeZone

A time zone name (string) or index (integer).

Value Description

-i A time zone index (i), up to the maximum index returned by the
function GetTimeZoneCount.

0 The current time zone in either the project runtime server or the
project thin client, depending on where the function is called.

This might be different from the current time zone in the local
computer's system settings, if the function SetTimeZone was
previously executed.

1 Coordinated Universal Time (UTC).

2 The current time zone in the local computer's system settings.

"timezone" The full name of a time zone (e.g., "Central Standard
Time").

This paramater is optional; if no value is specified, the default value is 0.

Return value
This function returns the number of seconds that have elapsed since 12:00 AM GMT on January 1, 1970,
according to the system clock. If a time zone is specified (i.e., if optTimeZone is any value other than 0), the
number of seconds is adjusted to reflect the difference between the current time zone and the specified time
zone.

Notes
If this function is called in a project screen on Mobile Access, it is executed using the system clock and date/
time settings on the computer that hosts the project runtime server.

GetTimeZone
This function gets a specified time zone name or index.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetTimeZone Date & Time Synchronous Yes Supported Supported Executed on Server

Appendix: Built-in Language

Page 993

Syntax

GetTimeZone(optTimeZone)

GetTimeZone({ | optTimeZone })
optTimeZone

A time zone name (string) or index (integer).

Value Description

-i A time zone index (i), up to the maximum index returned by the
function GetTimeZoneCount.

0 The current time zone in either the project runtime or the Viewer
module / thin client, depending on where the function is called from.

"timezone" The full name of a time zone (e.g., "Central Standard
Time").

This parameter is optional; if no value is specified, the default value is 0.

Return value
If optTimeZone is a time zone name, this function returns the corresponding index. If optTimeZone is a
time zone index, this function returns the corresponding name. Otherwise, this function returns one of the
following possible values:

Value Description

2 Invalid number of parameters.

3 Invalid time zone name or index.

Notes
The list of available time zones varies by operating system version and configuration. If necessary, you can
use this function in combination with the function GetTimeZoneCount to generate a list that is specific to
your computer.

If this function is called in a project screen on Mobile Access, it is executed using the system clock and date/
time settings on the computer that hosts the project runtime server.

Examples
Get the current time zone:

GetTimeZone()

Get the time zone name that corresponds to time zone index 24:

GetTimeZone(-24)

Get the time zone index that corresponds to Central Standard Time:

GetTimeZone("Central Standard Time")

Appendix: Built-in Language

Page 994

GetTimeZoneCount
This function gets the number of available time zones on the local computer.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetTimeZoneCountDate & Time Synchronous Yes Supported Supported Executed on Server

Syntax

GetTimeZoneCount()

GetTimeZoneCount()

This function has no parameters.

Returned value
This function returns the number of available time zones on the local computer, depending on where the
function is called from (i.e., the project runtime or the Viewer module / thin client).

Notes
The list of available time zones varies by operating system version and configuration. If necessary, you can
use this function in combination with the function GetTimeZone to generate a list that is specific to your
computer.

If this function is called in a project screen on Mobile Access, it is executed using the system clock and date/
time settings on the computer that hosts the project runtime server.

GetUTC
This function gets the current Coordinated Universal Time (UTC) on the local computer.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetUTC Date & Time Synchronous Yes Supported Supported Executed on Server

Syntax

GetUTC()

GetUTC()

This function has no parameters.

Returned value
This function returns a string that contains the current Coordinated Universal Time (UTC) on the local
computer, depending on where the function is called from (i.e., the project runtime server or the project thin
client). The date is formatted according to the current date format; for more information, see About the date
format and how to change it on page 707. The time is formatted as HH:MM:SS.

If this function is called in a project screen on Mobile Access, it is executed using the system clock and date/
time settings on the computer that hosts the project runtime server.

Hour2Clock
Converts time in the HH:MM:SS format into seconds.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Hour2Clock Date & Time Synchronous Yes Supported Supported Executed on Server

Appendix: Built-in Language

Page 995

Syntax

Hour2Clock(strTime)

strTime
The number of hours, minutes, and seconds in HH:MM:SS format.

Returned value
Returns the number of seconds equivalent to the total number of hours, minutes, and seconds specified.

Examples

Tag Name Expression

Tag Hour2Clock("01:00:00") // Returned value = 3600

Tag Hour2Clock("10:01:01") // Returned value = 36061

SetSystemDate
Sets the date in the operating system's clock.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SetSystemDateDate & Time Synchronous No Supported Supported Not supported

Syntax

SetSystemDate(strDate)

SetSystemDate(strDate)
strDate

The date to which the system clock should be set, formatted according to the current date
format. For more information, see About the date format and how to change it on page 707.

Returned value
This function does not return any value.

Notes
For this function to be executed successfully and change the system settings, you must run BLUE Open
Studio 2020 with Administrator privileges. To run as an administrator once, right-click the program icon and
then click Run as administrator on the shortcut menu. To always run as an administrator, open the program's
Properties dialog box, click the Compatibility tab, and then select the Run this program as an administrator check box.

Examples
Set the system clock to April 15, 2002:

SetSystemDate("04/15/2002")

SetSystemTime
Sets the time in the operating system's clock.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SetSystemTimeDate & Time Synchronous No Supported Supported Not supported

Appendix: Built-in Language

Page 996

Syntax

SetSystemTime(strTime)

SetSystemTime(strTime)
strTime

The time (in HH:MM:SS format) in which to set the clock.

Returned value
This function does not return any value.

Notes
For this function to be executed successfully and change the system settings, you must run BLUE Open
Studio 2020 with Administrator privileges. To run as an administrator once, right-click the program icon and
then click Run as administrator on the shortcut menu. To always run as an administrator, open the program's
Properties dialog box, click the Compatibility tab, and then select the Run this program as an administrator check box.

Examples
Set the system clock to 3:45:18 PM:

SetSystemTime("15:45:18")

SetTimeZone
This function sets the time zone for the Viewer module / thin client, separate from the local computer's
system settings.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SetTimeZone Date & Time Synchronous No Supported Supported Not supported

Syntax

SetTimeZone(optTimeZone)

SetTimeZone({ | optTimeZone })
optTimeZone

A time zone name (string) or index (integer).

Value Description

-i A time zone index (i), up to the maximum index returned by the
function GetTimeZoneCount.

0 The current time zone in the Viewer module / thin client.

1 Coordinated Universal Time (UTC).

2 The current time zone in the local computer's system settings.

"timezone" The full name of a time zone.

This parameter is optional; if no value is specified, the default value is 2.

Returned value
This function returns one of the following possible values:

Appendix: Built-in Language

Page 997

Value Description

-3 Invalid time zone name or index.

-2 Invalid number of parameters.

-1 Invalid function call; this function can only be called from the Viewer module /
thin client. The project runtime will always use the local computer's system
settings.

0 Function executed successfully.

Notes
The list of available time zones varies by operating system version and configuration. If necessary, you can
use the functions GetTimeZoneCount and GetTimeZone to generate a list that is specific to your computer.

Examples
Reset the time zone to the local computer's system settings:

SetTimeZone()

Set the time zone to UTC:

SetTimeZone(1)

Set the time zone to index 24:

SetTimeZone(-24)

Set the time zone to Central Standard Time:

SetTimeZone("Central Standard Time")

UTC2DateTime
This function converts a date and time from Coordinated Universal Time (UTC) to the specified time zone.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

UTC2DateTime Date & Time Synchronous Yes Supported Supported Executed on Server

Syntax

UTC2DateTime(strUTC, optTimeZone)

UTC2DateTime(strUTC{ | ,optTimeZone })
strUTC

The date and time to be converted. The date must be formatted according to the current date
format; for more information, see About the date format and how to change it on page 707. The
time must be formatted as HH:MM:SS.

optTimeZone

A time zone name (string) or index (integer).

Appendix: Built-in Language

Page 998

Value Description

-i A time zone index (i), up to the maximum index returned by the
function GetTimeZoneCount.

0 The current time zone in either the project runtime server or the
project thin client, depending on where the function is called.

This might be different from the current time zone in the local
computer's system settings, if the function SetTimeZone was
previously executed.

1 Coordinated Universal Time (UTC).

2 The current time zone in the local computer's system settings.

"timezone" The full name of a time zone (e.g., "Central Standard
Time").

This paramater is optional; if no value is specified, the default value is 0.

Returned value
If this function is executed successfully, it returns a string that contains the specified date and time converted
from UTC to the specified time zone. Otheriwse, it returns one of the following possible values:

Value Description

-5 Invalid time zone name or index.

-4 Invalid or improperly formatted date/time.

-3 The specified value is not a string.

-2 Invalid number of parameters.

Notes
The list of available time zones varies by operating system version and configuration. If necessary, you can
use the functions GetTimeZoneCount and GetTimeZone to generate a list that is specific to your computer.

If this function is called in a project screen on Mobile Access, it is executed using the system clock and date/
time settings on the computer that hosts the project runtime server.

Examples
Convert the specified date/time from UTC to the current time zone:

UTC2DateTime("07/15/2013 19:54:46")

Convert the specified date and time from UTC to Central Standard Time:

UTC2DateTime("07/15/2013 19:54:46","Central Standard Time")

Convert the current date and time from UTC to Central Standard Time:

UTC2DateTime(GetUTC(),"Central Standard Time")

Appendix: Built-in Language

Page 999

Email functions
These functions are used to configure and send email from within a project.

CnfEmail
CnfEmail is a built-in function that configures the email settings used by other features in the project that
can send email, such as Alarm worksheets and the SendEmail and SendEmailExt functions.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

CnfEmail Email Synchronous No Supported Supported Executed on Server

Syntax

CnfEmail(strSMTP,strFrom,strPOP3,strUser,strPassword,optNumTimeout,optNumAuthType,optStrSMTPUser,optStrSMTPPassword)

CnfEmail(strSMTP,strFrom,strPOP3,strUser,strPassword{ | ,optNumTimeout{ | ,{ optNumAuthType | 1
| 2 }{ | ,optStrSMTPUser,optStrSMTPPassword } } })
strSMTP

The hostname or IP address of the outgoing email server, which is also known as the SMTP
server. You can include a port number if the server does not use one of the standard SMTP
ports.

strFrom
The email address from which emails will be sent and at which emails may be received. This
should be a valid address on the POP3 server (see strPOP3 below).

strPOP3

The hostname or IP address of the incoming email server, which is also known as the POP3
server. You can include a port number if the server does not use one of the standard POP3
ports.

strUser
The username to be used to log onto the POP3 server.

strPassword
The password to be used to log onto the POP3 server.

optNumTimeout

The timeout limit (in seconds) to be used when sending email. If no response is received from the
SMTP server within this period of time, then the operation is aborted.

This is an optional parameter; if no timeout is specified, then the project will keep trying forever
until it receives a response. You should specify some timeout, however, to make sure that your
project won't freeze.

optNumAuthType, optStrSMTPUser, optStrSMTPPassword

By default, SMTP servers do not require authentication for outgoing email. If your server
does require authentication, set optNumAuthType to 1 (unencrypted) or 2 (encrypted via TLS/
SSL), and then specify the username and password. (If your SMTP username and password
are the same as your POP3 username and password, then you can skip optStrSMTPUser
and optStrSMTPPassword. The project will automatically use the values from strUser and
strPassword.)

Note: Encryption via TLS/SSL is not supported in projects running on Windows
Embedded devices.

Appendix: Built-in Language

Page 1000

Return value

Value Description

0 Success

1 Invalid format for strSMTP

2 Invalid format for strFrom

3 Invalid format for strPOP3

4 Invalid format for strUser

5 Invalid format for strPassword

6 Invalid format for optNumTimeout

7 Wrong number of parameters

8 Error getting host IP address (invalid POP3 server)

9 Error connecting to POP3 server

10 Error sending username

11 Error sending password

12 SMTP server does not support selected authentication mode

13 Invalid SMTP username

14 Authentication failed

Notes
The email configuration created by this function works only within the Windows process where the function
was called.

For example, if you place a Button object in a screen and then set the object to call this function when it is
pressed, the resulting email configuration will work only on the Client station where the screen is displayed
and the button is pressed. It will not work on any other Client stations nor on the Server station, because the
project viewer running on the Client station only exchanges data (i.e., changes in tag values) with the data
server running on the Server station. One cannot directly call functions on the other; it can only use triggers
to force the other to call functions. Please note that is true even when the Client station and the Server station
are the same physical device, because the project viewer and the data server are two separate processes in
Windows.

If you want an email configuration to apply to your project's background tasks — for example, to be able to
send emails when alarms become active — then you must either use the E-mail Settings dialog to configure
default settings for the entire project OR call this function in some place like the project's Startup Script, a
Script Group, or a Math worksheet.

Examples

CnfEmail("smtp.company.com","Robert@company.com","pop.company.com","RobertH","Shades556",100)

CnfEmail("smtp.company.com:4455","Robert@company.com","pop.company.com:9900","RobertH","Shades556",5,1)

CnfEmail("195.11.22.33:4455","Robert@company.com","195.66.77.88:9900","RobertH","Shades556",5,2,"JohnS","abcd1234")

Appendix: Built-in Language

Page 1001

GetStatusSendEmailExt
Returns status of the last email sent using the SendEmailExt function.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetStatusSendEmailExtEmail Synchronous Yes Supported Supported Not supported

Syntax
GetStatusSendEmailExt({ | optTagName })
optTagName

Optional tag that causes the function to update its return value. This parameter is optional but
you must use it when configuring this function for an object animation (e.g., Text Data Link,
Position).

Returned value

−2 Incorrect version of the INDMail.DLL library.

−1 The INDMail.DLL library is corrupted.

0 SendEmailExt function is not being executed.

1 Still sending last email. Cannot execute the SendEmailExt function.

2 Last email was sent successfully. You can execute the SendEmailExt function again.

3 There was an error sending the last email. Execute the SendEmailExt function again.

Examples

Tag Name Expression

Tag GetStatusSendEmailExt(Second)

Tag GetStatusSendEmailExt()

SendEmail
SendEmail is a built-in function that sends an email message.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SendEmail Email Synchronous No Supported Supported (see
"Notes" below)

Executed on Server

Syntax

SendEmail(strSubject,strMessage,strTo)

SendEmail(strSubject,strMessage,strTo)
strSubject

The subject of the email.

strMessage
The message body of the email, up to 255 characters long.

strTo
The email address of the intended recipient.

Appendix: Built-in Language

Page 1002

Return value

Value Description

0 Success

1 Invalid format for strSubject

2 Invalid format for strMessage

3 Invalid format for strTo

4 Wrong number of parameters

5 Start socket error

6 Error getting host IP Address (i.e., invalid SMTP server)

7 Error connecting to SMTP server

8 Error sending HELO command (i.e., initialization)

9 Error sending MAIL command (i.e., the "From" address)

10 Error sending RCPT command (i.e., the "To" address)

11 Error sending DATA (i.e., the message body)

12 Error sending SMTP authentication command

13 Invalid username

14 Invalid password

15 Data Protection is enabled (see "Notes" below).

Notes
Before you can send any email, you must either call the CnfEmail function or use the E-mail Settings dialog
box to configure your project's email settings. Incorrect settings can result in several different error codes (see
"Returned value" above).

Also, SendEmail cannot be used when encryption via TLS/SSL is enabled, nor to send an email that contains
Unicode characters. Use the SendEmailExt function instead.

This function cannot be executed on thin clients (i.e., in the Viewer module) when Data Protection is enabled.
It must be executed on the project runtime server. For more information, see Enable Data Protection to
encrypt sensitive information on page 111.

Examples

SendEmail("Hi!","How are you?","rogers@pnd.net")

SendEmail(statusSummary,statusDetail,adminAddress)

SendEmailExt
SendEmailExt is a built-in function that sends email messages with attachments.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SendEmailExt Email Asynchronous No Supported Supported Not supported

Syntax

SendEmailExt(strSubject,strMessage,strTo,optStrCc,optStrBcc,optStrFile1,…,optStrFileN)

Appendix: Built-in Language

Page 1003

SendEmailExt(strSubject,strMessage,strTo{ | ,optStrCc{ | ,optStrBcc{ | ,optStrFile1,…,optStrFileN } } })
strSubject

The email subject (up to 1024 characters).

strMessage
The email message (up to 900 characters).

strTo
The recipient's address. You can specify more than one recipient, using a semicolon (;) to
separate the addresses.

optStrCc
The recipients' addresses to be Cc'ed. You can specify more than one recipient, using a
semicolon (;) to separate the addresses.

This is an optional parameter, but if you need to use subsequent parameters, then you can
specify a null string ("") here.

optStrBcc
The recipients' addresses to be Bcc'ed. You can specify more than one recipient, using a
semicolon (;) to separate the addresses.

This is an optional parameter, but if you need to use subsequent parameters, then you can
specify a null string ("") here.

optStrFile1…optStrFileN
Complete file paths and names of file attachments.

Return value
This function returns one of the following possible values:

Value Description

-4 Some or all of the specified file attachments were not found.

-3 Wrong number of parameters (at least three parameters are required).

-2 The library INDMail.DLL is the wrong version.

-1 The library INDMail.DLL is corrupted.

0 Function executed successfully.

1 Cannot send email because another email is still pending.

2 Cannot send email because a new thread cannot be created.

15 Data Protection is enabled (see "Notes" below).

Notes
Before you can send any email, you must either call the CnfEmail function or use the E-mail Settings dialog
box to configure your project's email settings. Incorrect settings can result in several different error codes (see
"Returned value" above).

This function cannot be executed on thin clients (i.e., in the Viewer module) when Data Protection is enabled.
It must be executed on the project runtime server. For more information, see Enable Data Protection to
encrypt sensitive information on page 111.

Appendix: Built-in Language

Page 1004

Examples

SendEmailExt("Subject","Message","Sam@universe.com","","","C:\Projects eport.txt")

SendEmailExt("Subject","Message","David@Ohio.net","Ted@Austin.com","Bart@Springfield.gov","C:
\TechRef51.doc")

Appendix: Built-in Language

Page 1005

Event Logger functions
These functions are used to send events and comments to the Event Logger.

SendEvent
SendEvent is a built-in function that sends a specified event to the project's event history. The event can
include a comment and up to ten custom fields for other data.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SendEvent Event Logger Synchronous No Supported Supported Supported

Syntax

SendEvent(strEvent,optNumFlag,optStrComment,optCustom1,…,optCustom10)

SendEvent(strEvent{ | ,optNumFlag{ | ,optStrComment{ | ,optCustom1,...,optCustom10 } } })
strEvent

The event message or description.

optNumFlag

A numeric flag that indicates whether to associate a comment with the event. Any non-zero
value is considered TRUE.

This parameter is optional; if no value is specified, the default value is 0 (i.e., FALSE).

optStrComment

The text of the comment to be associated with the event.

This parameter is optional. If no value is specified, the resulting behavior varies depending on
where the function is called:

• If the function is called by a background task (e.g., Math, Scheduler) on the server station,
a dialog box is displayed on that station in order to get the comment text. The dialog box
is displayed by the project runtime software itself, regardless of whether the local Viewer
module is also running on the station.

The function is executed synchronously, however, which means the background task is
suspended while it waits for the execution to be completed, and the execution is completed
only after the event — including the comment, if any — is saved in the event log. If no one is
watching the station, or if the station is running "headless" (i.e., without a display or with the
display turned off), the background task might be suspended indefinitely and the project's
overall run-time performance might be severely affected while the function waits for the
comment text.

Therefore, we recommend that you do not use this function in any background task unless
you either specify a value for this parameter or omit the comment entirely (see optNumFlag
above).

• If the function is called by a project screen on a Thin Client, a dialog box is displayed by
that Thin Client in order to get the comment text. It is expected that the current user at the
client station will promptly respond to the dialog box, but even if they do not, only the project
screen that called the function will be suspended while the function waits for the comment
text. The project's overall run-time performance should not be affected.

• If the function is called by a project screen on Mobile Access, the event is saved with an
empty comment. A dialog box is not displayed at all.

optCustom1 … optCustom10

Custom data that will be included with the event. You can specify any type of data (e.g., num,
str) for each field. The number of custom fields is set in the Options tab of the project settings.

Appendix: Built-in Language

Page 1006

Return value
This function returns one of the following possible values:

Value Description

0 Function executed successfully.

1 The Event Logger is disabled. See "Notes" below.

2 The Event Logger is enabled, but the Custom Messages option is not selected.
See "Notes" below.

Notes
In order to use this function in your project, you must enable the Event Logger and then select the Custom
Messages option. For more information, see Events on page 391.

Examples
Send the event message to the event history:

SendEvent("Valve Open")

Send the event message concatenated with a tag value:

SendEvent("Valve Open Tank No. " + SelectedTank)

Prompt the user for a comment to associate with the event:

SendEvent("Valve Open Tank No. " + SelectedTank,1)

Associate a comment with the event, but use a tag value instead of a user comment:

SendEvent("Valve Open Tank No. " + SelectedTank,1,ValveOpenComment)

Prompt for a user comment, and then also include custom data:

SendEvent("Valve Open Tank No. " +
 SelectedTank,1,,Tank[SelectedTank].Temperature,Tank[SelectedTank].Level,Tank[SelectedTank].Pressure)

Note: The examples above show how the addition operator (+) can be used to concatenate strings
and tag values, but it can be used this way only in a Built-in Language interface (e.g., a Math
worksheet). In a VBScript interface (e.g. a Script worksheet), you must use the ampersand (&)
instead.

Appendix: Built-in Language

Page 1007

File functions
These functions are used to read from, write to, print, move, and delete external files.

DeleteOlderFiles
DeleteOlderFiles is a built-in function that deletes files that are in a specified path, that match a specified
mask, and that are older than a specified date and time.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

DeleteOlderFilesFile Synchronous No Supported Executed on Server
(see "Notes" below)

Not supported

Syntax

DeleteOlderFiles(strPath,strMask,strDate)

DeleteOlderFiles(strPath,strMask,strDate)
strPath

The file path or location of the files to be deleted.

strMask
A mask or filter, using wildcard characters, that specifies the files to be deleted. For example,
"*.hst" means all files with the .hst extension.

strDate
The cut-off date and time. Any files that are older than the specified value will be deleted. By
default, Studio uses the following date/time format: MM/DD/YYYY HH:MM:SS

The date format can be localized on each station, however, and the date that is specified for this
function must use the current date format on the station where the function will be executed
(which is typically the project runtime server; see "Notes" below), rather than the current date
format on the station where the function is called. For more information, see About the date
format and how to change it on page 707.

Specifying a time is optional; you can specify a date only.

Returned value
This function returns the number of files that were deleted.

Notes
By default, this function is executed on the project runtime server even when it is called in a screen on a
project thin client, which means it only affects directories and files that are located on the server and all paths
must be specified in that context. You can change the default behavior to force this function to be executed on
the client where it is called, but if you do so, you must keep in mind that the change will affect not just this
function but also several other File functions. To change the behavior of these functions, use a text editor to
open your project file (<project name>.app) and then edit the following property:

[Options]
ExecuteFileFunctionsOnClient=1

Examples
Delete all history files (*.hst) in the project's history folder that are older than 6:00 PM on February 25, 2015:

DeleteOlderFiles("C:\Studio\Project\Hst\","*.hst","02/25/2015 18:00:00")

Appendix: Built-in Language

Page 1008

DirCreate
Creates the specified directory.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

DirCreate File Synchronous No Supported Executed on Server
(see "Notes" below)

Supported

Syntax

DirCreate(strDirectory, optBooFullPath)

strDirectory
The name and file path of the directory to create.

optBooEmptyOnly
Optional flag. If omitted or if this parameter has the value 0, the directory is created only if all
previous directories exist. If this parameter has the value different from 0, the full path specified
in the strDirectory parameter is created.

Returned value

-1 Invalid parameters

0 Failed to create the directory (e.g., Drive does not exist.)

1 Directory created successfully.

Notes
By default, this function is executed on the project runtime server even when it is called in a screen on a
project thin client, which means it only affects directories and files that are located on the server and all paths
must be specified in that context. You can change the default behavior to force this function to be executed on
the client where it is called, but if you do so, you must keep in mind that the change will affect not just this
function but also several other File functions. To change the behavior of these functions, use a text editor to
open your project file (<project name>.app) and then edit the following property:

[Options]
ExecuteFileFunctionsOnClient=1

Examples

Tag Name Expression

Tag DirCreate("C:\Studio\Temp") // The Temp folder is created in the C:\Studio path (only if the C:\Studio path
already exists).

Tag DirCreate("C:\Studio\Temp",1) // The C:\Studio\Temp full path is created.

DirDelete
Deletes the specified directory.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

DirDelete File Synchronous No Supported Executed on Server
(see "Notes" below)

Supported

Appendix: Built-in Language

Page 1009

Syntax

DirDelete(strDirectory, optBooEmptyOnly)

strDirectory
The name and file path of the directory to delete.

Tip: This parameter supports wildcards (* and ?).

optBooEmptyOnly
Optional flag. If this parameter has a value of 1, then the directory is deleted only if it is empty.
By default — that is, if the parameter is omitted or has a value of 0 — the directory is deleted
whether it is empty or not.

Returned value

Value Description

−2 Attempted to delete a non-empty directory when this action is not allowed (i.e., optBooEmptyOnly does not equal 0).

−1 Invalid parameters.

0 Failed to delete the directory (i.e., directory does not exist).

1 Directory deleted successfully.

Notes
By default, this function is executed on the project runtime server even when it is called in a screen on a
project thin client, which means it only affects directories and files that are located on the server and all paths
must be specified in that context. You can change the default behavior to force this function to be executed on
the client where it is called, but if you do so, you must keep in mind that the change will affect not just this
function but also several other File functions. To change the behavior of these functions, use a text editor to
open your project file (<project name>.app) and then edit the following property:

[Options]
ExecuteFileFunctionsOnClient=1

Examples

Tag Name Expression

Tag DirDelete("C:\Studio\Temp") // The Temp folder from C:\Studio is deleted.

Tag DirDelete("C:\Studio\Temp", 1) // The Temp folder from C:\Studio is deleted only if it is empty.

DirLength
Returns the size of a specific directory.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

DirLength File Synchronous No Supported Executed on Server
(see "Notes" below)

Supported

Description
Returns the size of a specific directory.

Appendix: Built-in Language

Page 1010

Syntax
DirLength(strPath)
strPath

The path of the directory that will be checked.

Returned value

−2 Directory does not exist.

−1 Invalid parameters

n Size (in bytes) of the files and sub-folders in the directory

Notes
By default, this function is executed on the project runtime server even when it is called in a screen on a
project thin client, which means it only affects directories and files that are located on the server and all paths
must be specified in that context. You can change the default behavior to force this function to be executed on
the client where it is called, but if you do so, you must keep in mind that the change will affect not just this
function but also several other File functions. To change the behavior of these functions, use a text editor to
open your project file (<project name>.app) and then edit the following property:

[Options]
ExecuteFileFunctionsOnClient=1

Also, this function is executed synchronously, which means that the project pauses while it waits for the
function to return. As such, if the specified directory is unusually large, then the project could be paused for
several seconds while size of the directory is calculated.

Examples

Tag Name Expression

Tag DirLength("C:\Studio") // Returns the size (in bytes) of all files and sub-folders from C:\Studio.

DirRename
Renames directories.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

DirRename File Synchronous No Supported Executed on Server
(see "Notes" below)

Supported

Syntax
DirRename(strPath,strDirectoryFrom,strDirectoryTo)
strPath

The path of the directory that will be renamed.

Tip: This function supports wildcard (* and ?).

strDirectoryFrom
The original name of the directory that will be renamed.

strDirectoryTo
The target name used to rename the original directory.

Appendix: Built-in Language

Page 1011

Returned value

−1 Invalid parameters

0 Failed to rename the directory (e.g., strDirectoryFrom does not exist.)

1 Directory renamed successfully.

Notes
By default, this function is executed on the project runtime server even when it is called in a screen on a
project thin client, which means it only affects directories and files that are located on the server and all paths
must be specified in that context. You can change the default behavior to force this function to be executed on
the client where it is called, but if you do so, you must keep in mind that the change will affect not just this
function but also several other File functions. To change the behavior of these functions, use a text editor to
open your project file (<project name>.app) and then edit the following property:

[Options]
ExecuteFileFunctionsOnClient=1

Examples

Tag Name Expression

Tag DirRename("C:\Studio\","Temp", "New") // C:\Studio\Temp is renamed to C:\Studio\New.

FileCopy
Copies the file(s) configured in the strSourceFile parameter to the path/file configured in the strTargetFile
parameter.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

FileCopy File Synchronous No Supported Executed on Server
(see "Notes" below)

Not supported

Syntax
FileCopy(strSourceFile,strTargetFile{ | ,optNumTimeOut })
strSourceFile

The file path and name the file(s) to be copied.

Tip: This function supports wildcards (* and ?).

strTargetFile
The file path where the file(s) are to be copied.

optNumTimeOut
Numerical tag containing an integer to set the timeout time for the operation.

If you use the optNumTimeOut parameter, the function returns the value −1 after the specified
timeout time and the scan continues. Though the function returns a −1, it does not cancel the
copying procedure. Instead, it creates an internal process to finish the copying procedure.

Returned value

−1 Timeout time expired.

0 Failed to copy file(s).

1 File(s) copied successfully.

Appendix: Built-in Language

Page 1012

Notes
By default, this function is executed on the project runtime server even when it is called in a screen on a
project thin client, which means it only affects directories and files that are located on the server and all paths
must be specified in that context. You can change the default behavior to force this function to be executed on
the client where it is called, but if you do so, you must keep in mind that the change will affect not just this
function but also several other File functions. To change the behavior of these functions, use a text editor to
open your project file (<project name>.app) and then edit the following property:

[Options]
ExecuteFileFunctionsOnClient=1

Also, this function is executed synchronously, which means that the project pauses while it waits for the
function to return. As such, if the function is called to copy files from or to another volume across a slow
network, then the project could be paused for long time.

Notes

Examples

Tag Name Expression

Tag FileCopy("C:\Studio\Project\HST*.hst", "C:\Temp\Hst\", 1000)

Tag FileCopy("C:\Studio\Project opert.txt", "C:\Temp\Tuesday_Report.txt",
500)

FileDelete
FileDelete is a built-in function that deletes a specified file.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

FileDelete File Synchronous No Supported Executed on Server
(see "Notes" below)

Supported

Syntax

FileDelete(strFile)

FileDelete(strFile)
strFile

The file path and name of the file to be deleted.

Returned value
The function returns one of the following possible values:

Value Description

0 Failure: file not deleted.

1 Success: file deleted.

Notes
By default, this function is executed on the project runtime server even when it is called in a screen on a
project thin client, which means it only affects directories and files that are located on the server and all paths
must be specified in that context. You can change the default behavior to force this function to be executed on
the client where it is called, but if you do so, you must keep in mind that the change will affect not just this

Appendix: Built-in Language

Page 1013

function but also several other File functions. To change the behavior of these functions, use a text editor to
open your project file (<project name>.app) and then edit the following property:

[Options]
ExecuteFileFunctionsOnClient=1

Examples
Delete a file named ReadMe.txt:

FileDelete("C:\Users\Me\Documents\ReadMe.txt")

FileLength
Gets the size of a file.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

FileLength File Synchronous Yes Supported Executed on Server
(see "Notes" below)

Not supported

Syntax
FileLength(strFile)
strFile

The file path and name of the file.

Returned value
Returns the size of the specified file in bytes.

Notes
By default, this function is executed on the project runtime server even when it is called in a screen on a
project thin client, which means it only affects directories and files that are located on the server and all paths
must be specified in that context. You can change the default behavior to force this function to be executed on
the client where it is called, but if you do so, you must keep in mind that the change will affect not just this
function but also several other File functions. To change the behavior of these functions, use a text editor to
open your project file (<project name>.app) and then edit the following property:

[Options]
ExecuteFileFunctionsOnClient=1

Examples

Tag Name Expression

Tag FileLength("C:\Readme.txt")

FileReadFields
The function FileReadFields reads values contained in the fields of a CSV file, and then it writes those
values to a series of project tags or array elements.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

FileReadFieldsFile Synchronous Yes Supported Not supported Supported

Appendix: Built-in Language

Page 1014

Syntax

FileReadFields(strFilename,numOffset,strStartTagName,numNumberOfTags)

FileReadFields(strFilename,numOffset,strStartTagName,numNumberOfTags)
strFilename

The file path and/or name of the CSV file. If the file is located inside your project folder, you can
specify either just the file name or the file path relative to that folder. If the file is located outside
your project folder, you must specify the absolute file path.

numOffset
The number of bytes to skip in the CSV file before reading values. To read from the start of the
file, numOffset should be 0.

You can use this parameter to start reading from any position in the file, as long as you know
how many bytes to skip. In most cases, you will simply take the value returned by the previous
execution of this function (see "Returned value" below) and use it to resume reading where you
previously stopped.

However, if you already know the structure of the file and where you want to start in it, you can
do that. For example, if you know that each line of the file is exactly 100 bytes and you want to
read from the start of the fifth line, numOffset should be 400.

Note: The number of bytes per character in a file depends on the text encoding
(i.e., ANSI, UTF-8, UTF-16, or other), the byte order, and the language or
character set.

strStartTagName
The name of the first project tag or array element in the series that will receive the values read
from the CSV file. Project tags should be sequentially numbered with a numerical suffix, and
the series is determined by incrementing that suffix (e.g., MyTag1, MyTag2, MyTag3, and so
on). Array elements are handled similarly: the series is determined by incrementing the array
index (e.g., MyArray[1], MyArray[2], MyArray[3], and so on). You do not need to begin the
numbering with 1.

Note: If the tag name is not enclosed in quotes, the function will try to use the
value of specified tag.

numNumberOfTags
The number of project tags or array elements in the series that will receive values read from the
CSV file. For example, if strStartTagName is MyTag4 and numNumberOfTags is 5, five values will
be read from the file and then written to the tags MyTag4, MyTag5, MyTag6, MyTag7, and MyTag8.

Returned value
If this function is successfully executed, it returns the position of the last byte read from the CSV file
(including 0 if no bytes were read), which can be used in turn as the offset for the next batch of fields to be
read.

If this function fails, it returns a negative value.

Notes
"CSV" is an abbreviation of "comma-separated values", and in most cases, a CSV file is simply a plain text file
that uses commas (,) to delimit its data fields. Only comma delimiters — as opposed to tabs, spaces, pipes,
or other characters — are supported in CSV files. Each field in the file contains exactly one value, even if the
value is empty, and each project tag or array element will receive exactly one value read from the file.

Appendix: Built-in Language

Page 1015

When this function is executed, it will read at most one line of data. If a line feed is found before reading the
specified number of values, execution of the function will be aborted without reading any values.

Examples

FileReadFields("C:\FieldFiles\FieldFile01.csv",400,"IntValueTag003",5)

FileReadFields("FieldFile02.csv",0,"IntValueTag[0]",10)

FileReadFields("FieldFile03.csv",0,"IntValueTag[IndexTag]",7)

FileReadMessage
The function FileReadMessage reads a message (i.e., a string of characters) from a text file, and then it writes
that message to a project tag.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

FileReadMessageFile Synchronous Yes Supported Not supported Supported

Syntax

FileReadMessage(strFilename,numOffset,strMessageTag,numCharsToRead)

FileReadMessage(strFilename,numOffset,strMessageTag,{ numCharsToRead | 0 })
strFilename

The file path and/or name of the text file. If the file is located inside your project folder, you can
specify either just the file name or the file path relative to that folder. If the file is located outside
your project folder, you must specify the absolute file path.

numOffset
The number of bytes to skip in the text file before reading characters. To read from the start of
the file, numOffset should be 0.

You can use this parameter to start reading from any position in the file, as long as you know
how many bytes to skip. In most cases, you will simply take the value returned by the previous
execution of this function (see "Returned value" below) and use it to resume reading where you
previously stopped.

However, if you already know the structure of the file and where you want to start in it, you can
do that. For example, if you know that each line of the file is exactly 100 bytes and you want to
read from the start of the fifth line, numOffset should be 400.

Note: The number of bytes per character in a file depends on the text encoding
(i.e., ANSI, UTF-8, UTF-16, or other), the byte order, and the language or
character set.

strMessageTag
The name of the project tag (String type) that will receive the message read from the text file.

Note: If the tag name is not enclosed in quotes, the function will try to use the
value of specified tag.

numCharsToRead
The number of characters to read from the text file, starting from the position specified by
numOffset. If this value is 0, all characters up to the next line feed (LF) will be read.

Appendix: Built-in Language

Page 1016

Returned value
If this function is successfully executed, it returns the position of the last byte read from the text file
(including 0 if no bytes were read), which be used in turn as the offset for the next message to be read.

If this function fails, it returns a negative value.

Notes
This function can be used to read from any plain text file, as long as the correct file extension is specified in
strFilename.

Examples

FileReadMessage("C:\Data\Messages01.txt",0,"MsgTag",0)

FileReadMessage("Messages02.txt",0,"MsgTag",140)

FileRename
FileRename is a built-in function that renames a specified file.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

FileRename File Synchronous No Supported Executed on Server
(see "Notes" below)

Supported

Syntax

FileRename(strOldName,strNewName)

FileRename(strOldName,strNewName)
strOldName

The old path and name of the file.

strNewName

The new path and name of the file.

Return value
This function returns one of the following possible values:

Value Description

0 Failure

1 Success

Notes
By default, this function is executed on the project runtime server even when it is called in a screen on a
project thin client, which means it only affects directories and files that are located on the server and all paths
must be specified in that context. You can change the default behavior to force this function to be executed on
the client where it is called, but if you do so, you must keep in mind that the change will affect not just this
function but also several other File functions. To change the behavior of these functions, use a text editor to
open your project file (<project name>.app) and then edit the following property:

[Options]
ExecuteFileFunctionsOnClient=1

Appendix: Built-in Language

Page 1017

Examples

FileRename("C:\readme.txt","C:\readthis.txt")

FileWrite
FileWrite is a built-in function that writes a string to a specified text file. If the file does not exist, it will be
created when the function is executed.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

FileWrite File Synchronous No Supported Executed on Server
(see "Notes" below)

Supported

Syntax

FileWrite(strFileName,strWriteText,optNumAppend)

FileWrite(strFileName,strWriteText{ | ,optNumAppend })
strFileName

The name of the text file.

By default, the file must be located in your project folder (i.e., the folder that contains the file
<project name>.APP), on the computer that host the project runtime server. If the file is or
should be located in another folder, specify the complete file path.

strWriteText
The text to be written to the file.

optNumAppend
A numerical flag indicating how the text should be written to the file:

Value Description

0 Create a new ASCII file with the specified file name. If the file already
exists, overwrite it.

1 Append to an existing ASCII file with the specified file name. If the file
does not exist, create it.

2 Create a new Unicode file (UTF-16LE) with the specified file name. If
the file already exists, overwrite it.

3 Append to an existing Unicode file (UTF-16LE) with the specified file
name. If the file does not exist, create it.

This parameter is optional; if no value is specified, or if the specified value is not one of the
values listed in the table above, the default value is 0.

Returned value
This function returns one of the following possible values:

Value Description

0 Function successfully executed.

-1 Invalid parameter(s).

-2 Failed to open file. Either the drive is write-protected or the file name is invalid.

Appendix: Built-in Language

Page 1018

Notes
By default, this function is executed on the project runtime server even when it is called in a screen on a
project thin client, which means it only affects directories and files that are located on the server and all paths
must be specified in that context. You can change the default behavior to force this function to be executed on
the client where it is called, but if you do so, you must keep in mind that the change will affect not just this
function but also several other File functions. To change the behavior of these functions, use a text editor to
open your project file (<project name>.app) and then edit the following property:

[Options]
ExecuteFileFunctionsOnClient=1

Examples
Create a new ASCII file in the project folder:

FileWrite("est.txt","This is a test.")

Append to an existing ASCII file in the project folder:

FileWrite("est.txt","This is a test.",1)

Append to an existing Unicode file in the Documents folder:

FileWrite("C:\Users\MyUser\Documents\est.txt","This is a test.",3)

FileWriteFields
The function FileWriteFields reads values contained in a series of project tags or array elements, and then
it writes those values to the fields of a CSV file .

Function Group Execution String Exp. Windows Thin Clients Mobile Access

FileWriteFieldsFile Synchronous No Supported Not supported Supported

Syntax

FileWriteFields(strFilename,numOffset,strStartTagName,numNumberOfTags)

FileWriteFields(strFilename,{ numOffset | -1 },strStartTagName,numNumberOfTags)
strFilename

The file path and/or name of the CSV file to which the values will be written. If the file is located
inside your project folder, you can specify either just the file name or the file path relative to that
folder. If the file is located outside your project folder, you must specify the absolute file path.

numOffset
The number of bytes to skip in the CSV file before writing values. To write to the start of the file,
numOffset should be 0.

You can use this parameter to start writing to any position in the file, as long as you know how
many bytes to skip. In most cases, you will simply take the value returned by the previous
execution of this function (see "Returned value" below) and use it to resume writing where you
previously stopped.

However, if you already know the structure of the file and where you want to start in it, you can
do that. For example, if you know that each line of the file is exactly 100 bytes and you want to
write to the start of the fifth line, numOffset should be 400.

Appendix: Built-in Language

Page 1019

You can also specify a value of -1, which will automatically append the values to the end of the
file.

Note: The number of bytes per character in a file depends on the text encoding
(i.e., ANSI, UTF-8, UTF-16, or other), the byte order, and the language or
character set.

strStartTagName
The name of the first project tag or array element in the series from which the function will
read the values to be written to the CSV file. Project tags should be sequentially numbered
with a numerical suffix, and the series is determined by incrementing that suffix (e.g., MyTag1,
MyTag2, MyTag3, and so on). Array elements are handled similarly: the series is determined by
incrementing the array index (e.g., MyArray[1], MyArray[2], MyArray[3], and so on). You do
not need to begin the numbering with 1.

Note: If the tag name is not enclosed in quotes, the function will try to use the
value of specified tag.

numNumberOfTags
The number of project tags or array elements in the series to read. For example, if
strStartTagName is MyTag4 and numNumberOfTags is 5, values will be read from the tags
MyTag4, MyTag5, MyTag6, MyTag7, and MyTag8 and then written to the CSV file.

Returned value
If this function is successfully executed, it returns the position of the last byte written to the CSV file
(including 0 if no bytes were written), which can be used in turn as the offset for the next batch of values to be
written.

If this function fails, it returns a negative value.

Notes
"CSV" is an abbreviation of "comma-separated values", and in most cases, a CSV file is simply a plain text file
that uses commas (,) to delimit its data fields. Only comma delimiters — as opposed to tabs, spaces, pipes, or
other characters — are supported in CSV files. Each field in the file can contain exactly one value, even if the
value is empty.

When this function is executed, it will write at most one line of data. If a line feed is found before writing the
specified number of tags, execution of the function will be aborted without writing any values.

Examples

FileWriteFields("C:\FieldFiles\FieldFile01.csv",400,"IntValueTag003",5)

FileWriteFields("FieldFile02.csv",-1,"IntValueTag[0]",10)

FileWriteFields("FieldFile03.csv",0,"IntValueTag[IndexTag]",7)

FileWriteMessage
The function FileWriteMessage reads a message (i.e., a string) from a project tag, and then it writes that
message to a text file.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

FileWriteMessageFile Synchronous No Supported Not supported Supported

Appendix: Built-in Language

Page 1020

Syntax

FileWriteMessage(strFilename,numOffset,strMessage,numAddLineFeed)

FileWriteMessage(strFilename,{ numOffset | -1 },strMessage,{ numAddLineFeed | 0 | 1 })
strFilename

The file path and/or name of the text file. If the file is located inside your project folder, you can
specify either just the file name or the file path relative to that folder. If the file is located outside
your project folder, you must specify the absolute file path.

numOffset
The number of bytes to skip in the text file before writing the message. To write to the start of
the file, numOffset should be 0.

You can use this parameter to start reading from any position in the file, as long as you know
how many bytes to skip. In most cases, you will simply take the value returned by the previous
execution of this function (see "Returned value" below) and use it to resume reading where you
previously stopped.

However, if you already know the structure of the file and where you want to start in it, you can
do that. For example, if you know that each line of the file is exactly 100 bytes and you want to
read from the start of the fifth line, numOffset should be 400.

You can also specify a value of -1, which will automatically append the message to the end of
the file.

Note: The number of bytes per character in a file depends on the text encoding
(i.e., ANSI, UTF-8, UTF-16, or other), the byte order, and the language or
character set.

strMessage
The message to be written to the text file.

numAddLineFeed
A boolean value specifying whether to add a line feed (LF) to the end of the message. If this value
is 1, a line feed is added. If this value is 0, a line feed is not added.

Returned value
If this function is successfully executed, it returns the position of the last byte written to the text file
(including 0 if no bytes were written), which can be used in turn as the offset for the next message to be
written.

If this function fails, it returns a negative value.

Notes
This function can be used to write to any plain text file, as long as the correct file extension is specified in
strFilename.

Examples

FileWriteMessage("C:\Data\Messages01.txt",0,MsgTag,1)

FileWriteMessage("Messages02.txt",-1,"Append this text.",0)

Appendix: Built-in Language

Page 1021

FindFile
FindFile is a built-in scripting function that searches for all files that match a given search string.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

FindFile File Synchronous Yes Supported Executed on Server
(see "Notes" below)

Not supported

Syntax

FindFile(strFile,optTagFilesFound,optNumTimeout)

FindFile(strFile{ | ,"optTagFilesFound"{ | ,optNumTimeout } })
strFile

The name of the file(s) to search for.

You can use wildcards (*) to find multiple files. For example, *.gif to find all GIF files or
log*.txt to find all log files in a sequence (e.g., log001.txt, log002.txt, log003.txt).

By default, the function only searches the project folder, but you can specify a file path (either
relative or absolute) to search elsewhere. For example, if strFile is defined as…

\\<host name or IP address>\Logs\log*.txt

…then the function will search the Logs directory on the specified server.

optTagFilesFound
An array (of String type) that will receive the names of the matching files. The array name must
be enclosed in quotes; if it is not, the function will try to get the contents of the array.

This parameter is optional. If no value is specified, the file names will not be saved and the
function will only return the number of files found. For more information, see "Returned value"
below.

The specified array will receive only the file names and not their paths, even if you define strFile
to search outside the project folder. Also, the file names will be saved starting at array position 1
(e.g., MyArray[1]).

Please keep in mind that this function is executed synchronously, so there might be some
delay in updating the specified array. As such, you should not develop a project screen so that
it tries to use the array immediately after it calls this function. For example, you should not
write a VBScript procedure that calls this function on one line and then references the array
on the next. You can change this behavior, if necessary, by forcing this function to be executed
asynchronously on the client. For more information, see "Notes" below.

optNumTimeout
The timeout period (in milliseconds) for the function to be successfully executed.

This parameter is optional. If no value is specified, the project runtime will continue searching
until it has completely searched the location defined by strFile.

Please keep in mind that this function is executed synchronously, so if optNumTimeout is not
specified and strFile is poorly defined, the entire project — both the project runtime server
and its clients — might pause while it searches for the files. You can change this behavior,
if necessary, by forcing this function to be executed asynchronously on the client. For more
information, see "Notes" below.

Returned value
This function returns one of the following possible values:

Appendix: Built-in Language

Page 1022

Value Description

-1 Function timed out.

0 No matching files found.

n Number of matching files found.

Notes
By default, this function is executed on the project runtime server even when it is called in a screen on a
project thin client, which means it only affects directories and files that are located on the server and all paths
must be specified in that context. You can change the default behavior to force this function to be executed on
the client where it is called, but if you do so, you must keep in mind that the change will affect not just this
function but also several other File functions. To change the behavior of these functions, use a text editor to
open your project file (<project name>.app) and then edit the following property:

[Options]
ExecuteFileFunctionsOnClient=1

If you change these functions to be executed on the client, also check the scope of the array that is specified
for optTagFilesFound. If the scope is Local, the array will be updated only on the client where this function is
executed. If the scope is Server, the array will be updated first on the client where this function is executed
and then that update will be sent to the server.

Also, when this function is called on the client (regardless of where it is executed), the array that is specified
for optTagFilesFound will be updated only after the entire script (e.g., Command animation) that contains this
function is executed.

As an alternative to calling this function on the client — for example, if you need to have the array updated
immediately rather than after the entire script is executed — consider creating a Global Procedure that
contains this function and any other associated code, and then call the RunGlobalProcedureOnServer
function on the client in order to run that procedure.

Examples
Find all text files in the project folder:

FindFile("*.txt")

Find all Microsoft Word files in the project folder, and then send the names of the matching files to
StringArray, within a timeout period of 1000 milliseconds:

FindFile("*.doc","StringArray",1000)

FindPath
FindPath is a built-in function that finds a specified directory.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

FindPath File Synchronous Yes Supported Executed on Server
(see "Notes" below)

Not supported

Syntax

FindPath(strPathName)

FindPath(strPathName)
strPathName

The path of the directory that you want to find.

Appendix: Built-in Language

Page 1023

If you want to find the root directory of a drive other than drive C — in other words, if you want
to determine whether that drive exists — you must include an asterisk (*) at the end of the file
path. For more information, see "Examples" below.

Return value
This function returns one of the following possible values:

Value Description

0 Path not found.

1 Path found.

This function always returns 0 if the value for strPathName is the path and name of a file rather than the path
of a directory. To find a file, use the FindFile function.

Notes
By default, this function is executed on the project runtime server even when it is called in a screen on a
project thin client, which means it only affects directories and files that are located on the server and all paths
must be specified in that context. You can change the default behavior to force this function to be executed on
the client where it is called, but if you do so, you must keep in mind that the change will affect not just this
function but also several other File functions. To change the behavior of these functions, use a text editor to
open your project file (<project name>.app) and then edit the following property:

[Options]
ExecuteFileFunctionsOnClient=1

Examples
Find the Windows directory on drive C:

FindPath("C:\Windows")

Find the root directory of drive E:

FindPath("E:*")

GetFileAttributes
Reads the attributes of a specified file.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetFileAttributesFile Synchronous Yes Supported Executed on Server
(see "Notes" below)

Not supported

Syntax
GetFileAttributes(strFile)
strFile

The file path and name of the file from which to read the attributes.

Returned value

−1 Error

1 Read only

2 Hidden

4 System

Appendix: Built-in Language

Page 1024

16 Directory

32 Archive

128 Normal

256 Temporary

Notes
By default, this function is executed on the project runtime server even when it is called in a screen on a
project thin client, which means it only affects directories and files that are located on the server and all paths
must be specified in that context. You can change the default behavior to force this function to be executed on
the client where it is called, but if you do so, you must keep in mind that the change will affect not just this
function but also several other File functions. To change the behavior of these functions, use a text editor to
open your project file (<project name>.app) and then edit the following property:

[Options]
ExecuteFileFunctionsOnClient=1

Examples

Tag Name Expression

Tag GetFileAttributes("C:\Readme.txt")

GetFileTime
GetFileTime is a built-in function that gets the date and time that a file was last modified.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetFileTime File Synchronous Yes Supported Executed on Server
(see "Notes" below)

Not supported

Syntax

GetFileTime(strFileName,optNumFormat)

GetFileTime(strFileName{ | ,{ optNumFormat | 0 | 1 | 2 } })
strFileName

The file path and name of the file to be read.

optNumFormat
A numeric flag specifiying the format of the returned data:

Value Description

0 Date and time (i.e., MM/DD/YYYY HH:MM:SS).

1 Date only (i.e., MM/DD/YYYY).

2 Time only (i.e., HH:MM:SS).

This parameter is optional; if no value is specified, the default value is 0.

Returned value
This function returns the date and/or time that the file was last modified. The date will be formatted
according to the current date format; for more information, see About the date format and how to change it on
page 707. The time will be formatted as HH:MM:SS.

Appendix: Built-in Language

Page 1025

Notes
By default, this function is executed on the project runtime server even when it is called in a screen on a
project thin client, which means it only affects directories and files that are located on the server and all paths
must be specified in that context. You can change the default behavior to force this function to be executed on
the client where it is called, but if you do so, you must keep in mind that the change will affect not just this
function but also several other File functions. To change the behavior of these functions, use a text editor to
open your project file (<project name>.app) and then edit the following property:

[Options]
ExecuteFileFunctionsOnClient=1

Examples
Get the date and time that the file Readme.txt was last modified:

GetFileTime("C:\Readme.txt")

Get the date only that the file History.txt was last modified:

GetFileTime("C:\History.txt",1)

GetHSTInfo
Returns the Start Time, End Time, and Duration of the specified history (*.HST) file.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetHSTInfo File Synchronous Yes Supported Supported Not supported

Syntax
GetHSTInfo(strFileName,numInfoType)
strFileName

The file path and name of the history file to be read.

numFormat
A numeric flag specifying the type of information to be returned:

• 0: Returns the Start Time of the file.

• 1: Returns the End Time of the file.

• 2: Returns the Duration (in hours) of the file.

Returned value
If the file cannot be read or the specified information cannot be returned, then an error is generated:

-1 Failed to retrieve the Start Time; verify the history file exists and is valid.

-2 Failed to retrieve the End Time; verify the history file exists and is valid.

-3 Internal program error; please contact Technical Support.

-4 The Studio TCP/IP server returned a Time that is incompatible with the format specified in the project screen or Web page. Please use
the Verify Project tool to update the project and try again.

Examples

Tag Name Expression

Tag GetHSTInfo("batch", 0)

Appendix: Built-in Language

Page 1026

Tag Name Expression

Tag GetHSTInfo("hst/02060801.hst", 1)

Tag GetHSTInfo("C:\batch.bat", 2)

GetLine
GetLine is a built-in function that gets a line of text from an external file and then stores that line in a project
tag.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetLine File Synchronous Yes Supported Supported Supported

Syntax

GetLine(strFileName,Search,"strTagStore",optNumCase,"optNumTagOveflow",optNumRunFromServer)

GetLine(strFileName,Search,"strTagStore"{ | ,optNumCase{ | ,"optNumTagOverflow"{ |
,optNumRunFromServer } } })
strFileName

The name of the external file. It can be either a simple file name (e.g., file.txt) or a fully
qualified path name (e.g., C:\path\to\file.txt). We recommend that you do not specify a
"relative" file path (e.g., ..\file.txt), because this function may look for the file in different
locations depending on where and how it is executed. For more information, see "Notes" below.

Search

There are two options for this parameter, depending on the data type of the value or tag that you
specify:

• If it is a string value or tag, this function will search the external file for the first occurance
of the string and then copy the entire line that contains the occurance to the tag specified for
tagStore. Additional occurances will be counted (see "Returned value" below) but not copied.

• If it is a numeric value or tag, this function will go to that line number in the external file and
then copy the entire line to the tag specified for tagStore. The first line of the external file is
line 0.

tagStore

The name of the String tag to which the line will be copied.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

optNumCase

A numeric flag that specifies whether the search is case-sensitive:

Value Description

0 Not case-sensitive

1 Case-sensitive

This parameter is optional; if no value is specified, the default value is 0.

optNumTagOverflow

The name of an Integer tag that will receive a code that indicates whether the line overflows the
String tag specified for tagStore.

This parameter is optional; if no value is specified, the overflow code will not be received.

Appendix: Built-in Language

Page 1027

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

The overflow code is separate from the value returned by the function itself (see "Returned
value" below). The possible values of the overflow code are:

Value Description

0 OK

1 Overflow

The size limit for String tags in projects running on Windows is 1024 characters, which means
that if the tag specified for optNumTagOverflow receives an overflow code of 1, the line is more
than 1024 characters long and it overflowed the tag specified for tagStore.

optNumRunFromServer

A numeric flag that specifies whether this function should be run from the project thin client or
the project runtime server:

Value Description

0 Run from the project thin client

1 Run from the project runtime server

This parameter is optional; if no value is specified, the default value is 0.

For more information about how this parameter affects the execution of this function, see
"Notes" below.

Returned value
If this function is executed successfully, it returns the total number of lines in which the search string was
found. Otherwise, it returns one of the following possible values:

Value Description

0 String was not found in the target file

-1 File not found

-2 Invalid strFileName parameter

-3 Invalid strSeqChar parameter (obsolete)

-4 Invalid tagStore parameter

-5 Invalid optNumCase parameter

-6 Invalid optNumTagOverflow parameter

-7 Invalid number of parameters

-8 Invalid line number

Notes
This function supports only ASCII and UTF-16LE text encoding on all versions of Windows. (UTF-16LE is the
Unicode implementation that is natively supported by Windows.) Therefore, if you use this function to get text
from a UTF-8 or UTF-16BE encoded file, the function should be executed successfully but you might see some
unknown or invalid characters.

Where this function will look for the file depends on where the function was called and on the values specified
for strFileName and optNumRunFromServer:

Appendix: Built-in Language

Page 1028

If function is called on… …and strFileName is… …and optNumRunFromServer is… …it looks for the file…

0File name only

1

On the server, in the project
folder and its Web sub-folder.
(optNumRunFromServer is ignored.)

0

Project runtime server,
in a background task

File path and name

1

On the server, in the specified file
path. (optNumRunFromServer is
ignored.)

0 Not valid; file cannot be found.File name only

1 On the server, in the project folder
and its \Web sub-folder.

0 On the client, in the specified file path.

Secure Viewer (incl. local Viewer)

File path and name

1 On the server, in the specified file
path.

0 On the server, in the location specified
in the browser's address bar.
Typically, that is the project's \Web
sub-folder, which contains the project
screens published as web pages,
but it might be another location if the
web pages were copied or moved
after they were published. The latter
is often true for Mobile Access. Check
the web server to see what folder(s) it
is configured to serve.

File name only

1 On the server, in the project folder
and its \Web sub-folder.

0 On the client, in the specified file path.

Mobile Access

File path and name

1 On the server, in the specified file
path.

Examples
Find the first occurrence of "BLUE Open Studio 2020" in a file located on the client, and then store the line
that contains the occurrence in the tag ReturnedLine:

GetLine("C:\Readme.txt","BLUE Open Studio 2020","ReturnedLine")

Find the third line of a file located on the server, and then store that line in the tag ReturnedLine:

GetLine("C:\Readme.txt",2,"ReturnedLine",0,"Overflow",1)

HST2TXT
HST2TXT is a built-in function that exports historical data from the trend history files (*.hst) to a plain text
file (*.txt).

Function Group Execution String Exp. Windows Thin Clients Mobile Access

HST2TXT File Asynchronous No Supported Executed on Server
(see "Notes" below)

Not supported

Syntax

HST2TXT(strStartDate,strStartTime,numDuration,numGroup,strTargetFile,optStrSeparator,optNumMilliseconds,optStrFormat,optNumInterval)

Appendix: Built-in Language

Page 1029

HST2TXT(strStartDate,strStartTime,numDuration,numGroup,strTargetFile{ | ,optStrSeparator{ |
,optNumMilliseconds{ | ,optStrFormat{ | ,optNumInterval } } } })
strStartDate

The start date (e.g., 04/14/2002) of the data to be exported. The date must be in the format
used by the project runtime server. For more information, see "Notes" below.

strStartTime
The start time (e.g., 06:30:00) of the data to be exported.

numDuration
The duration (in hours) of the data to be exported, starting from the specified start date and
time.

numGroup
The trend group or worksheet number. For more information, see Trend worksheet on page 410.

strTargetFile
The name of the text file to which the data will be exported.

By default, the file must be located in your project folder (i.e., the folder that contains the file
<project name>.app), on the computer that hosts the project runtime server. If the file is or
should be located in another folder, specify the complete file path.

optStrSeparator
The character that will be used to separate the values in each line of the file.

This parameter is optional; if no value is specified, the default value is a TAB character (\t).

optNumMilliseconds
A numeric flag that indicates whether to show millisecond-precision in the timestamp on each
entry:

Value Description

0 Do not show milliseconds.

1 Show milliseconds.

This parameter is optional; if no value is specified, the default value is 0.

optStrFormat
The date format that will be used in the timestamp on each entry:

Value Description

DMY Day, Month, Year

MDY Month, Day, Year

YMD Year, Month, Day

This parameter is optional; if no value is specified, the default value is DMY.

optNumInterval
The interval between entries to be exported. Only entries at this interval are exported to the
specified file. For example, if optNumInterval is 10, only every tenth entry is exported.

This parameter is optional; if no value is specified, every entry is exported.

Returned value
This function returns one of the following possible values:

Appendix: Built-in Language

Page 1030

Value Description

-4 Invalid date format (see "Notes" below).

-3 Invalid number of parameters.

-2 DLL functions not found.

-1 InStudiot.dll not found in the program folder.

0 Function executed successfully.

1 Error. Previous execution of the function HST2TXT has not yet been
completed.

Notes
If a Trend group/worksheet is configured to save historical data to proprietary history files instead of an
external database, the files will be saved in your project folder at <project name>\Hst*.hst, on the
computer that hosts your project runtime server. These history files are in a proprietary binary format, which
is why it is necessary to export the historical data to a separate text file if you want to reuse your trend
history in other applications.

Since the history files are located on the server, the export must be done on the server, which means this
function is executed on the server even when it is called in a project screen on a thin client. You cannot export
to a file on the thin client.

Furthermore, since this function is executed on the server, the date that you specify for strStartDate must be
in the date format used by the server. If you specify a date in a different date format — even the format used
by the client — the server will not recognize it and this function will return a value of -4 (i.e., invalid date
format). For more information, see About the date format and how to change it on page 707.

Although this function can be called while the project is either running or stopped, it can be executed only
after the project has ran at least once. If you try to call this function before the project has ran — for example,
if you start the BLUE Open Studio 2020 application and then immediately enter this function in the Watch
window on page 70 — it will fail without error.

If you want to export historical data without running the project, you can also use the command-line utility
HST2TXT.exe. It is especially useful if you want to do the export as part of a longer, scripted procedure. For
more information, see Converting Trend History Files from Binary to Text on page 418.

Tip: To export to a comma-separated values (CSV) file that can be imported into Microsoft Excel and
other spreadsheet applications, specify a comma separator and a file name with the CSV suffix (e.g.,
history.csv).

Examples
Export 0.1 hour (i.e., six minutes) of historical data from Trend group/worksheet 3 to a slash-separated text
file:

HST2TXT("04/14/2002","06:30:00",0.1,3,"data.txt","\")

Export 0.1 hour (i.e., six minutes) of historical data from Trend group/worksheet 3 to a CSV file using the
MDY date format:

HST2TXT("04/14/2002","06:30:00",0.1,3,"data.csv",",",0,"MDY")

Export every tenth entry in 0.1 hour (i.e., six minutes) of historical data from Trend group/worksheet 3 to a
CSV file using the MDY date format:

HST2TXT("04/14/2002","06:30:00",0.1,3,"data.csv",",",0,"MDY",10)

Appendix: Built-in Language

Page 1031

HST2TXTIsRunning
Returns the status of the HST2TXT function.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

HST2TXTIsRunningFile Synchronous Yes Supported Executed on Server Not supported

Syntax

HST2TXTIsRunning()

HST2TXTIsRunning()

This function takes no parameters.

Returned value

Value Description

0 HST2TXT is still running.

-1 Last conversion process was executed properly.

-2 Reserved.

-3 File not found. There are no history files in the configured time interval for the group specified.

-4 Cannot open history file.

-5 Cannot create/open ASCII file.

-6 Cannot read file information from history file.

-7 Invalid file type.

-8 Cannot read header information from history file.

-9 Invalid number of tag in the header information (0 > nTags > 250).

-10 Cannot create Header file (.hdr).

-20 InStudiot.dll was not found.

-30 Cannot access DLL function.

ImportXML
The function ImportXML is used to import Studio XML files into your project during run time.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

ImportXML File Synchronous No Supported (see
"Notes" below)

Not supported Not supported

Syntax

ImportXML(strXMLFile,optStrDestFile,optNumFileType,optNumReplaceDuplicate)

ImportXML(strXMLFile{ | ,optStrDestFile{ | ,optNumFileType{ | ,optNumReplaceDuplicate } } })
strXMLFile

The file path and name of the XML file to be imported. If you specify only a file name with no
path, the runtime will automatically look in the Screen and Web sub-folders of your project
folder.

optStrDestFile

Appendix: Built-in Language

Page 1032

The new name of the project file, if any.

This parameter is optional; if no value is specified, the default value is "screen".

optNumFileType
A numeric flag indicating the type of Studio XML file to be imported. At this time, only Studio
XML Screen files are supported.

Value Description

0 Studio XML Screen file

This parameter is optional; if no value is specified, the default value is 0.

optNumReplaceDuplicate
A numeric flag indicating whether the imported XML file should replace an existing project file of
the same name. For example, Objects.xml and Objects.scc would be duplicates.

Value Description

0 Do not replace duplicate project file.

1 Replace duplicate project file.

This parameter is optional; if no value is specified, the default value is 0.

Returned value
This function returns one of the following possible values:

Value Description

-2 Invalid license; this function is not available in Demo Mode.

-1 Cannot execute this function on the project client (i.e., Viewer). Execute the
function on the project server.

0 Function executed successfully.

1 Invalid number of parameters.

2 Invalid parameter data type.

3 Cannot replace duplicate file.

4 Failed to load import module. (ImportXML does not work when your project is
running as a Windows service. For more information, see Run a project as a
Windows service on page 136.)

5 File type (optNumFileType) not supported.

6 Failed to create destination file.

7 Internal error.

8 Failed to save imported screen.

9 Failed to retrieve screen file.

10 Internal XML file error.

Notes
This function can be executed only on the project server, where the BLUE Open Studio 2020 develoment
environment must be installed and running with at least a Runtime license. You can use the functions
StartTask, EndTask, and IsTaskRunning with the parameter "Studio" to programmatically control the
development environment.

For more information about Studio XML Screen files and how they are created, see Import a Studio XML
Screen on page 220.

Appendix: Built-in Language

Page 1033

Examples
Look for Screen1.xml in the Screen and Web sub-folders, and then import it to create Screen1.scc if it does
not already exist:

ImportXML("Screen1.xml")

Look for Screen1.xml at the specified file path, and then import it to create Screen1.scc if it does not
already exist:

ImportXML("C:\Users\<user name>\Documents\BLUE Open Studio 2020 Projects\SMA_Project
\Screen\Screen1.xml")

Look for Screen1.xml at the specified file path, and then import it to create Screen9.scc if it does not
already exist:

ImportXML("C:\Users\<user name>\Documents\BLUE Open Studio 2020 Projects\SMA_Project
\Screen\Screen1.xml","Screen9.scc")

Look for Screen1.xml at the specified file path, and then import it to replace Screen9.scc:

ImportXML("C:\Users\<user name>\Documents\BLUE Open Studio 2020 Projects\SMA_Project
\Screen\Screen1.xml","Screen9.scc",0,1)

LookupContains
This function verifies that an external file contains the specified keyword in its key column.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

LookupContainsFile Synchronous Yes Supported Not supported Supported

Syntax
LookupContains(strKey)
strKey

The keyword to look for in the file's keywords column.

Returned value
This function returns one of the following possible values:

Value Description

0 Specified keyword not found.

1 Specified keyword found.

Notes
The external file must already be loaded by calling the function LookupLoad.

Examples

LookupContains("customer167")

Appendix: Built-in Language

Page 1034

LookupGet
This function gets a value from an external file by cross-referencing from a specified keyword.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

LookupGet File Synchronous Yes Supported Not supported Not supported

Syntax
LookupGet(strKey)
strKey

The keyword to look for in the file's keywords column.

Returned value
This function returns (as a string) the cross-referenced value from the file's specified values column.

If no value is found, then this function returns strKey.

Notes
The external file must already be loaded by calling the function LookupLoad.

Examples

LookupGet("customer167")

LookupLoad
This function loads an external file — typically, a delimited text file — that can be used to look up table
values. One column of the file is designated as the keywords column, and another column is designated as
the values column.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

LookupLoad File Synchronous Yes Supported Not supported Not supported

Syntax
LookupLoad(strFileName,numColKey,numColValue,strDelimiters)
strFileName

The file path and name of the external file.

numColKey
The number of the column/field that contains the keywords.

numColValue
The number of the column/field that contains the desired values.

strDelimiters
The delimiter that separates the columns/fields.

Returned value
This function returns the number of rows/lines in the specified file.

If the specified file cannot be found, then this function returns a negative number as an error code.

Notes
This function only loads the specified file; it doesn't do anything with the file. To use the file, call the
LookupContains and LookupGet functions.

Appendix: Built-in Language

Page 1035

Also, to load another file, simply call this function again. Only one file can be loaded at a time, however; the
new file replaces the old in the project's memory.

Examples

LookupLoad("C:\Temp\customerlist.csv", 1, 4, ",")

PDFCreate
Creates a PDF file from the specified source file.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

PDFCreate File Synchronous No Supported Supported Not supported

Syntax
PDFCreate(strSourceFile{ | ,optStrPdfFile })
strSourceFile

String specifying the file path and name of the desired source file (*.doc, *.txt, or *.rtf). If a
file path is not specified, the function will look for the source file in the project folder.

optStrPdfFile
Optional string specifying the file path and name of the created PDF file. If a file path is not
specified, then the PDF file will be saved in the same location as the source file. If this parameter
is omitted — that is, if no file path or name is specified at all — then the PDF file will be saved
in the same location and with the same name as the source file. Only a new extension is added.
For example, C:\path\to\MyDocument.rtf becomes C:\path\to\MyDocument.pdf.

Returned value

Value Description

0 Success

1 Error in PDF profile information

3 Error saving PDF file

4 Job canceled

101 Error initializing PDF resource

102 Specified source file not found

103 Error generating PDF file

104 Wrong number of parameters

105 Wrong parameter type

Note: This function only supports the execution of one job at a time. If more than one user or
command attempts to call the function at the same time, then the function will fail and return a
value of 101.

Examples

Tag Name Expression

 PDFCreate("C:\Report1.rtf")

 PDFCreate("C:\Report2.doc", "C:\Converted1.pdf")

Appendix: Built-in Language

Page 1036

Tag Name Expression

 PDFCreate("C:\Report3.txt", "C:\Data\Converted1.pdf")

Print
Print is a built-in function that prints the contents of a specified text file.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Print File Asynchronous No Supported Supported Not supported

Syntax

Print(strFilePath,optNumOrientation)

Print(strFilePath{ | ,optNumOrientation })
strFilePath

The file path and name of the text file to be printed.

optNumOrientation

A numeric value that indicates the paper oriententation:

Value Description

0 Portrait

1 Landscape

This parameter is optional; if no value is specified, the default value is 0.

Return value
This function returns one of the following possible values:

Value Description

0 Invalid parameter(s).

1 Valid parameters.

This function only checks whether the specified parameters are valid, before it tries to use those parameters
to print the file. In other words, the return value does not indicate whether the file is successfully printed. To
determine that, view the print queue in Windows.

Notes
This function can only be used to print the contents of text files. It cannot be used to print information in any
other format (e.g., pictures, binary files, etc.).

This function is based on legacy code, which means it cannot use printer settings that were previously
configured by the PrintSetup function. Instead, it always uses the default printer on the computer or
device that hosts the project runtime. You can use VBScript in your project to change the default printer in
Windows, however. For example:

Dim WSHNetwork
Set WSHNetwork = CreateObject("WScript.Network")
WSHNetwork.SetDefaultPrinter "<printer name>"
Set WSHNetwork = Nothing

Appendix: Built-in Language

Page 1037

Examples
Print the contents of ReadMe.txt in portrait mode:

Print("C:\ReadMe.txt")

Print the contents of the file specified by the MyTextFile tag, in landscape mode:

Print(MyTextFile,1)

RDFileN
Launches a File Browser window allowing you to select a file.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

RDFileN File Synchronous No Supported Executed on Server
(see "Notes" below)

Not supported

Syntax

RDFileN("tagSelectedFile", strSearchPath, strMask, optNumChangeDir)

tagSelectedFile
Name of the string tag receiving the name and path of a selected file. The tag name must be
enclosed in quotes, or the project will try to get the contents of the tag. Moreover, it must be a
valid tag name — it cannot be a VBScript variable name, for example.

strSearchPath
The file path (directory) to search.

strMask
The mask used to filter the files.

optNumChangeDir
Optional numeric tag that indicates whether the operator will be able to change the browsing
directory. If this parameter is omitted or set TRUE (1), then the window opened by this function
will allow the operator to navigate to different directories. If it is set FALSE (0), then the window
will be restricted to the directory specified by strSearchPath.

Returned value

0 Success

1 One of the parameters is not a string

2 Parameter 1 contains an invalid tag name

3 The user canceled the operation

Notes
By default, this function is executed on the project runtime server even when it is called in a screen on a
project thin client, which means it only affects directories and files that are located on the server and all paths
must be specified in that context. You can change the default behavior to force this function to be executed on
the client where it is called, but if you do so, you must keep in mind that the change will affect not just this
function but also several other File functions. To change the behavior of these functions, use a text editor to
open your project file (<project name>.app) and then edit the following property:

[Options]

Appendix: Built-in Language

Page 1038

ExecuteFileFunctionsOnClient=1

Examples

Tag Name Expression

Tag RDFileN("FileName", "C:\Studio\", "*.doc", 1)

WebGetFile
WebGetFile is a built-in function that gets a file from a specified URL and then saves it locally.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

WebGetFile File Synchronous No Supported Supported Not supported

Syntax

WebGetFile(strURL,strLocalPath)

WebGetFile(strURL,strLocalPath)
strURL

The URL (i.e., the web address) of the file you want to get. You can specify a port number as part
of the URL.

strLocalPath

The complete local file path where you want to save the downloaded file.

Return value
This function returns one of the following possible values:

Value Description

xxx HTTP status code; see below.

0 Success.

-1 Invalid number of parameters.

-2 Invalid URL.

-3 Invalid port number.

-4 Error while opening a connection to the specified server. Make sure the server
name (i.e., the domain or host name) and port number are correct.

-5 Error while saving the file. Make sure the local path is correct and you have the
necessary privileges to save files there.

In some cases, this function might successfully connect to the web server but still fail to get a file from the
specified URL. When that happens, the web server should provide a three-digit HTTP status code which
indicates the reason for the failure (e.g., "404 File Not Found"), and then this function will relay that code as
its return value.

If this function continues to return errors, use a web browser on the same computer that hosts the project
runtime to confirm it can access the network and go to the specified URL.

Examples
Get the file named myfile.txt:

WebGetFile("http://www.the-internet.com/myfile.txt","C:\myfile.txt")

Appendix: Built-in Language

Page 1039

Get the file specified by the project tag myURL:

WebGetFile(myURL,myFilePath)

Appendix: Built-in Language

Page 1040

FTP functions
Use the FTP functions to configure the FTP settings for your project, as well as to get files from and put files
on a remote server.

CnfFTP
CnfFTP is a built-in function that configures the FTP settings used by other features in the project that can
transfer files, such the FTPGet and FTPPut functions.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

CnfFTP FTP Synchronous No Supported Supported Not supported

Syntax

CnfFTP(strServer,optStrUser,optStrPassword,optNumPassiveMode,optNumPort)

CnfFTP(strServer{ | ,optStrUser,optStrPassword{ | ,optNumPassiveMode{ | ,optNumPort } } })
strServer

The host name or IP address of the FTP server.

optStrUser
optStrPassword

The username and password that will be used to log on to the FTP server.

These parameters are optional; if no values are specified, the project will log on anonymously by
default (i.e., optStrUser is "anonymous" and optStrPassword is "").

optNumPassiveMode
A numeric flag that specifies whether passive mode is enabled. (Passive FTP can be used to
bypass some firewall configurations.) This parameter can have the following possible values:

Value Description

0 Passive mode is disabled (default).

1 Passive mode is enabled.

This parameter is optional; if no value is specified, passive mode is disabled by default.

optNumPort
The port number of the FTP server.

This parameter is optional; if no value is specified, port 21 is used by default.

Returned value
This function returns one of the following possible values:

Value Description

−3 Invalid user name.

−2 Invalid server name.

−1 Invalid number of parameters.

0 Success.

Appendix: Built-in Language

Page 1041

Note: This function does not actually connect to the specified server, so these error codes do not
show the quality of the connection. They only show whether the FTP settings have been successfully
configured.

Notes
You must either call this function at least once or use the FTP Settings dialog box to configure your project's
FTP settings before you can call the FTPGet and FTPPut functions to transfer files.

Examples
Configure the FTP settings using passive mode and the default port 21:

CnfFTP("ftp.mycompany.com","admin","12345",1)

FTPGet
FTPGet is a built-in function that gets a file from an FTP server and then saves it on the local computer.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

FTPGet FTP Asynchronous No Supported Supported (see
"Notes" below)

Not supported

Syntax

FTPGet(strRemoteFile,strLocalFile,optNumTransferType,optNumOverwrite)

FTPGet(strRemoteFile,strLocalFile{ | ,optNumTransferType{ | ,optNumOverwrite } })
strRemoteFile

The full path and name of the file that you want to get from the FTP server, using the syntax
"/folder/filename.extension". Some FTP servers are case sensitive, so you should always
use correct capitalization.

strLocalFile
The full path and name where you want to save the file on the local machine, using the syntax
"C:\folder\filename.extension".

optNumTransferType
A numerical flag that specifies the type of file transfer:

Value Description

0 Unknown (default).

1 ASCII.

2 Binary.

10 Unknown, without caching.

11 ASCII, without caching.

12 Binary, without caching.

This parameter is optional; if no value is specified, the transfer type is unknown (0) by default.

optNumOverwrite
A numeric flag that specifies whether the local file (specified by strLocalFile) may be
overwritten if it already exists:

Appendix: Built-in Language

Page 1042

Value Description

0 Do not overwrite (default) — return an error if the file already exists.

1 Overwrite.

This parameter is optional; if no value is specified, the default value is 0.

Returned value
This function returns one of the following possible values:

Value Description

-5 Invalid transfer type.

-4 Invalid local file.

-3 Invalid remote file.

-2 Unknown system error.

-1 Invalid number of parameters.

0 Success.

1 Failed to create FTP thread or open connection to the server.

15 Data Protection is enabled (see "Notes" below).

Notes
Before you can call this function, you must either call the CnfFTP function or use the FTP Settings dialog box
to configure your project's FTP settings.

Also, this function is executed asynchronously, so you must call the FTPStatus function to confirm that the
transfer is completed.

This function cannot be executed on thin clients (i.e., in the Viewer module) when Data Protection is enabled.
It must be executed on the project runtime server. For more information, see Enable Data Protection to
encrypt sensitive information on page 111.

Examples
Get the file 040303.txt from the previously specified FTP server, and then save it at C:\Report.txt:

FTPGet("/Reports/040303.txt","C:\Report.txt")

FTPPut
FTPPut is a built-in function that puts a file from the local computer on an FTP server.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

FTPPut FTP Asynchronous No Supported Supported (see
"Notes" below)

Not supported

Syntax

FTPPut(strLocalFile,strRemoteFile,optNumTransferType)

FTPPut(strLocalFile,strRemoteFile{ | ,optNumTransferType })
strLocalFile

The full path and name of the file on the local machine that you want to put on the FTP server,
using the syntax "C:\folder\filename.extension".

Appendix: Built-in Language

Page 1043

strRemoteFile
The full path and name where you want to put the file on the FTP server, using the syntax
"/folder/filename.extension". Some FTP servers are case sensitive, so you should always
use correct capitalization.

optNumTransferType
A numeric flag that specifies the type of file transfer:

Value Description

0 Unknown (default).

1 ASCII.

2 Binary.

This parameter is optional; if no value is specified, the transfer type is unknown (0) by default.

Returned value
This function returns one of the following possible values:

Value Description

-5 Invalid transfer type.

-4 Invalid local file.

-3 Invalid remote file.

-2 Unknown system error.

-1 Invalid number of parameters.

0 Success.

1 Failed to create FTP thread or open connection to the server.

15 Data Protection is enabled (see "Notes" below).

Notes
Before you can call this function, you must either call the CnfFTP function or use the FTP Settings dialog box
to configure your project's FTP settings.

Also, this function is executed asynchronously, so you must call the FTPStatus function to confirm that the
transfer is completed.

This function cannot be executed on thin clients (i.e., in the Viewer module) when Data Protection is enabled.
It must be executed on the project runtime server. For more information, see Enable Data Protection to
encrypt sensitive information on page 111.

Examples
Put the file Report.txt on the previously specified FTP server at /Reports/040303.txt:

FTPPut("C:\Report.txt","/Reports/040303.txt")

FTPStatus
FTPStatus is a built-in function that gets the current status of any file transfers that were started by the
functions FTPGet and FTPPut.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

FTPStatus FTP Synchronous Yes Supported Supported (see
"Notes" below)

Not supported

Appendix: Built-in Language

Page 1044

Syntax

FTPStatus("optStrTagStatus")

FTPStatus("optStrTagStatus")
optStrTagStatus

The name of the string tag that will receive a text description of the current status of the file
transfer(s). The description corresponds to the actual status code returned by the function
(see "Returned value" below). However, this parameter is optional; if no value is specified, the
description will not be received.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

Returned value
This function returns one of the following possible values:

Value Description

-9 Transfer pending

-8 Error receiving the file (see status string for details)

-7 Error establishing connection (see status string for details)

-6 Error opening connection (see status string for details)

-2 Invalid strStatusTag

0 No transaction is being executed

1 Transaction executed successfully

2 Resolving name

3 Name resolved

4 Connecting to server

5 Connected to server

6 Closing connection

7 Connection closed

8 Sending request

9 Request sent

10 Receiving response

11 Intermediate response received

12 Response received

13 Request completed

15 Data Protection is enabled (see "Notes" below).

Notes
Unlike the other FTP functions, you can call this function at any time, but it will not provide useful
information unless you have previously called FTPGet or FTPPut.

This function cannot be executed on thin clients (i.e., in the Viewer module) when Data Protection is enabled.
It must be executed on the project runtime server. For more information, see Enable Data Protection to
encrypt sensitive information on page 111.

Appendix: Built-in Language

Page 1045

Examples
Get the current status of a file transfer, and then store a text description of the status in the string tag named
"StatusDescription":

FTPStatus("StatusDescription")

Appendix: Built-in Language

Page 1046

Graphic functions
These functions are used to manipulate and print project screens.

AutoFormat
Automatically formats a real number to a preset number of decimal places, according to the virtual table of
settings created by the SetDecimalPoints function. (This is similar to the Format function, except that you
do not need to specify the number of decimal places.)

Function Group Execution String Exp. Windows Thin Clients Mobile Access

AutoFormat Graphic Synchronous Yes Supported Supported Not supported

Syntax
AutoFormat(numValue)
numValue

The real number to be formatted.

Returned value
This function returns a formatted string.

Examples
In the following examples, the SetDecimalPoints function has already been used to set 3 decimal places for
values greater than equal to 1.5 and 1 decimal place for values less than or equal to −3.

Tag Name Expression

Tag AutoFormat(1.543210) // Returned value = "1.543"

Tag AutoFormat(−3.123456) // Returned value = "−3.1"

GetScrInfo
The function GetScrInfo gets information about an open project screen.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetScrInfo Graphic Synchronous Yes Supported Supported Not supported

Syntax

GetScrInfo(strScreenName,"tagResult",optNumResultType,optNumID)

GetScrInfo(strScreenName,"tagResult"{ | ,{ optNumResultType | 0 | 1 | 2 | 3 | 4 }{ | ,optNumID
} })
strScreenName

The name of the screen about which you want to get information.

tagResult
The name of the project tag that will receive the information.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

optNumResultType

Appendix: Built-in Language

Page 1047

A numeric flag specifying the type of information to be retrieved by the function:

Value Description

0 Default value. Writes the TOP, LEFT, BOTTOM and RIGHT screen
coordinates to each consecutive position of the array tag specified for
tagResult.

1 Writes the TOP screen coordinate to the tag specified for tagResult.

2 Writes the LEFT screen coordinate to the tag specified for tagResult.

3 Writes the BOTTOM screen coordinate to the tag specified for
tagResult.

4 Writes the RIGHT screen coordinate to the tag specified for
tagResult.

This is an optional parameter; the default value is 0.

optNumID
The specific instance number of the screen. (The ID is assigned when the screen is opened with
the function Open.) This is an optional parameter; the default ID is 0.

Returned value
This function returns one of the following possible values:

Value Description

-4 Invalid tag specified for tagResult.

-3 optNumResultType is 0, but an array tag is not specified for tagResult.

-2 Memory allocation error.

-1 String not specified for strScreenName and/or tagResult.

0 Function executed successfully.

Notes
If the Enforce Web functionality equivalence in local project screens option is selected in the project settings, this function
cannot be called in Global Procedures, Script worksheets, or other background tasks. This is because
the function behaves differently depending on whether you view project screens locally (i.e., on the same
computer that hosts the project runtime) or remotely. For more information, see Preferences tab on page 127.

Examples
Retrieve the TOP, LEFT, BOTTOM and RIGHT coordinates of the "main" screen and then write them to the
first four positions of the array tag TagXY:

GetScrInfo("main","TagXY[0]")

Retrieve the BOTTOM coordinate of the "main" screen and then write it to TagXY:

GetScrInfo("main","TagXY",3)

Retrieve the LEFT coordinate of the "main" screen with ID 10 and then write it to TagXY:

GetScrInfo("main","TagXY",2,10)

Appendix: Built-in Language

Page 1048

GetURLParams
GetURLParams is a built-in function that gets the list of parameters in the current URL in the browser.

Syntax

GetURLParams()

GetURLParams ()

This function takes no parameters.

Return value
This function returns a string value that is equal to the query string in the current URL in the browser.

If an error occurs, this function returns an empty string with BAD quality.

Notes
This function is only supported by Mobile Access because it is designed to get the list of parameters that were
used to link directly to a project screen in Mobile Access. For more information, see Link directly to a project
screen or screen group on page 814.

When this function is executed, it automatically retrieves the current URL from the browser and then parses
it to get the query string. In other words, it returns everything that follows the delimiter character (? or #) that
indicates the start of the query string. The query string comprises one or more parameters in field=value
format, and those parameters are separated by ampersands (&).

You can use other built-in functions like StrGetElement on page 1148 to further parse the list of parameters.

Examples
When the current URL in the browser is…

http://localhost/#screen=screen1&guestuser=1

…this function returns the following string value:

screen=screen1&guestuser=1

PrintSetup
The function PrintSetup displays a standard print setup dialog box on the client, in which the user can
select and configure a printer for printing project screens.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

PrintSetup Graphic Asynchronous No Supported Supported Not supported

Syntax

PrintSetup()

PrintSetup()

This function takes no parameters.

Return value
This function returns no value.

Appendix: Built-in Language

Page 1049

Notes
If the Enforce Web functionality equivalence in local project screens option is selected in the project settings, this function
cannot be called in Global Procedures, Script worksheets, or other background tasks. This is because
the function behaves differently depending on whether you view project screens locally (i.e., on the same
computer that hosts the project runtime) or remotely. For more information, see Preferences tab on page 127.

PrintWindow
The function PrintWindow prints a screenshot of a project screen. The screen does not need to be open and
active; the function can print a screen running in the background or even closed screen file.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

PrintWindow Graphic Asynchronous No Supported Supported Not supported

Syntax

PrintWindow(strScreenName,optNumOrientation,optNumID,optStrMnemonicList)

PrintWindow(strScreenName{ | ,{ optNumOrientation | 0 | 1 }{ | ,optNumID{ | ,optStrMnemonicList
} } })
strScreenName

The name of the screen to be printed. If this parameter is omitted, then the currently active
screen will be printed.

optNumOrientation

A numeric flag specifying the print orientation:

Value Description

0 Portrait

1 Landscape

This parameter is optional; if no value is specified, the default value is 0.

optNumID

The specific ID number of the screen. (This number is assigned when the screen is opened using
the function Open.)

This parameter is optional; if no value is specified, the default value is 0.

optStrMnemonicList

A string that describes how the custom properties of any generic objects or linked symbols in
the screen will be completed when the screen is printed. This string has the following syntax…

#Label:Value

…where Label is the name of the property and Value is the tag, expression or literal value that
the property will receive. You can declare two or more mnemonics, as long as they are separated
by spaces. See the Examples section below for an example.

Note: This parameter does not work for a screen that is already open, because if
the screen has been opened, the custom properties have received their values.

Return value
This function does not support printing to Studio PDF2. (Studio PDF2 is a PDF printer that is installed with
BLUE Open Studio 2020 for use with other features such as the PDFCreate function.) If Studio PDF2 is

Appendix: Built-in Language

Page 1050

selected as the printer on the computer or device where this function is executed, the specified screen is not
printed and this function returns -1.

Otherwise, this function returns no value.

Notes
If the Enforce Web functionality equivalence in local project screens option is selected in the project settings, this function
cannot be called in Global Procedures, Script worksheets, or other background tasks. This is because
the function behaves differently depending on whether you view project screens locally (i.e., on the same
computer that hosts the project runtime) or remotely. For more information, see Preferences tab on page 127.

Examples
Print the currently active screen in portrait orientation:

PrintWindow()

Print the screen named "Main" in landscape orientation:

PrintWindow("Main",1)

Print the screen specified by the tag MyScreenName:

PrintWindow(MyScreenName)

Print the screen named "Main" with ID 10:

PrintWindow("Main",1,10)

Print the screen named "Main", replacing the custom properties Mne1 and Mne2 with the values of Tag1 and
Tag2, respectively:

PrintWindow("Main",1,0,"#Mne1:Tag1 #Mne2:Tag2")

Tip: You can use this function to print graphical reports that include Alarm/Event Control and
Trend Control objects.

ResetDecimalPointsTable
Resets the virtual table of settings created by the SetDecimalPoints function.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

ResetDecimalPointsTableGraphic Synchronous No Supported Supported Not supported

ResetDecimalPointsTable()

Syntax
ResetDecimalPointsTable()

This function takes no parameters.

Return value
This function returns no value.

Appendix: Built-in Language

Page 1051

Examples

Tag Name Expression

 ResetDecimalPointsTable() // Resets the virtual table of settings.

RGBColor
Returns the number of the color defined by the RGB (Red, Green, Blue) codes.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

RGBColor Graphic Synchronous Yes Supported Supported Supported

Syntax
RGBColor(numRed,numGreen,numBlue)
numRed

Red code from the RGB code.

numGreen
Green code from the RGB code.

numBlue
Blue code from the RGB code.

Returned value
This function returns the number of the color defined by the RGB (Red, Green, Blue) codes.

Examples

Tag Name Expression

TagColor RGBColor(51,153,102) // This function returns the value 13434828, which is the color code for Sea Green.

TagColor RGBColor(TagRed,TagGreen,TagBlue) // This function returns the color code of the RGB values set in the
tags TagRed, TagGreen and TagBlue, respectively.

Tip: See the list of RGB Codes and Color values for the most used colors in the Color Interface
section.

RGBComponent
RGBComponent is a built-in scripting function that gets the level of a color component (red, green, or blue) in a
specified color.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

RGBComponent Graphic Synchronous Yes Supported Supported Supported

Syntax
RGBComponent(numColor,{ numComponent | 0 | 1 | 2 })
numColor

The decimal code for a 24-bit RGB color, which can be any integer value between 0 and
16777215. (This color model is also known as "Truecolor" or "millions of colors.")

numComponent
The color component for which you want to get the level: 0 is red, 1 is green, and 2 is blue.

Appendix: Built-in Language

Page 1052

Returned value
This function returns an integer value between 0 or 255, which represents the level of the color component in
the specified color.

Notes
For a list of frequently used RGB color codes and their equivalent "plain English" names, see Color Interface.

Examples
Get the level of red in color code 13434828 (i.e., sea green):

RGBComponent(13434828, 0)

Get the level of the component specified by TagComponent in the color specified by TagCode:

RGBComponent(TagCode, TagComponent)

SaveScreenShot
SaveScreenShot is a built-in function that takes a screen shot of a project screen and then saves it as an
image file.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SaveScreenShotGraphic Synchronous No Supported Supported (see
"Notes" below)

Not supported

Syntax

SaveScreenShot(optStrScreenName,optStrOutputFile,optNumFormat)

SaveScreenShot({ | optStrScreenName{ | ,optStrOutputFile{ | ,{ optNumFormat | 0 | 1 | 2 | 3 | 4
| 5 } } } })
optStrScreenName

The file path and name of a project screen file (*.scc or *.scr). If no file path is specified, the
file must be located in the Screen sub-folder of the project folder. For example: BLUE Open
Studio 2020 Projects\<project name>\Screen\<screen name>.scr

Whether the screen must be open depends on where the function is executed. See "Notes" below.

This parameter is optional; if no value (or "") is specified, the currently open and active screen is
used.

optStrOutputFile

The file path and name of the output file.

This parameter may be either optional or required, depending on where the function is executed.
See "Notes" below.

optNumFormat

The format of the image file:

Value Description

0 BMP

1 JPG

2 PNG

3 GIF

Appendix: Built-in Language

Page 1053

Value Description

4 TIFF

5 Auto

This parameter is optional; if no value is specified, the default is 1 (JPG).

Return value
This function returns one of the following possible values:

Value Description

0 Success.

-1 Wrong number of parameters.

-2 Wrong parameter types.

-3 Invalid file path for optStrOutputFile.

-4 optStrOutputFile cannot be empty.

-5 Wrong format / invalid option for optNumFormat.

-6 Failed to save output file.

-7 Failed to create compatible bitmap.

-10000 Project is not running. This error typically occurs when you try to call the
function in the Watch window. See "Notes" below.

Notes
This function behaves somewhat differently depending on where it is executed:
On the server

In order for the function to be executed on the project runtime server, the Viewer task (i.e., the
server's local Viewer program) must be started. The function can be called either by background
tasks (e.g., Script and Math worksheets) or in the Watch window, but it will fail if the Viewer
task is not also started. This is because the Viewer task is used to render the screen. For more
information about starting run-time tasks, see Runtime Tasks on page 134.

optStrOutputFile is optional; if no value (or "") is specified, the file is saved in the Web sub-folder
of the project folder and the file name is either the value of optStrScreenName (if specified) or
simply ScreenShot.jpg. For example: <project name>\Web\ScreenShot.jpg

Secure Viewer
If the function is executed by Secure Viewer running on a remote station, the screen may be
either open or closed. Also, optStrOutputFile is required; you must specify a complete file path
and name for the output file.

Examples
Take a screen shot of the current screen, and then save it as ScreenShot.jpg:

SaveScreenShot()

Take a screen shot of main.scc, and then save it as main.jpg:

SaveScreenShot("main.scc")

Take a screen shot of the current screen, and then save it as a bitmap with the name of the currently logged
user:

SaveScreenShot("",UserName,0)

Appendix: Built-in Language

Page 1054

SetDecimalPoints
Sets the number of decimal places to be displayed, for a specified range of real numbers. This setting will
be used by all screen objects and animations that have the Auto Format option enabled, as well as by the
AutoFormat function.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SetDecimalPointsGraphic Synchronous No Supported Supported Not supported

Syntax
SetDecimalPoints(numBaseValue,numDecimalPoints)
numBaseValue

The base value of the range of real numbers. For negative values, the range includes all real
numbers less than or equal to that value. For positive values, the range includes all real
numbers greater than or equal to that number. (You can set the other limit of the range by
calling the function again with a new set of parameters.)

numDecimalPoints
The number of decimal places to be displayed, for the range of real numbers specified by
numBaseValue.

Returned value

0 Error

1 Success

Notes
If you call this function more than once with different parameters for each call, then you can build a
virtual table of format settings. You can set a different number of decimal places for each range of real
numbers, and all of the settings are saved for the duration of runtime or until you reset the table using the
ResetDecimalPointsTable function.

Note: This formatting does not change the actual value of any tag or expression. It only changes
how the value is displayed by on-screen objects.

Examples

Tag Name Expression

Tag SetDecimalPoints(1.5, 3) // Displays 3 decimal places for all real numbers greater than or equal to 1.5.

Tag SetDecimalPoints(−3, 1) // Displays 1 decimal place for all real numbers less than or equal to −3.

SetDisplayUnit
Finds all tags and all Grid object and Trend Control object values that have a specific engineering unit (as
stored in the Unit tag field), and then sets the DisplayUnit, UnitDiv, and UnitAdd fields on those tags.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SetDisplayUnitGraphic Synchronous No Supported Supported Not supported

Syntax
SetDisplayUnit(strUnitOrigin,strDisplayUnit,numDiv,numAdd)
strUnitOrigin

The engineering unit to be matched.

Appendix: Built-in Language

Page 1055

strDisplayUnit
The new value for the DisplayUnit tag field.

numDiv
The new value for the UnitDiv tag field.

numAdd
The new value for the UnitAdd tag field.

Returned value

0 Success.

-1 Wrong number of parameters.

-2 strUnitOrigin parameter is empty.

-3 numDiv parameter is invalid (equal to 0).

Notes
This function only affects how the tag values are displayed on screen; it does not change the actual tag values
in any way.

Examples

Tag Name Expression

Tag SetDisplayUnit("C", "F", 0.555556, 32) // For all tags and object values with a Unit of "C", the
DisplayUnit tag field is set to "F", the UnitDiv tag field is set to 0.555556, and the UnitAdd tag field is set to 32.

SetTagDisplayUnit
Sets the DisplayUnit, UnitDiv, and UnitAdd properties on a specific tag.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SetTagDisplayUnitGraphic Synchronous No Supported Supported Not supported

Syntax
SetTagDisplayUnit(strTagName,strDisplayUnit,numDiv,numAdd)
strTagName

The name of the specific tag on which the DisplayUnit, UnitDiv and UnitAdd tag fields will be
set.

Note: If this parameter is given a tag, then that tag should contain the name of
the tag on which the tag fields will be set.

strDisplayUnit
The new value for the DisplayUnit tag field.

numDiv
The new value for the UnitDiv tag field.

numAdd
The new value for the UnitAdd tag field.

Returned value

0 Success.

Appendix: Built-in Language

Page 1056

-1 Wrong number of parameters.

-2 Specified tag doesn't exist.

-3 numDiv parameter is invalid (equal to 0).

Examples

Tag Name Expression

Tag SetTagDisplayUnit("TagTemp", "F", 0.555556, 32) // For the tag "TagTemp", the
DisplayUnit tag field is set to "F", the UnitDiv tag field is set to 0.555556, and the UnitAdd tag field is set to 32.

Appendix: Built-in Language

Page 1057

Log Message functions
These functions are used to display status and debug messages in the Output window (for local runtime) or
Remote LogWin window (for remote runtime).

Trace
Trace is a built-in function that displays a text message in the Output window. It is typically used to debug
the project.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Trace Log Message Synchronous No Supported Supported Not supported Supported (see
"Notes" below)

Syntax

Trace(strOutputMessage)

Trace(strOutputMessage)
strOutputMessage

The text of the message to be displayed.

Return value
This function returns no value.

Notes
On Mobile Access, trace messages are displayed in the activity log in the browser console. For more
information, see Use the activity log to troubleshoot the Mobile Access web interface on page 817.

Examples
Display static text that reports a specific event:

Trace("Beginning step 5.")

Display a date or time stamp by referencing the appropriate system tag:

Trace(Date)

Concatenate static text, tag references, and function calls to form a complex message:

Trace("The current second of the minute is " + Second + " and the system tick is " +
 GetTickCount() + " ms.")

Appendix: Built-in Language

Page 1058

Logarithmic functions
These functions are used to perform logarithmic operations on numeric values.

Exp
Calculates the value of e (2.718282) raised to the power of numValue.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Exp Logarithmic Synchronous Yes Supported Supported Supported

Syntax
Exp(numValue)
numValue

Integer or Real tag containing the exponent of e.

Returned value
Returns the value of e^(numValue).

Examples

Tag Name Expression

Tag Exp(1) // Returned value = 2.718282

Tag Exp(5.25896) // Returned value = 192.281415

Log
Calculates the natural log of numValue.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Log Logarithmic Synchronous Yes Supported Supported Supported

Syntax
Log(numValue)
numValue

Integer or Real tag from which the natural log is taken.

Returned value
Returns the value of ln(numValue).

Note: If numValue has a negative value, then this function will return the value 0 and it will set the
quality of the returned tag to BAD.

Examples

Tag Name Expression

Tag Log(2.718282) // Returned value = 1

Tag Log(100) // Returned value = 4.605170

Appendix: Built-in Language

Page 1059

Log10
Calculates the log base 10 of numValue.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Log10 Logarithmic Synchronous Yes Supported Supported Supported

Syntax
Log10(numValue)
numValue

Integer or Real tag, from which the log base 10 is taken.

Returned value
Returns the value of log10(numValue).

Note: If numValue has a negative value, then this function will return the value 0 and it will set the
quality of the returned tag to BAD.

Examples

Tag Name Expression

Tag Log10(1000) // Returned value = 3

Tag Log10(43.05) // Returned value = 1.633973

Appendix: Built-in Language

Page 1060

Logical functions
These functions are used to perform logical operations (e.g., if/then, true/false) on tags and expressions.

False
Determines whether the specified tag or expression is logically false.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

False Logical Synchronous Yes Supported Supported Supported

Syntax
False(TagOrExpression)
TagOrExpression

Tag or expression to be used in the function.

Return value

0 If the tag or expression is not logically false.

1 If the tag or expression is logically false.

Tip: You may find this function useful if you need to return an actual value of 0 when the
expression returns some value other than 0.

Examples

Tag Name Expression

Tag False(1) // Returned value = 0

Tag False(5 < 2) // Returned value = 1

If
If is a built-in function that evaluates a specified tag/expression to determine whether it is logically true or
false, and then it returns a corresponding value.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

If Logical Synchronous Yes Supported Supported Supported

Syntax

If(numExpression,numThen,optNumElse)

If(numExpression,numThen{ | ,optNumElse })
numExpression

The tag or expression to be evaluated.

numThen
The tag, expression, or value that is returned if numExpression is logically true (i.e., not 0).

optNumElse

The tag, expression, or value that is returned if numExpression is logically false (i.e., 0).

Appendix: Built-in Language

Page 1061

This parameter is optional; see "Returned value" below.

Return value
This function returns either numThen or optNumElse, depending on how numExpression is evaluated.

If numExpression is logically false and optNumElse is not specified, this function returns no value.
Furthermore, if a project tag is configured to receive the value returned by this function but the function
returns no value, the project tag retains its existing value.

Notes
numExpression can be a combination of logic statements (e.g., AND, OR, NOT). For example:

If(TagA>TagB AND TagA=10,1,0)

Both numThen and optNumElse can be functions as well, resulting in direct actions. For example:

If(TagA>TagB,Open("Screen2"),0)

You can even create nested If functions for more complex logic. For example:

If(TagA>TagB,If(TagA<TagC,Open("Screen2"),Open("Screen3")),0)

Nested If functions are supported only in Built-in Language interfaces, however; they are not supported in
VBScript interfaces. For more information, see About the Built-in Language interface on page 510.

In VBScript interfaces, each parameter is validated when the function is executed, so if one of the parameters
is another If function, that function might be executed regardless of whether it should be. Use VBScript's
own If…Then…Else statement instead.

If you are using Mobile Access to view your project, nested If functions are not supported at all. This is due
to how functions are converted to JavaScript for execution on Mobile Access.

Examples
Evaluate the expression "5 > 4", and then return the corresponding value (i.e., return 10, because the
expression is logically true):

If(5>4,10,6)

Evaluate the expression "5 < 2", and then return the corresponding value (i.e., return 2, because the
expression is logically false):

If(5<2,0,2)

Evaluate the expression "3 = 9", and then return the corresponding value (i.e., return no value, because the
expression is logically false and optNumElse is not specified):

If(3=9,67)

Toggle
Returns the toggled value from the contents of numValue tag.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Toggle Logical Synchronous Yes Supported Supported Supported

Appendix: Built-in Language

Page 1062

Syntax

Toggle(numValue)

numValue
Boolean tag containing the value to be toggled.

Returned value
Numerical result (0 or 1) of the value to be toggled.

Notes
This function does not actually change the value of the tag, but it can be used in a command or operation
that does.

Examples

Tag Name Expression

Tag Toggle(MyBoolTag) // Returned value = 1 if MyBoolTag value equals 0, or 0 if MyBoolTag value equals 1

Tag Toggle(numValue) // Returned value = toggled value of the number in the numValue tag

True
Determines whether the specified tag or expression is logically true.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

True Logical Synchronous Yes Supported Supported Supported

Syntax
True(TagOrExpression)
TagOrExpression

Tag or expression to be used in the function.

Return value

0 If the tag or expression is not logically true.

1 If the tag or expression is logically true.

Tip: You may find this function useful if you need to return an actual value of 1 when the
expression returns some value other than 0.

Examples

Tag Name Expression

Tag True(1) // Returned value = 1

Tag True(5 < 2) // Returned value = 0

Appendix: Built-in Language

Page 1063

Loop functions
Loop functions are used to implement an incrementing loop within a script.

For…Next
For and Next are built-in functions that implement an incrementing loop in a Math worksheet. The section
of script included in the loop begins with the For() call and ends with the Next notation. The Next notation
directs back to the beginning of the loop.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

For Loop N/A No Supported Supported Not supported

Syntax

For(numInitialValue,numFinalValue,numStep)

For(numInitialValue,numFinalValue,numStep)
numInitialValue

The initial or starting value of the loop.

numFinalValue
The final or ending value of the loop.

numStep
The step or increment value.

Returned value
This function returns the current value of the loop.

Notes
This type of For…Next loop can be used only in Math worksheets. It cannot be used in any Command
animation or VBScript interface. When you are using VBScript, you should use that language's own tools for
looping. For more information, see Looping Through Code on page 1272.

You must partner every For() call with a Next notation, although you may have any number of worksheet
rows between them. And as shown in the example below, you must place the Next notation in the Tag Name
column of the worksheet.

The loop ends when its current value equals the value of numFinalValue. Specifically, each time the worksheet
is executed and the Next notation is encountered, the following happens:

1. The value of numStep is added to the current value of the loop;

2. The execution returns to the For() call at the beginning of the loop; and

3. The current value of the loop is compared to the value of numFinalValue. If the current value is less than
numFinalValue, the loop is executed again. If the current value is greater than or equal to numFinalValue,
the loop is skipped and execution resumes with the first row after the Next notation.

Examples

Example of For…Next loop in a Math worksheet

Tag Name Expression

MyTag For(1,5,1)

tagname expression

tagname expression

Appendix: Built-in Language

Page 1064

Tag Name Expression

tagname expression

Next

Appendix: Built-in Language

Page 1065

Module Activity functions
These functions are used to manage a project's various runtime modules — such as background tasks, the
data server, and the project viewer — as well as those modules' interactions with the operating system.

AppActivate
AppActivate is a built-in scripting function that activates (i.e., brings to the front) another application
window that is already open.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

AppActivate Module Activity Asynchronous No Supported Supported Not supported

Syntax
AppActivate(strAppTitle{ | ,{ optNumActiv | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 }{ |
,optNumTimeout } })
strAppTitle

The full title (as shown in the title bar) of the application window.

optNumActiv
Controls how the specified window is to be activated:

Value Command Description

0 SW_HIDE Hides the currently active window and then
activates the specified window.

1 SW_SHOWNORMAL Activates and displays the specified window.
If the window is minimized or maximized,
then it is restored to its original size and
position.
You should use this command when
displaying a window for the first time.

2 SW_SHOWMINIMIZED Activates the specified window and then
minimizes it.

3 SW_SHOWMAXIMIZED Activates the specified window and then
maximizes it.

4 SW_SHOWNOACTIVATE Displays the specified window, but does
not activate it. If the window is minimized or
maximized, then it is restored to its original
size and position.

5 SW_SHOW Activates and displays the specified window
in its current size and position. This is similar
to SW_SHOWNORMAL except that if the
window is minimized or maximized, then it
remains in that state.

6 SW_MINIMIZE Minimizes the specified window and then
activates the next open window.

7 SW_SHOWMINNOACTIVATE Displays the specified window as a
minimized window, but does not activate it.

8 SW_SHOWNA Displays the specified window in
its current size and position, but
does not activate it. This is similar to
SW_SHOWNOACTIVATE except that if
the window is minimized or maximized, then
it remains in that state.

Appendix: Built-in Language

Page 1066

Value Command Description

9 SW_RESTORE Activates and displays the specified window.
If the window is minimized or maximized,
then it is restored to its original size and
position.
You should use this command when
restoring a minimized window.

This is an optional parameter. If no value is specified, then the default command is SW_RESTORE.

optNumTimeout
The timeout period (in milliseconds) for the function to be successfully executed. If, for whatever
reason, the function is not executed in this period, then it is aborted.

This is an optional parameter. If no value is specified, then the default timeout is five seconds
(or 5000 milliseconds).

Returned value
This function will return one of the following values:

Value Description

0 ERROR: The specified application window was not activated or otherwise did
not respond within the timeout period.

1 SUCCESS: The specified application window was successfully activated.

Notes
AppActivate is similar to the function ShowWindow in the Microsoft Windows API, and it allows many of the
same options. For more information, please refer to the Windows API documentation.

Examples
Show the Microsoft Word document named test.doc:

AppActivate("test.doc — Microsoft Word", 5)

AppIsRunning
AppIsRunning is a built-in scripting function that verifies another application window is open and running.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

AppIsRunning Module Activity Synchronous Yes Supported Supported Not supported

Syntax
AppIsRunning(strAppTitle{ | ,optNumTimeout })
strAppTitle

The full title (as shown in the title bar) of the application window.

optNumTimeout
The timeout period (in milliseconds) for the function to be successfully executed. If, for whatever
reason, the function is not executed in this period, then it is aborted.

This is an optional parameter. If no value is specified, then the default timeout is five seconds
(or 5000 milliseconds).

Returned value
This function will return one of the following values:

http://msdn.microsoft.com/en-us/library/ms633548.aspx

Appendix: Built-in Language

Page 1067

Value Description

0 ERROR: The specified application window is not open or otherwise did not
respond within the timeout period.

1 SUCCESS: The specified application window is open and running.

Notes
AppIsRunning is similar to the function IsWindow in the Microsoft Windows API. For more information,
please refer to the Windows API documentation.

Examples
Verify the Microsoft Word document named test.doc is open and running:

AppIsRunning("test.doc — Microsoft Word")

AppPostMessage
AppPostMessage is a built-in scripting function that sends a Windows system message to another application
window.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

AppPostMessageModule Activity Synchronous No Supported Supported Not supported

Syntax
AppPostMessage(strAppTitle,strMessage,numWParam,numLParam{ | ,optNumTimeout })
strAppTitle

The full title (as shown in the title bar) of the application window.

strMessage
The name or code of the system message.

Note: The CLOSE, MINIMIZE, MAXIMIZE and RESTORE messages can be given
as string values enclosed in quotes. All other message codes must be given as
numeric values.

numWParam
Additional message-specific information.

numLParam
Additional message-specific information.

optNumTimeout
The timeout period (in milliseconds) for the function to be successfully executed. If, for whatever
reason, the function is not executed in this period, then it is aborted.

This is an optional parameter. If no value is specified, then the default timeout is five seconds
(or 5000 milliseconds).

Returned value
This function will return one of the following values:

Value Description

0 ERROR: The system message was not sent, or the specified application
window did not respond, within the timeout period.

http://msdn.microsoft.com/en-us/library/ms633528.aspx

Appendix: Built-in Language

Page 1068

Value Description

1 SUCCESS: The system message was successfully sent.

Notes
AppPostMessage is similar to the function PostMessage in the Microsoft Windows API, and it allows many
of the same options. For more information, including a list of available system messages, please refer to the
Windows API documentation.

Examples
Close the Calculator application:

AppPostMessage("Calculator", "CLOSE", 3, 1)

AppSendKeys
Sends keyboard commands to the active application.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

AppSendKeys Module Activity Synchronous No Supported Supported Not supported

Syntax

AppSendKeys(strKeys1, strKeys2, … , strKeysN)

strKeys (1-N)
String tags containing the keyboard commands to be used.

Returned value
No returned values.

Examples

Tag Name Expression

AppSendKeys("S", "t", "u", "d", "i", "o", "<ENTER>")

AppSendKeys("<Alt>F")

Note: You can specify <ALT>, <CTRL>, or <SHIFT> in the text to send a code equal to the Alt, Ctrl,
or Shift keyboard commands. To send the < character, specify << in the text.

CleanReadQueue
CleanReadQueue is a built-in function that removes all read messages from the communications module.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

CleanReadQueueModule Activity Synchronous No Supported Supported Executed on
Server

Syntax

CleanReadQueue()

http://msdn.microsoft.com/en-us/library/ms644944.aspx

Appendix: Built-in Language

Page 1069

CleanReadQueue()

This function has no parameters.

Return value
This function returns no value.

Notes
This function has been deprecated. You should not use it in new projects, but it is still supported in projects
that were created using previous versions of BLUE Open Studio 2020.

CloseSplashWindow
Closes the BLUE Open Studio 2020 splash window.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

CloseSplashWindowModule Activity Synchronous No Supported Executed on Server Executed on Server

Syntax
CloseSplashWindow()

This function takes no parameters.

Returned value
No returned values.

Examples

Tag Name Expression

CloseSplashWindow()

DisableMath
DisableMath is a built-in function that pauses the execution of all Math worksheets.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

DisableMathModule Activity Asynchronous No Supported Supported Executed on
Server

Syntax

DisableMath()

DisableMath()

This function has no parameters.

Return value
This function returns no value.

Notes
To resume the execution of Math worksheets, call the function EnableMath.

Appendix: Built-in Language

Page 1070

EnableMath
EnableMath is a built-in function that resumes the execution of all Math worksheets.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

EnableMath Module Activity Asynchronous No Supported Supported Executed on
Server

Syntax

EnableMath()

EnableMath()

This function has no parameters.

Return value
This function returns no value.

Notes
In most cases, execution was paused by calling the function DisableMath.

EndTask
EndTask is a built-in function that stops a specified execution task or runtime module that is currently
running.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

EndTask Module Activity Asynchronous No Supported Executed on
Server

Executed on
Server

Syntax

EndTask(strTask)

EndTask({ strTask | "{ BGTask | Core | DBSpy | XDB | Driverdrivername | LogWin | MobileAccess
| OPCClient | OPCUAClient | OPCUAServer | OPCXMLClient | OPCServer | TCPClient | TCPServer |
Viewer }" })
strTask

The name of the task or module to stop (must be one of the following):

Value Description

BGTask Background Task

Core Core Runtime

DBSpy Watch

XDB Database/ERP Runtime

Driverdrivername Driver Runtime (for the specified driver)

LogWin LogWin

MobileAccess Mobile Access Runtime

OPCClient OPC DA 2.05 Client Runtime

OPCUAClient OPC UA Client Runtime

Appendix: Built-in Language

Page 1071

Value Description

OPCUAServer OPC UA Server Runtime

OPCXMLClient OPC XML/DA Client Runtime

OPCServer Studio SCADA OPC Server

TCPClient TCP/IP Client Runtime

TCPServer TCP/IP Server Runtime

Viewer Viewer

For more information, see Runtime Tasks on page 134.

Return value
This function returns one of the following possible values:

Value Description

0 Failure

1 Success

Examples
Stop the MOTCP driver:

EndTask("DriverMOTCP")

Stop the Viewer module, which is used to view the local project runtime:

EndTask("Viewer")

Exec
Exec is a built-in function that executes a command as if it were entered using the computer's command-line
interface (CLI).

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Exec Module Activity Synchronous or
Asynchronous

No Supported Supported Not supported

Syntax

Exec(strCommand,optNumState,optNumSync,"optTagReturnOrHandle")

Exec(strCommand{ | ,{ optNumState | 0 | 1 | 2 | 3 | 4 | 7 }{ | ,{ optNumSync | 0 | 1
},"optTagReturnOrHandle" } })
strCommand

The command to be executed.

optNumState
A numeric flag that specifies the initial state of the Windows program (if any) that is run by the
command:

Value Description

0 Hide the program and give control to another one.

Appendix: Built-in Language

Page 1072

Value Description

1 Make the program active and display it.

2 Make the program active and display it as an icon.

3 Make the program active and maximize it.

4 Display the program at its most recent size. The program is still
active.

7 Display the program as an icon. The program is still active.

This parameter is optional; if no value is specified, the default value is 1.

This parameter is not supported when the project's target platform is Embedded; regardless of
which value is specified, the function is executed with the default value.

optNumSync
A numeric flag that specifies whether the command is executed synchronously or
asynchronously:

Value Description

0 Execute asynchronously. This function will return immediately.

1 Execute synchronously. This function will return when the execution is
completed.

This parameter is optional; if no value is specified, the default value is 0.

optTagReturnOrHandle
The name of a project tag that will receive feedback about the execution of the command:

• If the command is executed asynchronously, the tag will receive a handle that can used with
the ExecIsRunning function to determine whether the command is still being executed.

• If the command is executed synchronously, the tag will receive the command's exit code.
That exit code is separate from this function's own return value.

This parameter is optional, but given its nature, there is no default value.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

Return value
This function returns one of the following possible values:

Value Description

0 Command was not executed successfully.

1 Command was executed successfully.

This return value indicates only whether the execution started successfully, particularly if the command was
executed asynchronously. It does not indicate when or how the execution was completed. To determine that,
use the ExecIsRunning function.

Examples
Start Notepad, display the program, and then immediately continue to the next line of the script:

Exec("C:\Windows\System32\notepad.exe",4)

Appendix: Built-in Language

Page 1073

Start MS Paint, make the program active, and then immediately continue to the next line of the script:

Exec("C:\Windows\System32\mspaint.exe")

Call an external batch file, execute it synchronously, hide the program, wait until the execution is completed,
and then store the exit code in the tag execReturn:

Exec("CMD /C call C:\Temp\MyBatch.bat",0,1,"execReturn")

Call an external VBScript file, execute it asynchronously, hide the program, store the handle in the tag
execHandle, and then continue to the next line of the script:

Exec("CMD /C call C:\Temp\MyScript.vbs",0,0,"execHandle")

ExecIsRunning
ExecIsRunning is a built-in function that determines whether a command that was executed asynchronously
by the Exec function is still being executed.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

ExecIsRunningModule Activity Synchronous Yes Supported Supported Not supported

Syntax

ExecIsRunning(numHandle,"optTagReturn")

ExecIsRunning(numHandle{ | ,"optTagReturn" })
numHandle

The handle that was previously stored in the project tag specified by the optStrReturnOrHandle
parameter of the Exec function.

optTagReturn
The name of a project tag that will receive the exit code returned by the command or program
when the execution is completed.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

Return value
This function returns one of the following possible values:

Value Description

1 Program is still running.

0 Execution has completed successfully (i.e., the program has closed).

-1 Invalid number of parameters.

-2 Invalid handle number. Check the value for numHandle.

-3 Execution has completed, but the return tag is invalid. Check the value for
optTagReturn.

Appendix: Built-in Language

Page 1074

Examples
Get the handle stored in the tag execHandle, and then determine whether that command is still being
executed:

ExecIsRunning(execHandle)

Get the handle stored in the tag execHandle, determine whether that command is still being executed, and
then store the exit code in the tag execReturn:

ExecIsRunning(execHandle,"execReturn")

ExitWindows
Exits the Windows operating system in a specified manner.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

ExitWindows Module Activity Asynchronous No Supported Supported Not supported

Syntax
ExitWindows(numExitCode)
numExitCode

A numeric code specifying how Windows should be exited:

Value Description

0 Restart

1 Log off

2 Shut down

Returned value
No returned values.

Examples

Tag Name Expression

ExitWindows(1)

IsScreenOpen
The function IsScreenOpen that a project screen is open on a client.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

IsScreenOpen Module Activity Asynchronous Yes Supported Supported Not supported

Syntax

IsScreenOpen(strScreen,optNumID)

IsScreenOpen(strScreen{ | ,optNumID })
strScreen

The name of the project screen to be verified.

optNumID

Appendix: Built-in Language

Page 1075

The specific ID number of the screen. (This number is assigned when the screen is opened using
the function Open.)

This parameter is optional; if no value is specified, the default value is 0.

Returned value
This function returns one of the following possible values:

Value Description

0 Screen is not open.

1 Screen is open.

Notes
If the Enforce Web functionality equivalence in local project screens option is selected in the project settings, this function
cannot be called in Global Procedures, Script worksheets, or other background tasks. This is because
the function behaves differently depending on whether you view project screens locally (i.e., on the same
computer that hosts the project runtime) or remotely. For more information, see Preferences tab on page 127.

Examples
Is the screen named "main" open?

IsScreenOpen("main")

Is the screen named "main" with ID 10 open?

IsScreenOpen("main",10)

IsTaskRunning
IsTaskRunning is a built-in function that checks whether a specified execution task or runtime module is
currently running.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

IsTaskRunningModule Activity Synchronous Yes Supported Executed on
Server

Executed on
Server

Syntax

IsTaskRunning(strTask)

IsTaskRunning({ strTask | "{ BGTask | Core | DBSpy | XDB | Driverdrivername | LogWin |
MobileAccess | OPCClient | OPCUAClient | OPCUAServer | OPCXMLClient | OPCServer | TCPClient
| TCPServer | Viewer }" })
strTask

The name of the task or module to check (must be one of the following):

Value Description

BGTask Background Task

Core Core Runtime

DBSpy Watch

XDB Database/ERP Runtime

Driverdrivername Driver Runtime (for the specified driver)

Appendix: Built-in Language

Page 1076

Value Description

LogWin LogWin

MobileAccess Mobile Access Runtime

OPCClient OPC DA 2.05 Client Runtime

OPCUAClient OPC UA Client Runtime

OPCUAServer OPC UA Server Runtime

OPCXMLClient OPC XML/DA Client Runtime

OPCServer Studio SCADA OPC Server

TCPClient TCP/IP Client Runtime

TCPServer TCP/IP Server Runtime

Viewer Viewer

For more information, see Runtime Tasks on page 134.

Return value
This function returns one of the following possible values:

Value Description

0 Specified task is not running.

1 Specified task is running.

Examples
Check the MOTCP driver:

IsTaskRunning("DriverMOTCP")

Check the Viewer module, which is used to view the local project runtime:

IsTaskRunning("Viewer")

IsViewerInFocus
Verifies that the project viewer (Viewer.exe) is in focus on the display.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

IsViewerInFocusModule Activity Synchronous Yes Supported Not supported Not supported

Syntax
IsViewerInFocus()

This function takes no parameters.

Returned value

0 Viewer is not in focus.

1 Viewer is in focus.

Appendix: Built-in Language

Page 1077

Examples

IsViewerInFocus()

KeyPad
KeyPad is a built-in function that displays a Virtual Keyboard (for Thin Clients) or Data Input (for Mobile
Access) dialog box in order to prompt the user to enter a value.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

KeyPad Module Activity Asynchronous No Supported Supported Supported

Syntax

KeyPad("strTagName",optStrKeyboardName,optNumIsPassword,optStrHint,optNumMin,optNumMax,optNumESign,optStrConfirmation)

KeyPad("strTagName"{ | ,optStrKeyboardName{ | ,optNumIsPassword{ | ,optStrHint{ |
,optNumMin,optNumMax{ | ,optNumESign{ | ,optStrConfirmation } } } } } })
strTagName

The name of the project tag that will receive the entered value.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

optStrKeyboardName
The type of Virtual Keyboard that will be displayed (e.g., AlphaNumeric, EnhKeypad, or
Keypad).

This parameter is optional; if no value is specified, the default type (as selected in the project
settings) will be displayed.

This parameter is ignored when the function is executed on Mobile Access.

optNumIsPassword
A numeric switch that will cause the characters typed by the user to be displayed as asterisks
(*). This is useful when the user must enter a password or some other value that should be
obfuscated. To set this switch TRUE, specify any value other than 0.

This parameter is optional; if no value is specified, the default value is 0 (FALSE).

optStrHint
A hint or message to the user that will be displayed at the top of the dialog box, if the Show Hint
option is selected in the project settings.

This parameter is optional; if either an empty string ("") or no value is specified, no hint will be
displayed.

optNumMin,optNumMax
The minimum and maximum values that will be accepted as input. These values will also be
displayed as Min and Max hints in the dialog box, depending on how it is configured. For Thin
Clients, the keyboard type must be Keypad and the Show MIN/MAX fields option must be selected in
the project settings. (These parameters are ignored for all keyboard types other than Keypad.)
For Mobile Access, you only need to specify these values.

These parameters are optional, but you must specify both values in order to have them
implemented. If you specify only one value — for example, Min but not Max— then it will be
ignored.

Appendix: Built-in Language

Page 1078

optNumESign
A numeric switch that will require the user to e-sign the tag value change. The user will be
prompted for their username and password, and the event will be recorded in the project log. To
set this switch TRUE, specify any value other than 0.

This parameter is optional; if no value is specified, the default value is 0 (FALSE).

optStrConfirmation
A numeric switch that will cause a confirmation message to be displayed after the user enters
the value. The user must acknowledge the message in order to continue. To set this switch
TRUE, specify any value other than 0.

Note: Confirmation cannot be automated or bypassed; only an actual key press,
mouse click, or on-screen tap (depending on the client station) will acknowledge
the message.

This parameter is optional; if no value is specified, the default value is 0 (FALSE).

Returned value
This function will return one of the following possible values:

Value Description

0 Success

1 Error

2 Tag does not exist

3 Reentrant error, function is already executing

4 Invalid number of parameters

5 Internal error, contact Customer Support for more information

Notes
The Virtual Keyboard / Data Input dialog box is a standard interface for getting data input (i.e., numeric
values and text) from the user on a client station that is equipped with a touchscreen instead of a physical
keyboard. It can be invoked by several different screen objects and program features, in addition to this
function. For more information, including examples of the dialog box itself, see Data Input on page 342.

Examples
Display the default keyboard for the user to enter a value, and then write the entered value to tagA:

KeyPad("tagA")

Display the Enhanced Keypad for the user to enter a value, and then write the entered value to tagA:

KeyPad("tagA","EnhKeypad")

Display the Enhanced Keypad for the user to enter a value, obfuscate the characters typed by the user, and
then write the entered value to tagA:

KeyPad("tagA","EnhKeypad",1)

Appendix: Built-in Language

Page 1079

Display the Enhanced Keypad for the user to enter a value, obfuscate the characters typed by the user,
display "My Input" as a hint, with a Min of 0 and a Max of 100, and then write the entered value to tagA:

KeyPad("tagA","EnhKeypad",1,"My Input",0,100)

LogOff
This function logs off the current user and then logs on the default user (typically "guest").

Function Group Execution String Exp. Windows Thin Clients Mobile Access

LogOff Module Activity Asynchronous No Supported Supported Supported

Syntax
LogOff()

This function takes no parameters.

Returned value
This function returns one of the following possible values:

Value Description

0 Error.

1 Success.

Examples

LogOff()

LogOn
LogOn is a built-in function that either logs on a specified user or displays a Log On dialog box.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

LogOn Module Activity Asynchronous No Supported Supported Supported

Syntax

LogOn(optStrUsername,optStrPassword)

LogOn({ | optStrUsername,optStrPassword })
optStrUsername

The name of the user to log on.

optStrPassword
The specified user's password.

optStrUsername and optStrPassword are optional parameters. If they are not specified, the project will instead
display a Log On dialog box, to prompt the station's current operator — whoever it is — to log on.

Returned value
This function returns one of the following possible values:

Value Description

0 Error (e.g., username or password is invalid) or cancellation.

Appendix: Built-in Language

Page 1080

Value Description

1 Success.

Examples
Display a Log On dialog box:

LogOn()

Log on username Albert with password EMC2:

LogOn("Albert","EMC2")

Math
Math is a built-in function that executes a specified Math worksheet.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Math Module Activity Synchronous No Supported Supported Executed on
Server

Syntax

Math(numWorksheet)

Math(numWorksheet)
numWorksheet

The number of the Math worksheet to be executed.

Return value
This function returns no value.

Notes
Executing a Math worksheet from inside another module will pause that module until the Math worksheet
finishes. Consequently, use this function only when absolutely necessary to avoid decreasing the performance
of the other modules.

Examples
Run Math worksheet "6":

Math(6)

PostKey
PostKey is a built-in function that posts a virtual-key code to the currently displayed project screen. In other
words, it synthesizes a keystroke.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

PostKey Module Activity Synchronous No Supported Supported Not supported

Syntax

PostKey(numKeydownOrKeyup,numwParam,numlParam)

Appendix: Built-in Language

Page 1081

PostKey({ numKeydownOrKeyup | 0 | 1 },numwParam,numlParam)
numKeydownOrKeyup

A numeric option with the following possible values:

Value Description

0 KeyDown event (i.e., the key specified by numwParam is pressed)

1 KeyUp event (i.e., the key specified by numwParam is released)

numwParam
The virtual-key code to be posted, in either decimal or hexadecimal format.

For a list of available codes, go to: msdn.microsoft.com/library/dd375731

numlParam
Additional message information.

This parameter is not typically used, so in most cases, the value should be 0 to indicate that
there is no additional information.

Notes
If the Enforce Web functionality equivalence in local project screens option is selected in the project settings, this function
cannot be called in Global Procedures, Script worksheets, or other background tasks. This is because
the function behaves differently depending on whether you view project screens locally (i.e., on the same
computer that hosts the project runtime) or remotely. For more information, see Preferences tab on page 127.

When this function is executed, it can only post either a KeyDown event or a KeyUp event, depending on the
value that is specified for numKeydownOrKeyup. It cannot post both events at the same time. Therefore, in
order to post a complete keystroke (i.e., press and release), you must call this function twice — once for each
event — as shown in the following example:

PostKey(0,36,0)
PostKey(1,36,0)

You can call other functions or execute other code between the two PostKey function calls, and if you do, that
code will be executed as if the specified key is being held. You can even nest PostKey function calls in order
to post key combinations (e.g., Alt+F4).

Alternatively, if it is not feasible to call the PostKey function twice, you can use a Windows Shell object and
the SendKeys method in VBScript in order to produce a similar effect. Unlike the PostKey function, however,
the SendKeys method only needs to be called once in order to send a complete keystroke or even multiple
keystrokes. For example:

Dim WshShell
Set WshShell = CreateObject("WScript.Shell")
WshShell.SendKeys "{HOME}"
Set WshShell = Nothing

For more information about using the SendKeys method like this, go to: social.technet.microsoft.com/wiki/
contents/articles/5169.vbscript-sendkeys-method.aspx

Return value
This function returns no value.

Notes
VBScript uses special notation to indicate numbers that are of a different base. Prepending with &h indicates
a hexadecimal number, while prepending with &o indicates an octal number. As such, if you use this function
in VBScript and you want to specify a hexadecimal value for numwParam, you must use the special notation.
For example, &h24 instead of the more typical 0x24.

http://msdn.microsoft.com/library/dd375731
http://social.technet.microsoft.com/wiki/contents/articles/5169.vbscript-sendkeys-method.aspx
http://social.technet.microsoft.com/wiki/contents/articles/5169.vbscript-sendkeys-method.aspx

Appendix: Built-in Language

Page 1082

Examples
Post the virtual-key code for the Home key, in decimal:

PostKey(0,36,0)

Post the virtual-key code for the Home key, in hexadecimal:

PostKey(0,0x24,0)

Post the virtual-key code for the Home key, in hexadecimal, using VBScript's special notation:

$PostKey(0,&h24,0)

Recipe
Recipe is a built-in function that executes a specified Recipe worksheet.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Recipe Module Activity Synchronous No Supported Executed on Server
(see "Notes" below)

Executed on Server
(see "Notes" below)

Syntax

Recipe(strOperation&File)

Recipe(strOperation&File)
strOperation&File

An expression that specified the operation to be performed and the recipe to be used, in the
following format:

<operation>:<file>

operation must be one of the following:

Operation Description

Save Save tag values to the data file.

Load Load tag values from the data file.

Delete Delete the data file that is specified in the Recipe worksheet.

Init Initialize the data file with value of 0 for all included tags.

file must be the name of the Recipe worksheet itself (e.g., Recipe1), not the name of data file
that is specified in the worksheet.

Returned value
This function returns one of the following possible values:

Value Description

0 Success.

1 Expression is numeric, not string.

2 Expression does not contain ":".

Appendix: Built-in Language

Page 1083

Value Description

3 Invalid operation.

4 Recipe task not found.

5 Disk error.

Notes
The Background Task must be running on the project runtime server in order to execute Recipe worksheets.
For more information, see Runtime Tasks on page 134.

When this function is called on a project thin client, it is executed on the project runtime server. As such, if
the recipe includes any project tags that are configured with scope of Local rather than Server, those tags are
updated only on the server. For more information, see Choosing the Tag Scope on page 154.

Examples
Execute Recipe1 and save the tag values to the data file:

Recipe("Save:Recipe1")

Execute Recipe5 and load the tag values from the data file:

Recipe("Load:Recipe5")

Report
Report is a built-in function that executes the specified Report worksheet and sends the output to hard disk,
printer, or PDF.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Report Module Activity Synchronous No Supported Supported Executed on Server

Syntax

Report("strFunction",optNumOrientation)

Report("strFunction"{ | ,optNumOrientation })
strFunction

A string specifying the operation to perform and the Report worksheet to output, using the
syntax "Operation:worksheet".

Operation must be one of the following:

Value Description

Disk Save file to hard disk.

Prn Send report to default printer.

Pdf Generate a PDF file of the report.

worksheet is the name of the Report worksheet file (*.rep) to be executed. The file name
cannot contain spaces. If it does, save the worksheet again with a new name.

optNumOrientation
The orientation of the output:

Appendix: Built-in Language

Page 1084

Value Description

0 Portrait

1 Landscape

This parameter is optional; if no value is specified, the default value is 0 (portrait). Also, this
parameter is ignored if Operation is other than Prn.

Returned value
This function returns one of the following possible values:

Value Description

0 Success.

1 strFunction is configured with a numeric value (invalid).

2 strFunction does not contain ":" (invalid).

3 strFunction contains an invalid output type before the ":".

4 Background Task is not running (see tip below).

5 Disk error (e.g., disk full, read-only file cannot be overwritten, or invalid path).

6 Specifed Report worksheet file does not exist.

Tip: The Background Task must be running in order to execute this function. Otherwise, the
operation will not be executed and the function will return the value 4 indicating error. For more
information, see Runtime Tasks on page 134.

Notes
This function is based on legacy code, which means it cannot use printer settings that were previously
configured by the PrintSetup function. Instead, it always uses the default printer on the computer or
device that hosts the project runtime. You can use VBScript in your project to change the default printer in
Windows, however. For example:

Examples
Execute Report1 and save it to hard disk:

Report("Disk:Report1.rep")

Execute Report2 and send it to the default printer, using portrait orientation:

Report("Prn:Report2.rep",0)

Execute Report3 and send it to the default printer, using landscape orientation:

Report("Prn:Report3.rep",1)

Execute Report1 and generate a PDF:

Report("Pdf:Report1.rep")

Appendix: Built-in Language

Page 1085

RunGlobalProcedureAsync
This function executes a global procedure asynchronously, in its own thread, so that it does not slow down
or interfere with other running scripts. The procedure is run on the project server, but it can be called by any
local or remote client.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

RunGlobalProcedureAsyncModule Activity Asynchronous No Supported Not supported (see
"Notes" below)

Not supported

Syntax
RunGlobalProcedureAsync(strProcedureName{ | ,optStrArgument1,…,optStrArgumentN })

RunGlobalProcedureAsync(strProcedureName)
RunGlobalProcedureAsync(strProcedureName, optStrArgument1, …, optStrArgumentN)

strProcedureName
The name of the procedure (i.e., a VBScript function or sub-routine defined in the Procedures
folder) to run asynchronously.

optStrArgument1, …, optStrArgumentN
Values that are passed to the procedure's parameters. Arguments must be passed as strings.

Returned value
If the procedure is successfully executed, then this function will return a thread ID that can be used with the
RunGlobalProcedureAsyncGetStatus function. Otherwise, this function will return an error code:

Value Description

-1 Function is not supported by thin clients.

-2 Invalid number of parameters. You must specify at least the procedure name.

-3 Maximum number of threads exceeded. See note.

-4 Failed to compile VBScript parameters for execution.

-5 Failed to start the thread execution.

-100 Internal error. Please contact technical support.

Notes
It is important to note this function can be called only in background tasks (e.g., Math, Scheduler, Script) by
the project runtime server. It cannot be directly called by any project viewer or thin client, even if it is on the
same computer or device as the server, because the project viewer runs in its own thread separate from the
project runtime server. To indirectly call this function, configure a Math or Script worksheet to execute on a
tag/expression trigger, and then configure a project screen to activate the trigger when needed. For example,
configure the worksheet to execute when the value of MyTag is 1, and then configure a Button object in a
project screen to toggle the value of MyTag.

Also, the maximum number of VBScript threads that can be executed asynchronously is configured by
manually editing the project file (i.e., <project name>.APP) to change the following setting:

[Script]
MaxAsyncThreads=8

The default number of threads is 8, but the only real limit is determined by the available system resources.
Increasing the number of threads may decrease runtime performance.

Appendix: Built-in Language

Page 1086

Examples
Given the following procedure that is defined in the Procedures folder…

Function AddMe(intNumber)
 If intNumber >= 6 Then
 AddMe = 0
 Else
 AddMe = intNumber + 2
 End If
End Function

…the procedure is run by calling the RunGlobalProcedureAsync function…

RunGlobalProcedureAsync("AddMe", "2")

…and the function returns a thread ID that can be used with the RunGlobalProcedureAsyncGetStatus
function.

RunGlobalProcedureAsyncGetCurrent
RunGlobalProcedureAsyncGetCurrent is a built-in function that gets the thread ID of the procedure from
which it is called, as long as the procedure was originally run by calling the RunGlobalProcedureAsync
function.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

RunGlobalProcedureAsyncGetCurrentModule Activity Synchronous No Supported Not supported (see
"Notes" below)

Not supported

Syntax

RunGlobalProcedureAsyncGetCurrent()

RunGlobalProcedureAsyncGetCurrent()

This function has no parameters.

Return value
If this function succeeds, it returns the thread ID of the procedure from which it was called. It is
the same ID that was returned by the RunGlobalProcedureAsync function when that function
was called to run the procedure, and the ID can be subsequently passed as an argument to the
RunGlobalProcedureAsyncGetStatus function.

If this function fails, it returns one of the following possible values:

Value Description

-1 Function was not called from a procedure running asynchronously.

Notes
It is important to note this function can be called only in background tasks (e.g., Math, Scheduler, Script) by
the project runtime server. It cannot be directly called by any project viewer or thin client, even if it is on the
same computer or device as the server, because the project viewer runs in its own thread separate from the
project runtime server. To indirectly call this function, configure a Math or Script worksheet to execute on a
tag/expression trigger, and then configure a project screen to activate the trigger when needed. For example,
configure the worksheet to execute when the value of MyTag is 1, and then configure a Button object in a
project screen to toggle the value of MyTag.

This function can be used only to get the thread ID of the procedure from which it is called, because that
procedure runs asynchronously in its own thread. This function cannot be used to get the thread IDs of any

Appendix: Built-in Language

Page 1087

other procedures, even if those procedures were also run by calling the RunGlobalProcedureAsync function.
If you need to build a list of all of the procedures that are currently running, you can have each procedure call
this function for itself and then store all of the returned values.

RunGlobalProcedureAsyncGetStatus
This function gets the status of one or more global procedures that were run asynchronously by calling the
RunGlobalProcedureAsync function. Each procedure is run in its own thread, so that it does not slow down
or interfere with other threads.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

RunGlobalProcedureAsyncGetStatusModule Activity Synchronous No Supported Not supported (see
"Notes" below)

Not supported

Syntax
RunGlobalProcedureAsyncGetStatus({ | optNumThreadID |
"optTagThreadIDs","optTagStatus","optTagParameters" })

RunGlobalProcedureAsyncGetStatus()
RunGlobalProcedureAsyncGetStatus(optNumThreadID)
RunGlobalProcedureAsyncGetStatus("optTagThreadIDs", "optTagStatus",
 "optTagParameters")

optNumThreadID
The thread ID returned by the RunGlobalProcedureAsync function, if the procedure was
successfully executed.

optTagThreadIDs
The name of an Array tag that will receive the thread IDs of all currently running and recently
completed threads.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

optTagStatus
The name of an Array tag that will receive the statuses of all currently running and recently
completed threads.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

optTagParameters
The name of an Array tag that will receive the parameters of all currently running and recently
completed threads.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

Returned value
If the function succeeds, then the possible returned values depend on how the function was called:

• If the function was called with no parameters…

RunGlobalProcedureAsyncGetStatus()

Appendix: Built-in Language

Page 1088

…then the returned value is the total number of threads that are currently running.

• If the function was called with only the optNumThreadID parameter…

RunGlobalProcedureAsyncGetStatus(optNumThreadID)

…then the returned value is either 0, indicating that the thread is still running, or the value that was
returned by the procedure.

• If the function was called with the Array tags…

RunGlobalProcedureAsyncGetStatus("optTagThreadIDs", "optTagStatus",
 "optTagParameters")

…then the tags will receive the appropriate values for all currently running and recently completed
threads.

If the function fails, then it returns one of the following errors:

Value Description

-1 Function is not supported by thin clients.

-2 Invalid thread ID.

-3 Invalid optTagThreadIDs.

-4 Invalid optTagStatus.

-5 Invalid optTagParameters.

-100 Internal error. Please contact technical support.

Notes
It is important to note this function can be called only in background tasks (e.g., Math, Scheduler, Script) by
the project runtime server. It cannot be directly called by any project viewer or thin client, even if it is on the
same computer or device as the server, because the project viewer runs in its own thread separate from the
project runtime server. To indirectly call this function, configure a Math or Script worksheet to execute on a
tag/expression trigger, and then configure a project screen to activate the trigger when needed. For example,
configure the worksheet to execute when the value of MyTag is 1, and then configure a Button object in a
project screen to toggle the value of MyTag.

Also, when the call to RunGlobalProcedureAsync succeeds, it returns an ID for the thread created and starts
running the procedure in that thread. The status of the thread is stored in an internal buffer and can be
retrieved using the RunGlobalProcedureAsyncGetStatus function. The buffer gets cleared when:

• The RunGlobalProcedureAsyncGetStatus function has been called and the thread status is different
from 0 (thread is running); or

• The maximum buffer size has been exceeded, the thread is no longer running, and a call to start a new
thread has been made.

RunGlobalProcedureOnFalse
This function runs a global procedure when the value of a specified project tag or expression becomes FALSE.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

RunGlobalProcedureOnFalseModule Activity Synchronous No Supported Supported Not supported

Syntax

RunGlobalProcedureOnFalse("strCondition",strProcedureOnFalse)

Appendix: Built-in Language

Page 1089

RunGlobalProcedureOnFalse("strCondition",strProcedureOnFalse)
strCondition

A project tag or expression that can be evaluated as either FALSE (zero) or TRUE (non-zero).

Note: The condition should be enclosed in quotes, as shown in the syntax
diagram, or else the function will try to use the value of the condition instead.

strProcedureOnFalse
The name of the procedure (i.e., a VBScript function or sub-routine defined in the Procedures
folder of your project) to run when the value of the specified tag/expression becomes FALSE.

Returned value
This function returns one of the following possible values:

Value Description

0 Error

1 Success

Notes
Once this function is called, it is continuously executed by the project runtime client (i.e., the Viewer) until
either it or the project runtime server is stopped. That means every time the value of the condition becomes
FALSE, the procedure is run. However, the procedure is run only once when the value of the condition
becomes FALSE; it is not repeatedly run while the value of the condition is FALSE. For the procedure to run
again, the value of the condition must become TRUE and then FALSE again.

Also, the function can be called more than once, so that the same procedure can be run by different triggers.
The project runtime client manages the execution of all instances of the function.

The procedure is run on the client where this function was called. To run a procedure on the project server,
use the function RunGlobalProcedureOnServer.

The value of strCondition is passed to the procedure as an argument, so the procedure should be written to
receive it. For example:

Sub UsingOnFalse(strCondition)
 .
 .
 .
End Sub

Please note that you do not actually have to use the argument in your procedure, only that you should write
the procedure to receive it.

No other arguments can be passed to the procedure.

To ensure compatibility with previous versions of BLUE Open Studio 2020, passing the argument is disabled
by default in existing projects and enabled by default in new projects. To change this for your project, open
your project file (<project name>.APP) in a text editor and then edit the following property:

[Options]
EnableTagNameOnRunGlobalProcedureOnTag=<0 (disabled) / 1 (enabled)>

Examples
When the value of TagOnFalse becomes FALSE, run the procedure UsingOnFalse:

RunGlobalProcedureOnFalse("TagOnFalse","UsingOnFalse")

Appendix: Built-in Language

Page 1090

RunGlobalProcedureOnServer
The function RunGlobalProcedureOnServer runs a specified VBScript procedure, as defined in the Procedures
folder in the Project Explorer. The procedure is run on the project runtime server, but it can be triggered by
any client that calls this function.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

RunGlobalProcedureOnServerModule Activity Synchronous No Supported Supported Supported

Syntax

RunGlobalProcedureOnServer(strProcedureName,optStrArgument1,…,optStrArgumentN)

RunGlobalProcedureOnServer(strProcedureName{ | ,optStrArgument1,…,optStrArgumentN })
strProcedureName

The name of the procedure (i.e., a VBScript function or sub-routine defined in the Procedures
folder) to run on the project runtime server.

optStrArgument1,…,optStrArgumentN
Values that are passed to the procedure's parameters. Arguments must be passed as strings,
but the procedure will interpret them as the correct data types. For more information, see
"Examples" below.

Returned value
This function returns whatever value that is returned by the procedure.

Notes
If the Enforce Web functionality equivalence in local project screens option is selected in the project settings, this function
cannot be called in Global Procedures, Script worksheets, or other background tasks. This is because
the function behaves differently depending on whether you view project screens locally (i.e., on the same
computer that hosts the project runtime) or remotely. For more information, see Preferences tab on page 127.

Also, you cannot call this function in a procedure that was itself run by calling the function
RunGlobalProcedureOnServer. If you attempt to do so, then the function will return an error. This is to
prevent a possible memory leak caused by nested or recursive function calls.

You can still call other procedures directly, as you normally would in VBScript, or you can use the function
Eval in VBScript to dynamically determine the procedure you are calling.

Examples
Given the following procedure that is defined in the Procedures folder…

Function AddMe(intNumber)
 If intNumber >= 6 Then
 AddMe = 0
 Else
 AddMe = intNumber + 2
 End If
End Function

…the procedure is run by calling the function RunGlobalProcedureOnServer…

RunGlobalProcedureOnServer("AddMe","2")

…and it returns a value of 4.

Appendix: Built-in Language

Page 1091

RunGlobalProcedureOnTrigger
This function runs a global procedure when the value or quality of a specified tag changes.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

RunGlobalProcedureOnTriggerModule Activity Synchronous No Supported Supported Not supported

Syntax

RunGlobalProcedureOnTrigger("strTagName",strProcedureOnTrigger)

RunGlobalProcedureOnTrigger("strTagName",strProcedureOnTrigger)
strTagName

The name of a project tag.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

strProcedureOnTrigger
The name of the procedure (i.e., a VBScript function or sub-routine defined in the Procedures
folder of your project) to run when the value or quality of the specified tag changes.

Returned value
This function returns one of the following possible values:

Value Description

0 Error

1 Success

Notes
Once this function is called, it is continuously executed by the project runtime client (i.e., the Viewer)
until either it or the project runtime server is stopped. That means every time the value or quality of the
specified tag changes, the procedure is run. Also, the function can be called more than once, so that the same
procedure can be run by different triggers. The project runtime client manages the execution of all instances
of the function.

Tip: The procedure is run on the client where the function was called. To run a procedure on the
server, use the function RunGlobalProcedureOnServer.

The value or quality of the specified tag is passed to the procedure as an argument, so the procedure should
be written to receive it. For example:

Sub MyProcedure(strTrigger)
 .
 .
 .
End Sub

In practice, this means either…

strTrigger = $tagname->Value

Appendix: Built-in Language

Page 1092

…or…

strTrigger = $tagname->Quality

…depending on which one changed. You can then use the value or quality in your procedure.

Please note that you do not actually have to use the argument, only that you should write the procedure to
receive it.

No other arguments can be passed to the procedure.

To ensure compatibility with previous versions of BLUE Open Studio 2020, passing the argument is disabled
by default in existing projects and enabled by default in new projects. To change this for your project, open
your project file (<project name>.APP) in a text editor and then edit the following property:

[Options]
EnableTagNameOnRunGlobalProcedureOnTag=<0 (disabled) / 1 (enabled)>

Examples
When the value or quality of the tag MyInteger changes, run the procedure MyProcedure:

RunGlobalProcedureOnTrigger("MyInteger","MyProcedure")

The equivalent of MyInteger->Value or MyInteger->Quality, depending on which one changed, is passed
to the procedure as an argument.

RunGlobalProcedureOnTrue
This function runs a global procedure when the value of a specified project tag or expression becomes TRUE.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

RunGlobalProcedureOnTrueModule Activity Synchronous No Supported Supported Not supported

Syntax

RunGlobalProcedureOnTrue("strCondition",strProcedureOnTrue)

RunGlobalProcedureOnTrue("strCondition",strProcedureOnTrue)
strCondition

A project tag or expression that can be evaluated as either FALSE (zero) or TRUE (non-zero).

Note: The condition should be enclosed in quotes, as shown in the syntax
diagram, or else the function will try to use the value of the condition instead.

strProcedureOnTrue
The name of the procedure (i.e., a VBScript function or sub-routine defined in the Procedures
folder of your project) to run when the value of the specified tag/expression becomes TRUE.

Returned value
This function returns one of the following possible values:

Value Description

0 Error

1 Success

Appendix: Built-in Language

Page 1093

Notes
Once this function is called, it is continuously executed by the project runtime client (i.e., the Viewer) until
either it or the project runtime server is stopped. That means every time the value of the condition becomes
TRUE, the procedure is run. However, the procedure is run only once when the value of the condition
becomes TRUE; it is not repeatedly run while the value of the condition is TRUE. For the procedure to run
again, the value of the condition must become FALSE and then TRUE again.

Also, the function can be called more than once, so that the same procedure can be run by different triggers.
The project runtime client manages the execution of all instances of the function.

The procedure is run on the client where this function was called. To run a procedure on the project server,
use the function RunGlobalProcedureOnServer.

The value of strCondition is passed to the procedure as an argument, so the procedure should be written to
receive it. For example:

Sub UsingOnTrue(strCondition)
 .
 .
 .
End Sub

Please note that you do not actually have to use the argument in your procedure, only that you should write
the procedure to receive it.

No other arguments can be passed to the procedure.

To ensure compatibility with previous versions of BLUE Open Studio 2020, passing the argument is disabled
by default in existing projects and enabled by default in new projects. To change this for your project, open
your project file (<project name>.APP) in a text editor and then edit the following property:

[Options]
EnableTagNameOnRunGlobalProcedureOnTag=<0 (disabled) / 1 (enabled)>

Examples
When the value of TagOnTrue becomes TRUE, run the procedure UsingOnTrue:

RunGlobalProcedureOnTrue("TagOnTrue","UsingOnTrue")

RunVBScript
Executes a statement in VBScript language.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

RunVBScript Module Activity Synchronous No Supported Supported Not supported

Syntax

RunVBScript (strScript, "optTagReturnError")

strScript
Script statement that must be executed by the function.

optTagReturnError
Name of the tag that will receive the error (if any) generated by the statement (e.g., "Division by
zero"). The tag name must be configured between double-quotes and it must be a String tag.

Appendix: Built-in Language

Page 1094

Returned value

0 Error

1 Success

Examples

Tag Name Expression

TagResult RunVBScript("MsgBox(Time)") // Executes the MsgBox function from VBScript and displays the current time.

 RunVBScript(TagStatement) // Executes the statement configured in the value of the string tag
TagStatement.

 RunVBScript("$TagC=$TagA/$TagB", "TagError") // Writes in TagC the result of TagA divided
by TagB. The error generated by the operation (if any) is written to the string tag TagError (e.g., "Division by zero").

Tip: This function is useful to execute VBScript statements from interfaces that support the built-
in language only (e.g., Scheduler groups). You can also call VBSCript functions created in the Global
Procedures.

Note: The runtime station must support the VBScript statements configured in this function in
order to execute them.

SecureViewerReload
SecureViewerReload is a built-in function that closes the Secure Viewer program and then reloads it with a
new configuration file.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SecureViewerReloadModule Activity Synchronous No Not supported Secure Viewer only Not supported

Syntax

SecureViewerReload(strFileName)

SecureViewerReload(strFileName)
strFileName

The file path of an INI file (*.ini) that describes the new configuration. (If the file is located in
the same folder as Viewer.exe, then only the file name is needed.) The file should be structured
the same and contain all of the same settings as the default configuration file (Viewer.ini).

This parameter must specify either the name of a String tag or a text string enclosed in quotes.

Return value
This function returns no value.

Examples
Reload the Secure Viewer with the configuration file that is specified by the tag configFile1:

SecureViewerReload(configFile1)

Appendix: Built-in Language

Page 1095

Reload the Secure Viewer with the configuration file that is located at the specified file path:

SecureViewerReload("C:\Program Files\Secure Viewer\Bin\Config1.ini")

SendKeyObject
The function SendKeyObject sends a key event code to objects in the currently displayed project screen. You
can use this function to trigger Command animations on those objects.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SendKeyObjectModule Activity Synchronous No Supported Supported Not supported

Syntax

SendKeyObject(numEvent,strMainKey,numShift,numCtrl,numAlt,strTargetScreen,optNumID)

SendKeyObject({ numEvent | 0 | 1 | 2 },strMainKey{ | ,{ numShift | 0 | 1 },{ numCtrl | 0 | 1 },{
numAlt | 0 | 1 },strTargetScreen{ | ,optNumID } })
numEvent

A numeric value that indicates the type of key event to send to the screen. The following values
are accepted:

Value Description

0 On Down

1 On While

2 On Up

For more information about these key events, see Command animation on page 314.

Note: If the "On While" event is specified, the "On While" script on the Command
animation is executed just once for each time this function is executed. It is
not continuously executed as if the key is pressed and held down, because this
function does not have a parameter for specifying duration. If you want to cause
that sort of behavior, you can include this function in an appropriately configured
FOR loop.

strMainKey
The key to be sent to the screen. The following values are accepted:

Value Description

"A" … "Z" alphabetic characters A through Z

"+" plus symbol

"-" minus symbol

"*" multiply symbol

"/" divide symbol

"LEFT" left arrow (←)

"UP" up arrow (↑)

"RIGHT" right arrow (→)

"DOWN" down arrow (↓)

Appendix: Built-in Language

Page 1096

Value Description

"HOME" Home key

"END" End key

"PAGEUP" Page Up key

"PAGEDOWN" Page Down key

"INSERT" Insert key

"DELETE" Delete key

"SPACE" Space key

"RETURN" Return key

"BACKSPACE" Backspace key (if different from Delete key)

"ESCAPE" Escape key

"F1" … "F20" function keys F1 through F20

The key must be enclosed in quotes, as shown.

numShift
A numeric value that indicates whether to include Shift with the specified key (e.g., Shift+R). The
following values are accepted: 0 is no, 1 is yes.

This parameter is optional; if no value is specified, the default value is 0.

numCtrl
A numeric value that indicates whether to include Ctrl with the specified key (e.g., Ctrl+R). The
following values are accepted: 0 is no, 1 is yes.

This parameter is optional; if no value is specified, the default value is 0.

numAlt
A numeric value that indicates whether to include Alt with the specified key (e.g., Alt+R). The
following values are accepted: 0 is no, 1 is yes.

This parameter is optional; if no value is specified, the default value is 0.

strTargetScreen
The name of the screen that will receive the key event code.

This parameter is optional; if no value is specified, the currently active screen is used.

optNumID
The specific ID number of the screen. (The ID number is assigned when the screen is opened
with the function Open.)

This parameter is optional; if no value is specified, the default value is 0.

Return value
This function returns no value.

Notes
If the Enforce Web functionality equivalence in local project screens option is selected in the project settings, this function
cannot be called in Global Procedures, Script worksheets, or other background tasks. This is because
the function behaves differently depending on whether you view project screens locally (i.e., on the same
computer that hosts the project runtime) or remotely. For more information, see Preferences tab on page 127.

Also, the parameters numShift, numCtrl, numAlt and strTargetScreen are all optional, but if you configure one
of them, you must configure the others as well.

Appendix: Built-in Language

Page 1097

Examples
Send R to the currently active screen:

SendKeyObject(0,"R")

Send Ctrl+Shift+R to the screen named "main" with ID 10:

SendKeyObject(0,"R",1,1,0,"main",10)

SetAppPath
Sets the new file path for the project folder. After this function is executed, BOS will look for all of the project
files (i.e.,screens, alarms, trends, database, events) in this folder.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SetAppPath Module Activity Synchronous No Supported Executed on Server Not supported

Syntax
SetAppPath(strPath)
strPath

The file path.

Returned value

0 Failed to set path.

1 Succeeded in setting path

Examples

Tag Name Expression

SetAppPath("C:\Studio\")

Note: If the computer is on a network, you can use the //IP address or host name/Path syntax
to define a location on another node of the network.

SetViewerInFocus
SetViewerInFocus is a built-in function that moves the Viewer program window in front of all other open
windows.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SetViewerInFocusModule Activity Synchronous No Supported Supported Not supported

Syntax

SetViewerInFocus()

SetViewerInFocus()

This function has no parameters.

Appendix: Built-in Language

Page 1098

Return value
This function returns no value.

Notes
For the purposes of this function, "Viewer program" is a generic term that includes:

• The local Viewer that is part of the project runtime for Windows

• The standalone Secure Viewer program for Windows

It does not include any version of Mobile Access, which uses a different technology to display project screens
in web browsers.

Security features in the Windows operating system prevent program windows from moving themselves in front
of other open windows without user input. As such, when this function is executed, the Viewer program will
request the user's attention by blinking its icon in the Windows taskbar. (Some anti-virus software may also
flag this as suspicious behavior.) It is only when the user selects the Viewer program that the program window
will move to the front.

To work around this limitation, you must call this function at least once in your project's Startup Script.
Allow twenty seconds more for your project to finish starting up, and then after that, any additional calls of
this function should work as expected.

If you are not satisfied with the run-time behavior of this function, you can use the AppActivate function
instead to achieve similar results. Also, you can use the SetViewerPos function to change the size and
position of the Viewer program window, if necessary.

SetViewerPos
SetViewerPos is a built-in function that sets the height, width, and position of the project viewer or thin
client window.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SetViewerPos Module Activity Synchronous No Supported Supported Not supported

Syntax

SetViewerPos(numLeft,numTop,optNumWidth,optNumHeight)

SetViewerPos(numLeft,numTop{ | ,optNumWidth,optNumHeight })
numLeft

The position (in pixels) of the left edge of the Viewer program window.

numTop
The position (in pixels) of the top edge of the Viewer program window.

optNumWidth
The width (in pixels) of the Viewer program window.

This parameter is optional; if no value is specified, the default value is the project's current
display resolution.

optNumHeight
The height (in pixels) of the Viewer program window.

This parameter is optional; if no value is specified, the default value is the project's current
display resolution.

Return value
If the function fails, the return value is zero (0).

If the function succeeds, the return value is one (1).

Appendix: Built-in Language

Page 1099

Notes
For the purposes of this function, "Viewer program" is a generic term that includes:

• The local Viewer that is part of the project runtime for Windows

• The standalone Secure Viewer program for Windows

It does not include any version of Mobile Access, which uses a different technology to display project screens
in web browsers.

If you use this function in your project, make sure the Start Maximized option in your project settings is cleared.
For more information, see Viewer tab on page 115.

Examples
Set the Viewer so that its top-left corner is at 50x,50y and its size is 640x480:

SetViewerPos(50,50,640,480)

ShutDown
This function stops all execution tasks and runtime modules, effectively shutting down the project.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

ShutDown Module Activity Asynchronous No Supported Supported (see
"Notes" below)

Supported (see
"Notes" below)

Syntax

ShutDown()

ShutDown()

This function takes no parameters.

Returned value
This function does not return any value.

Notes
This function only stops the project runtime server. It does not close the development environment on the
server, if it happens to be open.

If this function is called from a project screen on a thin client, it only stops the Viewer module on that thin
client. On Mobile Access, it returns the user to the logon screen.

Also, when this function is used in project screens on Mobile Access, it cannot be called from the
Screen_OnClose sub-routine in the Screen Script.

StartTask
StartTask is a built-in function that starts a specified execution task or runtime module.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

StartTask Module Activity Asynchronous No Supported Executed on
Server

Executed on
Server

Syntax

StartTask(strTask)

Appendix: Built-in Language

Page 1100

StartTask({ strTask | "{ BGTask | Core | DBSpy | XDB | Driver | LogWin | MobileAccess |
OPCClient | OPCUAClient | OPCUAServer | OPCXMLClient | OPCServer | TCPClient | TCPServer |
Viewer }" })
strTask

The name of the task or module to start (must be one of the following):

Value Description

BGTask Background Task

Core Core Runtime

DBSpy Watch

XDB Database/ERP Runtime

Driver Driver Runtime (for all drivers; see "Notes" below)

LogWin LogWin

MobileAccess Mobile Access Runtime

OPCClient OPC DA 2.05 Client Runtime

OPCUAClient OPC UA Client Runtime

OPCUAServer OPC UA Server Runtime

OPCXMLClient OPC XML/DA Client Runtime

OPCServer Studio SCADA OPC Server

TCPClient TCP/IP Client Runtime

TCPServer TCP/IP Server Runtime

Viewer Viewer

For more information, see Runtime Tasks on page 134.

Return value
This function returns one of the following possible values:

Value Description

0 Failure

1 Success

Notes
If you use this function to start the Driver Runtime (e.g., StartTask("Driver")), it starts all of the drivers
that are configured in your project. To start a specific driver, use the Exec function instead.

Examples
Start the Viewer module, which is used to view the local project runtime:

StartTask("Viewer")

TaskUpdateConfig
TaskUpdateConfig is a built-in function that updates a runtime task in order to reload a task worksheet
during project run time.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TaskUpdateConfig Module Activity Asynchronous No Supported Not supported Not supported

Appendix: Built-in Language

Page 1101

Syntax

TaskUpdateConfig(strTask,numWorksheet)

TaskUpdateConfig ({ strTask | " { Math | Scheduler | Script | TCPClient | OPCUAClient |
OPCXMLClient } " } , numWorksheet)
strTask

The name of the runtime task to be updated. It must be one of the following string values:

Value Description

Math Math worksheets, which are executed as part of the Background Task

Scheduler Scheduler worksheets, which are executed as part of the Background
Task

Script Script worksheets, which are executed as part of the Background
Task

XDB Database/ERP

OPCDAClient OPC DA Client (Legacy)

OPCUAClient OPC UA Client

OPCXMLClient OPC XML/DA Client

TCPClient TCP/IP Client

For more information, see Runtime Tasks on page 134.

numWorksheet
The number of the worksheet to be reloaded.

Return value
This function returns one of the following possible values:

Value Description

0 Failure (e.g., invalid task name, specified task not started, specified worksheet
not found)

1 Success

Notes
If you use the project development enviroment to edit and then save a task worksheet in a project running
locally, that worksheet is automatically and immediately reloaded by the project. You do not need to use this
function to reload the worksheet.

This function is used to reload worksheet files that have been created or edited outside the project
development environment and then manually added to the project folder. As such, it is not intended for
typical users of this software. If you want more information about how to use this function, please contact
your software distributor.

Worksheet files must be located in the project folder, and each worksheet file name must include both
the type of worksheet and the worksheet number. For example, Math worksheet number 3 is saved at the
following location:

<project name>\Config\MATH003.MAT

The specified task must be started before this function is called; calling this function does not start the
specified task. If the task was not automatically started when the project was run, you can use either the
Runtime Tasks command or the StartTask on page 1099 function to manually start the task.

Appendix: Built-in Language

Page 1102

Examples
Update the Math task in order to reload worksheet number 3 (MATH003.MAT):

TaskUpdateConfig("Math",3)

ViewerPostMessage
The function ViewerPostMessage posts a Windows System Message to the specified project screen.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

ViewerPostMessageModule Activity Asynchronous No Supported Supported Not supported

Syntax

ViewerPostMessage(strScrTitle,numMessage,numwParam,numlParam,optNumID)

ViewerPostMessage(strScrTitle,numMessage,numwParam,numlParam{ | ,optNumID })
strScrTitle

The name of the screen to which the message will be posted.

numMessage
The number of the Windows System Message to be posted.

numwParam
Additional, message-specific information that is passed to wParam of the Windows System
Message.

numlParam
Additional, message-specific information that is passed to lParam of the Windows System
Message.

optNumID
The specific ID number of the screen. (This number is assigned when the screen is opened using
the function Open.)

This parameter is optional; if no value is specified, the default value is 0.

Return value
This function returns no value.

Notes
This function emulates the PostMessage function in Microsoft Windows. For more information, including a
complete list of available Windows System Messages, go to: msdn.microsoft.com/library/ms644944

If the Enforce Web functionality equivalence in local project screens option is selected in the project settings, this function
cannot be called in Global Procedures, Script worksheets, or other background tasks. This is because
the function behaves differently depending on whether you view project screens locally (i.e., on the same
computer that hosts the project runtime) or remotely. For more information, see Preferences tab on page 127.

Examples
Send message 16 to the screen named "main" with ID 10:

ViewerPostMessage("main",16,3,1,10)

http://msdn.microsoft.com/library/ms644944

Appendix: Built-in Language

Page 1103

Multimedia functions
These functions are used to play external audio and video files.

Play
Plays a specified WAV audio file.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Play Multimedia Asynchronous No Supported Supported Not supported

Note: For this function to work on a Thin Client, the target WAV file must be located in the same
file path on the remote station.

Description
Plays a specified WAV audio file.

Syntax
Play(strFileName{ | ,optNumSynchronous })
strFileName

The file path and name of the WAV file to play.

optNumSynchronous
A numeric flag specifying whether the function executes synchronously or asynchronously:

Value Description

0 Asynchronous (i.e., the project continues without waiting for the
function to return)

1 Synchronous (i.e., the project pauses while it waits for the function to
return)

This is an optional paramter; if no value is specified, then the default is 0.

Return value
This function returns no value.

Examples

Tag Name Expression

Play("C:\Sounds\Wav\alarm.wav")

Appendix: Built-in Language

Page 1104

Screen functions
These functions are used to open and close project screens.

Close
Close is a built-in scripting function that closes an open project screen.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Close Screen Asynchronous No Supported Supported Supported

Syntax

Close(optStrScreen,optNumID)

Close (optStrScreen { | , optNumID })
optStrScreen

The name of the screen to be closed. If this parameter is omitted, then the currently active
screen will be printed.

optNumID
The specific ID or instance number of the screen to be closed, if there is more than one screen
with the same name open. (The ID is assigned when the screen is opened with the Open
function.)

This parameter is optional; if no value is specified, the default ID is 0.

Return value
This function returns no value.

Notes
If the Enforce Web functionality equivalence in local project screens option is selected in the project settings, this function
cannot be called in Global Procedures, Script worksheets, or other background tasks. This is because
the function behaves differently depending on whether you view project screens locally (i.e., on the same
computer that hosts the project runtime) or remotely. For more information, see Preferences tab on page 127.

Also, in some cases, you do not need to call this function to close a screen because the screen will be closed
automatically when another screen replaces it. For more information, see Screen Attributes on page 229.

Examples
Close the screen named "main":

Close("main")

Close the currently active screen:

Close()

Close the screen named "alarms":

Close("alarms")

Appendix: Built-in Language

Page 1105

Close the screen named "main" with ID 10:

Close("main",10)

Open
Open is a built-in function that opens a project screen or screen group on the thin client with some specified
settings.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Open Screen Asynchronous No Supported Supported Supported (see
"Notes" below)

Syntax

Open(strScreenAndProperties,optNumX1,optNumY1,optNumX2,optNumY2,optNumResizeFlag,optNumID,optStrMnemonicList)

Open(strScreenAndProperties{ | ,optNumX1{ | ,optNumY1,optNumX2,optNumY2,{ optNumResizeFlag | 0
| 1 } } }{ | ,optNumID }{ | ,optStrMnemonicList })
strScreenAndProperties

The name of the project screen or screen group to be opened. The screen file extension (either
.scc or .scr) is assumed, so you do not need to include it if you are opening an individual
project screen. If you are opening a screen group, however, you must include the screen group
file extension (.sg).

Note: If you have two screen files with the same name but different extensions
in your project folder (e.g., MyScreen.scc and MyScreen.scr), the one with the
preferred extension — as determined by whether the Use .scr extension for screen files
option in the project settings is selected — will be opened. For more information,
see Viewer tab on page 115.

If you specify only the screen name, it will be opened with its default properties (as specified in
Screen Attributes). You can configure the properties as follows:

Property Syntax

Title Bar EnableTitleBar: Enable | Disable;
TitleBar: title

System Menu SystemMenu: Enable | Disable

Minimize Box Minimize: Enable | Disable

Maximize Box Maximize: Enable | Disable

Style Style: Overlapped | Popup |
Replace(Partial) | Dialog |
Replace(Complete)

Border Border: None | Thin | Resizing

Concatenate the screen name and the customized properties as a single string, using semicolons
(;) to separate the properties in the string. For more information, see "Examples" below.

There is also a Clear Data property (ClearData) that applies only to screens opened in Mobile
Access. When a screen is opened in Mobile Access, some of that screen's data is cached so that
it can be quickly opened again. This is useful when certain screens are repeatedly closed and
then reopened. However, if you see unexpected or unwanted behavior when you open a screen
in this way, you may enable the Clear Data property (e.g., ClearData: Enable) to clear the
cached data and open the screen as if for the first time.

optNumX1,optNumY1,optNumX2,optNumY2

Appendix: Built-in Language

Page 1106

The coordinates, in pixels, for the top-left (X1,Y1) and bottom-right (X2,Y2) corners of the screen.

These paramaters are optional; if no values are specified, the default screen size and position
are used.

Please note the following special circumstances:

• You can open the screen at the mouse's current position by using Open("screen",1), or
Open("screen",1,−1,−1,−1,…) if the parameters at the end are needed.

• If optNumX1 equals optNumX2 and optNumY1 equals optNumY2, the default screen size is
used but the screen is centered at (X1,Y1).

• If optNumX2 is less than optNumX1 and/or optNumY2 is less than optNumY1, or if all four
parameters are set to −1, the parameters are ignored and the default screen size and position
are used.

optNumResizeFlag

Specifies whether objects in the screen will be resized when the screen is opened:

Value Description

0 Screen objects will not be resized.

1 Screen objects will be automatically resized to fit the new dimensions
of the screen, as specified by the coordinates described above. The
resizing is done at the moment the screen is opened, so if the user
changes the screen size after the screen is opened, the objects will
not be resized again.

This parameter is required if all four coordinates (optNumX1, optNumY1, optNumX2, optNumY2)
are specified.

Note:

By default, text associated with a screen object (e.g., the caption on a Button
object) is not resized along with the object. This might result in unexpected
behavior during project run time, but it is done to prevent more serious issues
that might result from automatically resizing fonts.

If you want to automatically resize fonts, manually edit your project file
(<project name>.APP) to add the following entry:

[Desktop]
ResizeFontWithScreen=1

optNumID

An ID or instance number to be assigned to the screen, because you can open multiple
instances of the same screen file. (This ID is required when a screen is closed using the Close
function.)

This parameter is optional; if no value is specified, the default value is 0.

optStrMnemonicList

A string that describes how the custom properties (also known as mnemonics) of screen objects
and linked symbols will be completed when the screen is opened. This string must have the
following syntax…

#Label:Value

…where Label is the name of the custom property and Value is the tag, expression, or literal
value that the property will receive. If Value is a tag or expression, it will be evaluated when this
function is executed.

Appendix: Built-in Language

Page 1107

You can declare more than one custom property as long as they are separated by spaces. You
can also specify an external text file that contains the custom properties separated by either
spaces or line returns. The file must have the .mne extension, and it must be located in the Web
sub-folder of your project folder. If you want to save the file in a deeper sub-folder, you must
specify a file path that is relative to the Web sub-folder. The file extension is assumed, so you do
not need to include it in the file name.

For more information about how to use this parameter, see "Examples" below. For more
information about custom properties in general, see Use custom properties to set property
values when screens are opened on page 328.

Return value
This function returns one of the following possible values:

Value Description

0 Invalid parameter(s).

1 Valid parameters.

The function only checks whether the parameters are valid, before it tries to use those parameters to open the
screen. The function does not return any value to indicate whether the screen is successfully opened.

Notes
If the Enforce Web functionality equivalence in local project screens option is selected in the project settings, this function
cannot be called in Global Procedures, Script worksheets, or other background tasks. This is because
the function behaves differently depending on whether you view project screens locally (i.e., on the same
computer that hosts the project runtime) or remotely. For more information, see Preferences tab on page 127.

There are two known issues with using this function on Mobile Access. First, most of the additional properties
for the strScreenAndProperties parameter are not supported. Only the Clear Data property (ClearData) is
supported, and it applies only to screens opened in Mobile Access. Second, if you use the optStrMnemonicList
parameter to complete custom properties in the specified project screen, but the screen also contains some
VBScript that tries to set the same custom properties, the conflict will cause a VBScript compilation error and
the screen will not open. For example, if you make the following function call to open a project screen…

Open("Screen",-1,-1,-1,-1,0,0,"#Mne3:1")

…but the screen contains a Button object that has the following VBScript attached to it…

$#Mne3:=1234

…the VBScript will not compile and the screen will not open.

Examples
Open the screen using the default screen size, position, and ID:

Open("main")

Open the screen at the mouse's current position:

Open("main",1)

Open the screen at the mouse's current position and assign it an ID of 10:

Open("main",1,−1,−1,−1,0,10)

Appendix: Built-in Language

Page 1108

Open the screen using the default screen size but centered at the coordinates (500,250), do not resize the
screen objects, and assign the screen an ID of 10:

Open("main",500,250,500,250,0,10)

Open the screen using the default screen size and position, use the default ID, and replace the custom
properties Mne1 and Mne2 with Tag1 and Tag2, respectively:

Open("main",−1,−1,−1,−1,0,0,"#Mne1:Tag1 #Mne2:Tag2")

Open the screen using the default screen size and position, use the default ID, and replace the custom
properties with values defined in the mnemonics file located at: <project name>\Web\mnemonic.mne

Open("main",−1,−1,−1,−1,0,0,"mnemonic")

Open the screen using the default screen size but centered at the coordinates (500,250), do not resize the
screen objects, assign the screen an ID of 10, and replace the custom properties with values defined in the
mnemonics file located at: <project name>\Web\mnemonic.mne

Open("main",500,250,500,250,0,10,"mnemonic")

Open the screen using the default screen size and position, assign it an ID of 2, and replace the custom
properties with values defined in the mnemonics file located at: <project name>\Web\Mnemonics
\mnemonic.mne

Open("main",−1,−1,−1,−1,0,2,"Mnemonics\mnemonic")

Open the screen using the default screen size and position, do not resize the screen objects, use the default
ID, and customize the screen properties:

Open("main; EnableTitleBar: Enable; TitleBar: Main Screen; SystemMenu: Enable;
 Maximize: Disable; Minimize: Disable; Style: Popup; Border: Thin",-1,-1,-1,-1,0,0,"")

Open the screen in Mobile Access and clear any cached data so the screen is opened as if for the first time:

Open("main; ClearData: Enable")

OpenPrevious
OpenPrevious is a built-in scripting function that re-opens the last screen to be closed.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

OpenPrevious Screen Asynchronous No Supported Supported Supported

Syntax

OpenPrevious(optNumX1,optNumY1,optNumX2,optNumX2)

OpenPrevious({ | optNumX1,optNumY1,optNumX2,optNumY2 })
optNumX1
optNumY1
optNumX2
optNumY2

Appendix: Built-in Language

Page 1109

The coordinates, in pixels, for the upper-left (X1,Y1) and lower-right (X2,Y2) corners of the
screen.

These are optional parameters. If no values are specified, then the default screen size and
location are used. For more information, see Screen Attributes on page 229.

Returned value
This function returns one of the following values:

Value Description

0 Failure

1 Success

Notes
If the Enforce Web functionality equivalence in local project screens option is selected in the project settings, this function
cannot be called in Global Procedures, Script worksheets, or other background tasks. This is because
the function behaves differently depending on whether you view project screens locally (i.e., on the same
computer that hosts the project runtime) or remotely. For more information, see Preferences tab on page 127.

Examples
Open the previous screen using its default size and location:

OpenPrevious()

Open the previous screen in the top-left corner of the display and sized to 800x600:

OpenPrevious(0,0,800,600)

ShowInplaceInput
ShowInplaceInput is a built-in function that shows a simple input box at a specified position on the project
thin client.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

ShowInplaceInputScreen Asynchronous No Supported Supported Not supported

Syntax

ShowInplaceInput("strOutputTag",numStartXPos,numStartYPos,optNumMin,optNumMax,optNumEnablePasswordMode,optNumShowOSVK)

ShowInplaceInput("strOutputTag",numStartXPos,numStartYPos{ | ,optNumMin,optNumMax{ | ,{
optNumEnablePasswordMode | 0 | 1 }{ | ,{ optNumShowOSVK | 0 | 1 } } } })
strOutputTag

The name of a project tag that will receive the input. The data type of the tag should be
appropriate for the type of input that you want to get from the user. For example, an Integer tag
cannot receive text input.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

numStartXPos
The starting X position of the top-left corner of the input box — that is, the number of pixels
between that corner and the left side of the thin client display.

Appendix: Built-in Language

Page 1110

This is the "starting" position because the user can move the input box after it is shown.

numStartYPos
The starting Y position of the top-left corner of the input box — that is, the number of pixels
between that corner and the top of the thin client display.

This is the "starting" position because the user can move the input box after it is shown.

optNumMin
The minimum numeric value that will be accepted as input.

This parameter is optional; if no value is specified, any value will be accepted.

optNumMax
The maximum numeric value that will be accepted as input.

This parameter is optional; if no value is specified, any value will be accepted.

optNumEnablePasswordMode
An option to enable password mode, which obfuscates the operator's input as if it is a password:

Value Description

0 Show input as plain text.

1 Obfuscate input.

This parameter is optional; if no value is specified, the default value is 0.

optNumShowOSVK
An option to show the operating system's virtual keyboard for user input:

Value Description

0 Do not show virtual keyboard.

1 Show virtual keyboard.

This parameter is optional; if no value is specified, the default value is 0. Also, this parameter is
relevant only when the thin client is running on an operating system that has a built-in virtual
keyboard. It cannot be used to show BLUE Open Studio 2020's own Virtual Keyboard.

Note:

Returned value
This function returns one of the following possible values:

Value Description

0 Success.

-1 Invalid tag specified for tagOutput.

-2 Invalid number of parameters.

-3 Thin client (a.k.a. Viewer) is not running.

Notes
If the Enforce Web functionality equivalence in local project screens option is selected in the project settings, this function
cannot be called in Global Procedures, Script worksheets, or other background tasks. This is because
the function behaves differently depending on whether you view project screens locally (i.e., on the same
computer that hosts the project runtime) or remotely. For more information, see Preferences tab on page 127.

Appendix: Built-in Language

Page 1111

Examples
Show the input box at X 50, Y 50, and then save the input to the tag UserInput:

ShowInplaceInput("UserInput",50,50)

Show the input box at X 50, Y 50, and then save the input — which must be between 1 and 100 — to the tag
UserInput:

ShowInplaceInput("UserInput",50,50,1,100)

Show the input box at X 50, Y 50 with the virtual keyboard, and then save the input — which must be
between 1 and 100 — to the tag UserInput:

ShowInplaceInput("UserInput",50,50,1,100,0,1)

ShowMessageBox
ShowMessageBox is a built-in function that shows a message box with one or more buttons to capture the
user's response.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

ShowMessageBoxScreen Synchronous No Supported Supported Supported

Syntax

ShowMessageBox(strMessage,optNumButtons,optStrTitle)

ShowMessageBox(strMessage{ | ,{ optNumButtons | 0 | 1 | 2 | 3 | 4 | 5 }{ | ,optStrTitle } })
strMessage

The message body that will be displayed in the box.

optNumButtons
A numeric flag that specifies which set of buttons to display in the message box:

Value Description

0 OK button (default)

1 OK / Cancel buttons

2 Abort / Retry / Ignore buttons

3 Yes / No / Cancel buttons

4 Yes / No buttons

5 Retry / Cancel buttons

Tip: To add an exclamation icon to the box — that is, to make it an alert
or warning rather than a plain message — add 48 (vbExclamation) to this
parameter. For more information, see "Examples" below.

This parameter is optional; if no value is specified, the default value is 0.

optStrTitle
The text that is displayed in the title bar of the message box.

This parameter is optional; if no value is specified, no title is displayed.

Appendix: Built-in Language

Page 1112

Returned value
This function returns one of the following possible values:

Value Description

-1 Bad parameter.

0 Message box not displayed because the Viewer is not open; see "Notes" below.

1 User clicked OK.

2 User clicked Cancel.

3 User clicked Abort.

4 User clicked Retry.

5 User clicked Ignore.

6 User clicked Yes.

7 User clicked No.

Notes
Unlike other Screen functions, this function can be called from Global Procedures and Script worksheets,
and when it is, the message box is displayed in the Viewer module on the project runtime server. If the Viewer
module is not open — that is, if the Viewer task is not running — the message box cannot be displayed and
the function returns 0.

When this function is used in project screens on Mobile Access, it has been enhanced to duplicate the
functionality of the VBScript function MsgBox.

Tip: The message, button labels, and title (if any) can all be displayed in other languages during run
time. For more information, see Project Localization on page 694.

Examples
Display a plain message with an OK button:

ShowMessageBox("The action could not be completed.")

Display a question with Yes / No buttons:

ShowMessageBox("Continue with action?",4)

Display an alert with an OK button and a title:

ShowMessageBox("The action could not be completed.",0+48,"Alert")

Appendix: Built-in Language

Page 1113

Security functions
These functions are used to manage users and groups in the project's security system.

BlockUser
BlockUser is a built-in function that blocks an existing user from logging onto a project. This allows you to
disable a user account without deleting it.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

BlockUser Security Synchronous No Supported Supported Not supported

Syntax

BlockUser(strUserName)

BlockUser(strUserName)
strUserName

The name of the user to block.

Return value
This function returns one of the following possible values:

Value Description

0 User blocked successfully.

1 Invalid number of parameters.

2 Wrong parameter type.

3 Specified user does not exist.

4 The current user does not have sufficient privileges to make changes (i.e., the
current user does not belong to a group that has the Edit Security System
option selected).

5 The operation on the distributed security system failed.

6 User cannot be blocked.

7 The current Security Mode does not allow user to be blocked/unblocked.

8 Internal error.

Notes
When this function is used to block a user, the User is blocked option is selected in the account settings for that
user. Subsequently, you can either call the UnblockUser function or manually clear the option in the User
Account dialog box. For more information, see Creating and configuring users on page 684.

You should avoid calling this function too frequently during project run time — for example, as part of a For
loop that repeats in a matter of milliseconds. By default, the security settings are saved synchronously (i.e.,
after each change is made), and too frequent saves can decrease run-time performance and/or cause the
project development environment to freeze.

As a workaround, you can change the default behavior and configure your project to save the security settings
asynchronously, at a specified interval. To do this, manually edit your project file (<project name>.app) to
add the following settings:

[SecuritySystem]

Appendix: Built-in Language

Page 1114

EnableAsyncSavingForBuiltInFunctions=1

[Options]
SecuritySystemAutoSaveInterval=<in minutes, default is 5, minimum is 1>

Asynchronous saving applies to the following built-in functions:

• BlockUser

• CreateUser

• RemoveUser

• SetPassword

• SetUserGroup

• UnblockUser

If you enable asynchronous saving as described above and then call any of these functions to make changes
to the security settings during project run time, those changes will be applied immediately but they might not
be saved when the project is stopped.

In contrast, if you use the project development environment to make changes to the security settings during
project run time, those changes are always saved synchronously regardless of whether asynchronous saving
is enabled.

Examples
Block the user named Bob:

BlockUser("Bob")

Block the user named in position 3 of the array badUsers:

BlockUser(badUsers[3])

Block the user that is currently logged on, as determined by the system tag UserName:

BlockUser(UserName)

CheckESign
CheckESign is a built-in function that electronically signs a run-time event with a user name. You can call
this function to secure scripts and expressions, just as you can select the E-Sign option to secure screen
objects and animations.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

CheckESign Security Synchronous No Supported Supported Supported

Syntax

CheckESign(optNumLevel,optStrUserName,optStrPassword)

CheckESign({ | optNumLevel{ | ,optStrUserName{ | ,optStrPassword } } })
optNumLevel

The security level (from 0 to 255, Runtime only) to which the user must have access in order to
sign.

This parameter is optional; if no value is specified, the default value is 0.

Appendix: Built-in Language

Page 1115

optStrUserName

The name of a user configured in the project security system.

This parameter is optional; if no value is specified, a dialog box is displayed in the project viewer
for the user to enter their user name and password.

optStrPassword

The password for the user specified by optStrUserName.

This parameter is optional; if no value is specified, a dialog box is displayed in the project viewer
for the user to enter their password. (The user name is automatically filled.)

Return value
This function returns one of the following possible values:

Value Description

-10000 Function called outside the project viewer, without a project viewer running.

0 User name and/or password not accepted, or the user does not have access to
the specified security level.

1 User name and password accepted. The event is saved in the event history with
the user's signature.

Notes
Users, groups, and security levels are all managed in the project security system. For more information, see
Project Security on page 652.

Examples
Prompt the user for their user name and password — the user must have access to security level 20:

CheckESign(20)

Prompt the current user, as determined by the UserName system tag, for their password:

CheckESign(20,UserName)

This function is often called as the If condition in an If…Then…Else statement, so that the value returned by
this function determines the result of the statement.

CheckSecurityLevel
The function CheckSecurityLevel checks whether the current user has access to the specified security level.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

CheckSecurityLevelSecurity Synchronous Yes Supported Supported Supported

Syntax

CheckSecurityLevel(numLevel,optNumType)

CheckSecurityLevel(numLevel{ | ,{ optNumType | 0 | 1 } })
numLevel

The security level to be checked.

optNumType
The type of security level to check: 0 is Runtime, 1 is Development.

Appendix: Built-in Language

Page 1116

This is an optional parameter; if no value is specified, the default value is 0.

Returned value
This function returns one of the following possible values:

Value Description

0 The current user does not have access to the specified security level.

1 The current user has access to the specified security level.

Notes
Each user can belong to multiple groups, and those groups typically have access to different security levels.
Rather than check the groups to which a user belongs, and from that try to determine the security levels to
which the user has access, you can use this function to check the security levels directly.

For more information about groups and security levels, see Group Account dialog on page 677.

Examples
The user "Bob" belongs to the groups "GroupA" and "GroupB". GroupA has access to runtime levels 10 to 20,
and GroupB has access to development levels 30 to 40. That means Bob has access to runtime security levels
10 to 20 and development security levels 30 to 40.

Given this, if Bob is the current user (i.e., the user who is currently logged onto the client where the function
is executed) and this function is called to check for access to runtime security level 17…

CheckSecurityLevel(17)

…it returns a value of 1, meaning that Bob has access.

Similary, if this function is called to check for access to development security level 33…

CheckSecurityLevel(33,1)

…it again returns a value of 1.

However, if this function is called to check for access to runtime security level 25…

CheckSecurityLevel(25,0)

…it returns a value of 0, meaning that Bob does not have access.

CreateUser
The function CreateUser creates a new user in your project's security system.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

CreateUser Security Synchronous No Supported Supported Not supported

Syntax

CreateUser(optStrUserName,optStrGroup,optStrPassw,optStrUserFullName)

CreateUser({ | optStrUserName,optStrGroup{ | ,optStrPassw{ | ,optStrUserFullName } } })
optStrUserName,optStrGroup

The name of the user to be created, and the group(s) to which the user will belong. You can
specify multiple groups by separating them with a comma.

Appendix: Built-in Language

Page 1117

These are optional parameters; if no values are specified, a dialog box will be displayed on the
client so that the current user can provide the information.

optStrPassw

The user's password.

This is an optional parameter; if no value is specified, the user will not have a password. (To
specify one later, either call the function SetPassword or edit the user's settings in the project
security system.)

optStrUserFullName

The full name of the user.

This is an optional parameter; if no value is specified, the user will not have a full name. (To
specify one later, edit the user's settings in the project security system.)

Returned value
This function returns one of the following possible values:

Value Description

-1000 Could not display dialog box. The function should executed on the client.

-1 Internal error. Please contact Support.

0 New user created successfully.

1 Invalid number of parameters.

2 Wrong parameter type.

3 User name already exists.

4 Group does not exist.

5 Failed to save to configuration file.

6 Invalid user.

7 User full name already exists.

8 Reentrant function call not allowed.

9 User clicked Cancel on the Create User dialog box.

10 Invalid password, check the minimum password size specified for the group.

11 Invalid group. (Group may not have Runtime group option selected.)

12 Create User dialog box is already displayed, cannot display another dialog
box. (For example, if the user clicked OK without providing all of the required
information.)

13 The current user does not have sufficient privileges to make changes (i.e., the
current user does not belong to a group that has the Edit Security System
option selected).

14 The current Security Mode does not allow a user to be created.

Notes
When you use this function to create a user, the Runtime user option is selected in the account settings for that
user. For more information, see Creating and configuring users on page 684.

You should avoid calling this function too frequently during project run time — for example, as part of a For
loop that repeats in a matter of milliseconds. By default, the security settings are saved synchronously (i.e.,
after each change is made), and too frequent saves can decrease run-time performance and/or cause the
project development environment to freeze.

Appendix: Built-in Language

Page 1118

As a workaround, you can change the default behavior and configure your project to save the security settings
asynchronously, at a specified interval. To do this, manually edit your project file (<project name>.app) to
add the following settings:

[SecuritySystem]
EnableAsyncSavingForBuiltInFunctions=1

[Options]
SecuritySystemAutoSaveInterval=<in minutes, default is 5, minimum is 1>

Asynchronous saving applies to the following built-in functions:

• BlockUser

• CreateUser

• RemoveUser

• SetPassword

• SetUserGroup

• UnblockUser

If you enable asynchronous saving as described above and then call any of these functions to make changes
to the security settings during project run time, those changes will be applied immediately but they might not
be saved when the project is stopped.

In contrast, if you use the project development environment to make changes to the security settings during
project run time, those changes are always saved synchronously regardless of whether asynchronous saving
is enabled.

Examples
Display the Create User dialog box on the client, to get the information from the current user:

CreateUser()

Create a user named "Bob" in the group "Admin", with the password "Chocolate":

CreateUser("Bob","Admin","Chocolate")

Create a user named "Albert" (full name "Albert Jones") in the group "Engineering", with the password
"EMC2":

CreateUser("Albert","Engineering","EMC2","Albert Jones")

ExportSecuritySystem
This function exports the security system configuration to an encrypted file.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

ExportSecuritySystemSecurity Synchronous No Supported Not supported Not supported

Syntax
ExportSecuritySystem(strFileName,strPassword)

ExportSecuritySystem(strFileName, strPassword)

strFileName

Appendix: Built-in Language

Page 1119

The complete file path and name where you want to save the configuration file.

strPassword
The main password for the security system. This same password will be used to protect the
exported file.

Returned value
This function returns one of the following possible values:

Value Description

-2 Wrong parameter type.

-1 Invalid number of parameters.

0 Couldn't write security data.

1 File exported successfully.

Notes
This function can be called only from scripts executed on the project server. None of the connected clients —
not even the client running on the same computer as the project server, because it runs as a separate process
on that computer — have the necessary access to the security system. Therefore, generally speaking:

• It can be called from the Startup Script (which is executed when the project itself is run), Script Groups
(which are continuously executed by the Background Task), and any Global Procedures called by them;
and

• It cannot be called from the Graphics Script (which is executed separately by each client), Screen Scripts
(which are attached to individual screens), and Command animations.

For more information, see VBScript Interfaces in the Software on page 1234.

To work around this limitation, create a Script Group that actually calls the function, configure an
appropriate tag/expression trigger in the Execution box of the Script worksheet, and then create a project
screen that somehow changes the value of that tag/expression. Therefore, when a user on a connected client
uses the screen to change the value, the Script Group will be executed on the project server.

Examples

ExportSecuritySystem("C:\security.txt")

ExportSecuritySystem("C:\security.txt", "mypa55w0rd")

GetLastESignUser
GetLastESignUser is a built-in function that gets the last user who electronically signed an event during run
time.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetLastESignUserSecurity Synchronous Yes Supported Supported Supported

Syntax

GetLastESignUser()

GetLastESignUser()

This function has no parameters.

Appendix: Built-in Language

Page 1120

Return value
This function returns (as a string) the name of the last user who electronically signed an event during run
time. (Such events are generated when the user uses a screen object that has the E-Sign option selected or
triggers a script that calls the function CheckESign. For more information, see Events on page 391.) If the
user failed to provide a valid username and password, or if the user clicked Cancel to exit the E-Sign dialog box,
this function returns an empty string ("").

Notes
This function gets the last user on the client where the function is executed. If the function is executed on the
project runtime server, it gets the last user of the server's local Viewer.

GetSecuritySystemStatus
This function gets the status of the security system and its connection to the authentication server, when the
security mode is either Distributed–Client or Domain (LDAP).

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetSecuritySystemStatusSecurity Synchronous Yes Supported Supported Not supported

Syntax
GetSecuritySystemStatus({ | { optNumType | 0 | 1 | 2 } })

GetSecuritySystemStatus()
GetSecuritySystemStatus(optNumType)

optNumType
The type of action to take to update the status.

Value Description

0 Perform a fast check using either Ping or Bind (depending on the
server settings), but take no other actions.

1 Force reload of users and groups from the authentication server.

2 Clear cached users and groups.

This is an optional parameter; if no value is specified, then the default is 0.

Returned value
This function returns one of the following possible values:

Value Security Mode is Distributed–Client Security Mode is Domain (LDAP)

0 No cache Connection timeout

1 Updated cache Bind timeout

2 Outdated local cache Query timeout

3 Outdated server cache Disconnected

4 Disconnected from server Connected

5 N/A No users or groups returned by query

6 N/A Invalid user or group

Notes
This function returns the same value that is sent to the project tag configured in the Status Tag box, in the
security system server settings. However, this function returns the value immediately, while the project tag

Appendix: Built-in Language

Page 1121

configured in the Status Tag box is only updated periodically (according to Synchonization Period for Distributed–
Client or Retry Interval for Domain (LDAP)). As such, there may be times when this function's returned value and
the value of the project tag do not match.

Also, there are other actions besides calling this function that update the status:

• When a user logs on to the project. Specifically, if the user logs on via the built-in LogOn dialog (invoked by
either calling the LogOn function or selecting the LogOn menu command in the Viewer), then the status is
updated before the dialog is displayed.

• When the authentication server is offline and the retry interval (configured in the security system server
settings) has elapsed.

• When the security system settings are opened in the development application.

Whenever the status is updated, the new value is immediately sent to the project tag configured in the Status
Tag box.

Examples
Get the status of the security system:

GetSecuritySystemStatus()

Force the security system to reload all users and groups from the authentication server:

GetSecuritySystemStatus(1)

GetUserFullName
This function gets the full name (if any) of a specified user in the project security system.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetUserFullNameSecurity Synchronous Yes Supported Supported Not supported

Syntax
GetUserFullName(strUserName,"tagUserFullName")
strUserName

The name of a user in the project security system.

tagUserFullName
The name of a tag (String type) that will receive the full name of the specified user. If the
specified user does not have a full name defined, then the tag will receive an empty string ("").

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

Returned value
This function returns one of the following possible values:

Value Description

0 Specified user does not exist.

1 Success; specified user exists.

Appendix: Built-in Language

Page 1122

Examples
Get the full name of the currently logged user (via the system tag UserName):

GetUserFullName(UserName, "UserFullName")

Get the full name of the user "engineer1":

GetUserFullName("engineer1", "UserFullName")

GetUserNames
GetUserNames is a built-in function that gets a list of users that match a specified type and then stores the
list in an array tag.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetUserNames Security Synchronous No Supported Executed on Server Not supported

Syntax

GetUserNames("tagUsers",optNumUserType,"opttagGroups")

GetUserNames("tagUsers"{ | ,optNumUserType{ | ,"optTagGroups" } })
tagUsers

The name of the array tag (String type) that will receive the list of users, starting at array
position 0.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

optNumUserType
A numeric flag that indicates the type of users to get:

Value Description

0 All users.

1 Only users that have the Runtime user option selected.

2 Only users that do not have the Runtime user option selected.

The Runtime user option is a setting in the User Account dialog, in the project security system.
It indicates that the user can be affected during run time by the Security functions, including
this one. It is selected automatically if a user is created during run time — for example, by
calling the CreateUser function — but it can also be selected or cleared manually. For more
information, see Creating and configuring users on page 684.

This parameter is optional; if no value is specified, the default value is 0.

optTagGroups
The name of the array tag (String type) that will receive a list of the user groups to which
the users belong, starting at array position 0. Each user's group(s) will be written to the
corresponding array position. For example, for the user stored in MyUsersArray[5], its group(s)
are stored in MyGroupsArray[5].

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

Appendix: Built-in Language

Page 1123

This parameter is optional; if no value is specified, the list of user groups will not be saved.

Returned value
This function returns the number of users that match the specified type, or a negative number that can be
one of the following:

Value Description

-1 Invalid number of parameters.

-2 tagUsers is invalid.

-3 optNumUserType is invalid.

-4 opttagGroups is invalid.

-5 Error, function cannot be called in the Thin Client.

Examples
Get all users, and then store the user names in MyUsersArray:

GetUserNames("MyUsersArray")

Get all users that have the Runtime user option selected, and then store the user names in MyUsersArray:

GetUserNames("MyUsersArray",1)

Get all users that do not have the Runtime user option selected, store the user names in MyUsersArray, and
store the corresponding group names in MyGroupsArray:

GetUserNames("MyUsersArray",2,"MyGroupsArray")

GetUserPwdAging
The function GetUserPwdAging gets the age of the password for a specified user — that is, the time remaining
until the password expires, or if it has expired, the time since it expired.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetUserPwdAgingSecurity Synchronous Yes Supported Supported Not supported

Syntax

GetUserPwdAging(strUser)

GetUserPwdAging(strUser)
strUser

The name of the user.

Returned value
This function returns one of the following possible values:

Value Description

less than 0 Number of hours since the password expired.

0 The specified user is not logged on.

greater than 0 Number of hours until the password expires.

Appendix: Built-in Language

Page 1124

Note: If the function is not executed correctly (e.g., if the specified user name is invalid), or if the
specified user is not logged on, then the function also returns BAD quality.

Examples
Get the age of the password for the user "John":

GetUserPwdAging("John")

Get the age of the password for the user who is currently logged on:

GetUserPwdAging(UserName)

GetUserState
Use to see the current status of a selected user.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetUserState Security Synchronous Yes Supported Supported Not supported

Syntax
GetUserState(strUserName)
strUserName

The name of the user

Returned value
This function returns one of the following possible values:

Value Description

-3 Specified user does not exist.

-2 Wrong parameter type.

-1 Invalid number of parameters.

0 Specified user is unblocked.

1 Specified user is blocked.

Examples

Tag Name Expression

Tag GetUserState("Bob")

Tag GetUserState ("Albert")

ImportSecuritySystem
This function imports a security system configuration from an external file.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

ImportSecuritySystemSecurity Synchronous No Supported Not supported Not supported

Appendix: Built-in Language

Page 1125

Syntax

ImportSecuritySystem(strSecuritySystemPassword, strFileName, strFilePassword, optNumMode
)

ImportSecuritySystem(strSecuritySystemPassword,strFileName,strFilePassword{ | ,{ optNumMode | 0
| 1 | 2 } })
strSecuritySystemPassword

The main password for the project's current security system configuration. (The security system
must be enabled.)

strFileName
The complete file path and name of the configuration file that you want to import. (The file must
have been previously exported from a BOS project using either the Security System configuration
tool or the function ExportSecuritySystem.)

strFilePassword
The password for the specified configuration file.

optNumMode
A numeric flag indicating how the imported settings should be handled:

Value Description

0 Append the imported settings to the current settings. In the event of a
conflict, replace with the imported settings.

1 Append the imported settings to the current settings. In the event of a
conflict, keep the current settings.

2 Completely replace the current settings with the imported settings.

This parameter is optional; if no value is specified, then the default value is 0.

Returned value
This function returns one of the following possible values:

Value Description

-2 Wrong parameter type.

-1 Invalid number of parameters.

0 Couldn't read security data.

1 File imported successfully.

Notes
This function can be called only from scripts executed on the project server. None of the connected clients —
not even the client running on the same computer as the project server, because it runs as a separate process
on that computer — have the necessary access to the security system. Therefore, generally speaking:

• It can be called from the Startup Script (which is executed when the project itself is run), Script Groups
(which are continuously executed by the Background Task), and any Global Procedures called by them;
and

• It cannot be called from the Graphics Script (which is executed separately by each client), Screen Scripts
(which are attached to individual screens), and Command animations.

For more information, see VBScript Interfaces in the Software on page 1234.

To work around this limitation, create a Script Group that actually calls the function, configure an
appropriate tag/expression trigger in the Execution box of the Script worksheet, and then create a project

Appendix: Built-in Language

Page 1126

screen that somehow changes the value of that tag/expression. Therefore, when a user on a connected client
uses the screen to change the value, the Script Group will be executed on the project server.

Examples

ImportSecuritySystem("curr3ntPa55w0rd", "C:\security.txt", "1mp0rtPa55w0rd")

ImportSecuritySystem("curr3ntPa55w0rd", "C:\security.txt", "1mp0rtPa55w0rd", 2)

RemoveUser
RemoveUser is a built-in function that removes a specified user from your project's security system.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

RemoveUser Security Synchronous No Supported Supported Not supported

Syntax

RemoveUser(strUserName)

RemoveUser(strUserName)
strUserName

The name of the user to be removed.

Return value
This function returns one of the following possible values:

Value Description

0 The specified user was successfully removed.

1 Invalid number of parameters.

2 Wrong parameter type.

3 The current user does not have sufficient privileges to make changes (i.e., the
current user does not belong to a group that has the Edit Security System
option selected).

4 The specified user cannot be removed.

5 The specified user does not exist.

6 Component-level failure (e.g., the LDAP server returned an error).

7 Failed to save changes to the configuration file.

8 The current security mode does not allow the specified user to be removed.

Notes
You can use this function to remove a user only if the Runtime user option is selected in the account settings for
that user. The option is automatically selected when the CreateUser function is used to create the user, but
you can also manually select the option in the User Account dialog box, if necessary. For more information,
see Creating and configuring users on page 684.

You should avoid calling this function too frequently during project run time — for example, as part of a For
loop that repeats in a matter of milliseconds. By default, the security settings are saved synchronously (i.e.,
after each change is made), and too frequent saves can decrease run-time performance and/or cause the
project development environment to freeze.

Appendix: Built-in Language

Page 1127

As a workaround, you can change the default behavior and configure your project to save the security settings
asynchronously, at a specified interval. To do this, manually edit your project file (<project name>.app) to
add the following settings:

[SecuritySystem]
EnableAsyncSavingForBuiltInFunctions=1

[Options]
SecuritySystemAutoSaveInterval=<in minutes, default is 5, minimum is 1>

Asynchronous saving applies to the following built-in functions:

• BlockUser

• CreateUser

• RemoveUser

• SetPassword

• SetUserGroup

• UnblockUser

If you enable asynchronous saving as described above and then call any of these functions to make changes
to the security settings during project run time, those changes will be applied immediately but they might not
be saved when the project is stopped.

In contrast, if you use the project development environment to make changes to the security settings during
project run time, those changes are always saved synchronously regardless of whether asynchronous saving
is enabled.

Examples
Remove the user named "Bob":

RemoveUser("Bob")

Remove the user specified by the tag InvalidUser:

RemoveUser(InvalidUser)

SetPassword
SetPassword is a built-in function that sets a new password for a specified user in your project's security
system.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SetPassword Security Synchronous No Supported Supported Not supported

Syntax

SetPassword(optStrUserName,optStrNewPassword,optStrConfirmPassword,optStrCurrentPassword)

SetPassword({ | optStrUserName{ | ,optStrNewPassword{ | ,optStrConfirmPassword{ |
,optStrCurrentPassword } } } })
optStrUserName

The name of the user.

This parameter is optional; if no value is specified, a Set Password dialog box will be displayed
on the client station so that the current user can select the name.

Appendix: Built-in Language

Page 1128

optStrNewPassword

The new password for the specified user.

This parameter is optional; if no value is specified, a Set Password dialog box will be displayed
on the client station so that the current user can enter their new password.

optStrConfirmPassword

The new password again, to confirm that it has been entered correctly.

This parameter is optional; if no value is specified, a Set Password dialog box will be displayed
on the client station so that the current user can enter their new password.

optStrCurrentPassword

The current (i.e., old) password for the specified user, to authorize the change.

This parameter is optional; if no value is specified and the function has been called by the
current user in order to set their own password, a Set Password dialog box will be displayed on
the client station so that they can enter their current password.

The current password is not required at all if this function has been called by an administrative
user in order to set the password of another user.

Return value
This function returns one of the following possible values:

Value Description

-1000 Could not display dialog box, because the function was called by the project
runtime server. The function should be called on the client station.

-1 Internal error. Please contact Customer Support.

0 Password set successfully.

1 Invalid number of parameters.

2 Wrong data type passed to parameter.

3 The specified user does not exist.

4 Reentrant call not allowed.

5 User clicked Cancel in the Set Password dialog box.

6 The specified group does not exist.

7 The specified password is too weak (i.e., it does not meet the requirements
specified in the Group Account settings).

8 Invalid password.

9 Invalid user.

10 The current user does not have sufficient privileges to make changes (i.e., the
current user does not belong to a group that has the Edit Security System
option selected).

11 Server offline.

12 Communication error (e.g., the function was called on remote client that cannot
communicate with the LDAP server).

13 Confirmation does not match new password.

14 Set Password dialog box is already displayed, cannot display another dialog
box. (For example, if the user clicked OK without providing all of the required
information.)

15 The current security mode does not allow user passwords to be changed.

Appendix: Built-in Language

Page 1129

Notes
If you do not want the Set Password dialog box to be displayed on the client station, you must provide valid
arguments to all of the function paramaters. Otherwise, the dialog box will be displayed in order to get the
remaining information from the current user.

In order to successfully execute this function, the current user must have sufficient privileges to set
passwords, regardless of whether they are setting their own password or another user's password. If they do
not have sufficient privileges, this function returns a value of 10 as described in "Return value" above. For
more information, see Group Account dialog on page 677.

If your project's security mode is set to Domain (LDAP), changing passwords is subject to LDAP server criteria
and detailed error messages will be included in the project's run-time log (i.e., the Output window). For more
information about security modes, see About security modes on page 653. For more information about LDAP
server criteria and error messages, see the documentation for your specific LDAP server.

You should avoid calling this function too frequently during project run time — for example, as part of a For
loop that repeats in a matter of milliseconds. By default, the security settings are saved synchronously (i.e.,
after each change is made), and too frequent saves can decrease run-time performance and/or cause the
project development environment to freeze.

As a workaround, you can change the default behavior and configure your project to save the security settings
asynchronously, at a specified interval. To do this, manually edit your project file (<project name>.app) to
add the following settings:

[SecuritySystem]
EnableAsyncSavingForBuiltInFunctions=1

[Options]
SecuritySystemAutoSaveInterval=<in minutes, default is 5, minimum is 1>

Asynchronous saving applies to the following built-in functions:

• BlockUser

• CreateUser

• RemoveUser

• SetPassword

• SetUserGroup

• UnblockUser

If you enable asynchronous saving as described above and then call any of these functions to make changes
to the security settings during project run time, those changes will be applied immediately but they might not
be saved when the project is stopped.

In contrast, if you use the project development environment to make changes to the security settings during
project run time, those changes are always saved synchronously regardless of whether asynchronous saving
is enabled.

Examples
Display the Set Password dialog box on the client, to get the information from the current user:

SetPassword()

Change the password for user "Admin", but display the dialog box in order to get the new password and
authorization:

SetPassword("Admin")

Appendix: Built-in Language

Page 1130

Change the password for user "admin" to the value of the tag newPassword, but display the dialog box in
order to get authorization:

SetPassword("Admin",newPassword,newPassword)

Change the password for user "admin" to the value of the tag newPassword, without displaying the dialog box:

SetPassword("Admin",newPassword,newPassword,"DLfVU89Y")

SetUserGroup
SetUserGroup is a built-in function that sets the security group for a specified user. It can either overwrite or
append to the user's current list of assigned groups.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SetUserGroup Security Synchronous No Supported Supported Not supported

Syntax

SetUserGroup(strUserName,strGroupName,optNumAppend)

SetUserGroup (strUserName , strGroupName { | , { optNumAppend | 0 | 1 } })
strUserName

The name of the user that will have its group set.

strGroupName
The name of the group to be set for the specified user. To specify multiple groups, separate them
with commas.

optNumAppend

A numerical flag that indicates how the group should be set:

Value Description

0 Overwrite the user's current list of assigned groups.

1 Append to the user's current list of assigned groups.

This parameter is optional; if no value is specified, the default value is 0.

Return value
This function returns one of the following possible values:

Value Description

-1 Internal error.

0 Group set successfully.

1 Invalid number of parameters.

2 Wrong data type for parameter.

3 The specified user does not exist.

4 The specified group does not exist.

5 Failed to save changes to the Security System configuration file.

6 Invalid user (i.e., the Runtime user option is not selected for the specified user).

Appendix: Built-in Language

Page 1131

Value Description

7 Invalid group (i.e., the Runtime group option is not selected for the specified
group).

8 The current user does not have sufficient privileges to make changes (i.e., the
current user does not belong to a group that has the Edit Security System
option selected).

9 The current security mode (e.g., Domain) does not allow user groups to be
changed.

Notes
This function does not send events to the Event Logger.

You should avoid calling this function too frequently during project run time — for example, as part of a For
loop that repeats in a matter of milliseconds. By default, the security settings are saved synchronously (i.e.,
after each change is made), and too frequent saves can decrease run-time performance and/or cause the
project development environment to freeze.

As a workaround, you can change the default behavior and configure your project to save the security settings
asynchronously, at a specified interval. To do this, manually edit your project file (<project name>.app) to
add the following settings:

[SecuritySystem]
EnableAsyncSavingForBuiltInFunctions=1

[Options]
SecuritySystemAutoSaveInterval=<in minutes, default is 5, minimum is 1>

Asynchronous saving applies to the following built-in functions:

• BlockUser

• CreateUser

• RemoveUser

• SetPassword

• SetUserGroup

• UnblockUser

If you enable asynchronous saving as described above and then call any of these functions to make changes
to the security settings during project run time, those changes will be applied immediately but they might not
be saved when the project is stopped.

In contrast, if you use the project development environment to make changes to the security settings during
project run time, those changes are always saved synchronously regardless of whether asynchronous saving
is enabled.

Examples
Set the user "John" to the group "Admin":

SetUserGroup("John","Admin")

Set the user "Bob" to the groups "Admin" and "Operator":

SetUserGroup("Bob","Admin,Operator",0)

Appendix: Built-in Language

Page 1132

Add the current user to the group "Maintenance":

SetUserGroup(UserName,"Maintenance",1)

UnblockUser
UnblockUser is a built-in function that unblocks a previously blocked user.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

UnblockUser Security Synchronous No Supported Supported Not supported

Syntax

UnblockUser(strUserName)

UnblockUser(strUserName)
strUserName

The name of the user to unblock.

Return value
This function returns one of the following possible values:

Value Description

0 User unblocked successfully.

1 Invalid number of parameters.

2 Wrong parameter type.

3 Specified user does not exist.

4 The current user does not have sufficient privileges to make changes (i.e., the
current user does not belong to a group that has the Edit Security System
option selected).

5 The operation on the distributed security system failed.

6 Specified user cannot be blocked.

7 The current Security Mode does not allow user to be blocked/unblocked.

8 Internal error.

Notes
When this function is used to unblock a user, the User is blocked option is cleared in the account settings for
that user. For more information, see Creating and configuring users on page 684.

You should avoid calling this function too frequently during project run time — for example, as part of a For
loop that repeats in a matter of milliseconds. By default, the security settings are saved synchronously (i.e.,
after each change is made), and too frequent saves can decrease run-time performance and/or cause the
project development environment to freeze.

As a workaround, you can change the default behavior and configure your project to save the security settings
asynchronously, at a specified interval. To do this, manually edit your project file (<project name>.app) to
add the following settings:

[SecuritySystem]
EnableAsyncSavingForBuiltInFunctions=1

[Options]

Appendix: Built-in Language

Page 1133

SecuritySystemAutoSaveInterval=<in minutes, default is 5, minimum is 1>

Asynchronous saving applies to the following built-in functions:

• BlockUser

• CreateUser

• RemoveUser

• SetPassword

• SetUserGroup

• UnblockUser

If you enable asynchronous saving as described above and then call any of these functions to make changes
to the security settings during project run time, those changes will be applied immediately but they might not
be saved when the project is stopped.

In contrast, if you use the project development environment to make changes to the security settings during
project run time, those changes are always saved synchronously regardless of whether asynchronous saving
is enabled.

Examples
Unblock the user named Bob:

UnblockUser("Bob")

Unblock the user named in position 3 of the array badUsers:

UnblockUser(badUsers[3])

Appendix: Built-in Language

Page 1134

Statistical functions
These functions are used to get certain statistics — such as average, maximum, and minimum — from two or
more numeric values.

Avg
Calculates the average value of a set of numbers.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Avg Statistical Synchronous Yes Supported Supported Supported

Syntax

Avg(numValue1, numValue2, … , numValueN)
Avg("tagArray", numSample, optNumIgnore)

Note:

This function has two formats:

• If the first parameter is a numeric tag or value, you must use the Avg(numValue1, numValue2,
… , numValueN) format.

• If the first parameter is an array tag in double-quotes or a string tag, you must use the
Avg("tagArray", numSample, optNumIgnore) format.

numValue (1…N)
Integer or Real tags containing the numbers to be averaged together.

tagArray
Name of array tag (Real or Integer) containing the values to be averaged.

numSample
The number of array elements to be averaged.

optNumIgnore
Optional Integer or Real tag containing the value to be ignored in calculating the average.

Return value
Returns the average of the values.

Examples

Tag Name Expression

Tag Avg(1, 2.34, 5, 7, 4, 8, 9.4) // Returned value = 5.248571

Tag Avg(1, 5, -9, 0, 5, 3) // Returned value = 0.833333

Tag Name Expression

Tag Avg("tagArray[1]", 3) // If tagArray[1]=10, tagArray[2]=20 and tagArray[3]=60, then the Returned Value = 30

Tag Avg("tagArray[1]", 3, 10) // If tagArray[1]=10, tagArray[2]=20 and tagArray[3]=60, then the Returned
Value = 40

Appendix: Built-in Language

Page 1135

Max
Returns the maximum value of a set of numbers.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Max Statistical Synchronous Yes Supported Supported Supported

Syntax

Max(numValue1, numValue2, … , numValueN)
Max("tagArray", numSample, optNumIgnore)

Note:

This function has two formats:

• If the first parameter is a numeric tag or value, you must use the Max(numValue1, numValue2,
… , numValueN) format.

• If the first parameter is an array tag in double-quotes or a string tag, you must use the
Max("tagArray", numSample, optNumIgnore) format.

numValue (1…N)
Integer or Real tags containing the numbers to be analyzed.

tagArray
Name of array tag (Real or Integer) containing the values to be analyzed.

numSample
The number of array elements to be analyzed.

optNumIgnore
Integer or Real tags containing the value to be ignored in the analysis.

Return value
Returns the maximum value of the set.

Examples

Tag Name Expression

Tag Max(1, 2.34, 5, 7, 4, 8, 9.4) // Returned value = 9.4

Tag Max(1, 5, -9, 0, 5, 3) // Returned value = 5

Tag Max("tagArray[1]", 3) // If tagArray[1]=10, tagArray[2]=20 and tagArray[3]=60, then the Returned Value = 60

Tag Max("tagArray[1]", 3, 10) // If tagArray[1]=10, tagArray[2]=20 and tagArray[3]=60, then the Returned
Value = 60

Min
Returns the minimum value of a set of numbers.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Min Statistical Synchronous Yes Supported Supported Supported

Syntax

Min(numValue1, numValue2, … , numValueN)

Appendix: Built-in Language

Page 1136

Min("tagArray", numSample, optNumIgnore)

Note:

This function has two formats:

• If the first parameter is a numeric tag or value, you must use the Min(numValue1, numValue2,
… , numValueN) format.

• If the first parameter is an array tag in double-quotes or a string tag, you must use the
Min("tagArray", numSample, optNumIgnore) format.

numValue (1…N)
Integer or Real tags containing the numbers to be analyzed.

tagArray
Name of an array tag (Real or Integer) containing the values to be analyzed.

numSample
The number of array elements to be analyzed.

optNumIgnore
Integer or Real tags containing a value to be ignored in the analysis.

Return value
Returns the minimum value of the set.

Examples

Tag Name Expression

Tag Min(1, 2.34, 5, 7, 4, 8, 9.4) // Returned value = 1

Tag Min(1, 5, -9, 0, 5, 3) // Returned value = -9

Tag Min("tagArray[1]", 3) // If tagArray[1]=10, tagArray[2]=20 and tagArray[3]=60, then the Returned Value = 10

Tag Min("tagArray[1]", 3, 10) // If tagArray[1]=10, tagArray[2]=20 and tagArray[3]=60, then the Returned
Value = 20

Rand
Generates a random number between 0 and 1.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Rand Statistical Synchronous Yes Supported Supported Supported

Syntax
Rand()

This function has no parameters.

Returned value
Returns a real number between 0 and 1.

Examples

Tag Name Expression

Tag Rand() // Returned value = ?, Where: 0<?<1

Appendix: Built-in Language

Page 1137

String functions
These functions are used to manipulate text strings or convert them into numeric values.

Asc2Str
This function converts one or more Unicode character codes to a string.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Asc2Str String Synchronous Yes Supported Supported Supported

Syntax

Asc2Str(numChar1, numChar2, … , numCharN)

numChar (1-N)
A Unicode character code (in decimal).

Returned value
Returns a string comprising the converted codes.

Notes
Although the name of this function implies it only supports ASCII characters, it is in fact a legacy of previous
versions of the software. The current version supports the full Unicode character set.

Examples

Tag Name Expression

Tag Asc2Str(65) // Returned value = "A"

Tag Asc2Str(65, 66, 67) // Returned value = "ABC"

Tag Asc2Str(Array[0], Array[1], Array[2]) // Returned value = "ABC"

CharToValue
This function converts a string to Unicode character codes and then stores those values in an integer array.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

CharToValue String Synchronous No Supported Supported Supported

Syntax
CharToValue("tagString","tagArray")
tagString

The name of the string tag, whose value will be converted.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

tagArray

The name of the integer array that will receive the converted values. If no array index is specfied,
then the default is 0.

Appendix: Built-in Language

Page 1138

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

Return value
Returns the number of array elements used, which should be equal to the number of characters in the string.

Examples
If StrTag = "ABC", then Array[0] = 65, Array[1] = 66, and Array[2] = 67:

CharToValue("StrTag", "Array")

If StrTag = "ABC", then Array[10] = 65, Array[11] = 66, and Array[12] = 67:

CharToValue("StrTag", "Array[10]")

CharToValueW
This function converts a string to Unicode character codes, combines each two codes into a double-byte word,
and then stores those values in an integer array.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

CharToValueW String Synchronous No Supported Supported Supported

Syntax
CharToValueW("tagString","tagArray")
tagString

The name of the string tag, whose value will be converted.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

tagArray

The name of the integer array that will receive the converted values. If no array index is specfied,
the default is 0.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

Return value
Returns the number of array elements used, which should be equal to half the number of characters in the
string.

Notes
Because of how each two character codes are combined into single value, this function only supports Unicode
character codes 0 through 255. For character codes greater than 255, or when double-byte words are not
needed, use the CharToValue function.

Appendix: Built-in Language

Page 1139

Examples
If StrTag = "Studio", then Array[0] = 29779 ("St"), Array[1] = 25717 ("ud"), and Array[2] = 28521 ("io"):

CharToValue("StrTag", "Array")

If StrTag = "Studio", then Array[10] = 29779 ("St"), Array[11] = 25717 ("ud"), and Array[12] = 28521 ("io"):

CharToValue("StrTag", "Array[10]")

ClassMembersToStrVector
Transfers values from a Class tag to an Array tag.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

ClassMembersToStrVectorString Synchronous No Supported Supported Not supported

Syntax

ClassMembersToStrVector("strClassTag" , numStartPos, numNumPos,
 "strArrayTag", optBooStartPosTarget)

strClassTag
String value containing the Class tag name.

numStartPos
Start position (array index) of strClassTag.

numNumPos
Number of positions (array indexes) to be transferred from strClassTag.

strArrayTag
String value containing the array tag that will receive the values from strClassTag.

optBooStartPosTarget
Start position (array index) of strArrayTag. If omitted, the default value 1 is used.

Returned value

−6 Array size of strClassTag is not big enough for numStartPos

−5 strClassTag is not a Class tag

−4 strClassTag is not found

−3 strArrayTag is not found

−2 Invalid data type of the parameters

−1 Invalid number of parameters

0 Transferred successfully

Notes
If strClassTag has more than one member, the value of each member will be transferred to strArrayTag.
Therefore, it is importatnt to make sure that the array size of strArrayTag is big enough to receive all values
from strClassTag.

Appendix: Built-in Language

Page 1140

Examples

Tag Name Expression

Tag ClassMembersToStrVector("Classtag", 5, 3, "Arraytag")

Tag ClassMembersToStrVector("Classtag", 5, 3, "Arraytag", 0)

Tag ClassMembersToStrVector (TagName, 0, 1, ArrayName)

DecryptData
DecryptData is a built-in function that decrypts a string of data using a specified key.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

DecryptData String Synchronous Yes Supported Supported Executed on Server

Syntax

DecryptData(strEncryptedData,strKey)

DecryptData (strEncryptedData , strKey)
strEncryptedData

The encrypted data to be decrypted, provided as a string value. It is limited to 1024 characters
and must be properly encoded for the target platform, as shown in the following table:

Target platform Encoding for strData parameter

Windows Base64

strKey
The key to be used to decrypt the encrypted data. It must be the same key that was originally
used to encrypt the data.

Return value
If this function succeeds, it returns the decrypted data as a plaintext string.

If this function fails, it returns an empty string with BAD quality.

Notes
This function is typically used to decrypt data that was encrypted by the EncryptData function, but in
theory it can be used to decrypt any data from any source as long as that data was encrypted using the same
algorithm and then saved as an encoded string.

The EncryptData and DecryptData functions use 128-bit AES encryption. Ask a cybersecurity expert
whether this type of encryption meets your needs. Never share your keys with unauthorized personnel, and be
careful about where and how you store your keys.

Examples
Decrypt the value of a tag using a specified key:

DecryptData(MyEncryptedData,"V4rM#ydar6T^rZn")

Decrypt the value of a tag using a key stored in another tag:

EncryptData(MyEncryptedData,MyKey)

Appendix: Built-in Language

Page 1141

EncryptData
EncryptData is a built-in function that encrypts a string of data using a specified key.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

EncryptData String Synchronous Yes Supported Supported Executed on Server

Syntax

EncryptData(strData,strKey)

EncryptData (strData , strKey)
strData

The data to be encrypted, provided as a string value. The length of this string value is effectively
limited to a number of characters, which varies by target platform. For more information, see
"Notes" below.

strKey
The key to be used to encrypt the data. It can be either a string value up to 16 characters or a
numeric value. There are no requirements on the composition of the key, but it should follow
the same guidelines that you would use to create a strong password. For more information, see
"Notes" below.

Return value
If this function succeeds, it returns the encrypted data as an encoded string. For more information, see
"Notes" below.

If this function fails, it returns an empty string with BAD quality.

Notes
After you have used this function to encrypt the data, you can use the DecryptData function to decrypt it
again.

The EncryptData and DecryptData functions use 128-bit AES encryption. Ask a cybersecurity expert
whether this type of encryption meets your needs. Never share your keys with unauthorized personnel, and be
careful about where and how you store your keys.

The actual limit on the length of the key is 128 bits, which is equal to 16 characters at 8 bits per character
in the ANSI character set. Be careful about specifying a key that contains non-Latin characters or symbols
(i.e., characters not included in the ANSI character set) because they can be up to 32 bits per character and
therefore make it difficult to find the length of the key.

The size of the data to be encrypted (i.e., the length of the string value passed to the strData parameter) is
effectively limited due to a combination of factors. First, the process of encrypting and then encoding data
automatically increases the size of the data. Second, different platforms use different methods to encode data
as plaintext. And third, this function returns a string value that is limited to 1024 characters, like all other
string values in this software. Therefore, to get a return value that is not more than 1024 characters, the data
to be encrypted must be much smaller.

With all of this in mind, we have tested this function and found the actual limits, as shown in the following
table:

Target platform Limit on strData parameter Encoding of return value

Windows up to 381 characters Base64

If you try to encrypt a longer string value, this function will fail.

Appendix: Built-in Language

Page 1142

Examples
Encrypt a plaintext string using a specified key:

EncryptData("This is a secret.","V4rM#ydar6T^rZn")

Encrypt the value of a tag using a specified key:

EncryptData(MyData,"V4rM#ydar6T^rZn")

Encrypt the value of a tag using a key stored in another tag:

EncryptData(MyData,MyKey)

NCopy
Copies a defined section of a larger string.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

NCopy String Synchronous No Supported Supported Supported

Syntax

NCopy(strSource, numStartChar, numQtdChar)

strSource
The source string.

numStartChar
Integer tag containing a number corresponding to the first character being copied.

numQtdChar
The number of characters to be copied.

Returned value
Returns a string that is part of the source string (as defined by the function).

Notes

Examples

Tag Name Expression

Tag NCopy("Studio version 7.0", 7, 7) // Returned value = "version"

Tag NCopy("Technical Reference", 0, 9) // Returned value = "Technical"

Note: The first character in the string will be assigned the value 0.

Num
Converts a string into a float.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Num String Synchronous Yes Supported Supported Supported

Appendix: Built-in Language

Page 1143

Syntax

Num(strValue)

strValue
The number of characters to be converted into float format.

Returned value
Returns the number (formerly in a string format) in float format.

Notes

Examples

Tag Name Expression

Tag Num("321654.987") // Returned value = 321654.987

Tag Num("5.6589626246") // Returned value = 5.6589626246

Note: The float string cannot use characters other than the numbers (0..9) and a decimal point (.),
or the function returns the value 0.0.

Str
Converts a number into a string.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Str String Synchronous Yes Supported Supported Supported

Syntax

Str(numValue)

numValue
Integer or float tag containing a number to be converted to a string.

Returned value
Returns the string, in a float format.

Notes

Examples

Tag Name Expression

Tag Str(321654.987) // Returned value = "321654.987"

Tag Str(5.65896246) // Returned value = "5.658962"

Appendix: Built-in Language

Page 1144

Str2Asc
This function converts a character to its corresponding Unicode character code.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Str2Asc String Synchronous Yes Supported Supported Supported

Syntax
Str2Asc(strChar)
strChar

The character to be converted.

Returned value
Returns the Unicode character code (in decimal) for the specified character.

Notes
Although the name of this function implies it only supports ASCII characters, it is in fact a legacy of previous
versions of the software. The current version supports the full Unicode character set.

Examples

Tag Name Expression

Tag Str2Asc("C") // Returned value = 67

Tag Str2Asc("o") // Returned value = 111

StrCompare
StrCompare is a built-in function that compares two strings to see if they are identitical.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

StrCompare String Synchronous Yes Supported Supported Supported

Syntax

StrCompare(strValue1,strValue2)

StrCompare (strValue1 , strValue2)
strValue1

The first string in the comparison.

strValue2
The second string in the comparison.

Return value
This function returns one of the following possible values:

Value Description

-2 At least one of the specified values is not a string.

-1 The value of strValue1 is less than the value of strValue2.

0 The values of strValue1 and strValue2 are equal.

1 The value of strValue1 is greater than the value of strValue2.

Appendix: Built-in Language

Page 1145

Notes
This function is case-sensitive, which means the cases of the characters in a string affect the value of that
string. To make a case-insensitive comparison, use StrCompareNoCase instead.

Examples
Given the following arguments, the return value is 0:

StrCompare("ABC","ABC")

Given the following arguments, the return value is -1:

StrCompare("ABC","DEF")

Given the following arguments, the return value is -2 and the quality is BAD:

StrCompare("ABC",123)

StrCompareNoCase
Compares two strings to see if they are identitical, ignoring the case of letters (i.e., the lower-case "a" is
considered to have the same value as the upper-case "A").

Function Group Execution String Exp. Windows Thin Clients Mobile Access

StrCompareNoCaseString Synchronous Yes Supported Supported Supported

Syntax

StrCompareNoCase(strValue1,strValue2)

strValue1
A string, or a tag of String type. This is the first string in the comparison.

strValue2
A string, or a tag of String type. This is the second string in the comparison.

Return value

−1 The value of strValue1 is less than the value of strValue2.

0 strValue1 and strValue2 are identical.

1 The value of strValue1 is greater than the value of strValue2.

Examples

Tag Name Expression

Tag StrCompareNoCase("Text1", "TEXT1") // Returned value = 0

Tag Tag1 = "Text1"
Tag2 = "TEXT1"

StrCompareNoCase(Tag1, Tag2) // Returned value = 0

Appendix: Built-in Language

Page 1146

StrFromInt
Converts an integer into its string representation in another base number system, such as binary (base-2) or
octal (base-8).

Function Group Execution String Exp. Windows Thin Clients Mobile Access

StrFromInt String Synchronous Yes Supported Supported Supported

Syntax

StrFromInt(numValue,numBase)

numValue
The numeric value to be converted into a string.

numBase
The base number system to convert into.

Return value
This function returns a string representation of the given integer, in the specified base number system. The
returned value can be stored in any tag of String type.

Notes
You can specify a real number instead of an integer, but only the whole part of the number will be converted.
To convert the entire real number, use the StrFromReal function instead.

Also, if you do not need to change the base, then use the Str function instead.

Examples

Tag Name Expression

Tag StrFromInt(26, 2) // Returned value = "11010"

Tag StrFromInt(26, 8) // Returned value = "32"

StrFromReal
StrFromReal is a built-in scripting function that converts a real numerical value to a string value, in either
floating-point or exponential notation.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

StrFromReal String Synchronous Yes Supported Supported Supported

Syntax
StrFromReal(numValue,numPrecision,{ strType | f | e | E })
numValue

The numerical value to be converted.

numPrecision
The number of decimal places to be shown in the resulting string. Please note that the value will
be rounded rather than truncated.

strType
A single-character code that specifies how the resulting string should be formatted, as described
in the following table:

Appendix: Built-in Language

Page 1147

Value of strType Description

f Formatted in floating-point notation.

e Formatted in exponential notation with a lower-case "e".

E Formatted in exponential notation with an upper-case "E".

Return value
This function returns a string representation of the given numerical value, with the specified precision and
notation.

Examples

StrFromReal(263.355, 2, "f")

…returns a string value of "263.36".

StrFromReal(263.355, 2, "e")

…returns a string value of "2.63e+002".

StrFromReal(263.355, 2, "E")

…returns a string value of "2.63E+002".

StrFromTime
Converts a timestamp from UTC standard notation into a formatted string, adjusted to reflect the Time Zone
setting in the Control Panel of the local computer.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

StrFromTime String Synchronous Yes Supported Supported Executed on Server

Syntax

StrFromTime(numUTCTime, numType)

numUTCTime
An integer, or a tag of Integer type. A timestamp given in UTC standard notation.

numType
An integer, or a tag of Integer type. Specifies the format of the resulting string, as described in
the following table:

Value of numType Description

1 Displays the date in the same format that is selected in the Control Panel on the local computer.

2 Displays the time in the same format that is selected in the Control Panel on the local computer.

3 Displays a standard 24-character string that shows both date and time.

4 Displays the abbreviated name of the day of the week.

5 Displays the full name of the day of the week.

Appendix: Built-in Language

Page 1148

Returned value
This function returns a string representation of the given timestamp, with the specified formatting. The
returned value can be stored in any tag of String type.

If this function is called in a project screen on Mobile Access, it is executed using the system clock and date/
time settings on the computer that hosts the project runtime server.

Notes
The Coordinated Universal Time (UTC) standard counts the number of seconds elapsed since 12:00 AM GMT
on January 1, 1970. Each day consists of 86,400 seconds.

Examples

Note: The examples below are for a computer set to Eastern Standard Time (or UTC −05:00).

Tag Name Expression

Tag StrFromTime(86400, 1) // Returned value = "1/1/70"

Tag StrFromTime(86400, 2) // Returned value = "07:00:00 PM"

Tag StrFromTime(86400, 3) // Returned value = "Thu Jan 01 19:00:00 1970"

Tag StrFromTime(86400, 4) // Returned value = "Thu"

Tag StrFromTime(86400, 5) // Returned value = "Thursday"

StrGetElement
Gets a specific element from a string source.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

StrGetElementString Synchronous Yes Supported Supported Supported

Syntax

StrGetElement(strSource, strDelimiter, numElementNumber)

strSource
The source string.

strDelimiter
Char used as delimiter between the elements.

numElementNumber
Number of the element which will be returned by the function. The first element has the number
1. The second element has the number 2 and so forth.

Returned value
Returns the element (string value) retrieved from strSource.

Examples

Tag Name Expression

Tag StrGetElement("a|b|c", "|", 2) // returned value = "b"

Tag StrGetElement("a,b,c", ",", 3) // returned value = "c"

Appendix: Built-in Language

Page 1149

StrLeft
Copies the first characters of a larger string.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

StrLeft String Synchronous Yes Supported Supported Supported

Syntax

StrLeft(strSource, numQtdChar)

strSource
The source string.

numQtdChar
The number of characters to be copied.

Returned value
Returns a string containing the left-most characters in the source string.

Notes

Examples

Tag Name Expression

Tag StrLeft("Studio version 7.0", 8) // Returned value = Studio v

Tag StrLeft ("Technical Reference", 9) // Returned value = Technical

StrLen
Determines the length of a string.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

StrLen String Synchronous Yes Supported Supported Supported

Syntax

StrLen(strSource)

strSource
The string.

Returned value
Returns an integer that is the number of characters in the string.

Notes

Examples

Tag Name Expression

Tag StrLen("Studio version 7.0") // Returned value = 18

Tag StrLen("Technical Reference") // Returned value = 19

Appendix: Built-in Language

Page 1150

StrLower
Converts a string to all lower case characters.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

StrLower String Synchronous Yes Supported Supported Supported

Syntax

StrLower(strSource)

strSource
The string to be converted.

Returned value
Returns the string, where all the characters are in lowercase.

Notes

Examples

Tag Name Expression

Tag StrLower("Studio version 7.0") // Returned value = "studio version 7.0"

Tag StrLower("Technical Reference") // Returned value = "technical reference"

StrRChr
Isolates the final occurrence of a character sequence within a string.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

StrRChr String Synchronous Yes Supported Supported Supported

Syntax

StrRChr(strSource, strChrSequence)

strSource
The source string.

strCharSequence
The reference string.

Returned value
Returns a string of characters following the last occurrence of a character within the source string.

Notes

Examples

Tag Name Expression

Tag StrRChr("Studio version 7.0", "i") // Returned value = "ion 7.0"

Tag StrRChr("Technical Reference", "n") // Returned value ="nce"

Appendix: Built-in Language

Page 1151

StrRight
Copies the last characters in a larger string.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

StrRight String Synchronous Yes Supported Supported Supported

Syntax

StrRight(strSource, numQtdChar)

strSource
The source string.

numQtdChar
The number of characters to be copied.

Returned value
Returns a string containing the right-most characters in a source string.

Notes

Examples

Tag Name Expression

Tag StrRight("Studio version 7.0", 8) // Returned value = "sion 7.0"

Tag StrRight("Technical Reference", 9) // Returned value = "Reference"

StrSetElement
StrSetElement is a built-in function that sets the value of a specified element in a string of elements.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

StrSetElementString Synchronous No Supported Supported Supported

Syntax

StrSetElement(strSource,strDelimiter,numElementNumber,strValue)

StrSetElement (strSource , strDelimiter , numElementNumber , strValue)
strSource

The source string, which is typically a series of elements or values that are separated by a
character.

strDelimiter
The character used as separator between the elements of the source string.

numElementNumber
The number of the element to be set by this function. The first element is number 1, the second
element is number 2, and so on.

strValue
The new value to be written at the specified element number. If there is an existing value, it will
be overwritten by the new value.

Appendix: Built-in Language

Page 1152

Return value
If this function is successfully executed, it returns the updated string.

Examples
Start a new string of elements by concatenating the source string and the new value (returns TEXT|abcd):

StrSetElement("TEXT","|",2,"abcd")

Insert the new value into an empty element (returns TEXT|abcd|efgh|):

StrSetElement("TEXT|abcd||","|",3,"efgh")

Overwrite an existing value with the new value (returns TEXT|abcd|5678|ijkl):

StrSetElement("TEXT|abcd|efgh|ijkl","|",3,"5678")

StrStr
Isolates the first occurrence of a character sequence within a string.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

StrStr String Synchronous Yes Supported Supported Supported

Syntax

StrStr(strSource, strCharSequence)

strSource
The source string.

strCharSequence
The reference string.

Returned value
Returns the string of characters following the first occurrence of a character within the source string.

Examples

Tag Name Expression

Tag StrStr("Studio version 7.0", "i") // Returned value = "io version 7.0"

Tag StrStr("Technical Reference", "n") // Returned value ="nical Reference"

StrStrPos
Finds the first occurrence of a character within a string.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

StrStrPos String Synchronous Yes Supported Supported Supported

Syntax

StrStrPos(strSource, strCharSequence)

Appendix: Built-in Language

Page 1153

strSource
The source string.

strCharSequence
The reference string.

Returned value
Returns an integer corresponding to the first occurrence of a character within the source string.

Notes

Examples

Tag Name Expression

Tag StrStrPos("Studio version 7.0", "i") // Returned value = 4

Tag StrStrPos("Technical Reference", "a") // Returned value = 7

Note: The first character in the string assigned the value 0.

StrTrim
Removes unwanted spaces from a string.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

StrTrim String Synchronous Yes Supported Supported Supported

Syntax

StrTrim(strReference, optNumFlag)

strReference
A string, or a tag of String type that contains the source string.

optNumFlag
An optional integer or tag of Integer type:

Value of
optNumFlag

Description

0 Removes all spaces from both the beginning and the end of the string.

1 Removes all spaces only from the beginning of the string.

2 Removes all spaces only from the end of the string.

3 Removes all spaces except for single spaces between words.

Note: If no value is given for optNumFlag, then 0 is the default.

Returned value
This function returns a string equal to strReferance minus the specified space characters. The returned
value can be stored in any tag of String type.

Appendix: Built-in Language

Page 1154

Examples

Tag Name Expression

Tag StrTrim(" Studio version 7.0 ") // Returned value = "Studio version 7.0"

Tag StrTrim(" Studio version 7.0 ", 0) // Returned value = "Studio version 7.0"

Tag StrTrim(" Studio version 7.0 ", 1) // Returned value = "Studio version 7.0 "

Tag StrTrim(" Studio version 7.0 ", 2) // Returned value = " Studio version 7.0"

Tag StrTrim(" Studio version 7.0 ", 3) // Returned value = "Studio version 7.0"

StrTrimAll
Eliminates a specific char from the whole string.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

StrTrimAll String Synchronous Yes Supported Supported Supported

Syntax

StrTrimAll(strReference, optStrTrimChar)

strReference
A The source string.

optStrTrimChar
Char that will be removed from the string. If this parameter is omitted, the space char will be
removed from the string, by default.

Returned value
Returns a string equal to strReference minus the characters removed by the function.

Examples

Tag Name Expression

Tag StrTrimAll("Studio version 7.0 ", " ") // Returned value = "Studioversion7.0"

StrUpper
StrUpper is a built-in function that converts a string to all uppercase characters.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

StrUpper String Synchronous Yes Supported Supported Supported

Syntax

StrUpper(strSource)

StrUpper(strSource)
strSource

The string to be converted.

Appendix: Built-in Language

Page 1155

Return value
This function returns the specified string with all characters converted to uppercase.

Examples
Convert the string "Technical Reference" (returns "TECHNICAL REFERENCE"):

StrUpper("Technical Reference")

Convert the string that is stored in the tag MyString:

StrUpper(MyString)

ValueToChar
ValueToChar is a built-in function that converts an array of numeric values into Unicode characters and then
returns those characters as a string.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

ValueToChar String Synchronous Yes Supported Supported Supported

Syntax

ValueToChar("tagArray",numQtdChars)

ValueToChar("tagArray",numQtdChars)
tagArray

The name of the array that contains the values to be converted, as well as the index of the
starting position in the array. If the starting position is not specified, the default is 0.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

numQtdChars
The number of values to be converted (minimum of 1), starting from the specifed starting
position.

Return value
This function returns a string that comprises the converted values.

Notes
Keep in mind that character codes in the ranges from 0 (U+0000) through 31 (U+001F) and from 128 (U
+0080) through 159 (U+009F) are actually control characters rather than alphanumeric characters. In
particular, 0 is a NUL character that will effectively end the string that is returned by this function.

Examples
If MyArray[0] = 65, MyArray[1] = 66, and MyArray[2] = 67, then the returned value will be "ABC":

ValueToChar("MyArray",3)

Appendix: Built-in Language

Page 1156

If MyArray[10] = 65, MyArray[11] = 66, and MyArray[12] = 67, then the returned value will be "ABC":

ValueToChar("MyArray[10]",3)

ValueWToChar
ValueWToChar is a built-in function that converts an array of 16-bit numeric values (a.k.a. double-byte
words) into pairs of Unicode characters and then returns those characters as a string.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

ValueWToChar String Synchronous Yes Supported Supported Supported

Syntax

ValueWToChar("strTagArray",numQtdChars,optNumSwap)

ValueWToChar("strTagArray",numQtdChars{ | ,optNumSwap })
strTagArray

The name of the array that contains the values to be converted, as well as the index of the
starting position in the array. If the starting position is not specified, the default is 0.

Each value in the array should be an unsigned integer in the range from 0 through 65535.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

numQtdChars
The number of values to be converted (minimum of 1), starting from the specifed starting
position.

optNumSwap

A numeric flag that causes the two bytes of each value to be swapped as they are converted:

Value Description

0 Do not swap

1 Swap the bytes

This parameter is optional; if no value is specified, the default value is 0.

Return value
This function returns a string that comprises the converted values.

Notes
Each 16-bit numeric value is also known as a double-byte word. This function splits each word into two
bytes and then converts each byte into a single Unicode character. As such, this function only supports 8-bit
character codes — that is, character codes in the range from 0 (U+0000) through 255 (U+00FF). For character
codes greater than 255, or when double-byte words are not needed, use the ValueToChar function instead.

Keep in mind that Unicode character codes in the ranges from 0 (U+0000) through 31 (U+001F) and from
128 (U+0080) through 159 (U+009F) are actually control characters rather than alphanumeric characters. In
particular, 0 is a NUL character that will effectively end the string that is returned by this function.

Examples
These examples use the following array:

Appendix: Built-in Language

Page 1157

Position Actual Value Hexadecimal Characters

0 19833 4D 79 M y

1 21364 53 74 S t

2 29289 72 69 r i

3 28263 6E 67 n g

4 11776 2E 00 . [NUL]

Starting from position 0 and then coverting one value, this function returns "My":

ValueWToChar("MyArray",1)

Starting from position 0 and then coverting five values, this function returns "MyString.":

ValueWToChar("MyArray",5)

Starting from position 1 and then coverting three values, this function returns "String":

ValueWToChar("MyArray[1]",3)

Starting from position 1, coverting three values, and then swapping the bytes, this function returns "tSirgn":

ValueWToChar("MyArray[1]",3,1)

Appendix: Built-in Language

Page 1158

System Info functions
These functions are used get information about the computer that is running the project (either server or
client, depending on the function), as well as to change some project settings on that computer.

DBVersion
DBVersion is a built-in scripting function that gets the version number of your project tags database.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

DBVersion System Info Synchronous Yes Supported Supported Executed on
Server

Syntax

DBVersion()

DBVersion()

This function takes no paramters.

Returned value
This function returns a numerical value equal to the version number of the database.

Notes
This function only applies to the native database within your project. There currently is no function to get the
version number of an external or historical database.

Examples

DBVersion()

GetAppHorizontalResolution
GetAppHorizontalResolution is a built-in function that gets the default horizontal screen resolution (in
pixels) of the project.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetAppHorizontalResolutionSystem Info Synchronous Yes Supported Supported Executed on
Server

Syntax

GetAppHorizontalResolution()

GetAppHorizontalResolution()

This function takes no parameters.

Returned value
This function returns the default value that is stored in the project file. It does not get the actual display size
on the client.

Appendix: Built-in Language

Page 1159

GetAppPath
Returns the file path of the project folder.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetAppPath System Info Synchronous Yes Supported Executed on Server Executed on Server

Syntax
GetAppPath()

This function takes no paramters.

Returned value
Returns the file path as a string.

Examples

Tag Name Expression

Tag GetAppPath() // Returned value = "C:\DemoProject\"

Tag GetAppPath() // Returned value = "C:\Studio\Projects\<project name>\"

Note: This function must return the current path of the project, including the "\" at the end of the
path.

GetAppVerticalResolution
GetAppVerticalResolution is a built-in function that gets the default vertical screen resolution (in pixels) of
the project.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetAppVerticalResolutionSystem Info Synchronous Yes Supported Supported Executed on
Server

Syntax

GetAppVerticalResolution()

GetAppVerticalResolution()

This function takes no parameters.

Returned value
This function returns the default value that is stored in the project file. It does not get the actual display size
on the client.

GetComputerIP
Returns the first IP Address of the local computer.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetComputerIPSystem Info Synchronous Yes Supported Supported Not supported

Syntax
GetComputerIP()

Appendix: Built-in Language

Page 1160

This function takes no parameters.

Returned value
Returns the first IP Address of the local station as a string.

Examples

Tag Name Expression

Tag GetComputerIP() // Returned value = "192.168.0.1"

Tag GetComputerIP() // Returned value = "248.12.2.78"

GetComputerName
Returns the local computer name.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetComputerNameSystem Info Synchronous Yes Supported Supported Not supported

Syntax
GetComputerName()

This function takes no parameters.

Returned value
Returns the local computer name as a string.

Examples

Tag Name Expression

Tag GetComputerName() // Returned value = "Terminal53"

Tag GetComputerName() // Returned value = "BobsComputer"

GetCursorX
Gets the X-coordinate of the mouse cursor on the screen.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetCursorX System Info Synchronous Yes Supported Supported Not supported

Syntax
GetCursorX()

This function takes no parameters.

Returned value
This function returns the X-coordinate of the cursor on the screen, or −1 if an error occurs.

Examples

Tag Name Expression

 GetCursorX() // Returned value = 1024

Appendix: Built-in Language

Page 1161

GetCursorY
Gets the Y-coordinate of the mouse cursor on the screen.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetCursorY System Info Synchronous Yes Supported Supported Not supported

Syntax
GetCursorY()

This function takes no parameters.

Returned value
This function returns the Y-coordinate of the cursor on the screen, or −1 if an error occurs.

Examples

Tag Name Expression

 GetCursorY() // Returned value = 768

GetDisplayHorizontalResolution
Gets the horizontal resolution (in pixels) of the display connected to the local station.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetDisplayHorizontalResolutionSystem Info Synchronous Yes Supported Supported Not supported

Syntax
GetDisplayHorizontalResolution()

This function takes no parameters.

Returned value
This function returns the horizontal resolution of the display as an integer.

Examples

Tag Name Expression

 GetDisplayHorizontalResolution() // Returned value = 1024

GetDisplayVerticalResolution
Gets the vertical resolution (in pixels) of the display connected to the local station.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetDisplayVerticalResolutionSystem Info Synchronous Yes Supported Supported Not supported

Syntax
GetDisplayVerticalResolution()

This function takes no parameters.

Returned value
This function returns the vertical resolution of the display as an integer.

Appendix: Built-in Language

Page 1162

Examples

Tag Name Expression

 GetDisplayVerticalResolution() // Returned value = 768

GetHardKeyModel
Returns the model name of your Hardkey.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetHardKeyModelSystem Info Synchronous Yes Supported Supported Executed on Server

Syntax
GetHardKeyModel()

This function takes no parameters.

Returned value
If the Hardkey is installed, then the function returns a string with the Hardkey model name.

If the Hardkey is not installed, then the function returns 0.

Notes
You must attach the Hardkey before executing this function, or the function will not execute properly.

Examples

Tag Name Expression

Tag GetHardKeyModel() // Returned value = "Local Interface"

Tag GetHardKeyModel() // Returned value = "Advanced Server"

GetHardKeySN
Returns the serial number of the Hardkey.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetHardKeySN System Info Synchronous Yes Supported Supported Executed on Server

Syntax
GetHardkeySN()

This function takes no parameters.

Returned value
If the Hardkey is installed, then the function returns a string with the Hardkey serial number.

If the Hardkey is not installed, then the function returns 0.

Notes
You must attach the Hardkey before executing this function, or the function will not execute properly.

Examples

Tag Name Expression

Tag GetHardkeySN() // Returned value = 120.745

Appendix: Built-in Language

Page 1163

Tag Name Expression

Tag GetHardkeySN() // Returned value = 224.941

GetIPAll
Returns the number of IP Addresses assigned to the local station and stores the IP Addresses in a string array
tag.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetIPAll System Info Synchronous Yes Supported Supported Not supported

Syntax

GetIPAll("tagArrayIP", optRefresh)

tagArrayIP
Name of the string array tag receiving the IP addresses found. This name must be enclosed in
quotes, or the project will try to get the contents of the array tag.

optRefresh
Optional tag that triggers a refresh of this function, if you use it in a Text Data Link animation.
Every time this tag changes value, the project will refresh the function.

Returned value

n Number of IP addresses found

−1 Invalid number of parameters

−2 Invalid parameter type

Examples

Tag Name Expression

Tag GetIPAll("TagArrayIP") // Returned value = 1

Tag GetIPAll("TagArrayIP", Second) // Returned value = 2

GetNetMACID
Gets the MAC ID unique code from the currently installed network adapter(s).

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetNetMACID System Info Synchronous Yes Supported Supported Not supported

Syntax

GetNetMACID("optTagMACID", "optTagAdapterName")

optStrMACID
Name of a string tag, which receives the MAD ID of the network adapter. If there is more than
one network adapter currently installed in the station, the user can configure a string array tag
in this parameter, so each array position receives the MAC ID from one network adapter.

optStrAdapterName

Appendix: Built-in Language

Page 1164

Name of a string tag, which receives the name of the network adapter. If there is more than
one network adapter currently installed in the station, the user can configure a string array
tag in this parameter, so each array position receives the name from one network adapter. This
parameter is optional.

Returned value

Value Description

>0 Number of network adapters found.

0 No network adapters found.

-1 Invalid number of parameters.

-2 One of the parameters is not string type.

-3 Tag configured in optTagMACID does not exist.

-4 Tag configured in optTagAdapterName does not exist.

Examples

Tag Name Expression

NumNIC GetNetMACID("MACIDTag")

NumNIC GetNetMACID("MACIDTag", "AdapterName")

NumNIC GetNetMACID("MACIDTag[1]", "AdapterName[1]")

GetOS
GetOS is a built-in function that gets the operating system on the computer that hosts the project runtime.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetOS System Info Synchronous Yes Supported Supported Not supported

Syntax

GetOS()

GetOS()

This function has no parameters.

Return value
This function returns one of the following possible values:

Value Description

2 Windows, Windows Server

GetPerformanceMetric
The GetPerformanceMetric function returns selected metrics for the graphics performance of your project
runtime client.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetPerformanceMetricSystem Info Synchronous Yes Supported Supported Not supported

Appendix: Built-in Language

Page 1165

Syntax

GetPerformanceMetric(numMetrictype, "optTagDescription")

GetPerformanceMetric({ numMetrictype | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12
| 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30
| 31 }{ | ,"optTagDescription" })
numMetrictype

The type of performance metric to get, as shown in the table below:

Value of numMetrictype Description, including the string that is written to optTagDescription

0 Memory Allocation Enabled

How the virtual memory is currently allocated to shared objects: 0 = Disabled; 1 = Always; 2 = Dynamic; 3 =
Critical.

Disabled
The Enable memory allocation option (Project Settings > Options >
Performance Control) is not selected. Objects are loaded into memory
only when they are actually used, and then they are immediately removed
afterwards.

Always
Objects are always kept in memory, in order to increase run-time
performance.

Dynamic
Objects are kept in memory until the memory is needed for new objects.
If enough memory is freed, then the memory allocation state may return
from Dynamic to Always.

Critical
All unused objects are cleared from memory and memory allocation
is disabled until the project is restarted. This is effectively the same as
Disabled (see above), except that the Enable memory allocation option
is still selected.

1 Critical Free Memory Limit (KB)

When the amount of free virtual memory (in KB) decreases to this limit, the memory allocation state is changed
from Dynamic to Critical.

This limit is set in Project Settings > Options > Performance Control.

2 Min Free Memory Limit (KB)

When the amount of free virtual memory (in KB) decreases to this limit, the memory allocation state is changed
from Always to Dynamic.

This limit is set in Project Settings > Options > Performance Control.

3 Free Memory (KB)

The amount of free virtual memory, in kilobytes.

4 Free Memory (%)

The amount of free virtual memory, as a percentage of total virtual memory.

5 Total Allocation Allowed

The maximum number of total shared objects that can be allocated.

6 Total Allocation Count

The number of total shared objects that are currently allocated.

7 Total Allocation (%)

The percentage (count / allowed) of total shared objects that are allocated.

Appendix: Built-in Language

Page 1166

Value of numMetrictype Description, including the string that is written to optTagDescription

8 Brush Allocation Allowed

The maximum number of shared brush objects that can be allocated.

9 Brush Allocation Count

The number of shared brush objects that are currently allocated.

10 Brush Allocation (%)

The percentage (count / allowed) of shared brush objects that are allocated.

11 Brush Allocation State

How the memory for shared brush objects is currently allocated: 0 = Disabled; 1 = Always; 2 = Dynamic; 3 =
Critical.

12 Font Allocation Allowed

The maximum number of shared font objects that can be allocated.

13 Font Allocation Count

The number of shared font objects that are currently allocated.

14 Font Allocation (%)

The percentage (count / allowed) of shared font objects that are allocated.

15 Font Allocation State

How the memory for shared font objects is currently allocated: 0 = Disabled; 1 = Always; 2 = Dynamic; 3 =
Critical.

16 Pen Allocation Allowed

The maximum number of shared pen objects that can be allocated.

17 Pen Allocation Count

The number of shared pen objects that are currently allocated.

18 Pen Allocation (%)

The percentage (count / allowed) of shared pen objects that are allocated.

19 Pen Allocation State

How the memory for shared pen objects is currently allocated: 0 = Disabled; 1 = Always; 2 = Dynamic; 3 =
Critical.

20 Bitmap Allocation (%)

The percentage (count / allowed) of shared bitmap objects that are allocated.

21 Bitmap Allocation Count

The number of shared bitmap objects that are currently allocated.

22 Bitmap Allocation Allowed

The maximum number of shared bitmap objects that can be allocated.

23 Bitmap Allocation State

How the memory for shared bitmap objects is currently allocated: 0 = Disabled; 1 = Always; 2 = Dynamic; 3 =
Critical.

24 Image Allocation Allowed

The maximum number of shared image objects that can be allocated.

25 Image Allocation Count

The number of shared image objects that are currently allocated.

Appendix: Built-in Language

Page 1167

Value of numMetrictype Description, including the string that is written to optTagDescription

26 Image Allocation (%)

The percentage (count / allowed) of shared image objects that are allocated.

27 Image Allocation State

How the memory for shared image objects is currently allocated: 0 = Disabled; 1 = Always; 2 = Dynamic; 3 =
Critical.

28 Buffer Allocation Allowed

The maximum number of shared buffer objects that can be allocated.

29 Buffer Allocation Count

The number of shared buffer objects that are currently allocated.

30 Buffer Allocation (%)

The percentage (count / allowed) of shared buffer objects that are allocated.

31 Buffer Allocation State

How the memory for shared buffer objects is currently allocated: 0 = Disabled; 1 = Always; 2 = Dynamic; 3 =
Critical.

optTagDescription
The name of a String tag that will receive a description of the selected metric. The description is
the same as shown in the table for numMetrictype above.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

This parameter is optional.

Returned value
If this function is successfully executed, then it returns a positive value according to the type of metric that
was selected (see numMetrictype above). Otherwise, if it was not successfully executed, then it returns a
negative error value:

Returned value Description

-1 Invalid number of parameters.

-2 Wrong parameter type.

-3 Could not get the selected metric.

-4 Tag specified by optTagDescription does not exist.

-5 Could not write to tag specified by optTagDescription.

Notes
For more information about memory allocation, see Configure the performance control settings on page 110.

GetPrivateProfileString
Reads a specified parameter from an .ini file using the standard .ini format.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetPrivateProfileStringSystem Info Synchronous Yes Supported Supported Not supported

Appendix: Built-in Language

Page 1168

Syntax

GetPrivateProfileString(strSection, strName, strDefault, strFileName)

strSection
The section name to be read.

strName
The parameter name to be read.

strDefault
The default setting for this parameter. If the parameter is not found in the .ini file, the function
will return this default setting.

strFileName
The path and name of the .ini file to be read.

Returned value
Returns the value of the specified parameter.

Examples

Tag Name Expression

Tag GetPrivateProfileString("boot loader", "timeout", "50", "C:
\boot.ini") // Returned value = 30

GetProductPath
GetProductPath is a built-in function that gets the path to the program directory.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetProductPathSystem Info Synchronous Yes Supported Supported Executed on
Server

Syntax

GetProductPath()

GetProductPath()

This function takes no parameters.

Returned value
Returns the path to the program directory as a string.

GetRegValue
Gets a the value of a variable in the Windows registry.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetRegValue System Info Synchronous Yes Supported Not supported Not supported

Syntax

GetRegValue(numMainKey, strKey, strValueName)

Appendix: Built-in Language

Page 1169

numMainKey
Numeric tag with the following possible values:

0 HKEY_LOCAL_MACHINE

1 HKEY_CLASSES_ROOT

2 HKEY_CURRENT_USER

3 HKEY_USERS

4 HKEY_CURRENT_CONFIG

5 HKEY_PERFORMANCE_DATA

strKey
Path where the value is located in the Main Key.

strVariableName
Name of the variable to get. The maximum length is 255 characters.

Returned value
If the function succeeds, then the function returns the variable value. Otherwise one of the following error
codes will be returned:

−1 Invalid number of parameters or invalid Main Key.

−2 Variable type is not supported. You can only read DWord or String values from the registry.

−3 Failed to read the variable value; verify that you have the proper security rights.

Examples

Tag Name Expression

Tag GetRegValue(0, "HARDWARE\DESCRIPTION\System", "SystemBiosDate") //
Returned value = "08/14/03"

Tag GetRegValue(2, "Control Panel\Current", "Color Schemes") // Returned value =
"Windows Standard "

GetRegValueType
Gets the data type of the value of a variable in the Windows registry.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetRegValueTypeSystem Info Synchronous Yes Supported Not supported Not supported

Syntax

GetRegValueType(numMainKey, strKey, strValueName)

numMainKey
Numeric tag with the following possible values:

0 HKEY_LOCAL_MACHINE

1 HKEY_CLASSES_ROOT

2 HKEY_CURRENT_USER

3 HKEY_USERS

Appendix: Built-in Language

Page 1170

4 HKEY_CURRENT_CONFIG

5 HKEY_PERFORMANCE_DATA

strKey
Path where the value is located in the Main Key.

strVariableName
Name of the variable to get. The maximum length is 255 characters.

Returned value

1 Variable type is String.

0 Variable type is DWord.

−1 Invalid number of parameters or invalid Main Key.

−2 Variable type is not supported. You can only read DWord or String values from the registry.

−3 Failed to read the variable value; verify that you have the proper security rights.

Examples

Tag Name Expression

Tag GetRegValueType(0, "HARDWARE\DESCRIPTION\System", "SystemBiosDate") //
Returned value = 1

Tag GetRegValueType(2, "Control Panel\Desktop", "Smooth Scroll") // Returned
value = 0

GetServerHostName
GetServerHostName is a built-in function that gets the host name of the project's Server station.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetServerHostNameSystem Info Synchronous Yes Not supported Supported Executed on
Server

Syntax

GetServerHostName()

GetServerHostName()

This function takes no parameters.

Returned value
Server host name for ISSymbol and 127.0.0.1 for others.

GetTickCount
Gets the current value of the clock ticks counter.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetTickCount System Info Synchronous Yes Supported Supported Not supported

Syntax
GetTickCount()

Appendix: Built-in Language

Page 1171

This function takes no parameters.

Returned value
Returns an integer with the number of milliseconds counted by the clock for each initialization of the
operational system.

Examples

Tag Name Expression

Tag GetTickCount() // Returned value = 9400907

InfoAppAlrDir
InfoAppAlrDir is a built-in function that returns the file path of the project's Alarm sub-folder.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

InfoAppAlrDirSystem Info Synchronous Yes Supported Supported Executed on
Server

Syntax

InfoAppAlrDir()

InfoAppAlrDir()

This function takes no parameters.

Returned value
Returns the Alarm directory of the current project as a string.

InfoAppHstDir
InfoAppHstDir is a built-in function that returns the file path of the project's History sub-folder.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

InfoAppHstDirSystem Info Synchronous Yes Supported Supported Executed on
Server

Syntax

InfoAppHstDir()

InfoAppHstDir()

This function takes no parameters.

Returned value
Returns the History directory for the current project as a string.

InfoDiskFree
Returns free disk space on the local computer.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

InfoDiskFree System Info Synchronous Yes Supported Supported Not supported

Appendix: Built-in Language

Page 1172

Syntax
InfoDiskFree(strDisk)
strDisk

The name of the disk volume to be checked.

Returned value
Returns disposable free space in the disk in bytes.

Examples

Tag Name Expression

Tag InfoDiskFree("C") // Returned value = 2803804605.000000

InfoResources
Returns the local computer's disposable resources.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

InfoResourcesSystem Info Synchronous Yes Supported Supported Not supported

Syntax
InfoResources(numSelect)
numSelect

A numeric flag that specifies which resource to examine:

Value Description

0 System functions (%)

1 GDI functions (%)

2 USER functions (%)

3 Memory (in bytes)

Examples

Tag Name Expression

Tag InfoResources(0) // Returned value = 76.000000

Tag InfoResources(1) // Returned value = 76.000000

Tag InfoResources(2) // Returned value = 80.000000

Tag InfoResources(3) // Returned value = 16150528.000000

Note: The only valid selection on an Windows PC station is 3. Selecting 0, 1 or 2 returns 0.000000
only.

IsActiveXReg
Determines whether an ActiveX control is registered with the operating system.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

IsActiveXReg System Info Synchronous Yes Supported Supported Not supported

Appendix: Built-in Language

Page 1173

Syntax

IsActiveXReg(numType, strProgIDorFileName)

numType
A numeric flag that specifies a format for the strProgIDorFileName parameter:

0 Verify by Program ID

1 Verify by File Name

strProgIDorFileName
The program ID or file path of the ActiveX control.

Returned value

0 ActiveX is not registered.

1 ActiveX is registered.

Examples

Tag Name Expression

Tag IsActiveXReg(0, "ISSYMBOL.ISSymbolCtrl.1") // Returned value = 0

Tag IsActiveXReg(1, "C:\WinNT\system32\MediaPlayer.ocx") // Returned value = 1

IsAppChangedOnServer
The function IsAppChangedOnServer checks whether the project files available on the server are newer than
the files currently on the client.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

IsAppChangedOnServerSystem Info Synchronous Yes Supported Supported Not supported

Syntax

IsAppChangedOnServer("optTagUpdateTrigger")

IsAppChangedOnServer({ "optTagUpdateTrigger" })
optTagUpdateTrigger

The name of a project tag that will server as a trigger. When the value of the specified tag
changes, the function is executed. Unlike most other functions, once this function is called, it is
kept in memory until the project is stopped.

To execute the function at regular intervals, use one of the system tags like Day or Month.

This parameter is optional; if no value is specified, the function is executed immediately and not
kept in memory.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

Returned value
This function returns one of the following possible values:

Appendix: Built-in Language

Page 1174

Value Description

0 FALSE (i.e., the project files on the server have not changed)

1 TRUE (i.e., the project files on the server have changed)

If this function returns TRUE, you can use the function ReloadAppFromServer to update the client.

Notes
For this function, the server is the computer or device that hosts the downloadable project files (e.g., screens)
for your thin clients. It might be different from the project runtime server (a.k.a. the data server), depending
on how you deploy your project. For more information, see Thin Clients and Mobile Access on page 740.

If the Enforce Web functionality equivalence in local project screens option is selected in the project settings, this function
cannot be called in Global Procedures, Script worksheets, or other background tasks. This is because
the function behaves differently depending on whether you view project screens locally (i.e., on the same
computer that hosts the project runtime) or remotely. For more information, see Preferences tab on page 127.

Examples
Immediately check whether the project files have changed:

IsAppChangedOnServer()

When the value of the tag CheckVersion changes, check whether the project files have changed:

IsAppChangedOnServer("CheckVersion")

NoInputTime
NoInputTime is a built-in function that returns the time elapsed since the last input from keyboard or mouse.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

NoInputTime System Info Synchronous Yes Supported Keyboard input only Not supported

Syntax

NoInputTime("optTagUpdateTrigger")

NoInputTime({ "optTagUpdateTrigger" })
optTagUpdateTrigger

The name of a project tag. When the value of the tag changes, it triggers an update when this
function is used in a Text Data Link animation.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

Return value
This function returns the returns the time elapsed (in seconds) since the last input from keyboard or mouse.

Notes
This function will not behave as expected if VBScript debugging is enabled, because the normal execution
cycle is suspended during debugging and it is not possible to accurately measure the time elapsed without
user input. For more information, see Debugging VBScript on page 1275.

This function cannot be implemented directly from a Text object.

Appendix: Built-in Language

Page 1175

ProductVersion
ProductVersion is a built-in function that returns the version number of the BLUE Open Studio 2020
software.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

ProductVersionSystem Info Synchronous Yes Supported Supported Executed on
Server

Syntax

ProductVersion()

ProductVersion()

This function takes no paramters.

Returned value
This function returns the program version number as a real number.

ReloadAppFromServer
The function ReloadAppFromServer reloads the necessary project files from the server while maintaining the
current state of the project on the client.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

ReloadAppFromServerSystem Info Synchronous No Supported Supported Not supported

Syntax

ReloadAppFromServer()

ReloadAppFromServer()

This function takes no paramters.

Returned value
This function always returns 0.

Notes
For this function, the server is the computer or device that hosts the downloadable project files (e.g., screens)
for your thin clients. It might be different from the project runtime server (a.k.a. the data server), depending
on how you deploy your project. For more information, see Thin Clients and Mobile Access on page 740.

If the Enforce Web functionality equivalence in local project screens option is selected in the project settings, this function
cannot be called in Global Procedures, Script worksheets, or other background tasks. This is because
the function behaves differently depending on whether you view project screens locally (i.e., on the same
computer that hosts the project runtime) or remotely. For more information, see Preferences tab on page 127.

Tip: Before you call this function, you can use the function IsAppChangedOnServer to check the
project files that are already on the client. If they match the files on the server, you might choose not
to call this function.

Appendix: Built-in Language

Page 1176

SaveAlarmFile
Use this function to enable/disable the saving feature for alarm history and to set the path where the alarm
history files must be handled.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SaveAlarmFileSystem Info Synchronous No Supported Not supported Not supported

Syntax

SaveAlarmFile(numType, optRemotePath)

numType
Tag containing the number and operation, as follows:

0 Disable save the alarm file to the local disk

1 Enable save the alarm file to local disk

2 Enable save the alarm file to local disk and to the remote path specified in the OptRemotePath parameter

optRemotePath
Tag containing the name of the remote computer where the alarm file will be saved
simultaneously to the local computer and to the remote path when numType equals 2.

Returned value

0 Success

1 2nd parameter is not a string

2 2nd parameter is missing

Examples

Tag Name Expression

Tag SaveAlarmFile(0)

Tag SaveAlarmFile(1)

Rag SaveAlarmFile(2, "Z:\Apps\AppDemo")

SetAppAlarmPath
Sets the Alarm path for the current project.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SetAppAlarmPathSystem Info Synchronous No Supported Executed on Server Executed on Server

Syntax
SetAppAlarmPath(strPath)
strPath

The new Alarm path for the current project.

Return value
This function returns no value.

Appendix: Built-in Language

Page 1177

Examples

Tag Name Expression

SetAppAlarmPath("C:\Studio\Alarm\")

SetAppHstPath
Sets the file path (directory) where Trend history files will be saved, in the proprietary format (.HST).

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SetAppHstPathSystem Info Synchronous No Supported Executed on Server Executed on Server

Syntax
SetAppHstPath(strPath)
strPath

The file path (directory) where Trend history files will be saved.

Return value
This function returns no value.

Notes
This function is useful when you intend to change the file path during runtime. You can also set the file path
to a network drive by mapping it on the local station, or by using the following syntax:

\Network Drive\File Path

Please note that this function does not copy existing history files from the default directory to a new one; it
only sets the file path for new history files saved after the function is called.

Examples

Tag Name Expression

SetAppHstPath("C:\Studio\History\")

SetDateFormat
SetDateFormat is a built-in function that sets the separator and format for displaying date strings.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SetDateFormatSystem Info Synchronous No Supported Supported Not supported

Syntax

SetDateFormat(strSeparator,strFomat)

SetDateFormat(strSeparator,strFormat)
strSeparator

The separator character for the date string. You can specify any single character, but the most
common characters are "/" and "-".

strFormat

Appendix: Built-in Language

Page 1178

A string that specifies the order of the Month (M), Day (D), and Year (Y) in the date string. You
can specify any combination in any order, but the most common examples are shown in the
following table:

Value Description

DMY Day, Month, Year (e.g., DD/MM/YYYY)

MDY Month, Day, Year (e.g., MM/DD/YYYY)

YMD Year, Month, Day (e.g., YYYY/MM/DD)

Returned value
This function returns one of the following possible values:

Value Description

0 Invalid parameter(s).

1 Valid parameters.

The function only checks whether the parameters are valid, before it tries to use those parameters to set the
date format. The function does not return any value to indicate whether the date format is successfully set.

Notes
This function sets the date format only for the station (i.e., the project runtime server or project thin client) on
which the function is executed. Each station can have its own date format. Also, this function sets the date
format only for the BLUE Open Studio 2020 software itself; it does not change the date format used by the
operating system. For more information, see About the date format and how to change it on page 707.

Examples
Set the date format so that January 23, 2015, is displayed as "01/23/2015":

SetDateFormat("/","MDY")

Set the date format so that January 23, 2015, is displayed as "2015-01-23":

SetDateFormat("-","YMD")

SetKeyboardLanguage
SetKeyboardLanguage is a built-in function that sets the language of any Virtual Keyboards displayed in the
Viewer.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SetKeyboardLanguageSystem Info Synchronous No Supported Supported Not supported

Syntax

SetKeyboardLanguage(strLanguage)

SetKeyboardLanguage(strLanguage)
strLanguage

The two-letter code for the language to be set. The currently available options include:

Code Language

EN English (default)

Appendix: Built-in Language

Page 1179

Code Language

GE German

FR French

CH Chinese

JA Japanese

You can also specify other codes for additional languages. See "Notes" below.

Return value
This function returns one of the following possible values:

Value Description

0 Success

1 Error

Notes
This function is supported only on Windows-based client stations that use the Viewer program to display
project screens. That includes:

• The local Viewer that is part of the project runtime for Windows

• The standalone Secure Viewer program for Windows

It does not include any version of Mobile Access, which uses a different technology to display project screens
in web browsers.

When this function is executed, it causes the Viewer program to load an initialization file that is located in
the program folder. Each language code that you can specify for the strLanguage parameter should have a
corresponding VK initialization file (VK<language code>.ini), and that file contains the key definitions for
the language. For example, VKEN.ini contains the key definitions for English, VKFR.ini contains the key
definitions for French, and so on.

You can modify the existing VK initialization files in order to customize the key definitions, and you can also
create new files for additional languages as long as they have their own unique codes (e.g., VKES.ini for
Spanish). For more information about how to create or modify the files, contact your BLUE Open Studio 2020
software distributor.

Please note that if you create or modify any VK initialization files, you must distribute the new files to
all client stations and make sure they are copied to the correct location in the program folder. (In other
words, they must be in the same folder that contains Viewer.exe.) The changes cannot be automatically
disseminated by the project runtime.

Examples
Set the Virtual Keyboard language to French:

SetKeyboardLanguage("FR")

Set the Virtual Keyboard language according to the current value of tagLanguage:

SetKeyboardLanguage(tagLanguage)

SetRegValue
Sets the value of a variable in the Windows registry.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SetRegValue System Info Synchronous No Supported Not supported Not supported

Appendix: Built-in Language

Page 1180

Syntax

SetRegValue(numMainKey, strKey, strVariableName, numType, strOrNumValue)

numMainKey
Numeric tag with the following possible values:

0 HKEY_LOCAL_MACHINE

1 HKEY_CLASSES_ROOT

2 HKEY_CURRENT_USER

3 HKEY_USERS

4 HKEY_CURRENT_CONFIG

5 HKEY_PERFORMANCE_DATA

strKey
Path where the value is located in the Main Key.

strVariableName
Name of the variable to be set. The maximum length is 255 characters.

numType
Two types are currently supported:

0 DWord

1 String

strOrNumValue
Variable value.

Returned value

0 Success.

−1 Invalid number of parameters or invalid Main Key.

−2 Invalid type.

−3 Failed to read the variable value; verify that you have the proper security rights.

Examples

Tag Name Expression

Tag SetRegValue(0, "HARDWARE\DEVICEMAP\SERIALCOMM", "\Device\Serial1", 1,
"COM3") // Returned value = 0 if successful

Tag SetRegValue(2, "Control Panel\Desktop", "Smooth Scroll", 0, 1) //
Returned value = 0 if successful

Note: This register can affect the Windows system configuration. You should be extremely careful
and edit the registry only when you are certain about the configuration.

Appendix: Built-in Language

Page 1181

SNMPGet
Gets information from computers or network devices through the SNMP protocol.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SNMPGet System Info Synchronous Yes Supported Supported Not supported

Syntax

SNMPGet(strAddress, strCommunity, strOID, "strTagName")

strAddress
The address of the machine/computer (e.g., "127.0.0.1" or "localhost").

strCommunity
SNMP community name when communicating with the computer (e.g., "public").

strOID
OID to be consulted (e.g., ".1.3.6.1.2.1.1.1.0").

strTagName
Name of the tag that will receive the requested value.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

Returned value

Value Description

0 No error

−1 Invalid number of parameters

−2 Invalid parameter

−5 GET operation failed

−7 Invalid tag name

−8 Invalid tag type

−9 This function is not supported on the current operating system

If you receive any other values, please contact technical support.

Examples

Tag Name Expression

ErrorTag SNMPGet("127.0.0.1", "public", ".1.3.6.1.2.1.1.1.0", "SysDescrTag")
//ErrorTag will receive the error code. If the function succeeds, the value in the OID ".1.3.6.1.2.1.1.1.0" will be saved in the tag
SysDescrTag.

SNMPSet
Uses the Simple Network Management Protocol (SNMP) to set a value on a target computer of network device.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SNMPSet System Info Synchronous No Supported Supported Not supported

Appendix: Built-in Language

Page 1182

Syntax

SNMPSet(strAddress, strCommunity, strOID, Value, optNumType)

strAddress
The address of the target computer or device (e.g., "127.0.0.1" or "localhost").

strCommunity
The SNMP community name (e.g., "public") when communicating with the target computer or
device.

strOID
The Object ID (OID) to be set.

Value
The value to be set to the specified OID.

optNumType
A numeric value, or a tag of Integer type, specifying the data type of Value. This is an optional
parameter, but if it is included, then it must have one of following values:

Value Type Description

0 OCTETSTRING An ctet string variable

1 INTEGER32 A 32-bit signed integer variable

2 TIMETICKS A timeticks variable

3 GAUGE32 A gauge variable

4 COUNTER32 A counter variable

5 IPADDRESS An IP address variable

6 OBJECTIDENTIFIER An object identifier variable

7 SEQUENCE An ASN sequence variable

8 OPAQUE An opaque variable

Returned value

Value Description

0 No error

−1 Invalid number of parameters

−2 Invalid parameter

−5 SET operation failed

−7 Invalid tag name

−8 Invalid tag type

−9 This function is not supported on the current operating system

If you receive any other values, please contact technical support.

Examples

Tag Name Expression

 SNMPSet("127.0.0.1", "public", ".1.3.6.1.2.1.1.1.0", 123, 1) //Sets an
integer value of 123 to the specified OID on the localhost (127.0.0.1).

Appendix: Built-in Language

Page 1183

WritePrivateProfileString
WritePrivateProfileString is a built-in function that writes a specified setting to the Viewer module's
initialization file (Viewer.ini), using the standard properties format.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

WritePrivateProfileStringSystem Info Synchronous No Supported Supported Executed on
Server

Syntax

WritePrivateProfileString(strSection,strName,strValue,strFileName)

WritePrivateProfileString(strSection,strName,strValue,strFileName)
strSection

The section name to be written.

strName
The parameter name to be written.

strValue
The value to be written.

strFileName
The path and name of the .ini file to be written.

Returned value
The function returns 1 if the file was updated successfully.

Notes

Examples

WritePrivateProfileString(Section,Name,Value,FileName)

WritePrivateProfileString("Options","ds1","Value","C:\Viewer.ini")

Appendix: Built-in Language

Page 1184

Tags Database functions
These functions are used to directly change the values of project tags.

ExecuteAlarmAck
This function acknowledges an active alarm on the specified tag. The advantage of using this function is that
if used from the Thin Client, the Alarm task will store the user name and station from which the alarm was
acknowledged.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

ExecuteAlarmAckTags Database Synchronous No Supported Supported Executed on
Server

Syntax

ExecuteAlarmAck("strTagName",optStrComment,optStrAlarmType)

ExecuteAlarmAck("strTagName",{ | ,optStrComment{ | ,optStrAlarmType } })
strTagName

Name of the tag on which the alarm will be acknowledged.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

optStrComment
An optional comment to send to the Alarm task, along with the user name and station.

optStrAlarmType
If more than one alarm is active on the specified tag, you can specify which alarm (e.g., Hi, Lo,
HiHi, LoLo) to acknowledge. Otherwise, the function acknowledges the most recently activated
alarm.

Returned value

Value Description

0 Successfully executed.

-1 Invalid number of parameters.

-2 Invalid tag name.

-3 Executed, but did not wait for confirmation from Alarms task. See note.

Notes
When this function is used to acknowledge an alarm, it typically waits for confirmation from the Alarms
task before returning a value of 0 to indicate successful execution. In some cases, however, waiting for
confirmation might cause the project runtime to hang. When that happens, if the function is properly formed
with valid parameters, then it will execute as intended but it will not wait for confirmation.

Examples
Acknowledge the active Hi alarm on tag A, with the comment Hi alarm on tag A:

ExecuteAlarmAck ("A","Hi alarm on tag A","Hi")

Appendix: Built-in Language

Page 1185

ForceTagChange
Forces the database to write a value to a tag and trigger events as if the tag changed, even if the new value is
equal to the old value.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

ForceTagChangeTags Database Synchronous No Supported Supported Not supported

Syntax

ForceTagChange("strTagName", numValue)

strTagName
The name of the tag being forced to accept the new value.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

numValue
The new value to be written to the specified tag.

Return value
This function returns no value.

Examples

Tag Name Expression

n/a ForceTagChange("TagA", 5)

GetAlarmCount
This function gets the number of active alarms.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetAlarmCountTags Database Synchronous Yes Supported Not supported Not supported

Syntax

GetAlarmCount()

GetAlarmCount()

This function has no parameters.

Returned value
This function returns the number of active alarms.

Please note that the function will return a valid value only when it is executed on the project server. If it is
called by a Graphics Script, Screen Script, or Command animation on a project client, it will return -1.

Appendix: Built-in Language

Page 1186

GetAlarmInfo
This function gets information about an active alarm.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetAlarmInfo Tags Database Synchronous Yes Supported Not supported (see
"Notes" below)

Not supported (see
"Notes" below)

Syntax

GetAlarmInfo(numIndex,numInfo)

GetAlarmInfo(numIndex,{ numInfo | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13
| 14 | 15 | 16 | 17 | 18 | 19 })
numIndex

The index number of the alarm about which you want to get information.

The index number must be between 0 and the total number of alarms minus 1. To get the total
number of alarms, use the function GetAlarmCount. For example, if GetAlarmCount returns 6,
then numIndex must be between 0 and 5.

The list of alarms is sorted by the times when the alarms first became active, so that the oldest
alarm is index 0. When an alarm is both normalized and acknowledged, it is removed from the
list and the remaining alarms are shifted accordingly. For example, when the alarm at index 3
is removed, the alarm at index 4 is shifted to index 3, the alarm at index 5 is shifted to index 4,
and so on.

Note: It is possible for an alarm to be normalized (i.e., become inactive) and then
become active again without being acknowledged. That alarm will remain on the
list of alarms throughout, and its Activation Time — that is, time when the alarm
first became active — will not be updated.

numInfo
The information or alarm property that you want to get:

Value Alarm Property

0 Alarm Group

1 Tag Name

2 Alarm Message

3 Alarm Type

4 Tag value when the alarm became active

5 Activation Time

6 Norm Time

7 Ack Time

8 Alarm Priority

9 Alarm Selection

10 to 19 Custom Field 1 to Custom Field 10

Tip: You can create custom fields in the Alarms
worksheet.

Appendix: Built-in Language

Page 1187

Returned value
This function returns the current value of the specified property (numInfo) of the specified alarm (numIndex).
For the property Alarm Type (i.e., numInfo is 3), this function returns one of the following possible values:

Value Alarm Type

1 HiHi

2 Hi

4 Lo

8 LoLo

16 Rate of change

32 Deviation+

64 Deviation-

For all other properties, this function returns the actual value of the property. As such, the project tag or
VBScript variable that you configure to receive the returned value should be of the appropriate data type.
For example, you may configure an Integer tag to receive the value of Alarm Group or Alarm Type, but you
should configure a String tag to receive the value of Tag Name or Ack Time. It is safest to always configure a
String tag to receive the value, because a String tag can hold any value as a string, but that might make it
more difficult to process the value after it is received. Please keep this in mind as you design and develop your
project.

If the specified alarm has not yet been normalized or acknowledged, this function returns no values at all for
the properties Norm Time and Ack Time, respectively.

If the function is not executed successfully, it returns one of the following error codes:

Value Description

-1 Function was called by a Graphics Script, Screen Script, or Command
animation on a project client. (See "Notes" below.)

-2 Invalid alarm index (numIndex).

-3 Invalid alarm property (numInfo).

Notes
This function can only be executed on the project server — it cannot be called by a Graphics Script, Screen
Script, or Command animation running on a thin client. For more information, see Using TagsDB functions to
edit the tags database during run time on page 167.

Also, this function is similar to the function TagsDBGetAlarm, except that it gets information about a specified
alarm in the list of active alarms rather than about an alarm on a specified tag.

Examples
Get the type (e.g., 2, meaning Hi) of the first alarm:

GetAlarmInfo(0,3)

Get the name of the project tag (e.g., MyTag) that the second alarm is on:

GetAlarmInfo(1,1)

Get the date and time (e.g., 12/05/2013 14:11:29) when the newest alarm became active, and then use the
function DateTime2UTC to convert that from the current time zone to Coordinated Universal Time (UTC):

DateTime2UTC(GetAlarmInfo(GetAlarmCount()-1,5))

Appendix: Built-in Language

Page 1188

GetTagValue
GetTagValue is a built-in function that gets the current value of a project tag.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

GetTagValue Tags Database Synchronous Yes Supported Supported Supported

Syntax

GetTagValue("strTagName",optNumRefresh)

GetTagValue("strTagName"{ | ,optNumRefresh })
strTagName

The name of the project tag that you want to get the value of.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

optNumRefresh
The name of a project tag that will trigger refreshes after the initial execution of this function.
In other words, whenever the value of the specified tag changes, this function will be executed
again. (Normally, a function is executed only when it is called, such as when it is configured on
a Button object and the object is clicked or tapped during run time.) To execute this function at
regular intervals, specify a system tag such as Second, Minute, or Hour.

Returned value
This function returns the current value of the project tag specified by strTagName. (The value of the project
tag specified by optNumRefresh does not affect the returned value in any way.) If the specified tag does not
exist, this function returns -1 with BAD quality.

Please note that if this function does return -1, it might indicate either that the tag does not exist or that the
current value of the specified tag actually is -1. You will need to take extra steps to determine which it is, and
you can do so using one of the following methods.

First, you can specify another project tag to receive the value returned by this function, and then you can
check if the quality of that tag is BAD (e.g., myReturned->Quality). For more information, see Reference
a tag property instead of a project tag on page 167. However, when this function is called in VBScript, the
returned value does not include quality, so this method will not work if you prefer to use VBScript in your
project.

Second, you can call the function TagsDBGetTagProperty to check if the project tag specified by strTagName
exists. It does not matter which property you try to get — if that function returns -4, it confirms the specified
tag does not exist. However, TagsDB functions can be executed only in the full BLUE Open Studio 2020
software, so this method will not work if you try it on other platforms.

Third, as an alternative to the first and second methods above, you can create a VBScript procedure (in the
Global Procedures interface, for example) that checks if a specified tag exists:

Function IsTagAvailable(tagName)
 $LocalPointer = tagName
 If $@LocalPointer->Name <> "" Then
 IsTagAvailable = 1
 Else
 IsTagAvailable = 0
 End If
End Function

Appendix: Built-in Language

Page 1189

The procedure above uses a tag pointer (@) to check the Name property of the specified tag. (Without the tag
pointer, the procedure would check the Name property of LocalPointer itself.) If the property is not empty,
the tag has a name and therefore exists.

Examples
Get the current value of myTag:

GetTagValue("myTag")

Get the value of myTag and refresh it every second:

GetTagValue("myTag",Second)

Get the value of the tag specified by myPointer and refresh it whenever the value of myTrigger changes:

GetTagValue(myPointer,myTrigger)

SetTagValue
Sets the value of the specified tag in the project tags database.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SetTagValue Tags Database Synchronous No Supported Supported Supported

Syntax

SetTagValue("strTagName", TagValue)

strTagName
The name of the tag that you want to set.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

TagValue
The new value to be set to the specified tag.

Returned value

Value Description

−1 Invalid tag name

0 No error

Examples

Tag Name Expression

TagA SetTagValue("TagA", "Hello") // Return = Hello

TagA SetTagValue("TagA", 123) // Return = 123

TagA TagB = 15 SetTagValue("TagA", TagB) // Return = 15

Appendix: Built-in Language

Page 1190

TagsDBAddClass
This function adds a new class to the tags database during run time.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TagsDBAddClassTags Database Synchronous No Supported (see
"Notes" below)

Not supported Not supported

Syntax

TagsDBAddClass(strClassName)

TagsDBAddClass(strClassName)
strClassName

The name of the class to be added.

Returned value
This function returns one of the following possible values:

Value Description

-5 A class with the specified name already exists in the tags database.

-4 Maximum number of classes reached.

-3 Wrong parameter type or inconsistent value.

-2 Invalid number of parameters.

-1 The function TagsDBBeginEdit was not executed successfully before
this function was called.

0 Function executed successfully.

Notes
The following restrictions apply to the execution of this function:

• The function can only be executed on the project server — it cannot be called by a Graphics Script, Screen
Script, or Command animation running on a project client;

• The function TagsDBBeginEdit must have been executed previously, in order to lock the tags database for
editing; and

• The function TagsDBEndEdit must be executed when the editing is finished, in order to release the tags
database and resume normal run-time operations.

For more information about the Tags Database functions and examples of how to use them, see Using TagsDB
functions to edit the tags database during run time on page 167.

TagsDBAddClassMember
This function adds a new class member to an existing class during run time.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TagsDBAddClassMemberTags Database Synchronous No Supported (see
"Notes" below)

Not supported Not supported

Syntax

TagsDBAddClassMember(strClassName, strMemberName, strMemberType, strDescription)

Appendix: Built-in Language

Page 1191

TagsDBAddClassMember(strClassName,strMemberName,{ strMemberType | "Boolean" | "Integer" |
"Real" | "String" },strDescription)
strClassName

The name of the class to which the member will be added.

strMemberName
The name of the class member to be added.

strMemberType
The data type of the class member to be added. This parameter accepts only the following
values: "Boolean", "Integer", "Real", or "String".

strDescription
A description of the class member to be added.

Returned value
This function returns one of the following possible values:

Value Description

-4 The specified class does not exist in the tags database.

-3 Wrong parameter type or inconsistent value.

-2 Invalid number of parameters.

-1 The function TagsDBBeginEdit was not executed successfully before
this function was called.

0 Function executed successfully.

Notes
The following restrictions apply to the execution of this function:

• The function can only be executed on the project server — it cannot be called by a Graphics Script, Screen
Script, or Command animation running on a project client;

• The function TagsDBBeginEdit must have been executed previously, in order to lock the tags database for
editing; and

• The function TagsDBEndEdit must be executed when the editing is finished, in order to release the tags
database and resume normal run-time operations.

For more information about the Tags Database functions and examples of how to use them, see Using TagsDB
functions to edit the tags database during run time on page 167.

TagsDBAddTag
This function adds a new project tag to the tags database during run time.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TagsDBAddTag Tags Database Synchronous No Supported (see
"Notes" below)

Not supported Not supported

Syntax

TagsDBAddTag(strTagName, optstrTagType, optNumArraySize, optstrDescription, optNumScope
)

TagsDBAddTag(strTagName{ | ,{ optStrTagType | "Boolean" | "Integer" | "Real" | "String" |
"classname" }{ | ,optNumArraySize{ | ,optStrDescription{ | ,{ optNumScope | 0 | 1 } } } } })
strTagName

Appendix: Built-in Language

Page 1192

The name of the project tag to be added.

optStrTagType
The data type of the project tag to be added. This parameter accepts only the following values:
"Boolean", "Integer", "Real", "String", or "classname".

This parameter is optional; if no value is specified, the default value is "Integer".

optNumArraySize
The array size of the project tag to be added.

This parameter is optional; if no value is specified, the default value is 0.

optStrDescription
A description of the project tag to be added.

This parameter is optional; if no value is specified, the default value is "".

optNumScope
The scope of the project tag to be added. This parameter accepts only the following values: 0
(Local) or 1 (Server).

This parameter is optional; if no value is specified, the default value is 1.

Returned value
This function returns one of the following possible values:

Value Description

-5 The maximum number of tags (as determined by the project's target system)
has been reached.

-4 A project tag with the specified name already exists in the tags database.

-3 Wrong parameter type or inconsistent value.

-2 Invalid number of parameters.

-1 The function TagsDBBeginEdit was not executed successfully before
this function was called.

0 Function executed successfully.

Notes
The following restrictions apply to the execution of this function:

• The function can only be executed on the project server — it cannot be called by a Graphics Script, Screen
Script, or Command animation running on a project client;

• The function TagsDBBeginEdit must have been executed previously, in order to lock the tags database for
editing; and

• The function TagsDBEndEdit must be executed when the editing is finished, in order to release the tags
database and resume normal run-time operations.

For more information about the Tags Database functions and examples of how to use them, see Using TagsDB
functions to edit the tags database during run time on page 167.

Appendix: Built-in Language

Page 1193

TagsDBBeginEdit
TagsDBBeginEdit is a built-in function that locks the tags database for editing during run time. You must
call this function before you call any other Tags Database functions to add or remove project tags or set tag
properties.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TagsDBBeginEditTags Database Synchronous No Supported (see
"Notes" below)

Not supported Not supported

Syntax

TagsDBBeginEdit()

TagsDBBeginEdit()

This function has no parameters.

Returned value
This function returns one of the following possible values:

Value Description

0 Function executed successfully.

-1 Project runtime is busy; another function is editing the tags database. Try again
later.

-2 Invalid number of parameters.

-3 Project runtime is busy; an Alarm or Trend task is using the tags database. Try
again later.

Notes
The following restrictions apply to the execution of this function:

• The function can only be executed on the project server — it cannot be called by a Graphics Script, Screen
Script, or Command animation running on a project client; and

• The function TagsDBEndEdit must be executed when the editing is finished, in order to release the tags
database and resume normal run-time operations.

For more information about the Tags Database functions and examples of how to use them, see Using TagsDB
functions to edit the tags database during run time on page 167.

Please note this function has a persistent effect, which means that if you call the function to lock the tags
database during run time and then stop the project, the database will remain locked and you will not be able
to manually edit it.

Restarting the project may or may not unlock the database, depending on how you designed your project and
which function call locked the database in the first place. As such, while the project is stopped, you should
use the Watch window to manually call the function TagsDBEndEdit. When it is successfully executed, you
can safely restart the project.

TagsDBEndEdit
TagsDBEndEdit is a built-in function that finishes changes made by other Tags Database functions and
releases the database so that normal run-time execution may resume.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TagsDBEndEditTags Database Synchronous No Supported (see
"Notes" below)

Not supported Not supported

Appendix: Built-in Language

Page 1194

Syntax

TagsDBEndEdit()

TagsDBEndEdit()

This function has no parameters.

Returned value
This function returns one of the following possible values:

Value Description

0 Function successfully executed.

-1 The function TagsDBBeginEdit was not successfully executed before
this function was called. No changes were made.

-2 Invalid number of parameters.

Notes
The following restrictions apply to the execution of this function:

• The function can only be executed on the project server — it cannot be called by a Graphics Script, Screen
Script, or Command animation running on a project client; and

• The function TagsDBBeginEdit must have been executed previously, in order to lock the tags database for
editing.

For more information about the Tags Database functions and examples of how to use them, see Using TagsDB
functions to edit the tags database during run time on page 167.

Please note that when this function is executed, screens that were already open on connected clients will be
reopened and their associated OnOpen screen scripts will be executed again.

TagsDBGetAlarm
TagsDBGetAlarm is a built-in function that gets the current value of a property of an alarm condition during
run time.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TagsDBGetAlarmTags Database Synchronous Yes Supported (see
"Notes" below)

Not supported Not supported

Syntax

TagsDBGetAlarm(strTagName,numAlarmType,numProperty)

TagsDBGetAlarm(strTagName,{ numAlarmType | -1 | 1 | 2 | 4 | 8 | 16 | 32 | 64 },{ numProperty
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 })
strTagName

The name of the project tag on which the alarm property is set.

Tip: To get other properties on project tags, use the function
TagsDBGetTagProperty.

numAlarmType
The type of alarm on the specified project tag, identified by one of the following values:

Appendix: Built-in Language

Page 1195

Value Alarm Type

-1 General properties that apply to all alarm types on the specified
project tag

1 HiHi

2 Hi

4 Lo

8 LoLo

16 Rate

32 DeviationP

64 DeviationM

numProperty
The alarm property that you want to get.

When getting a property of a specific alarm type (i.e., if numAlarmType is greater than 0), the
property is identified by one of the following values:

Value Property Data Type

0 Limit value Real

1 Message String

2 Alarm group (or worksheet) number Integer

3 Priority Integer

4 Selection String

5 Custom field 1 String

6 Custom field 2 String

7 Custom field 3 String

8 Custom field 4 String

9 Custom field 5 String

10 Custom field 6 String

11 Custom field 7 String

12 Custom field 8 String

13 Custom field 9 String

14 Custom field 10 String

When getting a property that applies to all alarm types on the specified project tag (i.e., if
numAlarmType is -1), the property is identified by one of the following values:

Value Property Data Type

0 Alarms Enabled Boolean

1 Remote Ack tag String (tag name)

2 Translation Enabled Boolean

3 Dead Band Value Real

4 Off String

5 On String

6 Ack String

Appendix: Built-in Language

Page 1196

Value Property Data Type

7 Deviation Setpoint String (tag name)

8 Deviation Dead Band Real

For more information about all of these alarm properties, see Tag Properties on page 162.

Returned value
If this function is executed succesfully, it returns the value of the specified property. Otherwise, it returns one
of the following possible values:

Value Description

-4 The specified project tag (strTagName) or alarm type (numAlarmType) does not
exist.

-3 Wrong parameter type or inconsistent value.

-2 Invalid number of parameters.

Notes
This function can only be executed on the project runtime server — it cannot be called by a Graphics Script,
Screen Script, or Command animation running on a project client.

For more information about the Tags Database functions and examples of how to use them, see Using TagsDB
functions to edit the tags database during run time on page 167.

TagsDBGetClassMember
This function gets the data type or description of a specified class member during run time.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TagsDBGetClassMemberTags Database Synchronous Yes Supported (see
"Notes" below)

Not supported Not supported

Syntax

TagsDBGetClassMember(strClassName, strMemberName, numPropertyID)

TagsDBGetClassMember(strClassName,strMemberName,{ numPropertyID | 0 | 1 })
strClassName

The name of the class that contains the member.

strMemberName
The name of the class member.

numPropertyID
The property to be gotten, identified by one of the following values:

Value Property Data Type

0 Data type String ("Boolean", "Integer",
"Real", "String")

1 Description String

Returned value
If this function is executed succesfully, then it returns the value of the specified property. Otherwise, it
returns one of the following possible values:

Appendix: Built-in Language

Page 1197

Value Description

-5 The specified member does not exist in the specified class.

-4 The specified class does not exist in the tags database.

-3 Wrong parameter type or inconsistent value.

-2 Invalid number of parameters.

Notes
This function can only be executed on the project runtime server — it cannot be called by a Graphics Script,
Screen Script, or Command animation running on a project client.

For more information about the Tags Database functions and examples of how to use them, see Using TagsDB
functions to edit the tags database during run time on page 167.

TagsDBGetClassMemberCount
This function gets a count of the members in a specified class.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TagsDBGetClassMemberCountTags Database Synchronous Yes Supported (see
"Notes" below)

Not supported Not supported

Syntax

TagsDBGetClassMemberCount(strClassName)

TagsDBGetClassMemberCount(strClassName)
strClassName

The name of the class in which to count members.

Returned value
If this function is executed succesfully, then it returns the requested count of class members. Otherwise, it
returns one of the following possible values:

Value Description

-4 The specified class does not exist.

-3 Wrong parameter type or inconsistent value.

-2 Invalid number of parameters.

Notes
This function can only be executed on the project runtime server — it cannot be called by a Graphics Script,
Screen Script, or Command animation running on a project client.

For more information about the Tags Database functions and examples of how to use them, see Using TagsDB
functions to edit the tags database during run time on page 167.

TagsDBGetFirstClass
This function returns the name of the first class in the tags database. It acts like an array pointer, with the
array being the tags database, and it may be used in coordination with the function TagsDBGetNextClass

Appendix: Built-in Language

Page 1198

either to generate a list of classes in the tags database or to process the classes one at a time, depending on
how you write your script.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TagsDBGetFirstClassTags Database Synchronous Yes Supported (see
"Notes" below)

Not supported Not supported

Syntax

TagsDBGetFirstClass()

TagsDBGetFirstClass()

This function has no parameters.

Returned value
If this function is executed succesfully, then it returns the name of the first class. Otherwise, it returns one of
the following possible values:

Value Description

-3 No classes found in the tags database.

-2 Invalid number of parameters.

Notes
This function can only be executed on the project server — it cannot be called by a Graphics Script, Screen
Script, or Command animation running on a project client.

Also, this function may be called at any time; the function TagsDBBeginEdit does not need to have been
executed previously. If that is the case, however, then TagsDBGetFirstClass and TagsDBGetNextClass can
only generate a list of classes. They cannot be used, along with with the other Tags Database functions, to
edit the classes.

For more information about the Tags Database functions and examples of how to use them, see Using TagsDB
functions to edit the tags database during run time on page 167.

TagsDBGetFirstClassMember
This function returns the name of the first member in a specified class. It acts like an array pointer,
with the array being the class members, and it may be used in coordination with the function
TagsDBGetNextClassMember either to generate a list of members in the class or to process the class members
one at a time, depending on how you write your script.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TagsDBGetFirstClassMemberTags Database Synchronous Yes Supported (see
"Notes" below)

Not supported Not supported

Syntax

TagsDBGetFirstClassMember(strClassName)

TagsDBGetFirstClassMember(strClassName)
strClassName

The name of the class in which to get the first member.

Appendix: Built-in Language

Page 1199

Returned value
If this function is executed succesfully, then it returns the name of the first class member. Otherwise, it
returns one of the following possible values:

Value Description

-5 No members found in the specified class.

-4 The specified class does not exist in the tags database.

-3 Wrong parameter type or inconsistent value.

-2 Invalid number of parameters.

Notes
This function can only be executed on the project server — it cannot be called by a Graphics Script, Screen
Script, or Command animation running on a project client.

Also, this function may be called at any time; the function TagsDBBeginEdit does not need to have
been executed previously. If that is the case, however, then TagsDBGetFirstClassMember and
TagsDBGetNextClassMember can only generate a list of classes. They cannot be used, along with with the
other Tags Database functions, to edit the classes.

For more information about the Tags Database functions and examples of how to use them, see Using TagsDB
functions to edit the tags database during run time on page 167.

TagsDBGetFirstTag
TagsDBGetFirstTag is a built-in function that gets the name of the first tag in the tags database. It acts
like an array pointer, with the array being the tags database, and it can be used in coordination with the
TagsDBGetNextTag function either to generate a list of tags or to process the tags one at a time, depending on
how you write your script.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TagsDBGetFirstTagTags Database Synchronous Yes Supported (see
"Notes" below)

Not supported Not supported

Syntax

TagsDBGetFirstTag(optNumProjectOrSystem)

TagsDBGetFirstTag({ | { optNumProjectOrSystem | 0 | 1 } })
optNumProjectOrSystem

Numeric flag that determines whether to get from the user-defined Project Tags or from the pre-
defined System Tags:

Value Description

0 Project Tags

1 System Tags

This parameter is optional; if no value is specified, the default value is 1.

Return value
If this function is executed succesfully, it returns the name of the first tag. Otherwise, it returns one of the
following possible values:

Value Description

-2 Invalid number of parameters.

Appendix: Built-in Language

Page 1200

Value Description

-3 No tags found in the tags database.

Notes
This function can be executed only on the project server. It cannot be called by a Graphics Script, Screen
Script, or Command animation running on a project client.

Also, this function can be called at any time; the TagsDBBeginEdit function does not need to have been
executed beforehand. If that is the case, however, then TagsDBGetFirstTag and TagsDBGetNextTag can be
used only to generate a list of tags. They cannot be used — along with with the other Tags Database functions
— to edit the tags unless TagsDBBeginEdit has been executed.

For more information about the Tags Database functions and examples of how to use them, see Using TagsDB
functions to edit the tags database during run time on page 167.

TagsDBGetLoadStatus
TagsDBGetLoadStatus is a built-in function that checks whether a specified tag has been loaded into
memory on a project thin client.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TagsDBGetLoadStatusTags Database Synchronous Yes Not supported Supported Not supported

Syntax

TagsDBGetLoadStatus(strFullTagName)

TagsDBGetLoadStatus(strFullTagName)
strFullTagName

The name of the project tag to be checked. If it is an array and/or class, you must also specify
the array position and/or class member, because only one position and/or member can be
checked for each function call.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

Returned value
This function will return one of the following possible values:

Value Description

2 Loaded.

1 Load pending.

0 Not loaded and no load pending.

-1 This function can be called only on Thin Clients.

-2 Invalid tag name; the specified project tag does not exist in the tags database.

-3 Local tag specified. Only tags with Server scope can be specified for this
function.

Notes
This function is typically called after the TagsDBPreload and TagsDBPreloadWait functions, to check
whether a project tag selected for preloading has actually been loaded.

Appendix: Built-in Language

Page 1201

Examples
The following example shows how the TagsDBPreload, TagsDBPreloadWait, TagsDBGetPreloadCount, and
TagsDBGetLoadStatus functions can all be used in the Screen_OnOpen sub-routine of the Screen Script:

Sub Screen_OnOpen()

 Dim counter, preloadCount, preloadDone, loadStatus

 // Select tags for preloading.

 preloadCount = $TagsDBPreload("MyTagA")
 preloadCount = $TagsDBPreload("MyTagB")
 preloadCount = $TagsDBPreload("MyTagC")
 preloadCount = $TagsDBPreload("MyArray[1]")
 preloadCount = $TagsDBPreload("MyArray[2]")
 preloadCount = $TagsDBPreload("MyArray[3]")

 // Wait up to five seconds to load tags.

 counter = 0
 preloadDone = 0
 Do
 preloadDone = $TagsDBPreloadWait(1000)
 preloadCount = $TagsDBPreloadCount()
 counter = counter + 1
 Loop Until (preloadDone <> 0) Or (counter = 5)

 // Save preload count message to string tag, for later use.

 $PreloadCountMsg = preloadCount & " tag(s) waiting to be loaded."

 // Save load status message to string tag, for later use.

 loadStatus = $TagsDBGetLoadStatus("MyTagA")
 If (loadStatus = 2) Then
 $LoadStatusMsg = "MyTagA is loaded."
 ElseIf (loadStatus = 1) Then
 $LoadStatusMsg = "MyTagA is waiting to be loaded."
 Else
 $LoadStatusMsg = "Error while loading MyTagA."
 End If

End Sub

TagsDBGetNextClass
This function returns the name of the next class in the tags database, after the function
TagsDBGetFirstClass has been executed to get the first class. It acts like an array pointer, with the array
being the tags database, and it may be used to generate a list of classes in the tags database or to process the
classes one at a time, depending on how you write your script.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TagsDBGetNextClassTags Database Synchronous Yes Supported (see
"Notes" below)

Not supported Not supported

Syntax

TagsDBGetNextClass()

TagsDBGetNextClass()

This function has no parameters.

Appendix: Built-in Language

Page 1202

Returned value
If this function is executed succesfully, then it returns the name of the next class. Otherwise, it returns one of
the following possible values:

Value Description

-3 No class found; at end of database.

-2 Invalid number of parameters.

Notes
This function can only be executed on the project server — it cannot be called by a Graphics Script, Screen
Script, or Command animation running on a project client.

Also, this function may be called at any time; the function TagsDBBeginEdit does not need to have been
executed previously. If that is the case, however, then TagsDBGetFirstClass and TagsDBGetNextClass can
only generate a list of classes. They cannot be used, along with with the other Tags Database functions, to
edit the classes.

For more information about the Tags Database functions and examples of how to use them, see Using TagsDB
functions to edit the tags database during run time on page 167.

TagsDBGetNextClassMember
TagsDBGetNextClassMember is a built-in function that returns the name of the next member in a specified
class, after the TagsDBGetFirstClassMember function has been called to get the first member. This function
acts like an array pointer, with the class being the array and the class members being the array elements, and
it can be used to process the class members one at a time.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TagsDBGetNextClassMemberTags Database Synchronous Yes Supported (see
"Notes" below)

Not supported Not supported

Syntax

TagsDBGetNextClassMember()

TagsDBGetNextClassMember()

This function has no parameters. You must include the empty parentheses, however, or else the function
name might be interpreted as a tag name.

Returned value
If this function is executed succesfully, it returns the name of the next class member. Otherwise, it returns
one of the following possible values:

Value Description

-2 Invalid number of parameters.

-3 Wrong parameter type or inconsistent value.

-4 The specified class does not exist in the tags database.

-5 No members found; at end of class.

Notes
This function can only be executed on the project server — it cannot be called by a Graphics Script, Screen
Script, or Command animation running on a project client.

Also, this function may be called at any time; the function TagsDBBeginEdit does not need to have
been executed previously. If that is the case, however, then TagsDBGetFirstClassMember and

Appendix: Built-in Language

Page 1203

TagsDBGetNextClassMember can only generate a list of classes. They cannot be used, along with with the
other Tags Database functions, to edit the classes.

For more information about the Tags Database functions and examples of how to use them, see Using TagsDB
functions to edit the tags database during run time on page 167.

TagsDBGetNextTag
TagsDBGetNextTag is a built-in function that gets the name of the next tag in the tags database, after the
TagsDBGetFirstTag function has been executed to get the first tag. It acts like an array pointer, with the
array being the tags database, and it can be used either to generate a list of tags or to process the tags one at
a time, depending on how you write your script.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TagsDBGetNextTagTags Database Synchronous Yes Supported (see
"Notes" below)

Not supported Not supported

Syntax

TagsDBGetNextTag()

TagsDBGetNextTag()

This function has no parameters.

Return value
If this function is executed succesfully, it returns the name of the next tag. Otherwise, it returns one of the
following possible values:

Value Description

-2 Invalid number of parameters.

-3 No tag found; at end of database.

Notes
This function can be executed only on the project server. It cannot be called by a Graphics Script, Screen
Script, or Command animation running on a project client.

Also, this function can be called at any time; the TagsDBBeginEdit function does not need to have been
executed beforehand. If that is the case, however, then TagsDBGetFirstTag and TagsDBGetNextTag can be
used only to generate a list of tags. They cannot be used — along with with the other Tags Database functions
— to edit the tags unless TagsDBBeginEdit has been executed.

For more information about the Tags Database functions and examples of how to use them, see Using TagsDB
functions to edit the tags database during run time on page 167.

TagsDBGetPreloadCount
TagsDBGetPreloadCount is a built-in function that gets the number of tags that are still waiting to be
preloaded.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TagsDBGetPreloadCountTags Database Synchronous Yes Not supported Supported Not supported

Syntax

TagsDBGetPreloadCount()

TagsDBGetPreloadCount()

Appendix: Built-in Language

Page 1204

This function has no parameters.

Returned value
If this function is executed successfully, it will return the number (greater than or equal to 0) of tags waiting
to be preloaded. Otherwise, it will return one of the following possible values:

Value Description

-1 This function can be called only on Thin Clients.

Notes
This function is typically called after the TagsDBPreload and TagsDBPreloadWait functions. In fact, when
this function gets the number of tags that are still waiting to be preloaded, it only checks tags that were
selected for preloading by calling the TagsDBPreload function.

If this function returns a value greater than or equal to 1, which indicates that one or more tags are still
waiting to preloaded, you can use the TagsDBGetLoadStatus function to try to determine which tags those
are.

Examples
The following example shows how the TagsDBPreload, TagsDBPreloadWait, TagsDBGetPreloadCount, and
TagsDBGetLoadStatus functions can all be used in the Screen_OnOpen sub-routine of the Screen Script:

Sub Screen_OnOpen()

 Dim counter, preloadCount, preloadDone, loadStatus

 // Select tags for preloading.

 preloadCount = $TagsDBPreload("MyTagA")
 preloadCount = $TagsDBPreload("MyTagB")
 preloadCount = $TagsDBPreload("MyTagC")
 preloadCount = $TagsDBPreload("MyArray[1]")
 preloadCount = $TagsDBPreload("MyArray[2]")
 preloadCount = $TagsDBPreload("MyArray[3]")

 // Wait up to five seconds to load tags.

 counter = 0
 preloadDone = 0
 Do
 preloadDone = $TagsDBPreloadWait(1000)
 preloadCount = $TagsDBPreloadCount()
 counter = counter + 1
 Loop Until (preloadDone <> 0) Or (counter = 5)

 // Save preload count message to string tag, for later use.

 $PreloadCountMsg = preloadCount & " tag(s) waiting to be loaded."

 // Save load status message to string tag, for later use.

 loadStatus = $TagsDBGetLoadStatus("MyTagA")
 If (loadStatus = 2) Then
 $LoadStatusMsg = "MyTagA is loaded."
 ElseIf (loadStatus = 1) Then
 $LoadStatusMsg = "MyTagA is waiting to be loaded."
 Else
 $LoadStatusMsg = "Error while loading MyTagA."
 End If

End Sub

Appendix: Built-in Language

Page 1205

TagsDBGetTagCount
This function gets a count of the project tags in the tags database.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TagsDBGetTagCountTags Database Synchronous Yes Supported (see
"Notes" below)

Not supported Not supported

Syntax

TagsDBGetTagCount(numCountType)

TagsDBGetTagCount({ numCountType | 0 | 1 | 2 | 3 })
numCountType

The type of count to be performed, identified by one of the following values:

Value Description

0 The total number of project tags in the tags database.

1 The number of project tags supported by the target system.

2 The number of project tags that may still be created before exceeding
the number supported by the target system.

3 The total number of pre-defined system tags in the tags database.

Returned value
If this function is executed succesfully, then it returns the specified tag count. Otherwise, it returns one of the
following possible values:

Value Description

-3 Wrong parameter type or inconsistent value.

-2 Invalid number of parameters.

Notes
This function can only be executed on the project runtime server — it cannot be called by a Graphics Script,
Screen Script, or Command animation running on a project client.

For more information about the Tags Database functions and examples of how to use them, see Using TagsDB
functions to edit the tags database during run time on page 167.

TagsDBGetTagProperty
TagsDBGetTagProperty is a built-in function that gets the value of a specified tag property during run time.
Tag properties are the metadata on project tags, such as tag name, array size, data type, description, scope,
and so on. In some cases, calling this function is the same as using tag fields (e.g., tagname->property).

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TagsDBGetTagPropertyTags Database Synchronous Yes Supported (see
"Notes" below)

Not supported Not supported

Syntax

TagsDBGetTagProperty(strTagName,numPropertyID)

Appendix: Built-in Language

Page 1206

TagsDBGetTagProperty(strTagName,{ numPropertyID | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
| 11 | 12 })
strTagName

The name of the project tag from which the tag property will be gotten.

numPropertyID
The tag property to be gotten, identified by one of the following values:

Value Property Data Type Same as…

0 Tag name String tagname->Name

1 Array size Integer tagname->Size

2 Data type String ("Boolean",
"Integer",
"Real", "String",
"classname")

-

3 Description String tagname-
>Description

4 Scope Integer (0 for Local, 1 for
Server)

-

5 Startup value String -

6 Minimum value Real tagname->Min

7 Maximum value Real tagname->Max

8 Engineering unit String tagname->Unit

9 Retentive value Integer (0 for disabled, 1 for
enabled)

-

10 Retentive properties Integer (0 for disabled, 1 for
enabled)

-

11 Dead band Real -

12 Smoothing Integer (0 for disabled, 1 for
enabled)

-

Tip: To get alarm conditions on project tags, use the function TagsDBGetAlarm.
Other tag properties not listed here cannot be gotten during run time.

Returned value
If this function is executed succesfully, it returns the value of the specified tag property. Otherwise, it returns
one of the following possible values:

Value Description

-2 Invalid number of parameters.

-3 Wrong parameter type or inconsistent value.

-4 Project tag (as specified by strTagName) does not exist.

Notes
This function can only be executed on the project runtime server — it cannot be called by a Graphics Script,
Screen Script, or Command animation running on a project client.

For more information about the Tags Database functions and examples of how to use them, see Using TagsDB
functions to edit the tags database during run time on page 167.

Appendix: Built-in Language

Page 1207

TagsDBGetTrend
This function determines the trend group to which a project tag is assigned.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TagsDBGetTrendTags Database Synchronous Yes Supported (see
"Notes" below)

Not supported Not supported

Syntax

TagsDBGetTrend(strTagName, numProperty)

TagsDBGetTrend(strTagName,{ numProperty | 0 | 1 })
strTagName

The name of the project tag that is assigned to a trend group.

numProperty
The specific property to be gotten, identified by one of the following values:

Value Property Data Type

0 Trend group (or worksheet) number Integer

1 Log dead band Real

Returned value
If this function is executed succesfully, then it returns the value of the specified property. Otherwise, it
returns one of the following possible values:

Value Description

-4 Project tag (as specified by strTagName) does not exist.

-3 Wrong parameter type or inconsistent value.

-2 Invalid number of parameters.

Notes
This function can only be executed on the project runtime server — it cannot be called by a Graphics Script,
Screen Script, or Command animation running on a project client.

For more information about the Tags Database functions and examples of how to use them, see Using TagsDB
functions to edit the tags database during run time on page 167.

TagsDBPreload
TagsDBPreload is a built-in function that manually preloads a project tag into memory on a project thin
client.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TagsDBPreloadTags Database Synchronous No Not supported Supported Not supported

Syntax

TagsDBPreload(strTagName)

TagsDBPreload(strTagName)
strTagName

Appendix: Built-in Language

Page 1208

The name of the project tag that you want to preload. If it is an array and/or class, and if you
specify an array position and/or class member, only that position and/or member will be
preloaded. Otherwise, all positions and/or members will be preloaded.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

Returned value
If this function is executed successfully, it will return the number (greater than or equal to 1) of tags that are
currently selected for preloading. Otherwise, it should return one of the following possible values:

Value Description

-1 This function can be called only on Thin Clients.

-2 Invalid tag name; the specified project tag does not exist in the tags database.

-3 Local tag specified. Only tags with Server scope can be specified for this
function.

If this function returns a negative value that is not shown in the table above, please contact your software
distributor for support.

Notes
Each project thin client maintains a list of project tags to which it is subscribed. Being subscribed to a tag
means the client keeps that tag loaded in memory, even when it is not being used, and the project runtime
server sends updated tag values to the client only when those values change. This subscription model
improves the run-time performance of the client and reduces unnecessary communication between the client
and the server.

When the client opens a project screen for the first time, it automatically adds the project tags used in that
screen to its subscription list. More specifically, the client does the following: it examines all of the objects and
scripts included in the screen, it determines which tags are referenced by those objects and scripts, it adds
those tags to its subscription list, and then it processes the list in order to get the latest values of the tags
before it actually displays the screen. The client does all of this to make sure it can open the screen quickly
and without errors, both the first time and every time thereafter.

In some cases, however, the client cannot determine for itself all of the tags it needs to add to its subscription
list. Objects and scripts in the screen might not initialize correctly, and the screen might open slowly or with
errors. When this happens, you can call the TagsDBPreload function to manually preload the missing tags.

For example, if a screen uses a large array tag — that is, an array tag with a large number of elements — it
might take an unacceptably long time for the client to load the entire array and then open the screen. You
can call this function to preload the specific elements of the array that might be used in the screen, or if you
actually need to preload the entire array, you can make sure it is done before the screen is opened. Also, if a
screen uses an indirect tag (e.g., @MyTag) that has no real value of its own until after the screen is opened and
the tag value is resolved, you can can call this function to preload the base tag (e.g., MyTag).

You will typically call this function in the Screen_OnOpen sub-routine of the Screen Script for a given screen.
Or, if you want to preload the same tag for several different screens, you can also call this function in the
Graphics_OnStart sub-routine of the Graphics Script.

You can use this function in conjunction with the TagsDBPreloadWait, TagsDBGetPreloadCount, and
TagsDBGetLoadStatus functions to manage the preloading of multiple tags. See "Examples" below.

Once this function is called to preload a tag for a screen, that tag is added to the client's subscription list and
it does not need to be preloaded again for that screen or any other screen. If this function is called again for
the same tag, it is ignored.

Appendix: Built-in Language

Page 1209

Examples
The following example shows how the TagsDBPreload, TagsDBPreloadWait, TagsDBGetPreloadCount, and
TagsDBGetLoadStatus functions can all be used in the Screen_OnOpen sub-routine of the Screen Script:

Sub Screen_OnOpen()

 Dim counter, preloadCount, preloadDone, loadStatus

 // Select tags for preloading.

 preloadCount = $TagsDBPreload("MyTagA")
 preloadCount = $TagsDBPreload("MyTagB")
 preloadCount = $TagsDBPreload("MyTagC")
 preloadCount = $TagsDBPreload("MyArray[1]")
 preloadCount = $TagsDBPreload("MyArray[2]")
 preloadCount = $TagsDBPreload("MyArray[3]")

 // Wait up to five seconds to load tags.

 counter = 0
 preloadDone = 0
 Do
 preloadDone = $TagsDBPreloadWait(1000)
 preloadCount = $TagsDBPreloadCount()
 counter = counter + 1
 Loop Until (preloadDone <> 0) Or (counter = 5)

 // Save preload count message to string tag, for later use.

 $PreloadCountMsg = preloadCount & " tag(s) waiting to be loaded."

 // Save load status message to string tag, for later use.

 loadStatus = $TagsDBGetLoadStatus("MyTagA")
 If (loadStatus = 2) Then
 $LoadStatusMsg = "MyTagA is loaded."
 ElseIf (loadStatus = 1) Then
 $LoadStatusMsg = "MyTagA is waiting to be loaded."
 Else
 $LoadStatusMsg = "Error while loading MyTagA."
 End If

End Sub

TagsDBPreloadWait
TagsDBPreloadWait is a built-in function that pauses execution of the script in which it is called in order to
preload project tags into memory on a project thin client.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TagsDBPreloadWaitTags Database Synchronous No Not supported Supported Not supported

Syntax

TagsDBPreloadWait(numTimeOut)

TagsDBPreloadWait(numTimeOut)
numTimeOut

The amount of time (in milliseconds) that the execution of the script will be paused. At the end
of the specified timeout, this function checks whether any loads are still pending.

Appendix: Built-in Language

Page 1210

Returned value
This function should return one of the following possible values:

Value Description

1 Success (i.e., all tags loaded).

0 Failure (i.e., function timed out while waiting for tags to be loaded).

-1 This function can be called only on Thin Clients.

If this function returns a negative value that is not shown in the table above, please contact your software
distributor for support.

Notes
This function must be called after the TagsDBPreload function. In fact, when this function checks whether
any loads are still pending, it only checks tags that were selected for preloading by calling the TagsDBPreload
function.

If this function returns a value of 0, which indicates that it timed out, you can use the
TagsDBGetPreloadCount and TagsDBGetLoadStatus functions to try to determine why it timed out.

Examples
The following example shows how the TagsDBPreload, TagsDBPreloadWait, TagsDBGetPreloadCount, and
TagsDBGetLoadStatus functions can all be used in the Screen_OnOpen sub-routine of the Screen Script:

Sub Screen_OnOpen()

 Dim counter, preloadCount, preloadDone, loadStatus

 // Select tags for preloading.

 preloadCount = $TagsDBPreload("MyTagA")
 preloadCount = $TagsDBPreload("MyTagB")
 preloadCount = $TagsDBPreload("MyTagC")
 preloadCount = $TagsDBPreload("MyArray[1]")
 preloadCount = $TagsDBPreload("MyArray[2]")
 preloadCount = $TagsDBPreload("MyArray[3]")

 // Wait up to five seconds to load tags.

 counter = 0
 preloadDone = 0
 Do
 preloadDone = $TagsDBPreloadWait(1000)
 preloadCount = $TagsDBPreloadCount()
 counter = counter + 1
 Loop Until (preloadDone <> 0) Or (counter = 5)

 // Save preload count message to string tag, for later use.

 $PreloadCountMsg = preloadCount & " tag(s) waiting to be loaded."

 // Save load status message to string tag, for later use.

 loadStatus = $TagsDBGetLoadStatus("MyTagA")
 If (loadStatus = 2) Then
 $LoadStatusMsg = "MyTagA is loaded."
 ElseIf (loadStatus = 1) Then
 $LoadStatusMsg = "MyTagA is waiting to be loaded."
 Else
 $LoadStatusMsg = "Error while loading MyTagA."
 End If

Appendix: Built-in Language

Page 1211

End Sub

TagsDBRemoveAlarm
TagsDBRemoveAlarm is a built-in function that removes an alarm condition from a project tag during run
time.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TagsDBRemoveAlarmTags Database Synchronous No Supported (see
"Notes" below)

Not supported Not supported

Syntax

TagsDBRemoveAlarm(strTagName,numAlarmType)

TagsDBRemoveAlarm(strTagName,{ numAlarmType | 1 | 2 | 4 | 8 | 16 | 32 | 64 })
strTagName

The name of the project tag from which the alarm condition will be removed.

numAlarmType
The type of alarm that you want to remove, identified by one of the following values:

Value Alarm Type

1 HiHi

2 Hi

4 Lo

8 LoLo

16 Rate

32 DeviationP

64 DeviationM

Returned value
This function returns one of the following possible values:

Value Description

-4 The specified project tag (strTagName) does not exist.

-3 Wrong parameter type or inconsistent value.

-2 Invalid number of parameters.

-1 The function TagsDBBeginEdit was not executed successfully before
this function was called.

0 Function executed successfully.

Notes
The following restrictions apply to the execution of this function:

• The function can only be executed on the project server — it cannot be called by a Graphics Script, Screen
Script, or Command animation running on a project client;

• The function TagsDBBeginEdit must have been executed previously, in order to lock the tags database for
editing; and

Appendix: Built-in Language

Page 1212

• The function TagsDBEndEdit must be executed when the editing is finished, in order to release the tags
database and resume normal run-time operations.

For more information about the Tags Database functions and examples of how to use them, see Using TagsDB
functions to edit the tags database during run time on page 167.

TagsDBRemoveClass
This function removes an existing class from the tags database during run time.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TagsDBRemoveClassTags Database Synchronous No Supported (see
"Notes" below)

Not supported Not supported

Syntax

TagsDBRemoveClass(strClassName)

TagsDBRemoveClass(strClassName)
strClassName

The name of the class to be removed.

Returned value
This function returns one of the following possible values:

Value Description

-5 The specified class does not exist in the tags database.

-4 The specified class is being used (i.e., it has one or more tags associated with
it).

-3 Wrong parameter type or inconsistent value.

-2 Invalid number of parameters.

-1 The function TagsDBBeginEdit was not executed successfully before
this function was called.

0 Function executed successfully.

Notes
The following restrictions apply to the execution of this function:

• The function can only be executed on the project server — it cannot be called by a Graphics Script, Screen
Script, or Command animation running on a project client;

• The function TagsDBBeginEdit must have been executed previously, in order to lock the tags database for
editing; and

• The function TagsDBEndEdit must be executed when the editing is finished, in order to release the tags
database and resume normal run-time operations.

For more information about the Tags Database functions and examples of how to use them, see Using TagsDB
functions to edit the tags database during run time on page 167.

TagsDBRemoveClassMember
This function removes an existing class member from a specified class during run time.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TagsDBRemoveClassMemberTags Database Synchronous No Supported (see
"Notes" below)

Not supported Not supported

Appendix: Built-in Language

Page 1213

Syntax

TagsDBRemoveClassMember(strClassName, strMemberName)

TagsDBRemoveClassMember(strClassName,strMemberName)
strClassName

The name of the class that contains the member to be removed.

strMemberName
The name of the class member to be removed.

Returned value
This function returns one of the following possible values:

Value Description

-5 The specified member does not exist in the specified class.

-4 The specified class does not exist in the tags database.

-3 Wrong parameter type or inconsistent value.

-2 Invalid number of parameters.

-1 The function TagsDBBeginEdit was not executed successfully before
this function was called.

0 Function executed successfully.

Notes
The following restrictions apply to the execution of this function:

• The function can only be executed on the project server — it cannot be called by a Graphics Script, Screen
Script, or Command animation running on a project client;

• The function TagsDBBeginEdit must have been executed previously, in order to lock the tags database for
editing; and

• The function TagsDBEndEdit must be executed when the editing is finished, in order to release the tags
database and resume normal run-time operations.

For more information about the Tags Database functions and examples of how to use them, see Using TagsDB
functions to edit the tags database during run time on page 167.

TagsDBRemoveTag
This function removes an existing project tag from the tags database during run time.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TagsDBRemoveTagTags Database Synchronous No Supported (see
"Notes" below)

Not supported Not supported

Syntax

TagsDBRemoveTag(strTagName)

TagsDBRemoveTag(strTagName)
strTagName

The name of the project tag to be removed.

Appendix: Built-in Language

Page 1214

Returned value
This function returns one of the following possible values:

Value Description

-4 The specified tag does not exist in the tags database.

-3 Wrong parameter type or inconsistent value.

-2 Invalid number of parameters.

-1 The function TagsDBBeginEdit was not executed successfully before
this function was called.

0 Function executed successfully.

Notes
The following restrictions apply to the execution of this function:

• The function can only be executed on the project server — it cannot be called by a Graphics Script, Screen
Script, or Command animation running on a project client;

• The function TagsDBBeginEdit must have been executed previously, in order to lock the tags database for
editing; and

• The function TagsDBEndEdit must be executed when the editing is finished, in order to release the tags
database and resume normal run-time operations.

For more information about the Tags Database functions and examples of how to use them, see Using TagsDB
functions to edit the tags database during run time on page 167.

Also, please note that executing this function does not completely remove the specified project tag from
the tags database. That is not possible, due to how the database is maintained during run time. Instead,
executing this function removes all uses of the specified tag in the project, so that they do not count against
the tag limit on your runtime license, and then it reduces the tag to a single blank line in the database.
Therefore, any time you execute this function to remove tags, you should stop the project as soon as it is
practical to do so and then verify the project to remove the blank lines. For more information, see Verify the
project on page 91.

TagsDBRemoveTrend
This function removes a project tag from its trend group during run time.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TagsDBRemoveTrendTags Database Synchronous No Supported (see
"Notes" below)

Not supported Not supported

Syntax

TagsDBRemoveTrend(strTagName)

TagsDBRemoveTrend(strTagName)
strTagName

The name of the project tag to be removed.

Returned value
This function returns one of the following possible values:

Value Description

-4 Project tag (as specified by strTagName) does not exist.

-3 Wrong parameter type or inconsistent value.

Appendix: Built-in Language

Page 1215

Value Description

-2 Invalid number of parameters.

-1 The function TagsDBBeginEdit was not executed successfully before
this function was called.

0 Function executed successfully.

Notes
The following restrictions apply to the execution of this function:

• The function can only be executed on the project server — it cannot be called by a Graphics Script, Screen
Script, or Command animation running on a project client;

• The function TagsDBBeginEdit must have been executed previously, in order to lock the tags database for
editing; and

• The function TagsDBEndEdit must be executed when the editing is finished, in order to release the tags
database and resume normal run-time operations.

For more information about the Tags Database functions and examples of how to use them, see Using TagsDB
functions to edit the tags database during run time on page 167.

TagsDBSetAlarm
TagsDBSetAlarm is a built-in function that sets the value of a property of an alarm condition during run time.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TagsDBSetAlarmTags Database Synchronous No Supported (see
"Notes" below)

Not supported Not supported

Syntax

TagsDBSetAlarm(strTagName,numAlarmType,numProperty,strOrNumVal)

TagsDBSetAlarm(strTagName,{ numAlarmType | -1 | 1 | 2 | 4 | 8 | 16 | 32 | 64 },{ numProperty
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 },strOrNumVal)
strTagName

The name of the project tag on which the alarm property will be set.

Tip: To set other properties on project tags, use the function
TagsDBSetTagProperty.

numAlarmType
The type of alarm on the specified project tag, identified by one of the following values:

Value Alarm Type

-1 General properties that apply to all alarm types on the specified
project tag

1 HiHi

2 Hi

4 Lo

8 LoLo

16 Rate

32 DeviationP

Appendix: Built-in Language

Page 1216

Value Alarm Type

64 DeviationM

numProperty
The alarm property that you want to set.

When setting a property of a specific alarm type (i.e., if numAlarmType is greater than 0), the
property is identified by one of the following values:

Value Property Data Type

0 Limit value Real

1 Message String

2 Alarm group (or worksheet) number Integer

3 Priority Integer

4 Selection String

5 Custom field 1 String

6 Custom field 2 String

7 Custom field 3 String

8 Custom field 4 String

9 Custom field 5 String

10 Custom field 6 String

11 Custom field 7 String

12 Custom field 8 String

13 Custom field 9 String

14 Custom field 10 String

When setting a property that applies to all alarm types on the specified project tag (i.e., if
numAlarmType is -1), the property is identified by one of the following values:

Value Property Data Type

0 Alarms Enabled Boolean

1 Remote Ack tag String (tag name)

2 Translation Enabled Boolean

3 Dead Band Value Real

4 Off String

5 On String

6 Ack String

7 Deviation Setpoint String (tag name)

8 Deviation Dead Band Real

For more information about all of these alarm properties, see Tag Properties on page 162.

strOrNumVal
The value to set to the specified property. The value must be of the appropriate data type.

Returned value
This function returns one of the following possible values:

Appendix: Built-in Language

Page 1217

Value Description

-4 The specified project tag (strTagName) does not exist.

-3 Wrong parameter type or inconsistent value.

-2 Invalid number of parameters.

-1 The function TagsDBBeginEdit was not executed successfully before
this function was called.

0 Function executed successfully.

Notes
The following restrictions apply to the execution of this function:

• The function can only be executed on the project server — it cannot be called by a Graphics Script, Screen
Script, or Command animation running on a project client;

• The function TagsDBBeginEdit must have been executed previously, in order to lock the tags database for
editing; and

• The function TagsDBEndEdit must be executed when the editing is finished, in order to release the tags
database and resume normal run-time operations.

For more information about the Tags Database functions and examples of how to use them, see Using TagsDB
functions to edit the tags database during run time on page 167.

Note: A specific alarm condition, as defined by the tag name and the alarm type (e.g., the HiHi
alarm on MyTag1), can be in only one alarm group at a time. Therefore, please remember that when
you assign an alarm condition to an alarm group, it will be removed automatically from its previous
group, if any.

Also, make sure that an alarm group with the correct group/worksheet number actually exists
before you try to assign an alarm condition to it.

TagsDBSetTagProperty
This function sets the value of a specified tag property during run time. Tag properties are the metadata on
project tags, such as tag name, array size, data type, description, scope, and so on.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TagsDBSetTagPropertyTags Database Synchronous No Supported (see
"Notes" below)

Not supported Not supported

Syntax

TagsDBSetTagProperty(strTagName, numPropertyID, numOrStrPropertyValue)

TagsDBSetTagProperty(strTagName,{ numPropertyID | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
| 11 | 12 },numOrStrPropertyValue)
strTagName

The name of the project tag on which the tag property will be set.

numPropertyID
The tag property to be set, identified by one of the following values:

Value Property Data Type

0 Tag name String

1 Array size Integer

Appendix: Built-in Language

Page 1218

Value Property Data Type

2 Data type String ("Boolean", "Integer",
"Real", "String",
"classname")

3 Description String

4 Scope Integer (0 for Local, 1 for Server)

5 Startup value String

6 Minimum value Real

7 Maximum value Real

8 Engineering unit String

9 Retentive value Integer (0 for disabled, 1 for enabled)

10 Retentive properties Integer (0 for disabled, 1 for enabled)

11 Dead band Real

12 Smoothing Integer (0 for disabled, 1 for enabled)

Tip: To set alarm conditions on project tags, use the function TagsDBSetAlarm.
Other tag properties not listed here cannot be set during run time.

numOrStrPropertyValue
The value to set to the tag property. The value must be of the appropriate data type.

Returned value
This function returns one of the following possible values:

Value Description

-4 Project tag (as specified by strTagName) does not exist.

-3 Wrong parameter type or inconsistent value.

-2 Invalid number of parameters.

-1 The function TagsDBBeginEdit was not executed successfully before
this function was called.

0 Function executed successfully.

Notes
The following restrictions apply to the execution of this function:

• The function can only be executed on the project server — it cannot be called by a Graphics Script, Screen
Script, or Command animation running on a project client;

• The function TagsDBBeginEdit must have been executed previously, in order to lock the tags database for
editing; and

• The function TagsDBEndEdit must be executed when the editing is finished, in order to release the tags
database and resume normal run-time operations.

For more information about the Tags Database functions and examples of how to use them, see Using TagsDB
functions to edit the tags database during run time on page 167.

Appendix: Built-in Language

Page 1219

TagsDBSetTrend
This function assigns a project tag to a trend group.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TagsDBSetTrendTags Database Synchronous No Supported (see
"Notes" below)

Not supported Not supported

Syntax

TagsDBSetTrend(strTagName, numProperty, strOrNumVal)

TagsDBSetTrend(strTagName,{ numProperty | 0 | 1 },strOrNumVal)
strTagName

The name of the project tag to assign to the trend group.

numProperty
The specific property to be set, identified by one of the following values:

Value Property Data Type

0 Trend group (or worksheet) number Integer

1 Log dead band Real

strOrNumVal
The value to set to the specified property. The value must be of the appropriate data type.

Returned value
This function returns one of the following possible values:

Value Description

-4 Project tag (as specified by strTagName) does not exist.

-3 Wrong parameter type or inconsistent value.

-2 Invalid number of parameters.

-1 The function TagsDBBeginEdit was not executed successfully before
this function was called.

0 Function executed successfully.

Notes
The following restrictions apply to the execution of this function:

• The function can only be executed on the project server — it cannot be called by a Graphics Script, Screen
Script, or Command animation running on a project client;

• The function TagsDBBeginEdit must have been executed previously, in order to lock the tags database for
editing; and

• The function TagsDBEndEdit must be executed when the editing is finished, in order to release the tags
database and resume normal run-time operations.

For more information about the Tags Database functions and examples of how to use them, see Using TagsDB
functions to edit the tags database during run time on page 167.

Note: A specific project tag can be in only one trend group at a time. Therefore, when you assign a
project tag to a trend group, it will be removed automatically from its previous group, if any.

Appendix: Built-in Language

Page 1220

Also, make sure that a trend group with the correct group/worksheet number actually exists before
you try to assign a project tag to it.

Finally, new trends will not start recording until either the system clock changes to a new day or you
restart the project.

TagsDBSync
TagsDBSync is a built-in function that forces the project thin client to get the latest value of a project tag from
the project runtime server.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TagsDBSync Tags Database Synchronous No Not supported Supported Not supported

Syntax

TagsDBSync(strTagName)

TagsDBSync(strTagName)
strTagName

The name of the project tag to be synchronized. If it is an array and/or class, and if you specify
an array position and/or class member, only that position and/or member will be synchronized.
Otherwise, all positions and/or members will be synchronized.

Note: If this parameter is enclosed in quotes, the string literal will be used.
Otherwise, the value of the tag/expression will be used.

Returned value
This function will return one of the following possible values:

Value Description

0 Success (i.e., tag value synchronized with project runtime server).

-1 This function can be called only on Thin Clients.

-2 Invalid tag name; the specified project tag does not exist in the tags database.

-3 Local tag specified. Only tags with Server scope can be specified for this
function.

Notes
If a project thin client is subscribed to a project tag in the tags database on the project runtime server, the
server will send updates to the client whenever the tag value changes. In most cases these updates are
effectively instantaneous, but sometimes there might be a delay due to poor run-time performance on the
server, the client, or the network itself, and this delay can cause issues in the execution of scripts on the
client.

This function forces the project thin client to synchronize a tag value — that is, get the latest value of the tag
from the project runtime server — before it tries to use that tag value. This is especially useful when the client
executes one script that sets the tag value and then another script that uses the tag value. For example, given
the following scripts…

Graphics_OnStart sub-routine of the Graphics Script:

$MyTag = 90
$Open("Screen1")

Appendix: Built-in Language

Page 1221

Screen_OnOpen sub-routine of the Screen Script for Screen1:

myVar = $MyTag

…you would expect myVar to have a value of 90, after Screen1 is opened. However, setting the value of MyTag
in the first script merely submits that change to the project runtime server. The server still needs to save the
change in the tags database and then send the updated tag value back to the client. If there is a delay, as
described above, then the second script might be executed using the old value of MyTag. This issue can be
resolved by modifying the second script…

OnOpen script for Screen1:

$TagsDBSync("MyTag")
myVar = $MyTag

Again, in most cases, tag value updates are effectively instantaneous, so you should use this function only
when it is necessary to resolve issues. Calling and executing unnecessary functions can affect run-time
performance.

Examples
Synchronize the project tag named MyTag:

TagsDBSync("MyTag")

Synchronize the entire array named MyArray:

TagsDBSync("MyArray")

Synchronize a single position of MyArray:

TagsDBSync("MyArray[123]")

Appendix: Built-in Language

Page 1222

Translation functions
These functions are used to access the translation tool during runtime.

Ext
Ext is a built-in function that uses the Translation Table feature to translate specified text.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Ext Translation Synchronous Yes Supported Supported Supported

Syntax

Ext(strText)

Ext(strText)
strText

The text to be translated.

Return value
This function returns a translation of the specified text, according to the current target language.

Examples
Translate "Start":

Ext("Start")

Translate the text that is stored in the tag MyString:

Ext(MyString)

SetLanguage
SetLanguage is a built-in function that sets the project translation to one of the languages configured in the
Translation Table.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

SetLanguage Translation Synchronous No Supported Supported Supported

Syntax

SetLanguage(numLanguageID)

SetLanguage(numLanguageID)
numLanguageID

The ID number of the langauge that you want to set as the active translation. The language
must be already configured in the Translation Table worksheet, and the ID number is shown
in parentheses next to that language — for example, "English-United States (1033)". For more
information about the ID number, see "Notes" below.

Return value
This function returns one of the following possible values:

Appendix: Built-in Language

Page 1223

Value Description

0 Error

1 Success

Notes
The Translation Table uses Microsoft Locale ID (LCID) values to identify languages. LCID values were the
proprietary language/region codes used in Microsoft Windows up until Windows 8. Microsoft changed how
it handles language identifiers in Windows 10, which effectively deprecated LCID in the operating system,
but we hardcoded the values into this software and continue to use them in order to maintain compatibility
across all platforms and with existing projects.

Examples
Set the language to "French-France (1036)":

SetLanguage(1036)

Set the language to "Portuguese-Brazil (1046)":

SetLanguage(1046)

TranslationLoad
TranslationLoad is a built-in function that loads an external translation file and then either replaces or
appends to the current translation.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TranslationLoadTranslation Synchronous No Supported Not supported (see
"Notes" below)

Executed on Server
(see "Notes" below)

Syntax

TranslationLoad(strFileName,numAppend)

TranslationLoad(strFileName,numAppend)
strFileName

The name of the translation file (.trn) to be loaded. The file must be located in the Web sub-
folder of your project folder (e.g., <project name>\Web\Translation.trn).

Translation files are simply tab-separated text files, and you can use any spreadsheet or text
editor to create and edit them, but in most cases you should be able to duplicate an existing file
and then use the Translation Table worksheet in the project development environment to edit it.
For more information, see Project Localization on page 694.

numAppend

A numeric flag that indicates whether the loaded translation file replaces or appends to the
existing contents of the Translation Table. Specify one of the following values:

Value Description

0 Completely replace the contents of the Translation Table with the
contents of the loaded translation file.

1 Keep the contents of the Translation Table, and then append the
contents of the loaded translation file only if they are not already
present.

Appendix: Built-in Language

Page 1224

Value Description

2 Keep the contents of the Translation Table, and then append the
contents of the loaded translation file, replacing any duplicates.

3 Reset the Translation Table to its initial contents when the project was
run. If this value is specified, strFileName is ignored.

Return value
This function returns one of the following possible values:

Value Description

-3 Failed to load the translation file. The file format is invalid or you do not have the
necessary privileges.

-2 The specified file cannot be found.

-1 Invalid parameter(s).

0 Function executed successfully.

Notes
The Translation Table is maintained by the project runtime server, and the contents of the table are available
to all connected thin clients. Each client can call the SetLanguage function to translate the project screens
that it displays, but changes to the Translation Table itself must be done on the server. As such, this function
is not supported on Thin Clients; it must be called in a procedure, script, or worksheet that is executed on the
server. If you want to trigger the execution of this function from a Thin Client, either configure the worksheet
to have an appropriate execution control or use the RunGlobalProcedureOnServer function.

This function is supported on Mobile Access, because the Mobile Access runtime maintains its own
Translation Table separate from the project runtime server and the contents of the table are available only
to the Mobile Access web interface. In order to make changes to the Translation Table for Mobile Access,
this function must be called in a project screen as it is being viewed in the Mobile Access web interface.
Unfortunately, due to this fundamental difference between the project runtime server and the Mobile Access
runtime, it is not possible to develop a project screen that behaves exactly the same for both.

Examples
Load alternate.trn and replace the current contents of the Translation Table:

TranslationLoad("alternate.trn",0)

Load pt-BR.trn and append it to the current contents of the Translation Table:

TranslationLoad("pt-BR.trn",1)

Reset the Translation Table to its initial contents when the project was run, or in other words, reload the
default translation file (Translation.trn):

TranslationLoad("",3)

TranslationLookupClose
TranslationLookupClose is a built-in function that closes a lookup map previously loaded into memory by
the TranslationLookupLoad function.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TranslationLookupCloseTranslation Synchronous No Supported Not supported Supported

Appendix: Built-in Language

Page 1225

Syntax

TranslationLookupClose(numTranslationLookupID)

TranslationLookupClose(numTranslationLookupID)
numTranslationLookupID

The ID number of the lookup map that you want to close, as it was returned by the
TranslationLookupLoad function. Valid values range from 0 to 255.

Return value
This function returns one of the following possible values:

Value Description

0 Lookup map successfully closed.

-1 Function executed from the Viewer module, or other internal error.

-2 Invalid parameter(s).

-3 Other error.

Notes
Closing a lookup map frees the system resources used by that map. You should always close a lookup map
when you are done with it.

This function is supported on Mobile Access, but it must be called in a project screen as it is being viewed in
the Mobile Access web interface. For more information, see TranslationLookupLoad.

Examples
Close the lookup map specified by the ID number stored in the tag MyLookupID:

TranslationLookupClose(MyLookupID)

TranslationLookupGet
TranslationLookupGet is a built-in function that gets the translation of a specified source text, using a
lookup map that was previously loaded into memory by the TranslationLookupLoad function.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TranslationLookupGetTranslation Synchronous Yes Supported Not supported Supported

Syntax

TranslationLookupGet(numTranslationLookupID,strSource)

TranslationLookupGet(numTranslationLookupID,strSource)
numTranslationLookupID

The ID number of the lookup map that you want to use, as it was returned by the
TranslationLookupLoad function. Valid values range from 0 to 255.

strSource
The source text for which you want to get the translation.

Appendix: Built-in Language

Page 1226

Return value
If this function is successfully executed, it returns the translation of the specified source text. Otherwise, it
returns one of the following possible values:

Value Description

strSource Source text returned untranslated, because it was not found in the lookup map.

-1 Function executed from the Viewer module, or other internal error.

-2 Invalid parameter(s).

-3 Other error.

Notes
This function is supported on Mobile Access, but it must be called in a project screen as it is being viewed in
the Mobile Access web interface. For more information, see TranslationLookupLoad.

Examples
Get the translation of "Tank #1", using the lookup map specified by the ID number stored in the tag
MyLookupID:

TranslationLookupGet(MyLookupID,"Tank #1")

Load a lookup map for translating from "English-United States (1033)" to "Portuguese-Brazil (1046)", and then
use it to get the translation of "Tank #1":

TranslationLookupGet(TranslationLookupLoad(1033,1046),"Tank #1")

TranslationLookupLoad
TranslationLookupLoad is a built-in function that creates a lookup map from the Translation Table for the
specified source and target languages, and then it loads the map into memory so that it can be used by the
TranslationLookupGet function.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

TranslationLookupLoadTranslation Synchronous No Supported Not supported (see
"Notes" below)

Executed on Server
(see "Notes" below)

Syntax

TranslationLookupLoad(numSourceLanguageID,numTargetLanguageID)

TranslationLookupLoad(numSourceLanguageID,numTargetLanguageID)
numSourceLanguageID,numTargetLanguageID

The ID numbers of the source and target langauges, respectively. Both languages must be
already configured in the Translation Table, and the ID numbers are shown in parentheses next
to those languages — for example, "English-United States (1033)". For more information about
the ID numbers, see "Notes" below.

Return value
If this function is successfully executed, it returns the ID number (from 0 to 255) of the lookup map that was
created and loaded. The ID number of the lookup map is separate and different from the ID numbers of the
source and target languages. You can subsequently use the ID number of the lookup map as an argument
when you call the TranslationLookupGet and TranslationLookupClose functions.

Otherwise, this function returns one of the following possible values:

Appendix: Built-in Language

Page 1227

Value Description

-4 The source language is the same as the target language, or the specified
languages have not been configured in the Translation Table.

-3 Cannot have more than 256 lookup maps loaded in memory at the same time.

-2 Invalid parameter(s).

-1 Function executed from the Viewer module, or other internal error.

Notes
The Translation Table uses Microsoft Locale ID (LCID) values to identify languages. LCID values were the
proprietary language/region codes used in Microsoft Windows up until Windows 8. Microsoft changed how
it handles language identifiers in Windows 10, which effectively deprecated LCID in the operating system,
but we hardcoded the values into this software and continue to use them in order to maintain compatibility
across all platforms and with existing projects.

When you call this function, you can specify any two languages that have been configured in the Translation
Table, even if they were both originally configured as target languages. When the lookup map is created, it
automatically cross-references the specified languages. For example, if you configured the Translation Table
for your project to include both an English-to-Spanish translation and an English-to-Portuguese translation,
you can then specify Spanish and Portuguese when you call this function.

You can have up to 256 lookup maps loaded in memory at the same time, but each map uses system
resources and that can affect run-time performance. You should use the TranslationLookupClose function
to close a map when you are done with it.

The Translation Table and all lookup maps created from it are maintained by the project runtime server. As
such, this function is not supported on Thin Clients; it must be called in a procedure, script, or worksheet
that is executed on the server. If you want to trigger the execution of this function from a Thin Client, either
configure the worksheet to have an appropriate execution control or use the RunGlobalProcedureOnServer
function.

This function is supported on Mobile Access, because the Mobile Access runtime maintains its own
Translation Table separate from the project runtime server and the contents of the table are available only to
the Mobile Access web interface. In order to create a lookup map from the Translation Table for Mobile Access,
this function must be called in a project screen as it is being viewed in the Mobile Access web interface.
Unfortunately, due to this fundamental difference between the project runtime server and the Mobile Access
runtime, it is not possible to develop a project screen that behaves exactly the same for both.

Examples
Load a lookup map for translating from "English-United States (1033)" to "Portuguese-Brazil (1046)":

TranslationLookupLoad(1033,1046)

Appendix: Built-in Language

Page 1228

Trigonometric functions
These functions are used to perform trigonometric operations (e.g., sine, cosine, tangent) on numeric values.

ACos
Calculates the Arc Cosine of a value.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

ACos Trigonometric Synchronous Yes Supported Supported Supported

Syntax

ACos(numValue)

numValue
Numerical tag from which the Arc Cosine will be taken.

Returned value
Returns the Arc Cosine of numValue in radians.

Examples

Tag Name Expression

Tag ACos(1) // Returned value = 0.000000

Tag ACos(0) // Returned value = 1.570796

ASin
Calculates the Arc Sine of a value.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

ASin Trigonometric Synchronous Yes Supported Supported Supported

Syntax

ASin(numValue)

numValue
Numerical tag from which the Arc Sine will be taken.

Returned value
Returns the Arc Sine of numValue in radians.

Examples

Tag Name Expression

Tag ASin(1) // Returned value = 1.570796

Tag ASin(0) // Returned value = 0.000000

Appendix: Built-in Language

Page 1229

ATan
Calculates the Arc Tangent of a value.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

ATan Trigonometric Synchronous Yes Supported Supported Supported

Syntax

ATan(numValue)

numValue
Numerical tag from which the Arc Tangent will be taken.

Returned value
Returns the Arc Tangent of numValue in radians.

Examples

Tag Name Expression

Tag ATan(1) // Returned value = 0.785398

Tag ATan(0) // Returned value = 1.570796

Cos
Calculates the Cosine of a value.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Cos Trigonometric Synchronous Yes Supported Supported Supported

Syntax

Cos(numAngle)

numAngle
The Angle (in radians) from which to calculate the Cosine.

Returned value
Returns the Cosine of numAngle.

Examples

Tag Name Expression

Tag Cos(1.570796) // Returned value = 0.000000

Tag Cos(0) // Returned value = 1.000000

Cot
Cot is a built-in function that calculates the cotangent of an angle.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Cot Trigonometric Synchronous Yes Supported Supported Supported

Appendix: Built-in Language

Page 1230

Syntax

Cot(numAngle)

Cot(numAngle)
numAngle

The angle in radians.

Tip: 2π radians is the same as 360 degrees.

Returned value
This function returns the cotangent of the specified angle.

The function cannot return the actual cotangent of π (i.e., Cot(Pi()) or equivalent), because that is infinite.
Instead, the function returns the largest number possible, given the limited precision of the value returned by
the function Pi.

Examples
Calculate the cotangent of 1 radian:

Cot(1)

Calculate the cotangent of π/2 radians:

Cot(Pi()/2)

Calculate the cotangent of the value of the project tag MyAngle:

Cot(MyAngle)

Pi
Calculates the value of pi.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Pi Trigonometric Synchronous Yes Supported Supported Supported

Syntax

Pi()

This function takes no parameters. You must still include the parentheses, however, or it will be evaluated as
a tag rather than a function.

Returned value
Returns the value of pi.

Examples

Tag Name Expression

Tag Pi() // Returned value = 3.141593

Appendix: Built-in Language

Page 1231

Sin

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Sin Trigonometric Synchronous Yes Supported Supported Supported

Description
Calculates the Sine of a value.

Syntax

Sin(numAngle)

numAngle
The Angle (in radians) from which to calculate the Sine.

Returned value
Returns the Sine of numAngle.

Examples

Tag Name Expression

Tag Sin(0) // Returned value = 0.000000

Tag Sin(1.570796) // Returned value = 1.000000

Tan
The function Tan calculates the tangent of an angle.

Function Group Execution String Exp. Windows Thin Clients Mobile Access

Tan Trigonometric Synchronous Yes Supported Supported Supported

Syntax

Tan(numAngle)

Tan(numAngle)
numAngle

The angle in radians.

Tip: 2π radians is the same as 360 degrees.

Returned value
This function returns the tangent of the specified angle.

The function cannot return the actual tangent of π/2 (i.e., Tan(Pi()/2) or equivalent), because that is
infinite. Instead, the function returns the largest number possible, given the limited precision of the value
returned by the function Pi.

Appendix: Built-in Language

Page 1232

Examples
Calculate the tangent of 1 radian:

Tan(1)

Calculate the tangent of π radians:

Tan(Pi())

Calculate the tangent of the value of the project tag MyAngle:

Tan(MyAngle)

Overview of VBScript

Page 1233

Overview of VBScript
VBScript is a simple, standard and flexible scripting language that allows you to implement logics and
algorithms within your project.

BOS implements Visual Basic Scripting Edition 5.5 or higher. Because BOS hosts VBScript, you can take
advantage of every feature provided by this language, such as:

• Syntax, operators and functions.

• The ability to create new variables and procedures (functions and/or sub-routines).

• Access to properties, methods and/or events from COM objects, including ActiveX controls.

• The ability to execute the logics in any platform that supports VBScript.

The aim of this documentation is to provide an overview about the integration of VBScript with BLUE Open
Studio 2020. Furthermore, it can be used as a quick reference for the most used features of the language. For
a full description of the language as well as its interfaces and functions, please consult Microsoft. (At the time
of this writing, the VBScript documentation could be accessed directly at the Microsoft Developer Network.
This link, however, is beyond our control and may change without notice.)

http://msdn.microsoft.com/en-us/library/t0aew7h6(VS.85).aspx

Overview of VBScript

Page 1234

VBScript Interfaces in the Software

The following table provides a summary of the VBScript interfaces supported by BLUE Open Studio 2020:

Interface Scope for Procedures and Variables Execution Functionality

Global Procedures Graphics and Tasks - Declaration of Procedures

Graphics Script Graphics Script interface only Server (Viewer) + Thin Clients Declaration of Variables

Declaration of Procedures

Execution

Screen Script Screen where the script is configured Server (Viewer) + Thin Clients Declaration of Variables

Declaration of Procedures

Execution

Command animation Object where the script is configured Server (Viewer) + Thin Clients Declaration of Variables

Execution

ActiveX Events Object where the script is configured Server (Viewer) + Thin Clients Declaration of Variables

Execution

Startup Script All Script Sheets from Tasks Server (BGTask) Declaration of Variables

Declaration of Procedures

Execution

Script Groups Script Group only Server (BGTask) Declaration of Variables

Execution

Overview of VBScript

Page 1235

The following illustration shows the scope of each VBScript interface and the order in which they are scanned
by BOS:

The illustration shows that the Global Procedures are shared by the Graphic Module and the Background
Task. However, the other VBScript interfaces are either from the Graphic Module or from the Background
Task, and they do not share variables or procedures between them. They are independent of each other.

Note: Although the Graphics Script is scanned by BOS before the Screen Scripts, the procedures
and variables declared in the Graphics Script interface are NOT available for any script interface
configured on the screens. You must use the Global Procedures interface to implement procedures
that must be available for all screens.

When writing your code in a VBScript interface, you can access any tag from the BOS tags database or any
function from the Built-in Scripting Language by applying the "$" prefix to the tag/function name, as in the
examples below:

$Time 'Returns the value of the tag Time from the tags database
$MyTag 'Returns the value of the tag MyTag from the tags database
$Open("main") 'Executes the Open() built-in function to open the "main" screen

Therefore, you can create scripts using built-in functions from BOS, tags from the BOS tags database,
VBScript functions, VBScript variables, ActiveX properties, methods or events, and any other interface
available. The BOS tags are shared by all modules from BOS, including the Graphic Module and the
Background Task.

Global Procedures
This Procedures interface is used create a library of VBScript functions and sub-routines that can be called
by any other scripting interface in BLUE Open Studio 2020. The procedures declared here are never directly
executed during runtime; they must be explicitly called by another script.

Note: BLUE Open Studio 2020 will not prevent you from declaring two or more functions with the
same name. (This includes functions imported from external files; see "Importing Functions from

Overview of VBScript

Page 1236

an External File" below.) However, if you do, then your project may behave unexpectedly during
runtime. Make sure that all of your functions are named correctly.

You can create as many Procedures worksheets as you want, and each worksheet can contain as many
functions and sub-routines as you want.

To use the Procedures interface:

1. In the Global tab of the Project Explorer, do one of the following:

• To edit the default Procedures worksheet, open the Procedures folder and then double-click Main
Procedures; or

• To create a new Procedures worksheet, right-click the Procedures folder and then click Insert on the
shortcut menu.

Either way, the worksheet is opened for editing.

Main Procedures worksheet
2. Declare your functions and sub-routines in the interface. For example:

Option Explicit
'Keep the Option Explicit statement in the first line of this interface.

'Procedures with global scope can be implemented here
'Global variables are NOT supported in this interface

Sub MyMessage(message)
 MsgBox message, 0
End Sub

Function MyAdd(number1, number2)
 MyAdd = number1 + number2
 Call MyMessage("The sum is" & MyAdd & ".")
End Function

Note: You can declare local variables within each procedure, but you cannot declare global
variables in this interface. In most cases, you should use tags instead.

Overview of VBScript

Page 1237

3. Save your changes. The worksheet is added to the Procedures folder in the Project Explorer.

Procedure worksheets with declared functions

Organizing procedures into sub-folders
If you have many procedures in a single Procedures worksheet, then you may choose to organize them into
sub-folders. To organize procedures:

1. In the Procedures folder, open the worksheet that you want to organize.

2. In the worksheet, insert the following line before the procedures that you want to group together:

'$region:foldername

…where foldername is the name of the sub-folder. For example:

'$region:My Subroutines
Sub MyMessage(message)
 MsgBox message, 0
End Sub

'$region:My Functions
Function MyAdd(number1, number2)
 MyAdd = number1 + number2
 Call MyMessage("The sum is" & MyAdd & ".")
End Function

3. Save your changes. The procedures are organized into sub-folders under the Procedures worksheet in the
Project Explorer.

Import functions from an external file
You can also import functions from an external file and add them to a Procedures worksheet. This is useful if
you have a library of existing functions that you want to reuse.

To import functions into a worksheet:

Overview of VBScript

Page 1238

1. Save and close all open screens and worksheets.

2. In the Procedures folder, right-click the Procedures worksheet into which you want to import functions, and
then click Import on the shortcut menu.

The Import - Global Procedures dialog box is displayed.

Import – Global Procedures dialog box
3. To the right of the File box, click Browse. A standard Windows file browser is displayed. Use it to locate

and select a Procedures worksheet file. (This is a plain text file that has been saved with the .gis file
extension.)

4. Select Replace functions if they already exist to overwrite functions in the worksheet with functions imported from
the file, if the functions have the same names.

5. In the Functions area, do one of the following:

• Click All to import all functions from the file; or

• Click Only to import only selected functions from the files, and then select those functions in the list.

6. Click Import.
After the functions are imported, they should be displayed in the worksheet.

Password protect a worksheet
You can put a password on any of your Procedures worksheets to prevent them from being edited or analyzed
by other users. To protect a Procedures worksheet:

1. In the Procedures folder, right-click the worksheet and then click Password Protection on the shortcut menu. A
Password Protection dialog is displayed.

2. In the New Password box, type your password.

3. In the Confirm Password box, type your password again.

4. Click OK.

Once this is done, you will be prompted for the password whenever you attempt to open the worksheet.

Overview of VBScript

Page 1239

Graphic Module

GRAPHICS SCRIPT
The Graphics Script interface can be edited by its icon from the Graphics tab of the Project Explorer:

This interface can be used to execute logics on the following events, based on pre-defined sub-routines:

• Graphics_OnStart() : The code configured within this sub-routine is automatically executed just once
when the graphic module is started. This interface is useful for initializing variables or executing logics
that must be implemented when running the project.

• Graphics_WhileRunning() : The code configured within this sub-routine is automatically executed
continuously while the graphic module is running. The rate in which this sub-routine is called depends on
the performance of the platform where the project is running.

• Graphics_OnEnd() : The code configured within this sub-routine is automatically executed just once
when the graphic module is closed.

• Graphics_OnScreenResize(width, height) : The code configured within this sub-routine is
automatically executed just once when the screen resolution of the runtime station changes. The new
width and height of the screen (in pixels) are passed to the sub-routine as parameters.

Important: Do not change the name of the predefined sub-routines. If you do, then the system will
not be able to automatically execute them.

Example:

'Variables with local scope can be declared and initialized here
Dim MyDate
MyDate = Date()
Dim MyValue
MyValue = 100

'Procedures with local scope can be implemented here
Function MyNewProcedure(nCount)
 MyNewProcedure = nCount + 1
End Function

Function AreaRec(side1, side2)
 AreaRec = side1 * side2
End Function

Sub CheckHiLimit(myValue, myHiLimit)
 If myValue > myHiLimit Then
 MsgBox("Value out of range")
 End If
End Sub

Overview of VBScript

Page 1240

'This procedure is executed just once when the graphic module is started
Sub Graphics_OnStart()
 MsgBox("Welcome to the system!")
End Sub

'This procedure is executed continuously while the graphic module is running
Sub Graphics_WhileRunning()
 If $UserName = "Guest" Then
 $MyFlag = 0
 End If
End Sub

'This procedure is executed just once when the graphic module is closed
Sub Graphics_OnEnd()
 $LogOff()
End Sub

When the Sub-routines Are Executed

On the Server (i.e., where BLUE Open Studio 2020 is installed and running):

• The graphic module is the Viewer task.

• The Graphics_OnStart() sub-routine is executed once on the Server when the Viewer task is launched.

• The Graphics_WhileRunning() sub-routine keeps being executed on the Server while the Viewer task is
running. The Graphics_OnEnd() sub-routine is executed once on the Server when the Viewer task is shut
down.

On the Thin Client or Secure Viewer:

• The graphic module is the ISSymbol control.

• The Graphics_OnStart() sub-routine is executed once on the Thin Client station after logging in
successfully.

• The Graphics_WhileRunning() sub-routine keeps being executed on the Thin Client station while the
ISSymbol control is hosted by the Web Browser.

• The Graphics_OnEnd() sub-routine is executed once on the Thin Client station when the Web Browser is
shut down (or when the ISSymbol control is no longer hosted by the Web Browser).

The execution of the Graphic Script sub-routines on the Server is completely independent of the execution on
the Thin Client and Secure Viewer stations.

Calling Graphics Script Procedures in Other VBScript Interfaces

The three predefined sub-routines are strictly local to the Graphics Script interface and are executed only
on the events described above. Other variables and procedures declared in the Graphics Script, however
— under the headings 'Variables with local scope and 'Procedures with local scope — can be
called in any other Screen Script or Command animation using the syntax Graphics.variable_name or
Graphics.procedure_name, respectively.

Note: This feature is not supported on Mobile Access.

Taking the function MyNewProcedure that was declared in the example above, you could place a Button
object on your project screen and then apply a Command animation to it with the following line:

$NewTag = Graphics.MyNewProcedure($OldTag)

SCREEN SCRIPT
Each project screen has an associated screen script. To edit the screen script for a given project screen, open
the screen worksheet for editing and then do one of the following:

• On the Draw tab of the ribbon, in the Screen group, click Script; or

• Right-click in the screen worksheet, and then click Screen Script on the shortcut menu.

Overview of VBScript

Page 1241

This interface can be used to execute logics on the following events, based on preconfigured sub-routines:

• Screen_IsClosedByReplace(): This procedure determines whether the screen is automatically closed
when another screen is opened to replace it. If the procedure is given a value of 0 or FALSE, then automatic
closing is disabled. When the function is given a positive value (e.g., 1) or TRUE, or if the procedure is not
declared at all, then automatic closing is enabled.

• Screen_OnOpen(): The code configured within this sub-routine is automatically executed just once when
the screen is opened.

• Screen_WhileOpen(): The code configured within this sub-routine is automatically executed continuously
while its screen is open. The rate in which this sub-routine is called depends on the performance of the
platform where the project is running.

• Screen_OnClose():The code configured within this sub-routine is automatically executed just once when
the screen is closed.

The variables and procedures declared in this interface are available for the VBScript interfaces of the screen
where the Screen Script is configured.

Note: Do not change the names of the preconfigured sub-routines described above. If you do, then
the system will not be able to call them.

Note:

• The execution of the Screen Script sub-routines on the server is totally independent of the
execution on the Thin Client stations. In other words, these sub-routines are executed
asynchronously.

• The procedures and/or variables declared in the Screen Script interface have local scope. They
can be called only from the specific screen on which they are declared.

Example:

'Variables available on this screen can be declared and initialized here
Dim Counter

'Procedures available on this screen can be implemented here
Function AreaCircle(radius)
 AreaCircle = Sqr(radius) * $Pi()
End Function

Sub CheckLoLimit (myValue, myLoLimit)
 If myValue < myLoLimit Then
 MsgBox("Value out of range")
 End If
End Sub

'This procedure determines whether the screen is automatically closed
Function Screen_IsClosedByReplace()
 Screen_IsClosedByReplace = $ReplaceModeTag
End Function

'This procedure is executed just once when this screen is open
Sub Screen_OnOpen()
 MsgBox("The screen was open!")
End Sub

'This procedure is executed continuously while this screen is open
Sub Screen_WhileOpen()
 If Counter < 100 Then
 Counter = Counter + 1
 Else
 Counter = 0
 End If
 $SimulationTag = Counter
End Sub

Overview of VBScript

Page 1242

'This procedure is executed just once when this screen is closed
Sub Screen_OnClose()
 MsgBox("The screen will be closed!")
End Sub

COMMAND ANIMATION

On the Graphics tab, in the Animations group, click Command to add the animation to a selected object or group of
objects. The animation enables you to click on the object or press a pre-defined key to execute the command
at runtime. Double-click on the object to view its object properties.

Object Properties: Command

The Command animation provides one tag for each one of the events supported by it. Notice that more than
one event can be configured simultaneously for the same Command animation:

• On Down: Executes the command/script once when the user clicks on the object with the left mouse button.

• On While: Keeps executing the command/script continuously while the mouse pointer is pressed on the
object. The period (in milliseconds) of execution for the command/script is set in the Rate field from the
Configuration dialog screen, except for the VBScript option, which is executed as fast as possible.

• On Up: Executes the command/script once when the user releases the left mouse button on the object.

• On Right Down: Executes the command/script once when the user clicks on the object with the right mouse
button.

• On Right Up: Executes the command/script once when the user releases the right mouse button on the
object.

• On Double Click: Executes the command/script once when the user double-clicks on the object with the left
mouse button.

• On Touch, On Touch Start, On Touch Delta, On Touch Complete: These events are used for multi-touch gestures. For
more information, see About Touch Events on page 361.

Overview of VBScript

Page 1243

Tip: An asterisk (*) on an event tab indicates that something is configured for that event. This
makes it easier to see at a glance which events are configured.

Type menu: This setting defines the type of action that must be executed by the event of the Command
animation. Notice that each event has its own type. Therefore, the same Command animation can be
configured with different types of action for different events. The following types are supported:

Type Description

Built#in Language Allows you to configure a script using the BOS built-in language. When this type is selected, the user can configure up to 12
expressions for each event in the Expression column. The expressions are executed sequentially from the first row until the last
one when the event is triggered. The result of each expression is written to the tag configured in the Tag column (if any). Consult
the Built-in Scripting Language chapter for more information.

VBScript Allows you to configure a script using the standard VBScript language. When this type is selected, the user can configure a script
in the VBScript editor for the Command animation. Consult the VBScript chapter for further information about the VBScript
language.

Open Screen Allows you to configure the Command animation to open a specific screen when the event is triggered during runtime. This type
is equivalent to the Open function. You can either type the screen name in the Open Screen field or browse it. Furthermore, you
can type a string tag between curly brackets {TagName} in this field. When the event is executed, the project will attempt to open
the named screen.

Note: The screen file extension (either *.scc or *.scr) is assumed, so you do not need to include it.
However, if you have two screen files with the same name but different extensions in your project folder (e.g.,
MyScreen.scc and MyScreen.scr), the one with the preferred extension — as determined by
whether the Use .scr extension for screen files option in the project settings is selected — will be opened. For
more information, see Viewer tab on page 115.

Close Screen Allows you to configure the Command animation to close a specific screen when the event is triggered during runtime. This type
is equivalent to the Close function. You can either type the screen name in the Close Screen field or browse it. You can also
type a string tag between curly brackets {TagName} in this field. When the event is executed, the project will attempt to close the
named screen.

Set Tag Allows you to configure the Command animation to set a tag when the event is triggered during runtime. You can either type the
tag name in the Set Tag field or browse it. When the event is executed, the project will write the value 1 to the tag configured in
this field.

Reset Tag Allows you to configure the Command animation to reset a tag when the event is triggered during runtime. You can either type the
tag name in the Reset Tag field or browse it. When the event is executed, the project will write the value 0 to the tag configured in
this field.

Toggle Tag Allows you to configure the Command animation to toggle a tag when the event is triggered during runtime. You can either
type the tag name in the Toggle Tag field or browse it. When the event is executed, the project will toggle the value of the tag
configured in this field.

Config button: Launches the Configuration dialog, where the Command animation can be fully configured.

Back to button: Click to go back to the object properties of the underlying Button object.

Overview of VBScript

Page 1244

Configuration dialog
This dialog allows you to fully configure the Command animation…

Configuration dialog

The event tabs (e.g., On Down, On While, etc.) and the Type menu are the same as in the Object Properties
dialog described above. The remaining settings are shared for all events:

• Options pane:

• Enable Focus checkbox: When this option is checked, the object that the Command animation was
applied to can receive the focus during runtime by the navigation keys.

• Force checkbox: When this option is selected, any project tag that receives a value will trigger events as
if the tag changed, even if the new value is equal to the old value. For example, if a tag has a value of 0
and the Command animation runs a procedure that writes 0 to that tag, all other tasks in the project
runtime will recognize that the tag changed, even though it did not. This option is useful for making
sure that events triggered by tag changes (e.g., Write on Tag Change on a communication driver) are always
triggered when the Command animation is used.

Overview of VBScript

Page 1245

Please keep in mind that if the tag's value does not actually change, the tag's timestamp (tagname-
>Timestamp) is not updated either.

Force applies to both the procedure run by the Command animation itself and any global procedures
called in that procedure, as long as they are run on the project runtime client where the Command
animation is used (i.e., on the device where the button is pushed).

Force does not apply to global procedures that are run on the project runtime server using the function
RunGlobalProcedureOnServer, even if the function is called in the procedure run by the Command
animation. If you want to force tag changes in global procedures run on the server, use the function
ForceTagChange.

• Beep checkbox: When this option is checked, a short beep is played when the Command is executed.
This option is useful to provide an audio feed-back to the user, indicating that the Command was
executed. It does not indicate, however, if the action triggered by the Command animation was
successful or not.

• Release checkbox: When this option is checked, the On Up event is executed when you drag the cursor
(or your finger) out of the object area (whether the button was released or not). This option is useful
to make sure that the On Up event will always be executed after an On Down event, even if the user
releases the mouse cursor out of the object area before releasing it.

• Confirm checkbox: When this option is checked, user will have to answer a confirmation question before
executing the command. This option is useful for decreasing the accidental triggering of critical events
during runtime.

• E-Sign checkbox: When this option is checked, the user will be prompted to enter the Electronic
Signature before executing the command.

• Key Only checkbox: When this option is checked, the user can only use the keyboard shortcut
(configured in the Key pane described below) to execute commands.

• Disable: Disables action by the user when the result of the expression configured in this field is TRUE (value
different from 0).

• Security: Security access level required to use the Command animation.

• Key group: Shortcut used to trigger the events On Down, While Down and On Up using a keyboard. (In
other words, pressing this keyboard shortcut is the same as clicking the left mouse button.) This option
is especially useful when creating projects for runtime devices that do not provide a mouse or touch-
screen interface — the keyboard is the only physical interface available to interact with your project during
runtime.

• Shift, Ctrl, or Alt boxes: Click to create a key combination key, meaning the Shift, Ctrl and/or Alt key
must be pressed with the key specified in the drop-down list.

• Click the browse button (…) to open the Key Modifer dialog, which enables you to modify your
combination keys. You can choose Left, Right or Left or Right to specify the position on the keyboard of the
Shift, Ctrl or Alt key in the key combination. If you choose Left or Right, the command will be executed
any time either of these keys is pressed in combination with the key specified in the drop-down list.

Tip: If you have defined custom keys for your project, you can select them in this list. For more
information, see Define custom keys for selected screen objects.

ACTIVEX EVENTS
To edit the ActiveX Events interface, select the Script option from the Events tab of the ActiveX object inserted
on the screen.

1. Click the ActiveX Control icon in the Active Objects toolbar.

Overview of VBScript

Page 1246

The Insert ActiveX Control dialog opens.

2. Select the ActiveX Control that you wish to use and then click OK.

3. The object that symbolizes the selected ActiveX Control will display. Right-click on this object to open the
Object Properties dialog.

Overview of VBScript

Page 1247

4. Click the Configuration button. The Configuration dialog will open. Click the Events tab.

5. Click the … button in the Script column.

Use this interface to execute logics when an ActiveX object triggers an event.

Variables declared in this interface are available for this interface only (local scope). In other words, they are
not available for any other object in the project.

Overview of VBScript

Page 1248

You cannot implement procedures in this interface. You can, however, call procedures implemented in the
Global Procedures or in the Screen Script interface for the same screen where the ActiveX object is configured.

Note: For more information, see ActiveX Control object.

Example:

'The script below will be executed when the Calendar Control ActiveX
'triggers its "AfterUpdate" event
$MyYear = CalendarControl1.Year
$MyMonth = CalendarControl1.Month
$MyDay = CalendarControl1.Day

Background Task

SCRIPT WORKSHEET
A Script worksheet is used to implement program logic (using VBScript) that should be continuously executed
during runtime, rather than on specific actions like the user pressing a button on a screen.

Note: The Script worksheet is functionally similar to the Math worksheet, except that it uses
VBScript instead of the Built-in Scripting Language.

To create a new Script worksheet, do one of the following:

• On the Insert tab of the ribbon, in the Task Worksheets group, click Script;
• Right-click the Script folder in the Project Explorer, and then click Insert on the shortcut menu; or

• Click New on the File menu, click the File tab, and then select Script Worksheet.
To edit an existing Script worksheet, double-click it in the Project Explorer.

Script worksheet

The code configured in each Script worksheet is executed by the Background Task. The project scans
the worksheets sequentially (based on the worksheet number) and executes only the groups in which the
condition configured in the Execution field of the worksheet is TRUE (i.e., non-zero).

Note: You must use the syntax supported by the Built-in Scripting Language in the Execution field.
Only the body of the worksheet supports VBScript.

Overview of VBScript

Page 1249

Variables declared in the worksheet have local scope for that specific group only. They are not available for
any other VBScript interface.

You cannot define procedures (i.e., functions and subs) in the Script worksheet. However, you can call
procedures defined in the Global Procedures or in the Startup Script.

Example:

'Variables available only for this group can be declared here
Dim myVar, myTest
myTest = 1

'The code configured here is executed while the condition configured in the Execution
 field is TRUE
myVar = $FindFile("c:*.txt")
If MyVar > 0 Then
 $TagNumOfFiles = myVar
End If

Note: When any Script worksheet is saved during runtime (on-line configuration), the Startup
Script will be executed again and the current value of the local variables of any Script worksheet will
be reset.

STARTUP SCRIPT WORKSHEET
The Startup Script worksheet is a VBScript interface that is automatically executed when the project is run.

To edit the Startup Script worksheet, double-click it in the Project Explorer. (It is located on the Tasks tab, in
the Script folder.) The worksheet is displayed:

Startup Script worksheet

The code configured in this worksheet is executed just once when the Background Task module (BGTask) is
started. This interface is useful for initializing variables or executing logics that must be implemented when
the project is run.

You can declare and initialize variables and define procedures. However, variables or procedures declared in
this interface will be available ONLY to the Script worksheets executed by the Background Task module —
they are not available to any VBScript interface from the Graphic Module.

Example:

'Variables available for all Script groups from the Script task can be declared and
 initialized here
Dim MyVar, Counter
MyVar = 100

'Procedures available for all Script groups from the Script task can be implemented
 here

Function AreaEquTriangle(base, high)
 AreaEquTriangle = (base * high) / 2

Overview of VBScript

Page 1250

End Function

Sub CheckLimits(myValue, myHiLimit, myLoLimit)
 If (myValue > myHiLimit Or myValue < myLoLimit) Then
 MsgBox("Value out of range")
 End If
End Sub

'The code configured here is executed just once when the Background task is started
If $GetOS() = 3 Then
 MsgBox ("Welcome! This project is running under Microsoft Windows Embedded operating
 system.")
Else
 MsgBox("Welcome! This project Is running under Microsoft Windows desktop operating
 system.")
End If

Overview of VBScript

Page 1251

Language Reference

Operators

Arithmetic Operators

Symbol Name Description

^ Exponentiation Raises a number to the power of an exponent.

- Unary negation Finds the difference between two numbers or indicates the negative value of a numeric
expression.

* Multiplication Multiplies two numbers.

/ Division Divides two numbers and returns a floating-point result.

\ Integer division Divides two numbers and returns an integer result.

Mod Modulus arithmetic Divides two numbers and returns only the remainder.

+ Addition Finds the sum of two numbers.

- Subtraction Finds the difference between two numbers or indicates the negative value of a numeric
expression.

& String concatenation Forces string concatenation of two expressions.

Comparison Operators

Symbol Name Description

= Equality Comparison is True if the first expression is equal to the second expression.

<> Inequality Comparison is True if the first expression is different from the second expression.

< Less than Comparison is True if the first expression is less than the second expression.

> Greater than Comparison is True if the first expression is greater than the second expression.

<= Less than or equal to Comparison is True if the first expression is less than or equal to the second expression.

>= Greater than or equal to Comparison is True if the first expression is greater than or equal to the second expression.

Is Object equivalence Compares two object reference variables. Comparison is True if both object names refer to
the same object.

Logical Operators

Symbol Name Description

Not Logical negation Performs logical negation on an expression.

And Logical conjunction Performs a logical conjunction on two expressions.

Or Logical disjunction Performs a logical disjunction on two expressions.

Xor Logical exclusion Performs a logical exclusion on two expressions.

Eqv Logical equivalence Performs a logical equivalence on two expressions.

Imp Logical implication Performs a logical implication on two expressions.

Assignment Operators

Symbol Name Description

= Assignment Assigns a value to a variable or property.

Overview of VBScript

Page 1252

Constants

Color Constants

Constant Value Description

vbBlack &h00 Black

vbRed &hFF Red

vbGreen &hFF00 Green

vbYellow &hFFFF Yellow

vbBlue &hFF0000 Blue

vbMagenta &hFF00FF Magenta

vbCyan &hFFFF00 Cyan

vbWhite &hFFFFFF White

Comparison Constants

Constant Value Description

vbBinaryCompare 0 Perform a binary comparison

vbTextCompare 1 Perform a textual comparison

Date & Time Constants

Constant Value Description

vbSunday 1 Sunday

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

vbUseSystemDayOfWeek 0 Use the day of the week specified in your system settings for the first day of the week.

vbFirstJan1 1 Use the week in which January 1 occurs (default).

vbFirstFourDays 2 Use the first week that has at least four days in the new year.

vbFirstFullWeek 3 Use the first full week of the year.

Date Format Constants

Constant Value Description

vbGeneralDate 0 Display a date and/or time. For real numbers, display a date and time. If there is no
fractional part, display only a date. If there is no integer part, display time only. Date and
time display is determined by your system settings.

vbLongDate 1 Display a date using the long date format specified in your computer's regional settings.

vbShortDate 2 Display a date using the short date format specified in your computer's regional
settings.

vbLongTime 3 Display a time using the long time format specified in your computer's regional settings.

vbShortTime 4 Display a time using the short time format specified in your computer's regional settings.

Overview of VBScript

Page 1253

Miscellaneous Constants

Constant Value Description

vbObjectError -2147221504 User-defined error numbers should be greater than this value.

Box Constants – Buttons & Icons

Constant Value Description

vbOKOnly 0 Display OK button only.

vbOKCancel 1 Display OK and Cancel buttons.

vbAbortRetryIgnore 2 Display Abort, Retry, and Ignore buttons.

vbYesNoCancel 3 Display Yes, No, and Cancel buttons.

vbYesNo 4 Display Yes and No buttons.

vbRetryCancel 5 Display Retry and Cancel buttons.

vbCritical 16 Display Critical Message icon.

vbQuestion 32 Display Warning Query icon.

vbExclamation 48 Display Warning Message icon.

vbInformation 64 Display Information Message icon.

vbDefaultButton1 0 First button is the default.

vbDefaultButton2 256 Second button is the default.

vbDefaultButton3 512 Third button is the default.

vbDefaultButton4 768 Fourth button is the default.

vbApplicationModal 0 Application modal. The user must respond to the message box before continuing work
in the current application.

vbSystemModal 4096 System modal. On Win16 systems, all programs are suspended until the user responds
to the message box. On Win32 systems, this constant provides a program modal
message box that always remains on top of any other programs you may have running.

Box Constants – Selected Button

Constant Value Description

vbOK 1 OK button was clicked.

vbCancel 2 Cancel button was clicked.

vbAbort 3 Abort button was clicked.

vbRetry 4 Retry button was clicked.

vbIgnore 5 Ignore button was clicked.

vbYes 6 Yes button was clicked.

vbNo 7 No button was clicked.

String Constants

Constant Value Description

vbCr Chr(13) Carriage return

VbCrLf Chr(13) & Chr(10) Carriage return…linefeed combination

vbFormFeed Chr(12) Form feed; not useful in Microsoft Windows

Overview of VBScript

Page 1254

Constant Value Description

vbLf Chr(10) Line feed

vbNewLine Chr(13) & Chr(10) or
Chr(10)

Platform-specific newline character; whatever is appropriate for the platform

vbNullChar Chr(0) Character having the value 0

vbNullString String having value 0 Not the same as a zero-length string (""); used for calling external procedures

vbTab Chr(9) Horizontal tab

vbVerticalTab Chr(11) Vertical tab; not useful in Microsoft Windows

Tristate Constants

Constant Value Description

vbUseDefault −2 Use default from computer's regional settings.

vbTrue −1 TRUE

vbFalse 0 FALSE

VarType Constants

Constant Value Description

vbEmpty 0 Uninitialized (default)

vbNull 1 Contains no valid data

vbInteger 2 Integer subtype

vbLong 3 Long subtype

vbSingle 4 Single subtype

vbDouble 5 Double subtype

vbCurrency 6 Currency subtype

vbDate 7 Date subtype

vbString 8 String subtype

vbObject 9 Object

vbError 10 Error subtype

vbBoolean 11 Boolean subtype

vbVariant 12 Variant (used only for arrays of variants)

vbDataObject 13 Data access object

vbDecimal 14 Decimal subtype

vbByte 17 Byte subtype

vbArray 8192 Array

Objects and Collections
Class Object

The object created using the Class statement. Provides access to the events of the class.

Debug Object
An intrinsic global object that can send output to a script debugger, such as the Microsoft Script
Debugger.

Err Object

Overview of VBScript

Page 1255

Contains information about runtime errors. Accepts the Raise and Clear methods for generating
and clearing runtime errors.

Match Object
Provides access to the read-only properties of a regular expression match.

Matches Collection
Collection of regular expression Match objects.

Regular Expression (RegExp) Object
Provides simple regular expression support.

SubMatches Collection
Collection of regular expression submatch strings.

Properties
Description

Returns or sets a descriptive string associated with an error.

FirstIndex
Returns the position in a search string where a match occurs.

Global
Sets or returns a Boolean value that indicates if a pattern should match all occurrences in an
entire search string or just the first one.

HelpContext
Sets or returns a context ID for a topic in a Help File.

HelpFile
Sets or returns a fully qualified path to a Help File.

IgnoreCase
Sets or returns a Boolean value that indicates if a pattern search is case-sensitive or not.

Length
Sets or returns a Boolean value that indicates if a pattern search is case-sensitive or not.

Number
Returns or sets a numeric value specifying an error. Number is the Err object's default property.

Pattern
Sets or returns the regular expression pattern being searched for.

Source
Returns or sets the name of the object or application that originally generated the error.

Value
Returns the value or text of a match found in a search string.

Statements
Call

Transfers control to a Sub or Function procedure.

Class
Declares the name of a class, as well as a definition of the variables, properties, and methods
that comprise the class.

Const
Declares constants for use in place of literal values.

Dim
Declares variables and allocates storage space.

Overview of VBScript

Page 1256

Do…Loop
Repeats a block of statements while a condition is True or until a condition becomes True.

Erase
Reinitializes the elements of fixed-size arrays and deallocates dynamic-array storage space.

Execute
Executes one or more specified statements.

ExecuteGlobal
Executes one or more specified statements in the global namespace of a script.

Exit
Exits a block of Do…Loop, For…Next, Function, or Sub code.

For Each…Next
Repeats a group of statements for each element in an array or collection.

For…Next
Repeats a group of statements a specified number of times.

Function
Declares the name, arguments, and code that form the body of a Function procedure.

If…Then…Else
Conditionally executes a group of statements, depending on the value of an expression.

Option Explicit
Forces explicit declaration of all variables in a script.

Private
Declares private variables and allocates storage space. Declares, in a Class block, a private
variable.

Property Get
Declares, in a Class block, the name, arguments, and code that form the body of a Property
procedure that gets (returns) the value of a property.

Property Let
Declares, in a Class block, the name, arguments, and code that form the body of a Property
procedure that assigns (sets) the value of a property.

Property Set
Declares, in a Class block, the name, arguments, and code that form the body of a Property
procedure that sets a reference to an object.

Public
Declares public variables and allocates storage space. Declares, in a Class block, a private
variable.

Ramdomize
Initializes the random-number generator.

ReDim
Declares dynamic-array variables, and allocates or reallocates storage space at procedure level.

Rem
Includes explanatory remarks in a program.

Select
Executes one of several groups of statements, depending on the value of an expression.

Set
Assigns an object reference to a variable or property, or associates a procedure reference with an
event.

Overview of VBScript

Page 1257

Stop
Suspends execution.

Sub
Declares the name, arguments, and code that form the body of a Sub procedure.

While
Executes a series of statements as long as a given condition is True.

With
Executes a series of statements on a single object.

Methods
Clear

Clears all property settings of the Err object.

Execute
Executes a regular expression search against a specified string.

Raise
Generates a runtime error.

Replace
Replaces text found in a regular expression search.

Test
Executes a regular expression search against a specified string and returns a Boolean value that
indicates if a pattern match was found.

Write
Sends strings to the script debugger.

WriteLine
Sends strings to the script debugger, followed by a newline character.

Functions

Function Names

Abs Array Asc Atn

CBool CByte CCur CDate

CDbl Chr CInt CLng

Conversions Cos CreateObject CSng

CStr Date DateAdd DateDiff

DatePart DateSerial DateValue Day

Derived Math Escape Eval Exp

Filter FormatCurrency FormatDateTime FormatNumber

FormatPercent GetLocale GetObject GetRef

Hex Hour InputBox InStr

InStrRev Int, Fix IsArray IsDate

IsEmpty IsNull IsNumeric IsObject

Join LBound LCase Left

Len LoadPicture Log LTrim; RTrim; and Trim

Maths Mid Minute Month

Overview of VBScript

Page 1258

Function Names

MonthName MsgBox Now Oct

Replace RGB Right Rnd

Round ScriptEngine ScriptEngineBuildVersion ScriptEngineMajorVersion

ScriptEngineMinorVersion Second SetLocale Sgn

Sin Space Split Sqr

StrComp String StrReverse Tan

Time Timer TimeSerial TimeValue

TypeName UBound UCase Unescape

VarType Weekday WeekdayName Year

Keywords
Empty

The Empty keyword is used to indicate an uninitialized variable value. This is not the same
thing as Null.

False
The False keyword has a value equal to 0.

Nothing
The Nothing keyword in VBScript is used to disassociate an object variable from any actual
object.

Null
The Null keyword is used to indicate that a variable contains no valid data. This is not the same
thing as Empty.

True
The True keyword has a value equal to -1.

Errors

VBScript Runtime Errors

Error Number Description

5 Invalid procedure call or argument

6 Overflow

7 Out of memory

9 Subscript out of range

10 This array is fixed or temporarily locked

11 Division by zero

13 Type mismatch

14 Out of string space

17 Can't perform requested operation

28 Out of stack space

35 Sub or function not defined

48 Error in loading DLL

51 Internal error

Overview of VBScript

Page 1259

Error Number Description

91 Object variable not set

92 For loop not initialized

94 Invalid use of Null

424 Object required

429 ActiveX component can't create object

430 Class doesn't support Automation

432 File name or class name not found during Automation operation

438 Object doesn't support this property or method

445 Object doesn't support this action

447 Object doesn't support current locale setting

448 Named argument not found

449 Argument not optional

450 Wrong number of arguments or invalid property assignment

451 Object not a collection

458 Variable uses an Automation type not supported in VBScript

462 The remote server machine does not exist or is unavailable

481 Invalid picture

500 Variable is undefined

502 Object not safe for scripting

503 Object not safe for initializing

504 Object not safe for creating

505 Invalid or unqualified reference

506 Class not defined

507 An exception occurred

5008 Illegal assignment

5017 Syntax error in regular expression

5018 Unexpected quantifier

5019 Expected ']' in regular expression

5020 Expected ')' in regular expression

5021 Invalid range in character set

VBScript Syntax Errors

Error Number Description

1001 Out of memory

1002 Syntax error

1005 Expected '('

1006 Expected ')'

1010 Expected identifier

1011 Expected '='

Overview of VBScript

Page 1260

Error Number Description

1012 Expected 'If'

1013 Expected 'To'

1014 Expected 'End'

1015 Expected 'Function'

1016 Expected 'Sub'

1017 Expected 'Then'

1018 Expected 'Wend'

1019 Expected 'Loop'

1020 Expected 'Next'

1021 Expected 'Case'

1022 Expected 'Select'

1023 Expected expression

1024 Expected statement

1025 Expected end of statement

1026 Expected integer constant

1027 Expected 'While' or 'Until'

1028 Expected 'While,' 'Until,' or end of statement

1029 Expected 'With'

1030 Identifier too long

1037 Invalid use of 'Me' keyword

1038 'loop' without 'do'

1039 Invalid 'exit' statement

1040 Invalid 'for' loop control variable

1041 Name redefined

1042 Must be first statement on the line

1044 Cannot use parentheses when calling a Sub

1045 Expected literal constant

1046 Expected 'In'

1047 Expected 'Class'

1048 Must be defined inside a Class

1049 Expected Let or Set or Get in property declaration

1050 Expected 'Property'

1051 Number of arguments must be consistent across properties specification

1052 Cannot have multiple default property/method in a Class

1053 Class initialize or terminate do not have arguments

1054 Property Set or Let must have at least one argument

1055 Unexpected 'Next'

1057 'Default' specification must also specify 'Public'

1058 'Default' specification can only be on Property Get

Overview of VBScript

Page 1261

Tips & Tricks

VBScript Editor IntelliSense
IntelliSense provides an array of options that make language references easily accessible. When coding,
you do not need to leave the Code Editor or the Immediate Mode command window to perform searches on
language elements. You can keep your context, find the information you need, insert language elements
directly into your code, and even have IntelliSense complete your typing for you.

IntelliSense comprises the following options…

List Members
You can display a list of valid members from class tags, fields from any tag, properties/methods from an
ActiveX object, or functions from the Built-in Scripting Language. Selecting from the list inserts the member
into your code.

When you type the $ character on any VBScript interface, a list box will automatically open with the list of all
tags available for the current project as well as all functions from the Built-in Scripting Language.

When you type the name of a class tag followed by the dot character (.) on any VBScript interface, a list box
will automatically open with the list of all members from the class tag:

Overview of VBScript

Page 1262

When you type the name of a tag followed by the hyphen and greater than characters (->) on any VBScript
interface, a list box will automatically open with the list of all fields available for this tag:

The items are displayed in alphabetic order, and each item has an icon to identify its main type, as follows:

Icon Type

Boolean Tag

Integer Tag

Real Tag

String Tag

Class Tag

Function from the Built-in Scripting Language

When you type the name of an ActiveX control that is inserted on the screen followed by the dot character (.)
on any VBScript interface from the screen where the ActiveX object is inserted, a list box will automatically
open with the list of all properties and methods from the object:

The items are displayed in alphabetic order, and each item has an icon to identify its main type, as follows:

Icon Type

Property from the ActiveX object

Method from the ActiveX object

Overview of VBScript

Page 1263

Parameter Quick Info
The Quick Info option displays pop-up boxes with the information about the functions from the Built-
in Scripting Language. The information includes all the parameters supported by this function, with the
currently configured one in bold text.

Complete Word
Complete word finishes a tag, member, field, function, or ActiveX property/method name once you have
entered enough characters to disambiguate the term. After you type the first few letters of the name, you can
press Ctrl+Space to complete the name automatically.

VBScript Compared to VBA
While VBScript and Visual Basic for Applications (VBA) are similar and are both based on the Visual Basic
standard language, there are advantages to using VBScript for BOS users:

• VBScript brings active scripting to a wide variety of environments, including Web client scripting in
Microsoft Internet Explorer. This prevents operations that may present risks for the Thin Client user, such
as direct access to local files.

• VBScript was designed to be simple and easy to learn, with some standards from VBA modified in
VBScript to make it more straightforward. For example, in VBScript the user does not have to worry about
the type of each variable when declaring them because VBScript assumes the proper type for each variable
automatically.

The following table lists VBScript features that VBA does not have.

Category Feature/Keyword

Declarations Class

EvalMiscellaneous

Execute

Objects RegExp

ScriptEngine

ScriptEngineBuildVersion

Script Engine Identification

ScriptEngineMajorVersion

The following table lists VBA features that VBScript does not have.

Category Omitted Feature/Keyword

Option BaseArray Handling

Declaring arrays with lower bound <> 0

Add, Count, Item, RemoveCollection

Access to collections using ! character

✓ConstConditional Compilation

✓If...Then...✓Else

DoEvents

GoSub...Return, GoTo

On Error GoTo

Control Flow

On...GoSub, On...GoTo

Overview of VBScript

Page 1264

Category Omitted Feature/Keyword

Line numbers, Line labels

CVar, CVDateConversion

Str, Val

All intrinsic data types except VariantData Types

Type...End Type

Date/Time Date statement, Time statement

Debug.PrintDebugging

End, Stop

Declare (for declaring DLLs)

Optional

ParamArray

Declaration

Static

Erl

Error

Error Handling

Resume, Resume Next

File Input/Output All traditional Basic file I/O

Financial All financial functions

Object Manipulation TypeOf

ClipboardObjects

Collection

Operators Like

Deftype

Option Base

Option Compare

Options

Option Private Module

Expressions containing the Is keyword or any comparison operatorsSelect Case

Expressions containing a range of values using the To keyword

Fixed-length strings

LSet, RSet

Mid Statement

Strings

StrConv

Using Objects Collection access using !

Screen Events
In addition to the Screen Script, you can configure logics using the Built-in Scripting Language for the
On Open, While Open and On Close events for the screen (see the Screen Logic interface from the Screen
Attributes dialog). If you configure the Screen Script (VBScript language) and the Screen Logic (Built-in
Scripting Language), BOS will respect the following execution order:

Event Order of execution

When opening the screen • Screen_OnOpen() sub-routine from the Screen Script interface (VBScript language)

Overview of VBScript

Page 1265

Event Order of execution
• On Open from the Screen Logic interface (Built-in Scripting Language)

When closing the screen • On Close from the Screen Logic interface (Built-in Scripting Language)

• Screen_OnClose() sub-routine from the Screen Script interface (VBScript language)

MsgBox and InputBox Functions
The MsgBox() and InputBox() functions from the VBScript language allow you to display pop-up messages
during runtime. These functions are synchronous. When either one is executed, the remaining instructions
from the code will not be executed before the pop-up messages launched by the functions are closed.

Note: The text displayed in these pop-up messages are not affected by the Translation Tool of
BOS, unless you configure the text explicitly using the $Ext() function from the Built-in Scripting
Language.

VBScript Procedures
In VBScript, there are two kinds of procedures; the Sub procedure and the Function procedure.

Sub Procedures
A Sub procedure is a series of VBScript statements (enclosed by Sub and End Sub statements) that perform
actions but don't return a value. A Sub procedure can take arguments (constants, variables, or expressions
that are passed by a calling procedure). If a Sub procedure has no arguments, its Sub statement must include
an empty set of parentheses ().

The following Sub procedure uses two intrinsic (built-in) VBScript functions, MsgBox and InputBox, to
prompt a user for information. It then displays the results of a calculation based on that information. The
calculation is performed in a Function procedure created with VBScript. The Function procedure is shown
after the following discussion.

Sub ConvertTemp()
 temp = InputBox("Please enter the temperature in degrees F.", 1)
 MsgBox "The temperature is " & Celsius(temp) & " degrees C."
End Sub

Function Procedures
A Function procedure is a series of VBScript statements enclosed by the Function and End Function
statements. A Function procedure is similar to a Sub procedure, but can also return a value. A Function
procedure can take arguments (constants, variables or expressions that are passed to it by a calling
procedure). If a Function procedure has no arguments, its Function statement must include an empty set
of parentheses. A Function returns a value by assigning a value to its name in one or more statements of the
procedure. The return type of a Function is always a Variant.

In the following example, the Celsius function calculates degrees Celsius from degrees Fahrenheit. When the
function is called from the ConvertTemp Sub procedure, a variable containing the argument value is passed
to the function. The result of the calculation is returned to the calling procedure and displayed in a message
box.

Sub ConvertTemp()
 temp = InputBox("Please enter the temperature in degrees F.", 1)
 MsgBox "The temperature is " & Celsius(temp) & " degrees C."
End Sub

Function Celsius(fDegrees)
 Celsius = (fDegrees - 32) * 5 / 9
End Function

Overview of VBScript

Page 1266

Getting Data Into and Out of Procedures
Each piece of data is passed into your procedures using an argument . Arguments serve as placeholders
for the data you want to pass into your procedure. You can name your arguments any valid variable name.
When you create a procedure using either the Sub statement or the Function statement, parentheses must
be included after the name of the procedure. Any arguments are placed inside these parentheses, separated
by commas. For example, in the following example, fDegrees is a placeholder for the value being passed into
the Celsius function for conversion.

Function Celsius(fDegrees)
 Celsius = (fDegrees - 32) * 5 / 9
End Function

To get data out of a procedure, you must use a Function. Remember, a Function procedure can return a
value; a Sub procedure cannot.

Using Sub and Function Procedures in Code
A Function in your code must always be used on the right side of a variable assignment or in an expression.
For example:

Temp = Celsius(fDegrees)

or

MsgBox "The Celsius temperature is " & Celsius(fDegrees) & " degrees."

To call a Sub procedure from another procedure, type the name of the procedure along with values for any
required arguments, each separated by a comma. The Call statement is not required, but if you do use it,
you must enclose any arguments in parentheses.

The following example shows two calls to the MyProc procedure. One uses the Call statement in the code; the
other doesn't. Both do exactly the same thing.

Call MyProc(firstarg, secondarg)

MyProc firstarg, secondarg

Notice that the parentheses are omitted in the call when the Call statement isn't used.

Creating Constants
A constant is a meaningful name that takes the place of a number or string and never changes. VBScript
defines a number of intrinsic constants.

You create user-defined constants in VBScript using the Const statement. Using the Const statement, you
can create string or numeric constants with meaningful names and assign them literal values. For example:

Const MyString = "This is my string."
Const MyAge = 49

Note that the string literal is enclosed in quotation marks (" "). Quotation marks are the most obvious way
to differentiate string values from numeric values. You represent Date literals and time literals by enclosing
them in number signs (#). For example:

Const CutoffDate = #6-1-97#

You may want to adopt a naming scheme to differentiate constants from variables. This will prevent you from
trying to reassign constant values while your script is running. For example, you might want to use a "vb" or

Overview of VBScript

Page 1267

"con" prefix on your constant names, or you might name your constants in all capital letters. Differentiating
constants from variables eliminates confusion as you develop more complex scripts.

Declaring Variables
A variable is a convenient placeholder that refers to a computer memory location where you can store
program information that may change during the time your script is running. In VBScript, variables are
always of one fundamental data type, Variant.

You declare variables explicitly in your script using the Dim statement, the Public statement, and the Private
statement. For example:

Dim DegreesFahrenheit

You declare multiple variables by separating each variable name with a comma. For example:

Dim Top, Bottom, Left, Right

You can also declare a variable implicitly by simply using its name in your script. That is not generally a good
practice because you could misspell the variable name in one or more places, causing unexpected results
when your script is run. For that reason, the Option Explicit statement is configured by default in the Global
Procedures interface to require explicit declaration of all variables. Unless you delete this statement, you need
to declare all variables explicitly; otherwise, VBScript will generate errors during runtime indicating that the
variable does not exist.

An expression should have the variable on the left side and the value you want to assign to the variable on the
right. For example:

MyVar = 100

Scope and Lifetime of Variables
A variable's scope is determined by where you declare it. When you declare a variable within a procedure,
only code within that procedure can access or change the value of that variable. It has local scope and is a
procedure-level variable. If you declare a variable outside a procedure, you make it recognizable to all the
procedures in your script. This is a script-level variable, and it has script-level scope.

The lifetime of a variable depends on how long it exists. The lifetime of a script-level variable extends from
the time it is declared until the time the script is finished running. At procedure level, a variable exists only
as the procedure runs. When the procedure exits, the variable is destroyed. Local variables are ideal as
temporary storage space when a procedure is executing. You can have local variables of the same name in
several different procedures because each is recognized only by the procedure in which it is declared.

How Boolean tags are handled in VBScript
By default, the numeric value of TRUE is different for Boolean tags in BLUE Open Studio 2020 than it is for
Boolean variables in VBScript. This could cause problems when Boolean tags are used in VBScript, so BLUE
Open Studio 2020 has been modified to change those tags are handled.

Note: This topic applies only to project tags of Boolean type. Tags of other data types (e.g., Integer,
Real) are handled normally at all times. For more information, see Choosing the Tag Data Type on
page 154.

It is important to remember that while the Boolean states of FALSE and TRUE have the same meanings in all
programming languages, and in fact they are reserved as keywords in VBScript, the numeric values of these
states are different for Boolean tags versus Boolean variables, as shown in the table below:

Numeric value for a…Boolean state

…Boolean tag in BLUE Open Studio 2020 …Boolean variable in VBScript

FALSE 0 0

Overview of VBScript

Page 1268

Numeric value for a…Boolean state

…Boolean tag in BLUE Open Studio 2020 …Boolean variable in VBScript

TRUE 1 -1

These are the values that are actually stored in the project database. Any interpretation of these values as
"false" or "true" is done by the software during run time. As such, if you tried to use Boolean tags with certain
VBScript statements and operators — especially the logical NOT operator — you might get unexpected results.

To prevent any problems and make sure that Boolean tags have the correct values at all times, the VBScript
interface in BLUE Open Studio 2020 has been modified to preprocess Boolean tags and handle them like
Boolean variables. In other words, when a Boolean tag has an actual value of 1, the VBScript interface
handles it as if it has a value of -1.

This modification was introduced in an earlier version of this software. If you used the latest version of this
software to create your project, it includes the modification by default, so there is nothing you need to do.

In order to maintain backward compatibility, however, a project that was created in an earlier version of BLUE
Open Studio 2020 and then upgraded to the latest version does not include the modification by default. When
you open an upgraded but unmodified project, the following message is displayed:
Warning: For compatibility reasons your project is not using the VB Boolean mode. Please refer to the
VBScript section of your technical reference manual for more information.

When this happens, you have two options for how to proceed. First, you can ignore the message and continue
running your project as it was originally developed. Either your project does not include any VBScript code,
or the code that it does include already works around this issue. As long as your project behaves as expected
and you do not add new code, there is nothing you need to do.

Second, you can manually edit your project file in order to apply the modificiation — use a text editor to open
your project file (<project name>.APP), and then add the following setting:

[Script]
VBBoolean=1

After you do this, however, you must thoroughly test your project in order to make sure that your VBScript
code still behaves as expected.

Writing Real Values to Integer Tags
By default, a Real (i.e., floating point) value is truncated at the decimal point when it is written to an Integer
tag. This behavior is the same in both the Built-in Scripting Language and in VBScript.

You can change this behavior in VBScript, however, by manually editing your project file (<project
name>.app) to change the following setting:

[Script]
TruncRealToInt=0 or 1

If TruncRealToInt is set to 1, the project will behave as described above: Real values will be truncated at
the decimal point without rounding. (For example, a value of 5.56 will be written as 5.) This is the default
setting for projects that were created with some earlier versions of this software and then upgraded to the
latest version, in order to maintain backward compatibility.

If TruncRealToInt is set to 0, VBScript functions and operations will round Real values to the nearest whole
numbers. (For example, a value of 5.56 will be written as 6.) This is the default setting for projects that are
created with the latest version of this software.

Note: This setting only affects the behavior of VBScript in BLUE Open Studio 2020. It does not
affect the behavior of the Built-in Scripting Language.

Precedence of VBScript Operators
VBScript has a full range of operators, including arithmetic operators, comparison operators, concatenation
operators, and logical operators.

Overview of VBScript

Page 1269

When several operations occur in an expression, each part is evaluated and resolved in a predetermined order
called "operator precedence." You can use parentheses to override the order of precedence and force some
parts of an expression to be evaluated before others. Operations within parentheses are always performed
before those outside. Within parentheses, however, standard operator precedence is maintained.

When expressions contain operators from more than one category, arithmetic operators are evaluated first,
comparison operators are evaluated next, and logical operators are evaluated last. Comparison operators all
have equal precedence; that is, they are evaluated in the left-to-right order in which they appear. Arithmetic
and logical operators are evaluated in the following order of precedence.

Arithmetic Comparison Logical

Negation (-) Equality (=) Not

Exponentiation (^) Inequality (<>) And

Multiplication and division (*, /) Less than (<) Or

Integer division (\) Greater than (>) Xor

Modulus arithmetic (Mod) Less than or equal to (<=) Eqv

Addition and subtraction (+, -) Greater than or equal to (>=) Imp

String concatenation (&) Is &

When multiplication and division occur together in an expression, each operation is evaluated as it occurs
from left to right. Likewise, when addition and subtraction occur together in an expression, each operation is
evaluated in order of appearance from left to right.

The string concatenation (&) operator is not an arithmetic operator, but in precedence it falls after all
arithmetic operators and before all comparison operators. The Is operator is an object reference comparison
operator. It does not compare objects or their values; it checks only to determine if two object references refer
to the same object.

Logical Operator NOT
The logical operator NOT behaves differently in VBScript than it does in the built-in scripting language.

NOT Operator in VBScript
In VBScript, the NOT operator inverts the bits of a given numeric value, producing its complement number
according to the "two's complement" system of signed numbers that is used by computers. The table below
illustrates the behavior of the NOT operator in VBScript for the syntax…

result = NOT expression

If expression is… Then result is…

−3 2

−2 1

−1 0

0 −1

1 −2

2 −3

3 −4

Note: By default, when you attempt to write any numeric value other than 0 to a Boolean tag, the
tag automatically assumes a value of 1. Therefore, if VBScript's NOT operator is applied to a Boolean
tag with a value of 1, then the value of the tag does not change; the operator returns a value of −2,
but the tag cannot accept this value so it again assumes a value of 1.

Overview of VBScript

Page 1270

You can configure BOS to handle Boolean tags like Boolean variables in VBScript, so that the NOT
operator in VBScript will work as expected. For more information, see How Boolean tags are handled
in VBScript on page 1267.

NOT Operator in Built-in Language
In contrast, the NOT operator in the Built-in Scripting Language toggles the given numeric value as if it
is a natural boolean. The table below illustrates the behavior of the NOT operator in the Built-in Scripting
Language for the syntax…

result = NOT expression

If expression is… Then result is…

0 1

≠0 0

Using Conditional Statements
You can control the flow of your script with conditional statements and looping statements. Using conditional
statements, you can write VBScript code that makes decisions and repeats actions. The following conditional
statements are available in VBScript:

• If…Then…Else statement

• Select Case statement

Making Decisions Using If…Then…Else
The If…Then…Else statement is used to evaluate whether a condition is True or False and, depending
on the result, to specify one or more statements to run. Usually the condition is an expression that uses
a comparison operator to compare one value or variable with another. For information about comparison
operators, see Comparison Operators.

If…Then…Else statements can be nested to as many levels as you need.

Running Statements if a Condition is True

To run only one statement when a condition is True, use the single-line syntax for the If…Then…Else
statement. The following example shows the single-line syntax. Notice that this example omits the Else
keyword:

Sub FixDate()
 Dim myDate
 myDate = #2/13/95#
 If myDate < Now Then myDate = Now
End Sub

To run more than one line of code, you must use the multiple-line (or block) syntax. This syntax includes the
End If statement, as shown in the following example:

Sub AlertUser(value)
 If value = 0 Then
 AlertLabel.ForeColor = vbRed
 AlertLabel.Font.Bold = True
 AlertLabel.Font.Italic = True
 End If
End Sub

Running Certain Statements if a Condition is True and Running Others if a Condition is False

Overview of VBScript

Page 1271

You can use an If…Then…Else statement to define two blocks of executable statements: one block to run if
the condition is True, and the other block to run if the condition is False:

Sub AlertUser(value)
 If value = 0 Then
 AlertLabel.ForeColor = vbRed
 AlertLabel.Font.Bold = True
 AlertLabel.Font.Italic = True
 Else
 AlertLabel.Forecolor = vbBlack
 AlertLabel.Font.Bold = False
 AlertLabel.Font.Italic = False
 End If
End Sub

Deciding Between Several Alternatives

A variation on the If…Then…Else statement allows you to choose from several alternatives. Adding ElseIf
clauses expands the functionality of the If…Then…Else statement, so you can control program flow based on
different possibilities. For example:

Sub ReportValue(value)
 If value = 0 Then
 MsgBox value
 ElseIf value = 1 Then
 MsgBox value
 ElseIf value = 2 then
 Msgbox value
 Else
 Msgbox "Value out of range!"
 End If
End Sub

You can add as many ElseIf clauses as you need to provide alternative choices, but extensive use of the
ElseIf clauses often becomes cumbersome. A better way to choose between several alternatives is the
Select Case statement.

Making Decisions with Select Case
The Select Case structure provides an alternative to If…Then…ElseIf for selectively executing one block of
statements from among multiple blocks of statements. A Select Case statement provides capability similar
to the If…Then…Else statement, but it makes code more efficient and readable.

A Select Case structure works with a single test expression that is evaluated once, at the top of the
structure. The result of the expression is then compared to the values for each Case in the structure. If there
is a match, the block of statements associated with that Case is executed, as in the following example:

Select Case Document.Form1.CardType.Options(SelectedIndex).Text
 Case "MasterCard"
 DisplayMCLogo
 ValidateMCAccount
 Case "Visa"
 DisplayVisaLogo
 ValidateVisaAccount
 Case "American Express"
 DisplayAMEXCOLogo
 ValidateAMEXCOAccount
 Case Else
 DisplayUnknownImage
 PromptAgain
End Select

Notice that the Select Case structure evaluates an expression once at the top of the structure. In contrast,
the If…Then…ElseIf structure can evaluate a different expression for each ElseIf statement. You can

Overview of VBScript

Page 1272

replace an If…Then…ElseIf structure with a Select Case structure only if each ElseIf statement evaluates
the same expression.

Looping Through Code
Looping allows you to run a group of statements repeatedly. Some loops repeat statements until a condition
is False; others repeat statements until a condition is True. There are also loops that repeat statements a
specific number of times.

The following looping statements are available in VBScript:

• Do…Loop: Loops while or until a condition is True

• While…Wend: Loops while a condition is True

• For…Next: Uses a counter to run statements a specified number of times

Using Do Loops
You can use Do…Loop statements to run a block of statements an indefinite number of times. The statements
are repeated either while a condition is True or until a condition becomes True.

Repeating Statements While a Condition is True

Use the While keyword to check a condition in a Do…Loop statement. You can check the condition before you
enter the loop (as shown in the following ChkFirstWhile example), or you can check it after the loop has run
at least once (as shown in the ChkLastWhile example). In the ChkFirstWhile procedure, if myNum is set to 9
instead of 20, the statements inside the loop will never run. In the ChkLastWhile procedure, the statements
inside the loop run only once because the condition is already False.

Sub ChkFirstWhile()
 Dim counter, myNum
 counter = 0
 myNum = 20
 Do While myNum > 10
 myNum = myNum - 1
 counter = counter + 1
 Loop
 MsgBox "The loop made " & counter & " repetitions."
End Sub

Sub ChkLastWhile()
 Dim counter, myNum
 counter = 0
 myNum = 9
 Do
 myNum = myNum - 1
 counter = counter + 1
 Loop While myNum > 10
 MsgBox "The loop made " & counter & " repetitions."
End Sub

Repeating a Statement Until a Condition Becomes True

There are two ways to use the Until keyword to check a condition in a Do…Loop statement. You can check
the condition before you enter the loop (as shown in the following ChkFirstUntil example), or you can check
it after the loop has run at least once (as shown in the ChkLastUntil example). As long as the condition is
False, the looping occurs.

Sub ChkFirstUntil()
 Dim counter, myNum
 counter = 0
 myNum = 20
 Do Until myNum = 10
 myNum = myNum - 1
 counter = counter + 1
 Loop

Overview of VBScript

Page 1273

 MsgBox "The loop made " & counter & " repetitions."
End Sub

Sub ChkLastUntil()
 Dim counter, myNum
 counter = 0
 myNum = 1
 Do
 myNum = myNum + 1
 counter = counter + 1
 Loop Until myNum = 10
 MsgBox "The loop made " & counter & " repetitions."
End Sub

Exiting a Do…Loop Statement from Inside the Loop

You can exit a Do…Loop by using the Exit Do statement. Because you usually want to exit only in certain
situations, such as to avoid an endless loop, you should use the Exit Do statement in the True statement
block of an If…Then…Else statement. If the condition is False, the loop runs as usual.

In the following example, myNum is assigned a value that creates an endless loop. The If…Then…Else
statement checks for this condition, preventing the endless repetition.

Sub ExitExample()
 Dim counter, myNum
 counter = 0
 myNum = 9
 Do Until myNum = 10
 myNum = myNum - 1
 counter = counter + 1
 If myNum < 10 Then Exit Do
 Loop
 MsgBox "The loop made " & counter & " repetitions."
End Sub

Using While…Wend
The While…Wend statement is provided in VBScript for those who are familiar with its usage. However,
because of the lack of flexibility in While…Wend, it is recommended that you use Do…Loop instead.

Using For…Next
You can use For…Next statements to run a block of statements a specific number of times. For loops, use a
counter variable whose value increases or decreases with each repetition of the loop.

The following example causes a procedure called MyProc to execute 50 times. The For statement specifies the
counter variable x and its start and end values. The Next statement increments the counter variable by 1.

Sub DoMyProc50Times()
 Dim x
 For x = 1 To 50
 MyProc
 Next
End Sub

Using the Step keyword, you can increase or decrease the counter variable by the value you specify. In the
following example, the counter variable j is incremented by 2 each time the loop repeats. When the loop is
finished, the total is the sum of 2, 4, 6, 8, and 10.

Sub TwosTotal()
 Dim j, total
 For j = 2 To 10 Step 2
 total = total + j
 Next
 MsgBox "The total is " & total

Overview of VBScript

Page 1274

End Sub

To decrease the counter variable, use a negative Step value. You must specify an end value that is less than
the start value. In the following example, the counter variable myNum is decreased by 2 each time the loop
repeats. When the loop is finished, the total is the sum of 16, 14, 12, 10, 8, 6, 4, and 2.

Sub NewTotal()
 Dim myNum, total
 For myNum = 16 To 2 Step -2
 total = total + myNum
 Next
 MsgBox "The total is " & total
End Sub

You can exit any For…Next statement before the counter reaches its end value by using the Exit For
statement. Because you usually want to exit only in certain situations, such as when an error occurs, you
should use the Exit For statement in the True statement block of an If…Then…Else statement. If the
condition is False, the loop runs as usual.

Support for ActiveX Controls
Using the VBScript interfaces for the Graphic module (Graphics Script, Screen Script, Command animation,
and ActiveX Events), you can use this syntax to access properties and methods directly from any ActiveX
Control object inserted in the screen where the object is configured.

BOS will assign a unique name to the object on the screen. You can use the Name property (in the Object
Properties dialog) to modify this name.

After inserting an ActiveX Control object on the screen, you can access properties and methods
from this object from any VBScript interface associated with this screen. Use the syntax
Object_Name.Properties_or_Method_Name. Examples:

//Access the value of the property Day from the CalendarControl1 ActiveX object
CalendarControl1.Day

//Triggers the method AboutBox from the CalendarControl1 ActiveX object
CalendarControl1.AboutBox

Overview of VBScript

Page 1275

Debugging VBScript
The development application provides additional tools for debugging your VBScipt code.

Tip: These tools are based on the debugging tools in Microsoft Visual Studio, so if you are
experienced with Visual Studio, then these tools should be familiar to you as well.

The tools are available in the following VBScript interfaces in the development application:

• Procedures, in the Global tab of the Project Explorer;

• The Graphics Script, in the Graphics tab of the Project Explorer;

• Script groups, including the Startup Script, in the Tasks tab of the Project Explorer; and

• The Screen Script that is attached to each Screen worksheet.

At this time, debugging is not supported in the following VBScript interfaces:

• The Command animation that is attached to each Button object; and

• ActiveX and .NET Control objects.

Generally speaking, you can debug your code by running your project in Debug mode (as opposed to the usual
Run mode) and then observing how the values of project tags, locally-declared variables, and entire functions
change as you step through the code. You can control the stepping by using the Debug tab of the ribbon, and
you can observe the changing values in the Watch window.

About the Debug tab
The Debug tab of the ribbon is used to debug the VBScript code in your project.

Note: This tab of the ribbon is contextual: it appears only when you use a VBScript interface to view
or edit your code.

Debug tab of the ribbon

The tools are organized into the following groups:
Debug Options

These are general options for the debugging tools.

First, the Restore Default tool restores the development environment to its default layout. It is
the same as the Restore Default tool on the View tab of the ribbon, and it is useful when you have
extensively resized and rearranged the windows to facilitate debugging.

Second, the Debug… options determine exactly which parts of the project runtime will be
debugged. Normally, both parts are debugged at the same time, but if you want one to run
without interruption while you focus on the other, then you can control that here.

Local Management
These tools are the same as in the Local Management group on the Home tab of the ribbon. You can
use them to run and stop your project, as well as to check the states of the many tasks and
modules that make up the project runtime.

Debug Tools

Overview of VBScript

Page 1276

These tools control the actual code stepping when you run your project in Debug mode. For
more information about these tools, see the rest of the "Debugging VBScript" section.

Set break points in your VBScript code
Set break points in your VBScript code to indicate where run-time execution should be suspended.

As you develop your code, you will identify important sections where you want to focus your attention while
debugging. For example, if your code includes a critical function that updates the values of several project
tags, then you may want to suspend execution at the beginning of that function and observe the value
changes as they happen. That is where you should set a break point.

A break point is a signal that tells the debugger to temporarily suspend execution of your project. When
execution is suspended at a break point, your project is said to be in break mode. Entering break mode does
not stop or end the execution of your project; execution can be resumed at any time.

You can think of break mode as being like a time-out. All the elements remain (functions, variables, and
objects remain in memory, for example), but their movements and activities are suspended. During break
mode, you can examine the elements' positions and states to look for violations or bugs. You can also make
adjustments to the project while in break mode; for example, you can change the value of a variable.

Break points provide a powerful tool that enables you to suspend execution where and when you need to.
Rather than stepping through your code line by line, you can allow your project to run until it hits a break
point, and then start to debug. This speeds up the debugging process. Without this ability, it would be almost
impossible to debug a large project.

To set one or more break points in your VBScript code:

1. Open the VBScript worksheet that you want to debug.
The worksheet must be in one of the VBScript interfaces that supports debugging. For more information,
see Debugging VBScript on page 1275.
The worksheet is opened for editing.

Example of a VBScript interface
2. In the worksheet, find the line of code where you want to set a break point.

Overview of VBScript

Page 1277

Tip: To show/hide line numbers in the VBScript interface, select Line Number on the View tab of
the ribbon. The option is set independently for each worksheet; there is no global setting.

3. Do one of the following:

• Click in the light blue gutter to the left of that line; or

• Click in the line to place your cursor, and then click Break Point on the ribbon.

A red break point symbol is inserted. If a break point cannot be inserted exactly where you clicked — for
example, if it is a Dim statement that does not actually change any values — then it will be automatically
inserted at the next possible line.

Setting a break point
4. Repeat these steps for each break point that you want to set.

5. Save and close all open VBScript worksheets.

Any break points that you set are saved with the worksheet(s).

Run your project in Debug mode
Run your project in Debug mode in order to use the other debugging tools.

A project can be run either in normal Run mode or in Debug mode. You must run your project in Debug mode
in order to use the other debugging tools such as break points, stepping, and the VBScript-specific tabs in the
Watch window.

To run your project in Debug mode:

1. On Debug tab of the ribbon, in the Local Management group, click Debug.

The project runtime is started in Debug mode. If the Debug Viewer option (on the Debug tab , in the Debug
Options group) is selected and the Viewer task is set to start up, then the Secure Viewer is also started.

Overview of VBScript

Page 1278

Note: When a project is run locally, the standard Viewer is normally used. In contrast, when
a project is run in Debug mode, the Secure Viewer is used for better thread and process
management.

The VBScript code is executed up to the first break point that you set, assuming you set break points.
(The "first" break point is the first one that comes in the logical, sequential execution of the code, not
literally the first one that you set.) At that point, the project automatically enters break mode: execution is
suspended and a yellow arrow is displayed in the VBScript interface to show exactly where in the code that
execution was suspended.

The yellow arrow shows where execution was suspended

If you did not set break points, then the project will continue to run until you click either Stop (to stop the
project runtime) or Break (to manually enter break mode) on the Debug tab.

2. Once the project is in break mode, do one of the following:

• Click Continue on the Debug tab to resume execution and continue to the next break point.

• Check the Watch window to see the current state of the project. For more information, see Observe the
current state in the Watch window on page 1279.

• Click Step Into, Step Over, or Step Out on the Debug tab to step through the code one line at a time. For more
information, see Step through your VBScript code on page 1281.

Note:

Overview of VBScript

Page 1279

While your project is in break mode, you can hover the mouse pointer over any VBScript variable
in the code to get the current value of that variable. The value is shown in a pop-up box.

Current value of VBScript variable in a pop-up box

3. Repeat the previous step as desired.

4. When you have finished debugging your code, click Stop on the Debug tab.

Note: When you run a project in Debug mode, you will not be able to stop it until the project's
Startup Script has been completely executed.

Observe the current state in the Watch window
Use the Watch window to see the current state of the project while it is in break mode.

Your project must already be in break mode, either by reaching a break point that you set earlier or by using
the Break tool to manually enter break mode, before you can use these tools.

Project in break mode, with yellow arrow showing where execution is suspended

The Watch window has four basic tabs (DB 1 through DB 4) that can be used at any time to view and adjust
project tags and to excute in-line scripts. All four of those tabs work in the same way; four of them are
provided simply to give you space to organize your work. For more information about using those tabs, see
Watch window on page 70.

Overview of VBScript

Page 1280

Tip: You may enter the names of VBScript functions (but not sub-routines) in the Watch window to
get the returned values of those functions.

In addition to those four tabs, however, are three new tabs that only work with VBScript debugging:

Locals

This tab shows all of the locally-declared VBScript variables and the current values of those
variables.

Locals tab of the Watch window

Stack Frame

This tab shows additional information about the VBScript interfaces that are currently open for
debugging. The interfaces are listed in order of mostly recently executed, so that you can see
how one script calls functions in another, and the Line column shows the most recently executed
line in each interface.

Therefore, in the screenshot below, you can see that execution was suspended at line 24 in the
function Main_02 in the Global Procedures, and that the function Main_02 was previously called
at line 97 of the Startup Script.

Stack Frame tab of the Watch window

Tasks

This tab shows all of the run-time tasks that being debugged and the current state of each task.

Tasks tab of the Watch window

Overview of VBScript

Page 1281

Note: At this time, only Background Task (Script) can be debugged, so it is the
only task that will ever be shown in this tab. Other tasks may be shown in the
future, as the debugging feature is enabled for more VBScript interfaces.

Keep in mind that these tabs show information only when a project is running in Debug mode and the project
is in break.

Step through your VBScript code
Use the Step Into, Step Over, and Step Out tools to step through your VBScript code one line at a time.

Your project must already be in break mode, either by reaching a break point that you set earlier or by using
the Break tool to manually enter break mode, before you can use these tools.

Project in break mode, with yellow arrow showing where execution is suspended

1. To advance one step in the code, no matter what the step may be, click Step Into on the Debug tab.
This always moves the debugger a single step forward. If the next step is a function call, then the function
is called and execution is suspended again at the first step of that function. That is what "step into"
means: the debugger steps into the called function.

Overview of VBScript

Page 1282

The yellow arrow is moved to show that the step has been taken.

Yellow arrow showing one step forward
2. To advance one step in the main script only, click Step Over on the Debug tab.

If the next step is a function call, then the entire function is executed and the debugger continues with the
main script. That is what "step over" means: the debugger steps over the called function in its entirety. The
function is not skipped — it is still executed as written — but no additional time is spent stepping through
it.

Note: You should use this tool only when you have already debugged the function and you trust
it to execute correctly.

The yellow arrow is moved to show that the step has been taken.

3. To finish executing a function and then continue with the main script, click Step Out on the Debug tab.

That is what "step out" means: the debugger steps back out of a function that it has already stepped into.
The function is not aborted — it is still executed as written — but no additional time is spent stepping
through it.

Note: You should use this tool only when you have already debugged the function and you trust
it to execute correctly.

The yellow arrow is moved to show that the step has been taken.

After every step, the Watch window is updated to show the current state of the project. For more information,
see Observe the current state in the Watch window on page 1279.

	Contents
	Introduction
	Conventions used in this documentation
	About this software
	Internal structure and data flow
	Executing and switching modules
	Executing and switching the Background Task

	Installation Guide
	About the BLUE Open Studio 2020 software components
	Install the full BLUE Open Studio 2020 software
	Install the Thin Client software
	Install the Custom Widget Framework on a client station

	Licensing
	License Settings
	Product Versions
	Execution Modes

	About hardkey licenses
	Install a new hardkey license
	Upgrade an existing hardkey license

	About softkey licenses
	Install or upgrade a softkey license for the full BLUE Open Studio 2020 software

	The Development Environment
	Title bar
	Quick Access Toolbar
	File menu
	New
	Open Project
	Open
	Save
	Save As
	Save All
	Save All as HTML
	Save as HTML
	Save Screen Group as HMTL
	Close
	Close All
	Recent Projects
	Print
	Exit

	Ribbon
	Home tab
	View tab
	Insert tab
	Project tab
	Draw tab
	Format tab
	Help tab

	Project Explorer
	Global tab
	Graphics tab
	Tasks tab
	Comm tab

	Screen/Worksheet Editor
	Watch window
	Output window
	Status bar
	Standard Interfaces
	Object Properties dialog box
	Color Interface
	Fonts
	ASCII Character Table

	Performing Common Tasks
	Accessing Projects and Files
	Using Common Dialog Buttons
	Convert your project's display resolution
	Using Shortcut Menus
	Using Select All
	Cutting, Copying, Pasting Objects
	Find text in the current document or entire project
	Replace text in the current document
	Using the Tag Properties Toolbar
	Replacing project tags in a document or screen object
	Testing Displays
	Verify the project
	Running Projects
	Restoring Defaults
	Saving Your Work
	Printing Screens and Worksheets
	Focusing the Object Properties Window

	Creating a New Project
	Creating a new project
	About target platforms, product types, and target systems
	Changing the target system of an existing project

	Configuring additional project settings
	Information tab
	Options tab
	Alarm History and Events
	Default Database
	Database Configuration
	Performance Control
	Enable Data Protection to encrypt sensitive information

	Viewer tab
	Communication tab
	Edit your project's self-signed certificate
	Managing your project's certificate store

	Preferences tab

	Configuring your project's default email settings
	Configuring your project's default FTP settings
	Runtime Tasks
	Run a project as a Windows service

	Tags and the Project Database
	About Tags and the Project Database
	Project Tags Folder
	Set tag properties using the Project Tags datasheet
	Extending the Project Tags datasheet

	Classes Folder
	Shared Database folder
	System Tags Folder
	List of system tags

	Designing a Tag
	Naming the Tag
	Choosing the Tag Type
	Choosing the Tag Data Type
	Choosing the Tag Scope

	Creating Database Tags
	Adding Tags to the Datasheet
	Creating Tags "On-the-Fly"
	Editing Tags

	Creating Classes
	Tag Properties
	Set tag properties using the Project Tags datasheet
	Set tag properties using the Properties command
	Reference a tag property instead of a project tag
	Using TagsDB functions to edit the tags database during run time
	Properties of Integer and Real tags
	Properties of Boolean tags
	Properties of String tags
	Complete list of tag properties
	Change how out-of-range tag values are handled

	Using Tags in Your Project
	Deleting a tag from the project database
	Sort or filter the rows in a worksheet
	Using the Tags tools
	Global Replace
	Replace
	Remove unused tags
	Reset tags database
	Tag Name text box
	Object Finder
	Cross Reference
	Properties

	Using the Import Wizard
	Other Studio Databases
	OPC Server Databases
	CSV Databases
	ODBC Databases
	PanelBuilder32 Databases
	PanelMate Plus Databases
	FactoryTalk Application
	Studio XML Screen

	Tag Integration
	Using TagsDB functions to edit the tags database during run time

	Screens and Graphics
	Working with Screens
	Screens folder
	Screen Attributes
	Modifying a screen's background color or image

	Screen Group Folder
	Lay out project screens in a simulation of the client's display

	Screen Objects and Animations
	Editing
	Selection
	Disable Drag
	Replace
	Properties
	Grid Settings
	Undo
	Arrange

	Shapes
	Line object
	Open Polygon object
	Closed Polygon object
	Rectangle object
	Rounded Rectangle object
	Ellipse object
	Paste a bitmap image into a screen
	Change the properties of multiple screen objects

	Active Objects
	Text object
	Text Box object
	Button object
	Pushbutton object
	Check Box object
	Radio Button object
	Combo Box object
	List Box object
	Smart Message object
	Change the properties of multiple screen objects

	Libraries
	Symbols library
	Save your own project symbols

	ActiveX Control object
	.NET Control object
	Custom Widget
	Create a new custom widget
	Edit the web files for a custom widget
	Import a Custom Widget Package (CWP)
	Insert and configure a custom widget
	Configure the web server for custom widgets
	Install the Custom Widget Framework on a client station
	Automatic resizing of custom widgets

	Link to an external image file

	Animations
	Command animation
	Hyperlink animation
	Bargraph animation
	Text Data Link animation
	Color animation
	Visibility/Position animation
	Resize animation
	Rotation animation

	Use custom properties to set property values when screens are opened

	Formatting Screen Objects
	Change the properties of multiple screen objects
	Set the tab order of screen objects
	Bring to front / Send to back
	Group
	Align
	Rotate
	Flip Vertical
	Flip Horizontal

	Size
	Fill Color
	Line Color
	Fonts

	Data Input
	Data input in screens on Thin Clients
	Data input in screens on Mobile Access

	Multi-Touch
	About the Multi-Touch settings for project screens
	Configure the default Multi-Touch settings for all project screens
	Configure the Multi-Touch settings for a specific project screen

	About the different types of multi-touch gestures
	Using multi-touch gestures in project screens
	Using multi-touch gestures in data objects
	Using multi-touch gestures in object animations

	About Touch Events
	Add a Touch Event to a screen object
	Add a Touch Event to a project screen
	OnTouch
	OnTouchStart
	OnTouchDelta
	OnTouchCompleted

	Import a Studio XML Screen

	Alarms, Events, and Trends
	Alarms
	Alarm Worksheet Header
	Email Settings
	Advanced Settings

	Alarm Worksheet Body
	Sort or filter the rows in a worksheet

	Saving your alarm history to an external database
	Format of the alarm history

	Events
	Enable the event logger
	Saving your event log to an external database
	Format of the event history

	Alarm/Event Control object
	Customize the audible alarm

	Trends
	Sort or filter the rows in a worksheet
	Creating Batch History
	Converting Trend History Files from Binary to Text
	Converting Trend History Files from Text to Binary
	Make trend history accessible through OPC HDA

	Trend Control object
	About the trend control runtime interface
	Object Properties: Trend Control
	Points
	Pen Style dialog box
	Options
	Modify the pen style of a point during run time

	SPC

	Axes
	Toolbar
	Data Sources
	Legend
	Advanced

	Using the Data Source Text File
	Using the Data Source Database
	Display text- and image-based trend annotations in a trend control

	Grid object
	Data dialog
	Columns dialog
	Advanced dialog

	Industrial Graphics
	Create a new Industrial Graphics screen
	Create a new Industrial Graphics symbol
	Create a new Industrial Graphics toolset
	Embed an Industrial Graphics symbol in a screen
	Using project tags in Industrial Graphics screens
	Working with Element Styles
	Understanding Element Styles
	Application Style Library
	Visual Properties Defined by Element Styles
	Element Styles in Animations
	Property Style Order of Precedence
	Updating Element Styles at Application Run Time

	Managing Element Styles
	Import an Industrial Graphics style library
	Export an Industrial Graphics style library
	Change the Visual Properties of an Element Style
	Overriding the Element Style Text Properties
	Overriding the Element Style Fill Properties
	Overriding the Element Style Line Properties
	Overriding the Element Style Outline Properties
	Previewing an Element Style
	Resetting an Element Style to Default Values

	Changing the Visual Properties of User-Defined Element Styles

	Applying Element Styles to Elements
	Using the Element Style List
	Using the Properties Grid
	Using Format Painter
	Clearing an Element Style
	Selecting an Element Style as a Default for a Canvas

	Applying Element Styles to Groups of Elements
	Setting a Group’s Run-time Behavior to TreatAsIcon
	Understanding Element Style Behavior with a Group of Elements

	Configuring an Animation Using Element Styles
	Configuring a Boolean Animation Using Element Styles
	Configuring a Truth Table Animation with Element Styles
	Deleting a Condition from an Animation Truth Table
	Changing the Processing Order of Element Styles in a Truth Table Animation

	Import an Industrial Graphics symbol library
	Export an Industrial Graphics symbol library
	Known limitations of Industrial Graphics

	Background Tasks
	Alarms
	Trends
	Recipes
	Reports
	Math
	About the Built-in Language interface
	Using the Goto…Label structure in a Math worksheet
	Using the For…Next loop in a Math worksheet

	Script
	Startup Script worksheet

	Scheduler
	Database/ERP worksheet
	Sort or filter the rows in a worksheet

	Communication
	Direct Communication Drivers
	Main Driver Sheet
	Standard Driver Sheets
	Read/Write Status Codes

	Tag Integration
	TwinCAT
	Install and configure the TwinCAT ADS software

	CoDeSys
	Configure your CoDeSys 3.x project for tag integration
	Configure your CoDeSys 2.x project for tag integration

	RSLogix 5000 Family
	Export symbol file for RSLogix 5000 Family

	Allen-Bradley PLC5, SLC500
	AutomationDirect Do-more
	Export CSV file for AutomationDirect Do-more

	AutomationDirect Koyo
	Export .csv file from a Koyo DirectLOGIC PLC program

	AutomationDirect P Series
	Export tag information from an AutomationDirect P Series PAC program

	AutomationDirect PAC 3000
	Export tag information from an AutomationDirect P Series PAC program

	GE PACSystems RX3i
	Export .xml file from a GE PACSystems or GE Fanuc device

	Schneider Unity Modbus
	Export I/O configuration file for Schneider Unity Modbus

	Siemens S7-1200/S7-1500
	OMRON Sysmac Gateway
	OPC DA
	OPC UA
	Use the Object Finder to select integrated tags
	How integrated tags may be renamed in your project

	OPC Clients and Servers
	OPC UA Client
	Create a new OPC UA connection
	Configure an OPC UA connection to use self-signed certificates
	Configure an OPC UA connection to use CA-signed certificates
	Create a group of redundant OPC connections
	Create a new OPC UA Client worksheet
	List of read/write status codes and messages for OPC UA
	Enable the OPC UA trace log

	OPC XML/DA Client
	Create a new OPC XML/DA connection
	Create a group of redundant OPC connections
	Create a new OPC XML/DA Client worksheet
	List of read/write status messages for OPC XML/DA

	OPC DA 2.05 Client
	Tag Expansion for OPC Clients
	Array Distribution for OPC Clients
	OPC UA Server
	Communication Settings
	Tag Availability
	Runtime Task
	Management

	OPC DA 2.05 Server
	OPC HDA Server

	TCP/IP Client

	Project Security
	About security modes
	About security access levels
	Using the Security System Configuration Wizard
	Configuring server settings for security modes
	Extending the LDAP schema to allow saving of security rights

	Creating and configuring groups
	Creating and configuring users
	Managing an existing security system
	Backing up the security system configuration
	Logging on/off
	Blocking or unblocking a user
	Password Protection of Project Files

	Project Localization
	Add a target language to the Translation Table
	Configure fonts for a target language
	Examples of font configuration

	Set the project's language at startup
	Set the project's language during run time
	Disable translation of selected screen objects
	Configure the advanced translation settings
	Import a legacy translation file into the Translation Table
	About the date format and how to change it

	Debugging Tools
	Watch
	Using the Watch tool
	Opening the Watch page for Mobile Access

	Output
	Configure the log settings for the Output window
	Save log messages from the Output window to a file

	LogWin
	Open the LogWin tool
	Configure the log settings for the LogWin module
	Save log messages from the LogWin tool to a file

	Remote Management
	Enable security in Remote Agent and add users
	Customize Remote Agent's encryption key

	Download your project to the target device
	Run or stop your project on the target device
	Configure Remote Agent to autorun a project

	Thin Clients and Mobile Access
	Thin Clients
	The Underlying Technology
	Examples of Client/Server Architecture
	Configuring the Data Server
	Configuring a web server to host your project pages
	Install the Thin Client software
	Install the Custom Widget Framework on a client station

	Configure and run Secure Viewer
	Customize the Viewer program icon in the taskbar

	Implementing Security
	List of network ports used by this software
	View or disconnect client sessions

	Mobile Access
	Supported Features
	Developing for Mobile Access
	Installation
	Mobile Access web server add-on for IIS
	Turn on IIS for thin client access
	Enable SSL encryption in Microsoft IIS
	Install the Mobile Access web server add-on for IIS

	Mobile Access web server add-on for CGI
	Install and configure Apache for Windows
	Install the Mobile Access web server add-on for CGI

	Configuration
	Configure the web settings for Mobile Access
	Insert a new area in the web interface
	Configure the settings for a selected area
	Configure the global settings for all areas

	Navigating the Mobile Access web interface
	Log on to the Mobile Access web interface
	Use the Alarm window
	Use the Process Values window
	Use the Trend window
	Use the Screens window
	Link directly to a project screen or screen group

	Troubleshooting
	Use the activity log to troubleshoot the Mobile Access web interface
	Use the browser console to view the Mobile Access activity log
	Types of Mobile Access log messages
	Use the ProbeHealth service to test Mobile Access

	View or disconnect client sessions

	Database Interface
	SQL Relational Databases
	Studio Database Gateway
	Manually install Studio Database Gateway
	Manually running Studio Database Gateway
	Database Configuration
	Configuring a Default Database for All Task History
	Support for AVEVA Insight and Historian
	Connect to AVEVA Insight using AVEVA Insight Publisher
	Connect to a Historian database located on-premises

	Database Troubleshooting
	Appendices
	Using ODBC Databases
	Using Microsoft SQL Server
	Using Oracle Databases
	Using Microsoft Access or Microsoft Excel
	Using Sybase
	Using MySQL

	Troubleshooting
	General Troubleshooting
	Frequently Asked Questions
	Proxy Settings
	Configure the proxy settings on a Windows computer or device

	Getting Help
	Help
	Communication Drivers
	License Agreement
	Product Web Site
	Release Notes
	Support
	About

	Tutorial: Building a Simple Project
	Creating a new project
	Specifying the startup screen
	Creating tags
	Creating the main screen
	Drawing the main screen's title
	Drawing a button to open another screen
	Saving and closing the main screen

	Creating the synoptic screen
	Drawing the synoptic screen's title
	Drawing "Date" and "Time" displays
	Placing an "Exit" icon
	Testing the project
	Placing an animated tank
	Placing a level slider
	Drawing a tank selector
	Testing the project

	Configuring the communication driver
	Monitoring device I/O during run time

	Appendix: Security Guidelines
	Securing the Host
	General Guidelines for Securing the Host
	Windows Updates
	ICS Software Updates
	Scanning the Host
	Protecting the Applications and Content on the Host

	Securing the Network
	ICS Networks
	Managing Network Services and Ports
	Securing Communication between the Client and Server

	Cloud-based Systems
	Securing Systems through Authentication and Authorization
	Managing Users and Groups Through Windows
	Managing Users and Groups Through ICS Software

	Contingency Planning
	Auditing and Logging
	Business Continuity Planning
	Disaster Recovery Planning

	Conclusion

	Appendix: Built-in Language
	Logic and arithmetic operators
	String expressions
	How to read function descriptions
	List of available functions
	ActiveX and .NET Control functions
	XGet
	XRun
	XSet

	Arithmetic functions
	Abs
	Div
	Format
	GetBit
	Mod
	Pow
	ResetBit
	Round
	SetBit
	Sqrt
	Swap16
	Swap32
	Trunc

	Database/ERP functions
	DBCursorClose
	DBCursorColumnCount
	DBCursorColumnInfo
	DBCursorCurrentRow
	DBCursorGetValue
	DBCursorMoveTo
	DBCursorNext
	DBCursorOpen
	DBCursorOpenSQL
	DBCursorPrevious
	DBCursorRowCount
	DBDelete
	DBExecute
	DBInsert
	DBSelect
	DBUpdate
	SyncAlarm
	SyncAlarmStatus
	SyncEvent
	SyncEventStatus
	SyncTrend
	SyncTrendStatus

	Date & Time functions
	ClockGetDate
	ClockGetDayOfWeek
	ClockGetTime
	DateTime2Clock
	DateTime2UTC
	GetClock
	GetTimeZone
	GetTimeZoneCount
	GetUTC
	Hour2Clock
	SetSystemDate
	SetSystemTime
	SetTimeZone
	UTC2DateTime

	Email functions
	CnfEmail
	GetStatusSendEmailExt
	SendEmail
	SendEmailExt

	Event Logger functions
	SendEvent

	File functions
	DeleteOlderFiles
	DirCreate
	DirDelete
	DirLength
	DirRename
	FileCopy
	FileDelete
	FileLength
	FileReadFields
	FileReadMessage
	FileRename
	FileWrite
	FileWriteFields
	FileWriteMessage
	FindFile
	FindPath
	GetFileAttributes
	GetFileTime
	GetHSTInfo
	GetLine
	HST2TXT
	HST2TXTIsRunning
	ImportXML
	LookupContains
	LookupGet
	LookupLoad
	PDFCreate
	Print
	RDFileN
	WebGetFile

	FTP functions
	CnfFTP
	FTPGet
	FTPPut
	FTPStatus

	Graphic functions
	AutoFormat
	GetScrInfo
	GetURLParams
	PrintSetup
	PrintWindow
	ResetDecimalPointsTable
	RGBColor
	RGBComponent
	SaveScreenShot
	SetDecimalPoints
	SetDisplayUnit
	SetTagDisplayUnit

	Log Message functions
	Trace

	Logarithmic functions
	Exp
	Log
	Log10

	Logical functions
	False
	If
	Toggle
	True

	Loop functions
	For…Next

	Module Activity functions
	AppActivate
	AppIsRunning
	AppPostMessage
	AppSendKeys
	CleanReadQueue
	CloseSplashWindow
	DisableMath
	EnableMath
	EndTask
	Exec
	ExecIsRunning
	ExitWindows
	IsScreenOpen
	IsTaskRunning
	IsViewerInFocus
	KeyPad
	LogOff
	LogOn
	Math
	PostKey
	Recipe
	Report
	RunGlobalProcedureAsync
	RunGlobalProcedureAsyncGetCurrent
	RunGlobalProcedureAsyncGetStatus
	RunGlobalProcedureOnFalse
	RunGlobalProcedureOnServer
	RunGlobalProcedureOnTrigger
	RunGlobalProcedureOnTrue
	RunVBScript
	SecureViewerReload
	SendKeyObject
	SetAppPath
	SetViewerInFocus
	SetViewerPos
	ShutDown
	StartTask
	TaskUpdateConfig
	ViewerPostMessage

	Multimedia functions
	Play

	Screen functions
	Close
	Open
	OpenPrevious
	ShowInplaceInput
	ShowMessageBox

	Security functions
	BlockUser
	CheckESign
	CheckSecurityLevel
	CreateUser
	ExportSecuritySystem
	GetLastESignUser
	GetSecuritySystemStatus
	GetUserFullName
	GetUserNames
	GetUserPwdAging
	GetUserState
	ImportSecuritySystem
	RemoveUser
	SetPassword
	SetUserGroup
	UnblockUser

	Statistical functions
	Avg
	Max
	Min
	Rand

	String functions
	Asc2Str
	CharToValue
	CharToValueW
	ClassMembersToStrVector
	DecryptData
	EncryptData
	NCopy
	Num
	Str
	Str2Asc
	StrCompare
	StrCompareNoCase
	StrFromInt
	StrFromReal
	StrFromTime
	StrGetElement
	StrLeft
	StrLen
	StrLower
	StrRChr
	StrRight
	StrSetElement
	StrStr
	StrStrPos
	StrTrim
	StrTrimAll
	StrUpper
	ValueToChar
	ValueWToChar

	System Info functions
	DBVersion
	GetAppHorizontalResolution
	GetAppPath
	GetAppVerticalResolution
	GetComputerIP
	GetComputerName
	GetCursorX
	GetCursorY
	GetDisplayHorizontalResolution
	GetDisplayVerticalResolution
	GetHardKeyModel
	GetHardKeySN
	GetIPAll
	GetNetMACID
	GetOS
	GetPerformanceMetric
	GetPrivateProfileString
	GetProductPath
	GetRegValue
	GetRegValueType
	GetServerHostName
	GetTickCount
	InfoAppAlrDir
	InfoAppHstDir
	InfoDiskFree
	InfoResources
	IsActiveXReg
	IsAppChangedOnServer
	NoInputTime
	ProductVersion
	ReloadAppFromServer
	SaveAlarmFile
	SetAppAlarmPath
	SetAppHstPath
	SetDateFormat
	SetKeyboardLanguage
	SetRegValue
	SNMPGet
	SNMPSet
	WritePrivateProfileString

	Tags Database functions
	ExecuteAlarmAck
	ForceTagChange
	GetAlarmCount
	GetAlarmInfo
	GetTagValue
	SetTagValue
	TagsDBAddClass
	TagsDBAddClassMember
	TagsDBAddTag
	TagsDBBeginEdit
	TagsDBEndEdit
	TagsDBGetAlarm
	TagsDBGetClassMember
	TagsDBGetClassMemberCount
	TagsDBGetFirstClass
	TagsDBGetFirstClassMember
	TagsDBGetFirstTag
	TagsDBGetLoadStatus
	TagsDBGetNextClass
	TagsDBGetNextClassMember
	TagsDBGetNextTag
	TagsDBGetPreloadCount
	TagsDBGetTagCount
	TagsDBGetTagProperty
	TagsDBGetTrend
	TagsDBPreload
	TagsDBPreloadWait
	TagsDBRemoveAlarm
	TagsDBRemoveClass
	TagsDBRemoveClassMember
	TagsDBRemoveTag
	TagsDBRemoveTrend
	TagsDBSetAlarm
	TagsDBSetTagProperty
	TagsDBSetTrend
	TagsDBSync

	Translation functions
	Ext
	SetLanguage
	TranslationLoad
	TranslationLookupClose
	TranslationLookupGet
	TranslationLookupLoad

	Trigonometric functions
	ACos
	ASin
	ATan
	Cos
	Cot
	Pi
	Sin
	Tan

	Appendix: VBScript
	VBScript Interfaces in the Software
	Global Procedures
	Graphic Module
	Graphics Script
	Screen Script
	Command animation
	ActiveX Events

	Background Task
	Script worksheet
	Startup Script worksheet

	Language Reference
	Operators
	Constants
	Objects and Collections
	Properties
	Statements
	Methods
	Functions
	Keywords
	Errors

	Tips & Tricks
	VBScript Editor IntelliSense
	VBScript Compared to VBA
	Screen Events
	MsgBox and InputBox Functions
	VBScript Procedures
	Creating Constants
	Declaring Variables
	Scope and Lifetime of Variables
	How Boolean tags are handled in VBScript
	Writing Real Values to Integer Tags
	Precedence of VBScript Operators
	Logical Operator NOT
	Using Conditional Statements
	Looping Through Code
	Support for ActiveX Controls

	Debugging VBScript
	About the Debug tab
	Set break points in your VBScript code
	Run your project in Debug mode
	Observe the current state in the Watch window
	Step through your VBScript code

