
ASIC-200 Version 5.0

integrated industrial control software

Language Reference

Language Reference: 139183(C)

Published by: Pro-face
750 North Maple Road
Saline, MI 48176

Copyright © 2007 Xycom Automation, LLC. All rights reserved.

No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by information
storage and retrieval system, without the permission of the publisher, except where
permitted by law.

WARNING: The Software is owned by Xycom Automation, LLC and is protected
by United States copyright laws and international treaty provisions.
Unauthorized reproduction or distribution of this program, or any portion of it,
may result in severe penalties.

ASIC-100® is a registered trademark of Xycom Automation, LLC.
ASIC-200 is a registered trademark of Xycom Automation, LLC.
Windows® and Windows NT® are registered trademarks of Microsoft Corporation.

ASCI-200 release 5.0 documents include:

Getting Started 137586

User Guide 139837

Language Reference 139183

HMI Guide 139168

Revision Description Date

 C Name change, correct where applicable with document 4/07

Note: the current revisions of each of these documents should be used.

Note: Features available on your system depend on product version
 and installed options (toolkits).

Owner
Rectangle

Owner
Rectangle

ASIC-200 Language Reference Contents • i

Contents

Contents i

Introduction 1
Identifiers... 1
Literals... 2

Numeric Literals.. 2
Character String Literals ... 2
Time Duration Literals .. 3
Time of Day and Date Literals .. 3

Data Types... 4
BOOL (Boolean)... 4
BYTE .. 5
DATE.. 5
DINT (Double Integer) ... 5
DWORD (Double WORD) ... 5
INT (Integer) ... 6
REAL .. 6
STRING .. 6
TIME... 6
TOD (TIME_OF_DAY) ... 7
UINT (Unsigned Integer) .. 7
WORD .. 7

Data Type Overrange/Rollover Conditions ... 7
Type Conversion ... 8

BOOL.. 8
BYTE .. 9
WORD (DWORD).. 10
REAL (LREAL).. 10
INT (SINT, DINT).. 11
UINT (USINT, DINT) .. 12
TOD, DATE, DATE_AND_TIME... 13
TIME... 13
STRING .. 13

Generic Data Types ... 13
User-Defined Data Type.. 14

ii • Contents ASIC-200 Language Reference

Arrays ..14
Pointer Symbols...15
System Symbols ..17

Predefined System Symbols..17
Run-Time Symbols ...18
Keywords ..19

Functions and Function Blocks ...22
Function Execution Control...22
RLL Diagrams ...23
Structured Text ..23
Instruction List...24

Bit String 27
Introduction ...27
AND ..28
NOT...29
OR ...30
Exclusive OR (XOR)...31
Rotate Left (ROL) ...32
Rotate Right (ROR) ...33
Shift Left (SHL) ..34
Shift Right (SHR) ..35

Character String 37
Introduction ...37
Concatenate ...38
Delete...39
Find..40
Insert ..41
Left ..42
Length..43
Middle ...44
Replace ..45
Right ..46

Comparison 47
Introduction ...47
Equal (EQ)...48
Greater Than or Equal (GE) ..49
Greater Than (GT)...50
Less Than or Equal (LE) ...51
Less Than (LT) ..52
Not Equal (NE)..53

Conversion 55

ASIC-200 Language Reference Contents • iii

Introduction ... 55
Byte Array to String (BATOS).. 56
Date to String (DateToString) ... 57
Integer to String (ITOA).. 58
Real to Integer (R2INT) .. 59
Real to String (RTOA) .. 60
RGB to DWORD... 61
String to Byte Array (STOBA).. 62
String to Date (StringToDate) ... 63
String to Integer (ATOI).. 64
String to Real (ATOR) .. 65
String to TOD (StringToTOD).. 66
Time of Day to String (TODToString).. 67
Truncate (TRUNC).. 68

Counters and Timers 69
Introduction ... 69
Using Counter and Timer Function Blocks ... 69
Setting a Timer Preset ... 70

To enter the duration directly: ... 70
Count Down (CTD)... 71
Count Up (CTU).. 74
Count Up/Down (CTUD) .. 77
Timer Off Delay (TOF) ... 81
Timer On Delay (TON) ... 84
Timer Pulse (TP) ... 87

Edge Detection 91
Introduction ... 91
Falling Edge Trigger (F_TRIG) .. 92
Rising Edge Trigger (R_TRIG)... 93

Extended PID 95
Introduction ... 95
EX_PID ... 96

Extended Timers 101
Introduction ... 101
Extended Timer Off Delay (XTOF) .. 102
Extended Timer On Delay (XTON) .. 104
Extended Timer Pulse (XTP) .. 106

File 109
Introduction ... 109

iv • Contents ASIC-200 Language Reference

File Control Block Variable ..109
File Status Variables..110
File Error Codes ..111

Append File ...112
Close File...113
Copy File ...114
Delete File ...115
New File ..116
Open File ...117
Read File..118
Rewind File ...120
Write File...121

Mathematical 123
Introduction ...123
Absolute Value (ABS)...124
Addition (ADD)...125
Division (DIV)...126
Exponent (EXPT) ..127
Modulus (MOD)..128
Move (MOVE) ..129
Multiplication (MUL)..130
Negation (NEG)...131
Square Root (SQRT) ...132
Subtraction (SUB) ...133

Miscellaneous 135
Introduction ...135
Abort All..136
Change MMI Screen..137
Display Message..138
Initialize Array...139
Message Window ..140

PMAC 2 Functions 141
Introduction ...141
ClosedLoopEStop..142

Selection 143
Introduction ...143
Maximum (MAX)..144
Minimum (MIN)..145

System Objects 147

ASIC-200 Language Reference Contents • v

Introduction ... 147
PID Loop Control (PID).. 148
Program Control Block (PRGCB)... 152

Controlling the Flow of RLL and Structured Text Application Programs 153
Timer (TMR)... 155

TCP/IP Sockets 157
Introduction ... 157
Socket Addressing... 159
Socket Types ... 159
Socket Buffers ... 159
TCP/IP Sockets API Summary.. 159
IP Address ... 160
TCP_APPEND_datatype .. 162
TCP_CLEAR_SEND_BUFFER ... 164
TCP_CLOSE... 165
TCP_CONNECT... 166
TCP_CREATE .. 168
TCP_EXTRACT_datatype.. 170
TCP_GET_EXTRACT_ERROR .. 172
TCP_RECV_BUFFER.. 173
TCP_RESET_RECV_BUFFER.. 175
TCP_SEND_BUFFER .. 176
TCP_START_SOCKET_SERVICE... 177
WAIT_TCP_CONNECT .. 178
WAIT_TCP_CLOSE... 180
WAIT_TCP_CREATE.. 181
WAIT_TCP_RECV_BUFFER.. 182
WAIT_TCP_SEND_BUFFER.. 184
TCP/IP Sockets API Error Codes.. 186
Windows Sockets 2.0 Error Codes .. 187

Trigonometric and Logarithmic 195
Introduction ... 195
Arc Cosine (ACOS)... 196
Arc Sine (ASIN).. 197
ARC Tangent (ATAN) .. 198
Cosine (COS) .. 199
Exponential (EXP) .. 200
Natural Log (LN)... 201
Logarithm (LOG) .. 202
Sine (SIN).. 203
Tangent (TAN) .. 204

Index 205

vi • Contents ASIC-200 Language Reference

ASIC-200 Language Reference Introduction • 1

Introduction

This document provides language reference information. It contains general
information on identifiers, data types, and symbols, and a description of each
function and function block and how to use the functions and function
blocks in each programming language.

Identifiers
Identifiers are used for symbol names. Identifiers have the following
characteristics:

• Consist of upper and lower case letters (A-Z and a-z), numerals (0-9),
and the underscore (_) character.

• Must begin with a letter or single underscore character.

• Case is considered.

• For uniqueness of an identifier, every character position is considered.

• Cannot contain multiple, sequential underscore characters.

• Cannot contain spaces.

• A maximum of 100 characters are allowed.

• Cannot be a system reserved keyword. Refer to Keywords for a list of
keywords.

• Must be unique within its scope.

Examples of valid user identifiers are:

_Sym1

Sym_Two_A

SYM (SYM and sym are considered unique identifiers)

Sym

A (A and AA are considered unique identifiers)

AA

Examples of invalid user identifiers are:

1A (begins with a numeral)

2 • Introduction ASIC-200 Language Reference

Sym___Two (multiple sequential underscores)

Sym Two (contains a space)

Sym&One (contains an invalid character)

END (a reserved identifier)

Literals
Literals are used to define or represent data values. For example, literals can
be used as inputs to functions or function blocks, can be used to assign
values to variables and constants, and used within program statements.
There are four types of literals: numeric, character string, time duration, and
time-of-day and date.

Numeric Literals
Numeric literals are either integer or real. Integer literals can be decimal,
base 2, base 8, or base 16. Examples of numeric literals:

0 456 +34 -7_000 (integer literals)

0.0 0.11 (real literals)

2#1010_1010 (170 decimal) (base 2 literal)

8#252 (170 decimal) (base 8 literal)

16#AA (170 decimal) (base 16 literal)

FALSE 0 TRUE 1 (Boolean literal)

Notes:
1. A numeric literal can contain single underscore (_) characters and do not

affect the value of the literal.
2. Real literals contain a decimal point.
3. Decimal based numeric literals can contain a leading + or - sign.
4. The keywords FALSE and TRUE correspond to Boolean 0 and 1,

respectively.

Character String Literals
A string literal is a string of 0 or more characters delimited by single
quotation marks ('). The $ (dollar sign) character has a special use in a string
literal. If it is followed by two hexadecimal digits, it is interpreted as the
hexadecimal representation of the eight-bit character code. It also is used in
two-character strings to represent the dollar sign ($), single quote (') and
specified unprintable characters.

Examples of character string literals:

'' (the empty string)

'XYZ' (a three-character string)

ASIC-200 Language Reference Introduction • 3

' ' (a space)

'$41 $42 $43' (a five-character string 'A B C')

‘$$’ (dollar sign)

‘$’ ’ (single quote)

‘$L’ or ‘$l’ (line feed)

‘$N’ or ‘$n’ (new line)

‘$P’ or ‘$p’ (form feed)

‘$R’ or ‘$r’ (carriage return)

‘$T’ or ‘ $t’ (tab)

Time Duration Literals
Time duration literals are prefixed by the keyword T#, TIME#, t#, or time#
and followed by one or more units of time. Examples of time duration
literals:

T#1D1H1M1S (1 day, 1 hour, 1 minute, 1 second)

Time#1d_1h_1m_1s (same as preceding)

time#25h1ms (25 hours, 1 millisecond)

t#1m_2.5s (1 minute, 2.5 seconds)

Notes:
1. The time units can be written in upper or lower case. D, d=days; H,

h=hours; M, m=minutes; S, s=seconds; and MS, ms=milliseconds.

2. An underscore (_) can be used to separate the time duration units.

3. The most significant unit of a time duration literal can overflow.

4. The least significant unit of a time duration literal can be written as a real
number (with no exponent).

Time of Day and Date Literals
Time of day and date literals are prefixed by one of the following keywords
and followed by time of day and date in the appropriate format.

DATE#YYYY-MM-DD (date only)

D#YYYY:MM:DD (same as previous)

TIME_OF_DAY#HH:MM:SS.MS (time only)

TOD#HH:MM:SS.MS (same as previous)

DATE_AND_TIME#YYYY-MM-DD-HH:MM:SS.MS (date and time)

DT#YYYY-MM-DD-HH:MM:SS.MS (same as previous)

4 • Introduction ASIC-200 Language Reference

Examples of time of day and date literals:

DATE#1998-02-13

D#1998-02-13

TIME_OF_DAY#12:00:00

TOD#12:00:00.01

DATE_AND_TIME#1998-02-13-12:00:00.01

Note: The date and time keywords can be abbreviated. DATE or D;
TIME_OF_DAY or TOD; DATE_AND_TIME or DT.

Data Types
Data types must be assigned to symbols (variables and constants).
Characteristics of the elementary data types are given in the following
paragraphs. Generic data types are described in Error! Reference source not
found.. User-defined data types are described in User-Defined Data Type.

In the following descriptions:

• Generic type gives the generic types for which this data type can be
substituted.

• Size is the amount of memory that one instance of the data type occupies
(for example, the single-bit Boolean type is really stored as a byte).

• Range is the range of values an instance of this type can take on.

• Default is the default initial value given to an instance of this type if an
initial value is not otherwise specified.

BOOL (Boolean)
A BOOL can have one of two states: 0 or 1, corresponding to FALSE or
TRUE.
Generic type ANY, ANY_BIT.
Size 1 bit.
Range 0 (FALSE), 1 (TRUE).
Default value 0

ASIC-200 Language Reference Introduction • 5

BYTE
A BYTE is a bit string of length 8.
Generic type ANY, ANY_BIT.
Size 1 byte.
Range Not applicable.
Format

7 0

LSBMSB

Default value 00000000

DATE
This data type is used to represent a date (only) in the format YYYY-MM-
DD.

If you create an expression of DATE data types, all values must be of the
same type, and the result must be a date.
Generic type ANY, ANY_DATE.
Size 4 bytes
Range -
Default value D#0001-01-01

DINT (Double Integer)
The DINT is a signed integer data type that is composed of one or more of
the digits (0-9) and cannot contain a decimal point.
Generic type ANY, ANY_NUM, ANY_INT.
Size 4 bytes.
Range -2147483648 to +2147483647.
Default value 0

DWORD (Double WORD)
A DWORD is a bit string of length 32.
Generic type ANY, ANY_BIT.
Size 4 bytes.
Range Not applicable.
Format

31 0
LSBMSB

Default value 0

6 • Introduction ASIC-200 Language Reference

INT (Integer)
The INT is a signed integer data type that is composed of one or more of the
digits (0-9) and cannot contain a decimal point.
Generic type ANY, ANY_NUM, ANY_INT.
Size In an enhancement to the IEC 1131-3 specification, the INT is 4

bytes.
Range -2147483648 to +2147483647.
Default value 0

REAL
A REAL number data type is a 64-bit value composed of one or more of the
digits (0-9), is signed, and contains a decimal point. (When you communicate
with the run-time engine with a Fast DDE interface, 64 bit REAL data types
are transmitted at 32-bit precision.)
Generic type ANY, ANY_NUM, ANY_REAL.
Size 8 bytes.
Range -3.402823 E38 to -1.401298 E-45 (negative),

+1.401298 E-45 to +3.402823 E38 (positive).
Default value 0.0

STRING
ASCII character string of variable length.
Generic type ANY.
Size 64 bytes.
Default value '' (empty string)
Format String of ASCII characters in single quotation marks. Example:

‘ This is a valid string. ’

TIME
This data type is used to represent a time duration in the format
T#[nD][nH][nM][nS][nMS], where n is the number of Days, Hours, Minutes,
Seconds, or Milliseconds.

If you create an expression of TIME data types, all values must be of the
same type, and the result must be a time.
Generic type ANY.
Size -
Range -
Default value T#0S
Format

ASIC-200 Language Reference Introduction • 7

TOD (TIME_OF_DAY)
This data type is used to represent the time of day (only) in the format
HH:MM:SS.

If you create an expression of TOD data types, all values must be of the same
type, and the result must be a TOD.
Generic type ANY, ANY_DATE.
Size 4 bytes.
Range 00:00:00 to 23:59:59
Default value TOD#00:00:00
Format HH:MM:SS (hours:minutes:seconds).

UINT (Unsigned Integer)
A UINT is an unsigned integer data type that is composed of one or more of
the digits (0-9) and cannot contain a decimal point.
Generic type ANY, ANY_NUM, ANY_INT.
Size 2 bytes.
Range 0 to 65535.
Default value 0

WORD
A WORD is a bit string of length 16.
Generic type ANY, ANY_BIT.
Size 2 bytes.
Range Not applicable.
Format

15 0
LSBMSB

Default value 0

Data Type Overrange/Rollover Conditions
In general, allowance should be made to prevent data value overrange or
rollover conditions. What is meant by overrange is, for example, assigning a
bit string of WORD type length to a variable of type BYTE or incrementing a
variable beyond its range or bit string length (rollover). This could occur
implicitly if, for example, adding two BYTE values and assigning the result
to another BYTE variable. In this case, whether data type overrange occurs
depends on the (run-time) values of the two integers. To avoid overrange in
this case, the result could be assigned to a WORD.

8 • Introduction ASIC-200 Language Reference

Note: There is no compile-time or run-time indication of potential or actual
data type overrange/rollover conditions. You must account for this in your
program.

BOOL BOOLs are either 0 if their assigned value is 0 or 1
otherwise.

BYTE
WORD
DWORD

REAL
DINT
INT
SINT
UDINT
UINT
USINT

In general, overrange behavior of numeric (ANY_NUM)
variables is to assume the value of the low-order bytes of the
assignment, up to their own data size. Binary type (ANY_BIT)
behavior is obvious. In other cases, the result depends on
whether the data type is signed or unsigned, etc.

STRING If a STRING data type variable is assigned a string
exceeding its length, right-most characters exceeding its
string length are truncated.

Type Conversion
The compiler performs implicit data type conversion automatically. The user
may perform explicit type conversion using the standard MOVE function.
The following sub-sections describe the results of type conversion.

Note: In certain cases, the MOVE function and the assignment statement in
structured text do not behave the same. In particular, an attempt to MOVE a
REAL to a BOOL results in a compiler error; however, assigning a REAL to a
BOOL (BoolVar:=RealVar) in structured text does not result in a compiler
error.

BOOL
A variable of type BOOL can be assigned to any numeric variable
(ANY_NUM). An Illegal type conversion ERROR is issued by the compiler
for any other BOOL type assignments.

ASIC-200 Language Reference Introduction • 9

For assignments to BOOL variables, refer to the following table.

Bool01 := BoolA; Bool01 follows BoolA.
Bool01 := ByteA;
Bool01 := WordA;
Bool01 := DWordA;
Bool01 := RealA;
Bool01 := DIntA;
Bool01 := IntA;
Bool01 := SIntA;
Bool01 := UDIntA;
Bool01 := UIntA;
Bool01 := USIntA;

Bool01 = 0 if the numeric variable evaluates to 0;
otherwise, Bool01 = 1.

Bool01 := TODA; Bool01 = 0 if TODA :=TOD#00:00:00;
otherwise Bool01 = 1.

Bool01 := DateA; Bool01 = 0 if DateA := DATE#1970-01-01;
otherwise Bool01 = 1.

Bool01 := DTA; Bool01 = 0 if DTA := DT#1970-01-01-00:00:00;
otherwise Bool01 = 1.

Bool01 := TimeA; Bool01 = 0 if TimeA := T#000.0ms;
otherwise Bool01 = 1.

Bool01 := StringA; Compiler issues Illegal type conversion ERROR

BYTE
A variable of type BYTE can be assigned to any numeric variable
(ANY_NUM), as conditioned by overrange. A BYTE can also be assigned to a
variable of type TIME; the result is entered into the TIME variable as
microseconds. An Illegal type conversion ERROR is issued by the compiler
for any other BYTE type assignments.

For assignments to BYTE variables, refer to the following table. WORD
(DWORD) type assignments are similar with adjustments made for data size.

Byte01 := BoolA; Byte01 follows BoolA.
Byte01 := ByteA; Byte01 follows ByteA.
Byte01 := WordA;
Byte01 := DWordA;

Byte01 = the lower byte of the WORD (DWORD, LWORD)
variable.

10 • Introduction ASIC-200 Language Reference

Byte01 := RealA; If the ANY_REALvariable is positive, then Byte01 = the value
of the lowest, non-decimal byte of the ANY_REAL variable.
If the ANY_REAL variable is negative, then Byte01 = the 1's
complement value of the lowest, non-decimal byte of the
ANY_REAL variable.

Byte01 := DIntA;
Byte01 := IntA;
Byte01 := SIntA;
Byte01 := UDIntA;
Byte01 := UIntA;
Byte01 := USIntA;

If the ANY_INT variable is positive (or unsigned), then Byte01
= the value of the lowest byte of the ANY_INT variable.
If the ANY_INT variable is negative, then Byte01 = the 1's
complement value of the lowest byte of the ANY_INT
variable.

Byte01 := TODA;
Byte01 := DateA;
Byte01 := DTA;

No meaningful result. At compile time, the compiler will issue
a warning.

Byte01 := TimeA; Byte1 = the number of seconds in the TIME variable, as
conditioned by overrange.

Byte01 := StringA; Compiler issues Illegal type conversion ERROR

WORD (DWORD)
A variable of type WORD can be assigned to any numeric variable
(ANY_NUM), as conditioned by overrange. A WORD can also be assigned to
a variable of type TIME; the result is entered into the TIME variable as
microseconds. An Illegal type conversion ERROR is issued by the compiler
for any other WORD type assignments.

For assignments to WORD variables, similar rules apply as with BYTE
assingments, taking into consideration the WORD length. Refer to BYTE.

REAL (LREAL)
A variable of type REAL can be assigned to any numeric variable
(ANY_NUM), as conditioned by overrange. A REAL can also be assigned to
a variable of type TIME; the result is entered into the TIME variable as
microseconds. An Illegal type conversion ERROR is issued by the compiler
for any other REAL type assignments.

For assignments to REAL variables, refer to the following table. LREAL
variable assignments are similar with adjustment made for data size.

ASIC-200 Language Reference Introduction • 11

Real01 := BoolA;
Real01 := ByteA;
Real01 := WordA;
Real01 := DWordA;
Real01 := RealA;
Real01 := DIntA;
Real01 := IntA;
Real01 := SIntA;
Real01 := UDIntA;
Real01 := UIntA;
Real01 := USIntA;

Real01 assumes the value of the numeric variable,
conditioned by round off or overrange.

Real01 := TODA;
Real01 := DateA;
Real01 := DTA;

No meaningful result. At compile time, the compiler will issue
a warning.
(The number of microseconds since 1970-01-01-00:00:00 to
the current date/time.)

Real01 := TimeA; Real01 = the number of seconds in the TIME variable, as
conditioned by overrange.

Real01 := StringA; Compiler issues Illegal type conversion ERROR

INT (SINT, DINT)
A variable of type INT (SINT, DINT) can be assigned to any numeric variable
(ANY_NUM), as conditioned by overrange if applicable. An INT can also be
assigned to a variable of type TIME; the result is entered into the TIME
variable as microseconds. An Illegal type conversion ERROR is issued by the
compiler for any other INT type assignments.

For assignments to INT variables, refer to the following table. Other integer
type assignments are similar with adjustments made for their data size.

Int01 := BoolA; Int01 = BoolA.
Int01 := ByteA; Int01 = ByteA.
Int01 := WordA;
Int01 := DWordA;

Int01 = the lower two bytes of the WORD (DWORD)
variable, with the most significant bit the sign bit.

Int01 := RealA; Int01 = the lower two, non-decimal bytes of the REAL
variable, with the most significant bit as the sign bit.

Int01 := DIntA;
Int01 := IntA;
Int01 := SIntA;

Int01 = the signed INT variable conditioned by overrange.

12 • Introduction ASIC-200 Language Reference

Int01 := UDIntA;
Int01 := UIntA;
Int01 := USIntA;

Int01 = the unsigned INT variable conditioned by overrange,
but with the most-significant bit taken as the sign bit.

Int01 := TODA;
Int01 := DateA;
Int01 := DTA;

No meaningful result. At compile time, the compiler will issue
a warning.

Int01 := TimeA; Int01 = the number of seconds in the TIME variable, as
conditioned by overrange.

Int01 := StringA; Compiler issues Illegal type conversion ERROR

UINT (USINT, DINT)
A variable of type UINT (USINT, UDINT) can be assigned to any numeric
variable (ANY_NUM), as conditioned by overrange. A UINT can also be
assigned to a variable of type TIME; the result is entered into the TIME
variable as microseconds. An Illegal type conversion ERROR is issued by the
compiler for any other UINT type assignments.

For assignments to unsigned UINT variables, refer to the following table.
Other unsigned integer type assignments are similar with adjustments made
for data size.

UInt01 := BoolA;
UInt01 := ByteA;
UInt01 := WordA;
UInt01 := DWordA;

UInt01 = the BOOL, BYTE, or WORD (DWORD) value,
conditioned by overrange.

UInt01 := RealA; If a positive REAL type is assigned to an unsigned integer
type, then it assumes the value represented by the whole-
number portion least-significant bytes, up to its own byte
size.
If a negative REAL type is assigned to an unsigned integer
type, then it assumes the value represented by the 1's
complement of the whole-number portion least-significant
bytes, up to its own byte size.

UInt01 := DIntA;
UInt01 := IntA;
UInt01 := SIntA;

If a positive signed integer type is assigned to an unsigned
integer type, then the unsigned integer type variable
assumes the value represented by the least-significant bytes
of the signed type variable, up to its own byte size.
If a negative signed integer type is assigned to an unsigned
integer type, then the unsigned integer type variable
assumes the value represented by the 1's complement of the
least-significant bytes of the signed integer type variable, up
to its own byte size.

ASIC-200 Language Reference Introduction • 13

UInt01 := UDIntA;
UInt01 := UIntA;
UInt01 := USIntA;

UInt01 = the unsigned integer value, conditioned by
overrange.

UInt01 := TODA;
UInt01 := DateA;
UInt01 := DTA;

No meaningful result. At compile time, the compiler issues a
warning.

UInt01 := TimeA; UInt01 = the number of seconds in the TIME variable, as
conditioned by overrange.

UInt01 := StringA; Compiler issues Illegal type conversion ERROR

TOD, DATE, DATE_AND_TIME
Variables of these data types can only be assigned meaningfully to a variable
of a like type (i.e., TOD_A := TOD_B, etc.). However a variable of any of
these types can also be assigned to any numeric type (BOOL, BYTE, WORD,
INT, REAL, etc.). The compiler issues a WARNING for these type
assignments.

TIME
A variable of type TIME can be assigned to any numeric variable
(RealVar:=TimVar). The result will be the number of seconds in the TIME
variable, as conditioned by overrange. If assigning a TIME variable to a
BOOL variable, the BOOL variable will equal 0 if the TIME variable equals
T#000.0ms; otherwise, the BOOL variable will equal 1. The compiler issues
an Illegal type conversion error for any other TIME type assignments.

Any numeric variable (ANY_NUM, with the exception of BOOL) can be
assigned to a TIME variable (TimeVar:=RealVar), with the time result in
seconds.

STRING
A variable of type STRING can only be assigned to another variable of type
STRING. The compiler issues an Illegal type conversion error for any other
STRING type assignments.

Generic Data Types
The following table shows the data type and generic type hierarchy. The
generic types are those prefixed by ANY_ and are used in the function or
function block descriptions where applicable (instead of detailing a long list
of data types).

For example, if a function input accepts a data type of ANY_NUM, then a
symbol having a data type of REAL, any of the integer types (INT, DINT,

14 • Introduction ASIC-200 Language Reference

etc.), or any of the bit string types (WORD, DWORD, etc.) can be assigned to
the function input. If a function input accepts a data type of ANY_BIT, then
only a symbol having a data type of WORD, DWORD, etc. can be assigned to
the function input.

User-Defined Data Type
For more sophisticated data handling, you can create your own structured
data types. A structure can contain several members of different base types
or user-defined structured types. Consider a user-defined structure named
UserStructure01 having and integer type USInt member, a Boolean type
USBool, and a string type USString. The individual members can be accessed
in the following manner:

UserStructure01.USInt:=101;
UserStructure01.USBool:= TRUE;
UserStructure01.USString:="ABC";

User-defined types are valid anyplace that accepts an ANY or USER-
DEFINED data type. Refer to Error! Reference source not found. for more
information.

Arrays
To access a particular element of an array, enter the symbol name followed
by square brackets with the number of the element you wish to access. For
example to access the fifth element of an array symbol called Myarray you
would type Myarray[5]. This is assuming you have defined the lower bound
of the array as 1. You can also index into an array by placing a symbol name
of type INT inside the square brackets.

ASIC-200 Language Reference Introduction • 15

Pointer Symbols
Structured Text has two pointer operators: the pointer reference & operator
and the pointer dereference * operator. These operators are used in indirect
addressing operations.

In programming languages, data values are typically referred to by symbolic
name. This is known as direct addressing. The data value is given a symbolic
name and that symbolic name is used to directly access that data value.

X := Y;
The data value known as X is assigned the value of the Y data value.

Indirect addressing is a common paradigm in programming languages.
When using indirect addressing, the symbolic name refers to the location
where the data value is stored. These indirect symbols are commonly called
pointer symbols. To get the actual data value using indirect addressing, the
symbolic name of the pointer symbol is used to obtain the location of the
data value, then the location of the data value is used to get the actual data
value (an indirect operation).

If pVar1 is a pointer symbol, then in the following assignment, pVar1 is
assigned the location of the X data value.

pVar1 := & X;
If pVar1 is a pointer symbol, then in the following assignment, Y is assigned
the value contained in Var1, since pVar1 contains the location of Var1.

Y := * pVar1;
If pVar1 is a pointer symbol, then in the following assignment,Var1 is
assigned the value contained in Y.

* pVar1 := Y;
Pointer Notes
1. When a pointer symbol is defined, it is defined as a pointer to a symbol

of a specific data type (REAL, INT, STRING, etc.). For example, the
pointer symbol pVar1 could be assigned the location of any symbol of its
data type.

2. As with other symbols, pointer symbols are defined in the Symbol
Manager.

3. Pointers to standard data types and user structures can be defined.
Pointers to function blocks and system objects cannot be defined.

4. A pointer symbol can be substituted for a symbol of the same base type
by prefixing it with the dereference operator *. (*pVarInt1 = VarInt1,
provided the assignment pVarInt1:=&VarInt1 has been performed.)

5. A pointer to a structure can be used directly in place of the structure
name.

16 • Introduction ASIC-200 Language Reference

Assume a user structure UserStruct1 is defined and pStruct1 is defined
as a pointer to this user structure.

For user structure symbols, the name of the user structure (in this case
UserStruct1) is a pointer to the user structure data values. However, the
user structure name can never be assigned to a different location, it will
always point to the user structure.

pStruct := UserStruct1;
pStruct is assigned the location of UserStruct1.

pStruct.intMember1 := VarInt1;
The intMember1 member of UserStruct1 is assigned the value of VarInt1.

6. A pointer that is assigned an address in an array (e.g., pInt:=
&intArray[5];) can be used with the array index operator (pInt[Index]) to
index into the array. This index starts with 0 (the array element pointed
to by the pointer) and continues to the end of the array. For example:

intArray is defined as an array of ten integers (ARRAY[1..10])
pInt is defined as a pointer to integer type
Then:
pInt:= &intArray[5];
pInt[0]:= 0; (*intArray[5]*)
pInt[5]:= 5; (*intArray[10]*)

7. The location of a pointer symbol can be initialized in a MOVE function
block. The output of the MOVE function block is the pointer symbol to
be initialized. The input of the MOVE function block is either another
pointer symbol or a direct symbol preceded by the pointer reference
operator &.

8. Pointers cannot be passed into FILE functions, bit array functions (SHL,
AND_BITS, etc.), and STRING_TO_ARRAY functions.

The following figure shows the definition of several pointer types.

For more examples of using pointers, refer to Structured Text Programming.

ASIC-200 Language Reference Introduction • 17

System Symbols

Predefined System Symbols
The system software automatically creates the following symbols that can be
used with application programs.

Symbol Description
TODAY Contains the current system date.

The TODAY system symbol is a DATE data type that contains
the current system date and can be used to determine when
an event takes place. The following operators can be used
with the TODAY symbol: EQ, LT, GT, LE, GE, and NE. Use
the assignment statement or MOVE command to define a
value for TODAY. Use the ADD command to add a time
duration to TODAY.

18 • Introduction ASIC-200 Language Reference

Symbol Description
NOW Contains the current system time.

The NOW system symbol is a TOD data type that contains the
current system time and can be used to determine when an
event takes place. The following operators can be used with
the NOW symbol: EQ, LT, GT, LE, GE, and NE. Use the
assignment statement or MOVE command to define a value
for NOW. Use the ADD command to add a time duration to
NOW.

NULL Used to set a pointer symbol to a null value or to compare a
pointer symbol (equal or not equal) to a null value.

TMR Variables These variables contain status information for the TMR data
type.

Counter Variables These variables contain status information for RLL counters
(CTD, CTU, and CTUD). These symbols are Local to the
application program.

Timer Variables These variables contain status information for RLL timers
(TOF, TON, and TP). These symbols are Local to the
application program.

"stepname".X Contains the active/inactive status of an SFC step. These
symbols are Local to the application program.

"stepname".T Contains the elapsed execution time of an SFC step. These
symbols are Local to the application program.

Motion Control These variables contain status information for the axis,
axis variables group, program control, and spindle

File Control Block These variables contain status information for file operations.

Program Control These variables contain the status information for the PRGCB
data type.

Run-Time Symbols
The following symbols are automatically created by the system software.
These symbols are accessible from the Symbol Manager or the Watch
Window and can be used in user application programs.

Symbol Name Description
RT_ERROR (INT) Math errors:

0 = no error
1 = divide by zero
2 = negative square root
RT_ERROR must be cleared by the user.

ASIC-200 Language Reference Introduction • 19

Symbol Name Description
RT_FIRST_SCAN (BOOL) set to TRUE on the first scan of the first program

running in the ASIC run-time engine. After all programs
are aborted, RT_FIRST_SCAN will be set again for the
first scan of the first program to run.

RT_SCAN_OVERRUN (BOOL) set to TRUE when I/O scan + logic scan exceed
scan rate.

RT_MAX_SCAN (REAL) duration in milliseconds of maximum run-time
engine scan.

RT_LAST_SCAN (REAL) duration in milliseconds of last runtime engine
scan.

RT_AVG_SCAN (REAL) duration in milliseconds of average runtime
engine scan (runtime scan= logic + I/O + overhead).
Rolling average calculated over the last 100 scans.

RT_LOGIC_MAX (REAL) duration in milliseconds of maximum logic scan.

RT_LOGIC_LAST (REAL) duration in milliseconds of last logic scan.

RT_LOGIC_AVG (REAL) duration in milliseconds of average logic scan.
Rolling average calculated over the last 100 scans.

RT_IO_MAX (REAL) duration in milliseconds of maximum I/O scan.

RT_IO_LAST (REAL) duration in milliseconds of last I/O scan.

RT_IO_AVG (REAL) duration in milliseconds of average I/O scan.
Rolling average calculated over the last 100 scans.

RT_MEM_PCT (REAL) contains remaining percentage of system RAM
(heap space) allocated for the programmable control
system software.

RT_LOW_BATTERY (BOOL) low battery signal from UPS.

RT_POWER_FAIL (BOOL) power fail signal from UPS.

RT_SCAN_RATE (REAL) configured scan rate of (in milliseconds) as set in
the active configuration.

Keywords
The identifiers listed in the following table are reserved system symbols
(keywords). Do not create user symbols using these identifiers. Note that all
system symbols are in uppercase letters. This list is subject to change on
future releases of the product. To avoid future conflicts, user created symbols
should be of mixed case or lower case.

ABORT_ALL ABS AC

ACCEL ACOS ACTION

ADD ADD_NOFLY AND_SLOWFLY

AND AND_BITS ANDN

ANDT ANDTN ANY

20 • Introduction ASIC-200 Language Reference

ANY_BIT ANY_DATE ANY_INT

ANY_NUM ANY_REAL APPENDFILE

ARRAY ARRAY_TO_STRING AS

ASIN AT ATAN

AXIS AXISGRP AXSJOG

BCD_TO_INT BEGIN BEGIN_IL

BEGIN_RS274 BOOL BREAK

BY BYTE CASE

CAL CALC CALCN

CD CLK CLOSEFILE

CONCAT CONFIGURATION CONSTANT

COPYFILE COS CTD

CTU CTUD CU

CV D DATE

DATE_AND_TIME DELETE DELETEFILE

DINT DIV DO

DS DSPMSG DT

DWORD ELSE ELSEIF

EN END END_ACTION

END_CASE END_CONFIGURATION END_FOR

END_FOR_NOWAIT END_FUNCTION END_FUNCTION_BLOCK

END_IF ENDIF END_IL

END_RS274 ENO END_PROGRAM

END_REPEAT END_RESOURCE END_STEP

END_STRUCT END_TRANSITION END_TYPE

END_VAR END_WHILE END_WHILE_NOWAIT

EQ ESTOP ET

EXIT EXP EXPT

F FALSE FB

F_EDGE FILE FIND

F_EDGE FNAME FOR

FROM F_TRIG FTYPE

FUNCTION FUNCTION_BLOCK G

GE GLOBAL GOTO

GT H I

IF IN IN1

IN2 INCLUDE INIT

INITIAL_STEP INSERT INT

INTERVAL INT_TO_BCD INT_TO_REAL

INT_TO_STRING IP J

ASIC-200 Language Reference Introduction • 21

JMP JMPC JMPCN

JOGCONT JOGDIR JOGDIST

JOGHOME JOGINCR JOGMINUS

JOGPLUS JOGSPD JOGTYPE

K L LD

LDN LDT LE

LEFT LEN LIMIT

LINT LL LN

LOG LREAL LT

LWORD M MACROSTEP

MAX MC MID

MIN MOD MOVE

MOVEAXS MS MSGWND

MUL MULP MUX

N NAME NE

NEWFILE NIL NOT

NOW NT NULL

OF

ON OPENFILE OR

OR_BITS ORN ORT

ORTN OUT P

PID POSTN POW

PRGCB PRIORITY PROGRAM

PT PV PW

Q QU QD

R R1 READFILE

READ_ONLY READ_WRITE REAL

REAL_TO_STRING R_EDGE REPEAT

REPLACE RESET_ESTOP RESOURCE

RET RETC RETCN

RETAIN RETURN REWINDFILE

RIGHT ROL ROR

RS RTC R_TRIG

RUNG S1 SCAN

SD SEL SEMA

SET_LOADSIZE SHL SHR

SIN SINT SL

SR SQRT ST

STT STN STTN

STEP STOPJOG STRING

22 • Introduction ASIC-200 Language Reference

STRING_TO_ARRAY STRUCT SUB

T TAN TASK

THEN TIME TIME_OF_DAY

TMR TO TOD

TODAY TOF TON

TP TRANS TRANSITION

TRUE TRUNC TYPE

UDINT UL ULINT

UNTIL USINT VAR

VAR_ACCESS VAR_EXTERNAL VAR_GLOBAL

VAR_INPUT VAR_IN_OUT VAR_OUTPUT

VEL WHILE WRITEFILE

WITH WORD XOR

XOR_BITS XORN XTON

XTOF XTP ZZZZ

Functions and Function Blocks
Functions are pre-defined algorithms that return a single value. They do not
preserve any state information.

Function blocks are pre-defined algorithms that are instantiated (that is, a
function block is a type, and each use of the function block must be given an
instance name) and that output one or more values. A function block
instantiation preserves its state between calls to it. Each function block
instantiation must be given a unique name.

The standard functions and function blocks described in this reference
document can be used within the Relay Ladder Logic, Structured Text, and
Instruction List language editors.

Note: Currently, pointers can not be passed into FILE functions, bit
string functions, and STRING_TO_ARRAY functions.

Function Execution Control
All functions have associated Enable (EN) and Enable Output (ENO)
variables. EN is implicitly declared as an input variable; ENO is implicitly
declared as an output variable. The RLL Editor uses these variables as the
rung input and rung output for most functions.

ASIC-200 Language Reference Introduction • 23

In operation, the following sequence controls execution of a function:

1. When the function is invoked:

• If EN is FALSE, EN0 is reset FALSE and the function is not executed.
The default value for EN is TRUE.

• If EN is TRUE, ENO is set TRUE and the function is executed. (Since
ENO is declared as an output variable, a Boolean value can be
assigned to it.)

2. During function execution, if an error is detected, ENO is reset FALSE.

In the RLL language, functions are placed on a rung with their EN and ENO
variables. EN is placed toward the left (power) side of the rung and ENO is
placed toward the right side of the rung.

RLL Diagrams
When a function block is inserted into an RLL diagram, it is automatically
given an instance name, such as CTU17, where CTU is the function block
type (an up counter) and 17 is an instance number, incremented for each
function block inserted into the diagram. You can give the function block an
instance name instead of using the default, but it must be unique. RLL
function block instances do not appear in the Symbol Manager. Function
block inputs and outputs are referenced by the instance name followed by
the variable as given in the description. For example CTU17.R is the reset
input for the counter instance CTU17.

The following rules govern the use of C function blocks or functions (which
are defined in a DLL) in Relay Ladder Logic:

C Function Block

If the first input and first output are defined as type BOOL, the function
block can be used in RLL and the first input and first output are attached to
the rung. If the first input or first output are not defined as type BOOL, the
function block cannot be used in RLL.
C Function

The rung input to the C function is never seen by the function. If the rung
input is FALSE, the function is not called. If the rung input is TRUE, the
function is called .If the return type of the C function is BOOL, the return
value will be passed as power on the rung to the next RLL element. If the
return type of the C function is not BOOL, the power on the rung will always
be passed (TRUE) unless a system error has been signaled by the C function.

Structured Text
Before using a function block (or system object - PID, PRGCB, TMR), an
instance of the type must be created in the Symbol Manager.

24 • Introduction ASIC-200 Language Reference

The following is an example of the syntax used for a standard function block
in Structured Text (C DLL function blocks use the same type of syntax):

ctu1 and ton1 are created in the Symbol Manager with types CTU and TON
respectively.

ctu1.PV := 10;
ctu1.EN := TRUE;
ton1.IN := TRUE;
ton1.PT := t#30s;
ton1.IN := TRUE;
ton1.EN := TRUE;
WHILE NOT In2 DO

ctu1.CU := In3;
ctu1();
Out3 := ctu1.Q;
ton1();
Out2 := ton1.Q;

END_WHILE;

Notice that all of the inputs must be explicitly set and the outputs must be
explicitly transferred to the output destination. Also, the function block must
be continually called using the ctu1(); syntax.

The standard function block types cannot currently be used as arrays (the C
DLL function blocks can be used as arrays). For C DLL function blocks a
function block array call is made with the following syntax:

FOR index := 1 TO maxIndex
cdllfb1[index]();

END_FOR;

Instruction List

The following op codes are for calling function blocks and functions from
Instruction List:

CAL always call the function or function block.

CALC only call the function if the accumulator is TRUE.

CALCN only call the function if the accumulator is FALSE.

Note that CAL is used with either a function or function block and CALC and
CALCN are used only with a function.
Accumulator Relationships

For function blocks, there is no relationship between the accumulator and the
function block. The function block is always called, the accumulator is not
passed into the function block, and after the function block returns, the
accumulator has the same value as it had before the function block was
called.

ASIC-200 Language Reference Introduction • 25

For functions the accumulator has no effect on the function inputs. When
using CALC, the function will not be called if the accumulator is FALSE.

 When using CALCN , the function will not be called if the accumulator is
TRUE. When the function returns, if the return value is a BOOL, the return
value is automatically loaded into the accumulator. If the function return
value is a non BOOL, the return value can be saved into a variable using the
func1 (OUT:=outvar1) syntax. In this case the return value is only saved into
outvar1 if the function is actually called (CAL, CALC with TRUE
accumulator, or CALCN with FALSE accumulator). If the function return
value is a non-BOOL, the accumulator should be automatically loaded with
the inverted value of the BOOL system error symbol (RTERROR). If the
function is called and an error is flagged by the function, the accumulator
will be loaded with a FALSE value after the function returns. If the function
is called and no error is flagged by the function, the accumulator will be
loaded with a TRUE value.

The following is an example of the syntax used for a standard function:

CALC EXPT(OUT:=VarReal, AnyNum1, AnyNum2)

The following are examples of the syntax used for a standard function block:

LD 10
ST ctu1.PV
LD TRUE
ST ctu1.EN
LD In3
ST ctu1.CU
CAL ctu1
LD ctu1.Q
ST Out3

LD TRUE
ST ton1.IN
ST ton1.EN
LD t#30s
ST ton1.PT
CAL ton1
LD ton1.Q
ST Out2

ASIC-200 Language Reference Bit String • 27

Bit String

Introduction
Bit string functions include:

AND Computes the Boolean or bitwise AND of two
variables.

NOT Computes the Boolean or bitwise complement of a
variable.

OR Computes the Boolean or bitwise OR of two
variables.

XOR Computes the Boolean or bitwise Exclusive OR of
two variables.

Rotate Left Rotates the input left by the number of bits specified
by a shift number (circular bit shift).

Rotate Right Rotates the input right by the number of bits
specified by a shift number (circular bit shift).

Shift Left Shifts the input left by the number of bits specified
by a shift number (0-fill on right bit shift).

Shift Right Shifts the input right by the number of bits specified
by a shift number (0-fill on left bit shift).

28 • Bit String ASIC-200 Language Reference

AND

Description Returns the Boolean or bitwise logical AND of the input values.

RLL

ST Function AND(AnyBit1, AnyBit2)

ST Operator out := AnyBit1 AND AnyBit2;
out := AnyBit1 & AnyBit2;

IL Function CALC AND(OUT:= VarBit, AnyBit1, AnyBit2)

Where

 AnyBit1, AnyBit2
(IN1, IN2)

 The values to be ANDed. Data type: ANY_BIT.

 return (OUT) The result of ANDing the inputs. Data type: ANY_BIT.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Truth Table The truth table for the AND is as follows.

 IN1 IN2 OUT
0 0 0
0 1 0
1 0 0
1 1 1

Example The result of ANDing bits is shown in the following figure.

The value in IN1 is
ANDed with the value
in IN2. The result is
stored in OUT.

015
01 0 1 1 1 1 0 1 1 0 1 0 0 0 1

14 13 12 11 10 9 8 7 6 5 4 3 2 1

00 0 0 1 1 1 1 1 1 1 1 1 0 0 1

00 0 0 1 1 1 0 1 1 0 1 0 0 0 1

IN1

IN2

OUT

Bit

ASIC-200 Language Reference Bit String • 29

NOT

Description Returns the Boolean or bitwise inversion of the input value.

RLL

ST Function NOT(AnyBit)

ST Operator out := NOT AnyBit;
out := ! AnyBit;

IL Function CALC NOT(OUT:= VarBit, AnyBit)

Where

 AnyBit (IN) The value to be NOTed. Data type: ANY_BIT.

 return (OUT) The NOTed value of AnyBit. Data type: ANY_BIT.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Truth Table The truth table for the NOT is as follows.

IN OUT
0 1

1 (non-zero) 0

Example The result of NOTing bits is shown in the following figure.

Each bit in the value in
IN is inverted. The
result is stored in OUT.

015
00 0 1 1 0 1 0 1 0 0 1 1 0 1 1

14 13 12 11 10 9 8 7 6 5 4 3 2 1

11 1 0 0 1 0 1 0 1 1 0 0 1 0 0

IN

OUT

Bit

30 • Bit String ASIC-200 Language Reference

OR

Description Returns the Boolean or bitwise logical OR of the input values.

RLL

ST Function OR(AnyBit1, AnyBit2)

ST Operator out := AnyBit1 OR AnyBit2

IL Function CALC OR(OUT:= VarBit, AnyBit1, AnyBit2)

Where

 AnyBit1, AnyBit2
(IN1, IN2)

 The values to be ORed. Data type: ANY_BIT.

 return (OUT) The result of ORing the inputs. Data type: ANY_BIT.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Truth Table The truth table for the OR is as follows.

IN1 IN2 OUT
0 0 0
0 1 1
1 0 1
1 1 1

Example The result of ORing bits is shown in the following figure.

ASIC-200 Language Reference Bit String • 31

Exclusive OR (XOR)

Description Returns the Boolean or bitwise logical Exclusive OR of the input values.

RLL RLL

ST Function XOR(AnyBit1, AnyBit2)

ST Operator out := AnyBit1 XOR AnyBit2;

IL Function CALC XOR(OUT:= VarBit, AnyBit1, AnyBit2)

Where

 AnyBit1, AnyBit2
(IN1, IN2)

 The values to be XORed. Data type: ANY_BIT.

 return (OUT) The result of XORing the inputs. Data type: ANY_BIT.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Truth Table The truth table for the XOR is as follows.

IN1 IN2 OUT
0 0 0
0 1 1
1 0 1
1 1 0

Example The result of XORing bits is shown in the following figure.

The value in IN1 is
XORed with the value
in IN2. The result is
stored in OUT.

015
00 0 1 1 0 1 0 1 0 0 1 1 0 1 1

14 13 12 11 10 9 8 7 6 5 4 3 2 1

10 0 0 1 0 0 1 1 1 1 1 1 1 0 1

10 0 1 0 0 1 1 0 1 1 0 0 1 1 0

IN1

IN2

OUT

Bit

32 • Bit String ASIC-200 Language Reference

Rotate Left (ROL)

Description Returns a value calculated by circularly shifting the bits of the input value a
specified number of positions to the left. Bit values shifted from the most
significant bit (MSB) position are rotated to the least significant bit (LSB)
position.

RLL

ST Function ROL(IN := BitString, N := RotateNum)

IL Function CALC ROL(OUT:= VarBit, IN:= BitString, N:= RotateNum)

Where

 BitString (IN) The value to be rotated. Data type: ANY_BIT.

 RotateNum(N) Specifies the number of bit positions to rotate BitString.
Data type: ANY_INT.

 return (OUT) The result of rotating the bits in BitString.
Data type: ANY_BIT.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example 1 byte1 := ROL (IN:= byte2, N:= num);

If byte2 = 10000010, and num = 1, then after execution, byte1 = 00000101.

Example 2 An example of left-rotating the bits in a word is shown in the figure (N:=1).

ASIC-200 Language Reference Bit String • 33

Rotate Right (ROR)

Description Returns a value calculated by circularly shifting the bits of the input value a
specified number of positions to the right. Bit values shifted from the least
significant bit (LSB) position are rotated to the most significant bit (MSB)
position.

RLL

ST Function ROR(IN:= BitString, N:= RotateNum)

IL Function CALC ROR(OUT:= VarBit, IN:= BitString, N:= RotateNum)

Where

 BitString (IN) The value to be rotated. Data type: ANY_BIT.

 RotateNum (N) Specifies the number of bit positions to rotate BitString.
Data type: ANY_INT.

 return (OUT) The result of rotating the bits in BitString.
Data type: ANY_BIT.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example 1 byte1 := ROR (IN:= byte2, N:= num);

If byte2 = 00001001, and num = 1, then after the operation, byte1 = 10000100.

Example 2 An example of right-rotating the bits in a word is shown in the figure (N:=1).

34 • Bit String ASIC-200 Language Reference

Shift Left (SHL)

Description Returns a value calculated by shifting the bits of the input value a specified
number of positions to the left. Bit values shifted from the most significant
bit position are discarded during the shift, and the least significant bit
positions are zero-filled.

RLL

ST Function SHL(IN:=BitString, N:= ShiftNum)

IL Function CALC SHL(OUT:= VarBit, IN:= BitString, N:= ShiftNum)

Where

 BitString (IN) The value to be shifted. Data type: ANY_BIT.

 ShiftNum (N) Specifies the number of bit positions to shift BitString.
Data type: INT.

 return (OUT) The result of shifting the bits in BitString. Data type:
ANY_BIT.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example 1 byte1 := SHL (IN:= byte2, N:= num);

If byte2 = 10000100 and num = 1, then after the shift operation has
completed, num = 00001000.

Example 2 An example of left-shifting the bits in a word is shown in the figure.

Each bit in IN is
shifted to the left.
The result is stored
in OUT.

015

01 0 1 1 1 1 0 1 1 0 1 0 0 0 1

14 13 12 11 10 9 8 7 6 5 4 3 2 1

01 1 1 1 0 1 1 0 1 0 0 0 1 0 0

IN

OUT

Bit

N=2

Lost Zeroed Out

ASIC-200 Language Reference Bit String • 35

Shift Right (SHR)

Description Returns a value calculated by shifting the bits of the input value a specified
number of positions to the right. Bit values shifted from the least significant
bit position are discarded during the shift, and most significant bit positions
are zero-filled.

RLL

ST Function SHR(IN:=BitString, N:= ShiftNum)

IL Function CALC SHR(OUT:= VarBit, IN:= BitString, N:= ShiftNum)

Where

 BitString (IN) The value to be shifted. Data type: ANY_BIT.

 ShiftNum (N) Specifies the number of bit positions to shift BitString.
Data type: INT.

 return (OUT) The result of shifting the bits in BitString. Data type:
ANY_BIT.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example 1 byte1 := SHR (IN:= byte2, N:= num);

If byte2 = 10000100 and num = 1, then after the shift operation has
completed, byte1 = 01000010.

Example 2 An example of right-shifting the bits in a word is shown in the figure.

Each bit in IN is
shifted to the right.
The result is stored
in OUT.

015

01 0 1 1 1 1 0 1 1 0 1 0 0 0 1

14 13 12 11 10 9 8 7 6 5 4 3 2 1

00 0 0 0 1 0 1 1 1 1 0 1 1 0 1

IN

OUT

Bit

N=4

Lost

Zeroed Out

ASIC-200 Language Reference Character String • 37

Character String

Introduction
Concatenate Concatenates one or more input strings to the end of

an initial string.

Delete Deletes characters from a string.

Find Searches for one string within another string.

Insert Inserts a string into another string.

Left Returns the leftmost characters of a string.

Length Returns the length of a string.

Mid Returns characters from the middle of a string.

Right Returns the rightmost characters from a string.

Replace Replaces characters in a string with another string.

38 • Character String ASIC-200 Language Reference

Concatenate

Description Returns the result of concatenating two strings (appending one string to the
end of another string).

RLL

ST Function CONCAT(StringA, StringB)

IL Function CALC CONCAT(OUT:= StringAB, IN1:= StringA, IN2:= StringB)

Where

 StringA, StringB
(IN1, IN2)

 Specifies the strings to be concatenated.
Data type: STRING (0 to 255 characters).

 return (OUT) The result of the concatenation of the strings.
Data type: STRING.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example fullstring := CONCAT (firststring, laststring);

If firststring = "Control_" and laststring = "Power", then fullstring =
"Control_Power".

ASIC-200 Language Reference Character String • 39

Delete

Description Returns the result of deleting a specified number of characters from a
specified position in the middle of the input string.

RLL

ST Function DELETE(IN:= StringA, L:= NumChar, P:= Position)

IL Function CALC DELETE(OUT:= StringB, IN:= StringA, L:= NumChar, P:= Position)

Where Type Description

 StringA (IN) The string from which characters are deleted. Data type:
STRING (0 to 255 characters).

 NumChar (L) Specifies the number of characters to delete. Data type:
INT.

 Position (P) Specifies the position within the string to begin deleting
characters. Valid values: INT.

 return (OUT) The string resulting from deleting characters from the
input string. Data type: STRING.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example areacode := DELETE (IN := phonenum, L := 9, P := 4);

If phonenum = "567 445 9999" then areacode = "567".

Where the first character position in the string is 1.

40 • Character String ASIC-200 Language Reference

Find

Description Returns the starting position of one string within a second string. FIND
returns 0 if the string is not found.

RLL

ST Function FIND (IN1:= StringA, IN2:= StringB)

IL Function CALC FIND(OUT:= VarInt, IN1:= StringA, IN2:= StringB)

Where

 StringA (IN1) The string of characters to be searched. Data type:
STRING (0 to 255 characters).

 StringB (IN2) The string of characters for which a match is to be
found. Data type: STRING (0 to 255 characters).

 return (OUT) The result of the search. Data type: INT.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example position := FIND (IN1:= fullname, IN2:= midname);

If fullname = "ann marie williams" and midname = "marie", then position = 5.

ASIC-200 Language Reference Character String • 41

Insert

Description Returns a string formed by inserting one string of characters into another
string at a specified position.

RLL

ST Function INSERT(IN1:=StringA, IN2:= StringB, P:= Position)

IL Function CALC INSERT(OUT:= StringC, IN1:= StringA, IN2:= StringB, P:= Position)

Where

 StringA (IN1) The string of characters into which another string is to be
inserted. Data type: STRING.

 StringB (IN2) The string of characters that is to be inserted into
StringA. Data type: STRING.

 Position (P) Specifies the character position of StringA at which
StringB is inserted. Data type: INT.

 return (OUT) The resulting string. Data type: STRING.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example fullname := INSERT (IN1:= name, IN2:= midname, P:= position);

If name = "ann williams", midname = "marie", and position = 5, then
fullname = "ann marie wiliams".

42 • Character String ASIC-200 Language Reference

Left

Description Returns a specified number of the leftmost characters of the input string.

RLL

ST Function LEFT (IN:= StringA, L:= NumChar)

IL Function CALC LEFT(OUT:= StringB, IN:= StringA, L:= NumChar)

Where

 StringA (IN) The string from which the characters are copied.
Data type: STRING (0 to 255 characters).

 NumChar (L) Specifies the number of characters to copy.
Data type: INT.

 return (OUT) The new string of characters. Data type: STRING.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example firstname := LEFT (IN:= fullname, L:= length);

If fullname = "john williams" and length = 4, then firstname = "john".

ASIC-200 Language Reference Character String • 43

Length

Description Returns the length of a character string.

RLL

ST Function LEN (StringA)

IL Function CALC LEN(OUT:= VarInt, IN:= StringA)

Where

 StringA (IN) The string for which the length is determined. Data type:
STRING (0 to 255 characters).

 return (OUT) Contains the integer length of the string. Data type: INT.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example namelength := LEN(fullname);

If fullname = "john williams", then namelength = 13.

44 • Character String ASIC-200 Language Reference

Middle

Description Returns a specified number of characters from the middle (at a specified
position) of the input string.

RLL

ST Function MID(IN:= StringA, L:= NumChar, P:= Position)

IL Function CALC MID(OUT:= StringB, IN:= StringA, L:= NumChar, P:= Position)

Where

 StringA (IN) The string from which characters are copied.
Data type: STRING (0 to 255 characters).

 NumChar (L) Specifies the number of characters to copy. Data type:
INT.

 Position (P) Specifies the position within the input string to begin
copying characters. Data type: INT.

 return (OUT) The new string of characters. Data type: STRING.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example midname := MID (IN:= fullname, L:= 5, P:= 5);

If fullname = "ann marie williams", then midname = "marie".

ASIC-200 Language Reference Character String • 45

Replace

Description Returns a string formed by replacing characters in one string (at a specified
position) with a specified number of characters from another string.

RLL

ST Function REPLACE(IN1:= StringA, IN2:= StringB, L:= NumChar, P:= Position)

IL Function CALC REPLACE(OUT:= StringC, IN1:= StringA, IN2:= StringB, L:=
NumChar, P:= Position)

Where

 StringA (IN1) The string in which characters are replaced. Data type:
STRING (0 to 255 characters).

 StringB (IN2) The string from which the characters are copied.
Data type: STRING (0 to 255 characters).

 NumChar (L) Specifies the number of characters to copy. Data type:
INT.

 Position (P) Specifies the position within the string to begin replacing
characters. Data type: INT.

 return (OUT) The result of the character replacement.
Data type: STRING.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example newname := REPLACE (IN1:= fullname, IN2:= newmid, L:= 7, L:= 8);

If fullname = "Thomas William Anderson", and newmid = "Alan", then
newname = "Thomas Alan Anderson".

46 • Character String ASIC-200 Language Reference

Right

Description Returns a specified number of the rightmost characters of the input string.

RLL

ST Function RIGHT(IN:= StringA, L:= NumChar)

IL Function CALC RIGHT(OUT:= StringB, IN:= StringA, L:= NumChar)

Where

 StringA (IN) The string from which the characters are copied. Data
type: STRING (0 to 255 characters).

 NumChar (L) Specifies the number of characters to copy. Data type:
INT.

 return (OUT) The new string of characters. Data type: STRING.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example lastname := RIGHT(IN:= fullname, L:= length);

If fullname = "john williams", and length = 8, then lastname = "williams".

ASIC-200 Language Reference Comparison • 47

Comparison

Introduction
Comparison functions include:

Equal (EQ) Tests two inputs for equality.

Greater Than or Equal (GE) Tests if first input is greater than or equal
second input.

Greater Than (GT) Tests if first input is greater than second
input.

Less Than or Equal (LE) Tests if first input is less than or equal
second input.

Less Than (LT) Tests if first input is less than second input.

Not Equal (NE) Tests two inputs for inequality.

Note: In the RLL Editor, the comparison function's OUT is the rung
output, not ENO.

48 • Comparison ASIC-200 Language Reference

Equal (EQ)

Description Returns a Boolean TRUE if the inputs are equal; otherwise, returns FALSE.
Sets the RLL rung output accordingly.

RLL

ST Function EQ(Any1, Any2)

ST Operator out := Any1 = Any2;

IL Function CALC EQ(Any1, Any2)

Where

 Any1, Any2
(IN1, IN2)

 The values to be compared. Data type: ANY.

 return (OUT) The result of the comparison. The rung output in RLL
Data type: BOOL.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example result := EQ(a, b);

result := a=b;

In either case, if a, b are equal to the same value, result will be TRUE.

ASIC-200 Language Reference Comparison • 49

Greater Than or Equal (GE)

Description Returns a Boolean TRUE if the first input is greater than or equal to the
second input; otherwise, returns FALSE. Sets the RLL rung output
accordingly.

RLL

ST Function GE(Any1, Any2)

ST Operator out := Any1 >= Any2;

IL Function CALC GE(Any1, Any2)

Where

 Any1, Any2
(IN1, IN2)

 The values to be compared. Data type: ANY.

 return (OUT) The result of the comparison. The rung output in RLL
Data type: BOOL.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example result := GE(a, b);

result := a>=b;

If a=5, b=4, then result will be TRUE.

If a=5, b=5 then result will be TRUE.

50 • Comparison ASIC-200 Language Reference

Greater Than (GT)

Description Returns a Boolean TRUE if the first input is greater than the second input;
otherwise, returns FALSE. Sets the RLL rung output accordingly.

RLL

ST Function GT(Any1, Any2)

ST Operator out := Any1 > Any2;

IL Function CALC GT(Any1, Any2)

Where

 Any1, Any2
(IN1, IN2)

 The values to be compared. Data type: ANY.

 return (OUT) The result of the comparison. The rung output in RLL
Data type: BOOL.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example result := GT(a, b);

result := a>b;

If a=5, b=4, then result will be TRUE.

ASIC-200 Language Reference Comparison • 51

Less Than or Equal (LE)

Description Returns a Boolean TRUE if the first input is less than or equal to the second
input; otherwise, returns FALSE. Sets the RLL rung output accordingly.

RLL

ST Function LE(Any1, Any2)

ST Operator out := Any1 = Any2;

IL Function CALC LE(Any1, Any)

Where

 Any, Any2
(IN1, IN2)

 The values to be compared. Data type: ANY.

 return (OUT) The result of the comparison. The rung output in RLL
Data type: BOOL.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example result := LE(a, b);

result := a<=b;

If a=1, b=2, then result will be TRUE.

If a=5, b=5, then result will be TRUE.

52 • Comparison ASIC-200 Language Reference

Less Than (LT)

Description Returns a Boolean TRUE if the first input is less than the second input;
otherwise, returns FALSE. Sets the RLL rung output accordingly.

RLL

ST Function LT(Any1, Any2)

ST Operator out := Any1 < Any2;

IL Function CALC LT(Any1, Any2)

Where

 Any1, Any2
(IN1, IN2)

 The values to be compared. Data type: ANY.

 return (OUT) The result of the comparison. The rung output in RLL
Data type: BOOL.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example result := LT(a, b);

result := a<b);

If a=1, b=2, then result will be TRUE.

ASIC-200 Language Reference Comparison • 53

Not Equal (NE)

Description Returns a Boolean TRUE if the inputs are not equal; otherwise, returns
FALSE. Sets the RLL rung output accordingly.

RLL

ST Function NE(Any1, Any2)

ST Operator out := Any1 <> Any2;

IL Function CALC NE(Any1, Any2)

Where

 Any1, Any2
(IN1, IN2)

 The values to be compared. Data type: ANY.

 return (OUT) The result of the comparison. The rung output in RLL
Data type: BOOL.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example result := NE(a, b);

result := a<>b;

If a=1 and b=5, then result will be TRUE.

ASIC-200 Language Reference Conversion • 55

Conversion

Introduction
Conversion functions include:

Byte Array to String (BATOS) Converts a byte array to a STRING
value.

Date to String (DateToString) Converts a DATE to a STRING
value.

Integer to String (ITOA) Converts an INT to a STRING value.

R2INT Converts a REAL to the rounded
INT value.

Real to String (RTOA) Converts a REAL to a STRING
value.

RGB to DWORD Converts a triplet of red, green and
blue values to a DWORD.

String to Byte Array (STOBA) Converts a STRING to a byte array.

String to Date (StringToDate) Converts a STRING to DATE.

String to Integer (ATOI) Converts an ASCII numeric
STRING to an integer value.

String to Real (ATOR) Converts an ASCII numeric
STRING to a real value.

String to Time of Day (StringToTOD) Converts a STRING to a TOD.

Time of Day to String (TODToString) Converts a TOD to a STRING value.

Trunc Converts a REAL to the truncated
INT value.

56 • Conversion ASIC-200 Language Reference

Byte Array to String (BATOS)

Description Converts an input array of bytes to ASCII characters and stores them to a
string output. The terminating byte must contain zero.

RLL

ST Function ARRAY_TO_STRING(OUT := StringVariable, IN := ByteArray)

IL Function CALC ARRAY_TO_STRING(OUT:=StringVariable,IN:=ByteArray)

Where

 StringVariable
(OUT)

 Contains the result of the conversion of the array of
bytes to a string. Data type: STRING.

 ByteArray (IN) Specifies the array of bytes to be converted. Each byte
in the array contains a decimal ASCII character code.

 return None.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example ARRAY_TO_STRING (OUT:=string1, IN := byte_array);

If byte_array consists of four bytes, and byte_array[1] = 65, byte_array[2] =
66, byte_array[3] = 67, and byte_array[4] = 0, then string1 contains ABC.

The following is an example of the BATOS function block:

Byte to String Operation:
IN = name_data
OUT = operator_name

If name_data consists of four bytes, and
byte_array[1] = 83
byte_array[2] = 65
byte_array[3] = 77
byte_array[4] = 0
then
operator_name = SAM

ASIC-200 Language Reference Conversion • 57

Date to String (DateToString)

Description Converts a DATE to a STRING value. A pointer variable is used to point to
the string.

RLL

ST Function DateToString (Date, Format, pString)

IL Function CALC DateToString(Date,Format,pString)

Where

 Date DATE variable to be converted. Data type: DATE.

 Format Date format: 0 = DD/MM/YY format; 1 = Month DD, Year
format. Data type: INT.

 pString Pointer to the result of DATE conversion. Data type:
Pointer.

 Note: A STRING symbol prefixed with the pointer
reference operator can also be used (e.g., &SymString).
If a STRING symbol is entered in the RLL dialog box, the
pointer reference operator (&) is automatically prefixed
to the symbol when you click OK.

 return (OUT) None.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.
 3. Pointer functionality must be supported in the product in order to use this

function.

58 • Conversion ASIC-200 Language Reference

Integer to String (ITOA)

Description Converts an integer to an ASCII character string representation of the value
of the integer and returns the result.

RLL

ST Function INT_TO_STRING (AnyInt)

IL Function CALC INT_TO_STRING(OUT:=VarString,IN:=AnyInt)

Where

 AnyInt (IN) The integer to be converted. Data type: INT.

 return (OUT) The result of the conversion of the integer to a string.
Data type: STRING.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example intstring := INT_TO_STRING (num);

If num = 11, then intstring contains the ASCII character string ‘11’.

ASIC-200 Language Reference Conversion • 59

Real to Integer (R2INT)

Description Rounds a REAL value to the nearest integer value and returns the result.

RLL

ST Function R2INT (AnyReal)

IL Function CALC R2INT (OUT:=VarInt, IN:=AnyReal)

Where

 AnyReal (IN) The real value to be rounded. Data type: REAL.

 return (OUT) The result of the rounding of the real to an integer. Data
type: INT.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example IntVar := R2INT (1.6); (* Result is 2 *)

IntVar := R2INT (1.4); (* Result is 1 *)

IntVar := R2INT (1.5); (* Result is 2 *)

60 • Conversion ASIC-200 Language Reference

Real to String (RTOA)

Description Converts a real number to an ASCII character string representation of the
value of the number and returns the result.

RLL

ST Function REAL_TO_STRING (AnyReal)

IL Function CALC REAL_TO_STRING(OUT:=VarString,IN:=AnyReal)

Where

 AnyReal (IN) The real to be converted. Data type: REAL.

 return (OUT) The result of the conversion of the real to a string. Data
type: STRING.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example realstring := REAL_TO_STRING (num);

If num = 13.2288, then realstring contains the ASCII character string ‘13.2288’.

ASIC-200 Language Reference Conversion • 61

RGB to DWORD

Description Converts a triplet of red, green and blue values to a DWORD. Used by the
ActiveX control feature of the Operator Interface.

RLL

ST Function RGB_TO_DWORD(Red, Green, Blue)

IL Function CALC RGB_TO_DWORD(OUT:= DWord, Red, Green, Blue)
LD 1

Where

 Red, Green, Blue Integer values corresponding to the intensity of each
color. Data type: INT.

 return (OUT) The result of the conversion of the RGB triplet to
DWORD. Data type: DWORD.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

62 • Conversion ASIC-200 Language Reference

String to Byte Array (STOBA)

Description Converts each character in the input string to its decimal value and stores the
result in a byte array. A zero is placed in the last byte of the array.

RLL

ST Function STRING_TO_ARRAY(OUT := ByteArray, IN := StringVariable)

IL Function CALC STRING_TO_ARRAY(OUT:=ByteArray,IN:=StringVariable)

Where

 ByteArray (OUT) The result of the conversion of the string to an array of
bytes. Data type: Any BYTE variable array.

 StringVariable
(IN)

 The string of characters to be converted. Values are
decimal codes. Data type: STRING.

 return None.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example 1 STRING_TO_ARRAY (OUT:= byte_array, IN:= string1);
If string1 contains "Sara", then the array consists of five bytes, and
byte_array[0] = 83, byte_array[1] = 97, byte_array[2] = 114, byte_array[3] = 97,
and byte_array[4] = 0.

Example 2 The following is an example of the STOBA function block:

String to Byte Operation:
IN = operator_name
OUT = name_data

If operator_name = SAM,
then
name_data consists of four bytes, and
byte_array[1] = 83
byte_array[2] = 65
byte_array[3] = 77
byte_array[4] = 0

ASIC-200 Language Reference Conversion • 63

String to Date (StringToDate)

Description Converts a STRING to a DATE and returns the result.

RLL

ST Function StringToDate(String)

IL Function CALC StringToDate(OUT:=VarDate, String)

Where

 String (IN) The ASCII string to be converted. The form of the
STRING input is DD/MM/YY or DD/MM/YYYY where all
of the fields DD, MM and YY are required. Data type:
STRING.

 return (OUT) The converted string. Data type: DATE.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

64 • Conversion ASIC-200 Language Reference

String to Integer (ATOI)

Description Converts an ASCII numeric string to its integer equivalent. Non-numeric
ASCII characters or numeric characters following a non-numeric character
are ignored.

RLL

ST Function ATOI(String)

IL Function CALC ATOI(OUT:= VarInt, String)
LD 1

Where

 String (IN) The ASCII string to be converted. Data type: STRING.

 return (OUT) The converted integer value. Data type: INT. If the string
begins with a non-numeric character, a zero (0) is
returned.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Examples IntVar01 := ATOI("1234"); (*IntVar01 = 1234*)

IntVar02 := ATOI("ABC"); (*IntVar02 = 0*)

IntVar03 := ATOI("1A2B3C"); (*IntVar03 = 1*)

ASIC-200 Language Reference Conversion • 65

String to Real (ATOR)

Description Converts an ASCII numeric string (including decimal point) to its real
equivalent. Non-numeric ASCII characters or numeric characters following a
non-numeric character are ignored.

RLL

ST Function ATOR(String)

IL Function CALC ATOR(OUT:= VarReal, String)
LD 1

Where

 String (IN) The ASCII string to be converted. Data type: STRING.

 return (OUT) The converted real value. Data type: REAL. If the string
begins with a non-numeric or non-decimal point
character, a zero (0) is returned.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Examples RealVar01 := ATOI("12.34"); (*RealVar01 = 12.34*)

RealVar02 := ATOI("ABC"); (*RealVar02 = 0*)

RealVar03 := ATOI("1.A2B3C"); (*RealVar03 = 1*)

66 • Conversion ASIC-200 Language Reference

String to TOD (StringToTOD)

Description Converts a STRING to a TOD and returns the result.

RLL

ST Function StringToTOD(String)

IL Function CALC StringToDate(OUT:=VarDate, String)

Where

 String (IN) The ASCII string to be converted. The form of the
STRING input is HH:MM:SS where MM and SS could be
omitted. Data type: STRING.

 return (OUT) The result of the conversion. Data type: TOD.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

ASIC-200 Language Reference Conversion • 67

Time of Day to String (TODToString)

Description Converts a TOD to a STRING value and places the result in the symbol
pointed to by pString.

RLL

ST Function TODToString (TOD, Hour24, ShowSeconds, pString)

IL Function CALC TODToString(TOD,Hour24,ShowSeconds,pString)

Where

 TOD Time-of-day variable to be converted. Data type: TOD

 Hour24 Display time in 24 hour format. Data type: INT.

 ShowSeconds Show seconds in time display. Data type: INT.

 pString A pointer to the symbol containing the string output of
TOD conversion. Data type: Pointer.

 Note: A STRING symbol prefixed with the pointer
reference operator can also be used (e.g., &SymString).
If a STRING symbol is entered in the RLL dialog box,
the pointer reference operator (&) is automatically
prefixed to the symbol when you click OK.

 return (OUT) None.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.
 3. Pointer functionality must be supported in the product in order to use this

function.

68 • Conversion ASIC-200 Language Reference

Truncate (TRUNC)

Description Truncates a REAL value to an integer value and returns the result.

RLL

ST Function TRUNC (AnyReal)

IL Function CALC TRUNC (OUT:=VarInt, IN:=AnyReal)

Where

 AnyReal (IN) The real value to be truncated. Data type: REAL.

 return (OUT) The result of truncating of the real to an integer. Data
type: INT.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example IntVar := TRUNC (1.6); (* Result is 1 *)

IntVar := TRUNC (1.4); (* Result is 1 *)

IntVar := TRUNC (2.4); (* Result is 2 *)

ASIC-200 Language Reference Counters and Timers • 69

Counters and Timers

Introduction
Counter function blocks include:

Counter down (CTD) Counts events by decrementing by one.

Counter up (CTU) Counts events by incrementing by one.

Counter up/down (CTUD) Counts events up or down.

Timer function blocks include:

Timer Off Delay (TOF) Provides off-delay timing of events.

Timer On Delay (TON) Provides on-delay timing of events.

Timer Pulse (TP) Activated by a pulse, provides off-delay
timing of events.

Also refer to Extended Timers.

Using Counter and Timer Function Blocks
Warning
Assigning the same function block name to different counters
and/or timers may cause unpredictable operation by the controller,
which can result in death or injury to personnel and/or damage to
equipment. Always use a unique name for each counter or timer.

When the program is running, you can view the current value of all function
block inputs and outputs. To do this, click the Function Block Details icon or
double click on the instruction to display a dialog box. You can also open a
watch window and enter the counter or timer variables that you want to
observe at run-time.

You can use any of the counter or timer inputs and outputs in any
expression, contact, or coil instead of a symbol of the same type. However,
they are local variables and cannot be used in DDE applications. To reference
a counter or timer input or output, enter the function block name followed
by a period and the specific input or output suffix.

70 • Counters and Timers ASIC-200 Language Reference

For example:

• CTD1.CU refers to the count up input of CTD1.
• TOF5.Q refers to the rung output of TOF5

For more information about a function block’s inputs and outputs, refer to
the explanation of a specific function block.

Setting a Timer Preset
To set the preset time value (PT), you can enter the time directly or use the
Define Time Duration dialog box.

To enter the duration directly:
Follow the IEC 1131-3 specification: a keyword, e.g., T#, TIME#, t#, time#,
followed by time in days, hours, minutes, seconds. Examples are shown
below.

Time Format Time Format
14.7 days T#14.7d 4 seconds Time#4s
2 minutes 5
seconds

T#2m5s 1 day 29
minutes

t#1d29m

74 minutes* time#74m 1 hour 5
seconds 44
milliseconds

T#1h5s44ms

*The IEC 1131-3 specification allows overflow of the most significant unit in
a duration.

ASIC-200 Language Reference Counters and Timers • 71

Count Down (CTD)

Description Counts from a preset value down to zero. The output (Q) goes TRUE when
the count equals zero. It can be used, for example, to count recurring events.

RLL

ST Function CTDName.CD := CountDown; (*Assign inputs*)
CTDName.LD := Load;
CTDName.PV := PresetVal;
CTDName (); (*Call*)
Output := CTDName.Q; (*Access outputs*)
CurrentVal := CTDName.CV;

Where

 CTDName Unique name for the counter.

 CountDown
(CD)

 Decrements the counter when CD transitions from
FALSE to TRUE. Data type: BOOL. Rung input for RLL.

 Load
(LD)

 When TRUE, loads the counter with the preset value
(PV). Data type: BOOL.

 PresetVal
(PV)

 The count value at which the CTD begins to count.
Data type: WORD (0-65535).

 Output
(Q)

 TRUE when the current value (CV) <= zero. Rung output
for RLL.

 CurrentVal
(CV)

 The current count value of the counter. Data type:
WORD (0-65535).

 Enable (EN) Enables the counter. Data type: BOOL. The default
value is TRUE.

 Enable Output
(ENO)

 Echoes EN. Data type: BOOL.

72 • Counters and Timers ASIC-200 Language Reference

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using function blocks with the

Instruction List language.
 3. Refer to Structured Text for information on using function blocks with

the Structured Text language.

Operation • The counter is enabled while EN is TRUE.
• While EN is TRUE, the counter decrements CV by one each time CD

transitions from FALSE to TRUE.
• When CV <= zero, the rung output Q is set to TRUE.
• When EN is FALSE, the counter freezes Q and CV in their current states until

EN is set to TRUE again.
• When EN is TRUE and LD is set to TRUE, the counter sets CV to the preset

value PV and sets output Q FALSE.
• ENO echoes the value of EN.

CTD Variables You can reference the CTD counter variables by prefixing the variable with
the counter instance name (CTDName) as follows:

CTDName.CD
CTDName.LD
CTDName.PV
CTDName.Q
CTDName.CV
CTDName.EN
CTDName.ENO

Example An example operation of the CTD is shown in the following timing diagram.

ASIC-200 Language Reference Counters and Timers • 73

A. PV has been previously loaded with the preset value of 3.
EN has been previously set to TRUE.
CV contains the current value of 3.

B. EN transitions from TRUE to FALSE, disabling the counter.
CV, which had been counting down as CD changed state, holds at 1.

C. EN transitions from FALSE to TRUE, re-enabling the counter.
CV resumes counting down at the next FALSE-to-TRUE transition of
CD, and reaches 0.

D. Q transitions to TRUE when CV=0.

E. LD transitions from FALSE to TRUE, which loads the preset value of 3
into CV. CV holds at 3 while LD is TRUE.

74 • Counters and Timers ASIC-200 Language Reference

Count Up (CTU)

Description Counts from zero up to a preset value. The output (Q) goes TRUE when the
count equals the preset count. It can be used, for example, to count recurring
events.

RLL

ST Function CTUName.CU := CountUp; (*Assign inputs*)
CTUName.R := Reset;
CTUName.PV := PresetVal;
CTUName (); (*Call*)
Output := CTUName.Q; (*Access outputs*)
CurrentVal := CTUName.CV;

Where

 CTUName Unique name for the counter.

 CountUp
(CU)

 Increments the counter when CU transitions from
FALSE to TRUE. Data type: BOOL. Rung input for RLL.

 Reset
(R)

 When TRUE, resets the counter (resets CV to 0). Data
type: BOOL.

 PresetVal
(PV)

 The value up to which the CTU counts.
Data type: WORD (0-65535).

 Output (Q) TRUE when CV >= PV. Data type: BOOL. Rung output
for RLL.

 CurrentValue
(CV)

 The current count value of the counter.
Data type: WORD (0-65535).

 Enable (EN) Enables the counter. Data type: BOOL. Default is TRUE.

 Enable Output
(ENO)

 Echoes EN. Data type: BOOL.

ASIC-200 Language Reference Counters and Timers • 75

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using function blocks with the

Instruction List language.
 3. Refer to Structured Text for information on using function blocks with

the Structured Text language.

Operation • The counter is enabled when EN is TRUE.
• While EN is TRUE, the counter increments CV by one each time CU

transitions from FALSE to TRUE.
• When CV is >= PV, the counter sets rung output Q to TRUE.
• When EN is FALSE, the counter freezes Q and CV in their current states until

EN is set to TRUE again.
• When EN is TRUE and R is TRUE, CV is set to zero and Q is set to FALSE.
• ENO echoes the value of EN.

CTU Variables You can reference the CTU counter variables by prefixing the variable with
the counter instance name (CTUName) as follows:

CTUName.CU
CTUName.R
CTUName.PV
CTUName.Q
CTUName.CV
CTUName.EN
CTUName.ENO

Example An example operation of the CTU is shown in the following timing diagram.

76 • Counters and Timers ASIC-200 Language Reference

A. PV has been previously loaded with the preset value of 3.
EN and ENO transition from FALSE to TRUE.
CV contains the current value of 0.

B. EN transitions from TRUE to FALSE, disabling the counter.
CV, which had been counting up as CU changed state, holds at 2.

C. EN transitions from FALSE to TRUE, re-enabling the counter.
CV resumes counting up at the next FALSE-to-TRUE transition of CU,
and reaches 3. CV continues counting up until reset by R.

D. Q transitions to TRUE when CV=3.

E. R transitions from FALSE to TRUE, which resets CV to 0. CV holds at 0
while R is TRUE.

ASIC-200 Language Reference Counters and Timers • 77

Count Up/Down (CTUD)

Description Counts up or down, setting an up-count output when the current count is
greater than or equal to the preset count, or a down-count output when the
current count is less than or equal to zero.

RLL

ST Function CTUDName.CU := CountUp; (*Assign inputs*)
CTUDName.CD := CountDn;
CTUDName.R := Reset;
CTUDName.LD := Load;
CTUDName.PV := PresetVal;
CTUDName () (*Call*)
CountUpOutput := CTUDName.QU; (*Access outputs*)
CountDnOutput := CTUDName.QD;
CurrentValue := CTUDName.CV;

Where

 CTUDName Unique name for the counter.

 CountUp
(CU)

 Increments current value CV when CU transitions from
FALSE to TRUE. Data type: BOOL. Rung input for RLL.

 CountDn
CD)

 Decrements current value CV when CD transitions from
FALSE to TRUE. Data type: BOOL.

 Reset
(R)

 Sets current count value CV to zero and sets the count-
up output QU to FALSE. Data type: BOOL.

 Load
(LD)

 Sets current count value CV to the preset value PV and
sets the count-down output QD to FALSE. Data type:
BOOL.

 PresetVal
(PV)

 The value to which the CTUD counts up, or at which the
CTUD begins to counts down. Data type: WORD (0-
65535).

 CountUpOutput
(QU)

 TRUE when current value CV >= preset value PV. Rung
output for RLL.

78 • Counters and Timers ASIC-200 Language Reference

 CountDnOutput
(QD)

 TRUE when current value CV <= zero. Data type:
BOOL.

 CurrentValue
(CV)

 The current count value of the counter.
Data type: WORD (0-65535).

 Enable (EN) Enables the counter. Data type: BOOL.

 Enable Output
(ENO)

 Echoes EN. Data type: BOOL.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using function blocks with the

Instruction List language.
 3. Refer to Structured Text for information on using function blocks with

the Structured Text language.

Operation Operation for an up-count:
• The counter is enabled when EN is TRUE.
• When EN and R are TRUE, CV is set to zero and QU is set to FALSE. (Note: If

PV is 0, then QU is TRUE.)
• While EN is TRUE and R is FALSE, the counter increments CV by one each

time the count up input CU transitions from FALSE to TRUE.
• When CV is greater than or equal to PV, the counter sets rung output QU to

TRUE. QU is FALSE when CV is less than PV.
• When EN is FALSE, the QU and CV are frozen in their current states until EN

is TRUE again. Toggling R does not affect CV or QU while EN is FALSE.
• ENO echoes the value of EN.

Operation for down-count:
• The counter is enabled when EN is TRUE.
• When EN and LD are TRUE and R is FALSE, the counter sets CV to the preset

value PV and sets QD to FALSE. (Note: If PV is 0, then QD is TRUE.)
• While EN is TRUE and LD is FALSE, the counter decrements the current value

CV by one each time CD transitions from FALSE to TRUE.
• When CV is less than or equal to zero, the counter sets QD to TRUE. QD is

FALSE when CV is greater than zero.
• When EN is FALSE, the counter freezes QD and CV in their current states until

EN is set to TRUE again. Toggling LD does not effect CV or QD while EN is
FALSE or while R is TRUE.

• ENO echoes the value of EN.

ASIC-200 Language Reference Counters and Timers • 79

Variables You can reference the CTUD counter variables by prefixing the variable with
the counter instance name (CTUDName) as follows:

CTUDName.CU
CTUDName.CD
CTUDName.R
CTUDName.LD
CTUDName.PV
CTUDName.QU
CTUDName.QD
CTUDName.CV
CTUDName.EN
CTUDName.ENO

Example An example operation of the CTUD is shown in the following timing
diagram.

80 • Counters and Timers ASIC-200 Language Reference

A. PV has been previously loaded with the preset value of 2.
EN and ENO transition from FALSE to TRUE.
QU is FALSE and QD is TRUE because CV is 0.

B. CV, which had been counting up as CU changed state, reaches 2.
QU transitions to TRUE.

C. CV decrements to 1 when CD transitions from FALSE to TRUE.
QU transitions to FALSE.

D. CV decrements to 0 at the next transition of CD from FALSE to TRUE.
QD transitions to TRUE.

E. After point D, EN transitions from TRUE to FALSE, disabling the
counter. CV, QU, and QD are frozen in their current states. Prior to
point E, EN is set TRUE, enabling the counter.

F. LD transitions from FALSE to TRUE.
The preset value of 2 is loaded to CV, QD is set to FALSE, and QU is set
to TRUE.

G. R transitions from FALSE to TRUE.
CV is set to 0, QU is set to FALSE, and QD is set to TRUE.

ASIC-200 Language Reference Counters and Timers • 81

Timer Off Delay (TOF)

Description Turns off an output after a preset time delay.

RLL

ST Function TOFName.IN := Start; (*Assign inputs*)
TOFName.PT := PresetTime;
TOFName (); (*Call*)
Output := TOFName.Q; (*Access outputs*)
ElapsedTime := TOFName.ET;

Where

 TOFName Unique name for the timer.

 Start
(IN)

 Starts the timer. Data type: BOOL. Rung input in RLL.

 PresetTime
(PT)

 Specifies the timer period. Data type: TIME.

 Output
(Q)

 FALSE when timer times out. Data type: BOOL.. Rung
output in RLL.

 ElapsedTime
(ET)

 The current elapsed time. Data type: TIME.

 Enable (EN) Enables the timer. Data type: BOOL.

 Enable Output
(ENO)

 Echoes EN. Data type: BOOL.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using function blocks with the

Instruction List language.
 3. Refer to Structured Text for information on using function blocks with

the Structured Text language.

82 • Counters and Timers ASIC-200 Language Reference

Operation • When EN is TRUE the timer is enabled.
• When IN is FALSE, the timer is active, storing the elapsed

time in ET.
• When the elapsed time ET equals preset time PT, TOF sets the

rung output Q to FALSE.
• When EN is set to FALSE, TOF freezes ET in its current state

and sets Q to zero. When EN is set TRUE again, Q is restored
to its previous value.

• When IN is set TRUE, ET is reset to zero and Q is set to
FALSE. (Note: If PT is zero, then Q is TRUE.)

• ENO echoes the value of EN.

TOF Variables You can reference the TOF timer variables by prefixing the variable with the
counter instance name (TOFName) as follows:

TOFName.IN
TOFName.PT
TOFName.Q
TOFName.ET
TOFName.EN
TOFName.ENO

Example An example operation of the TOF is shown in the following timing diagram.

ASIC-200 Language Reference Counters and Timers • 83

A. EN and ENO have been previously set to TRUE.

B. IN transitions from TRUE to FALSE and ET indicates that the timer has
begun timing. When ET equals PT, Q transitions from TRUE to FALSE.

C. IN transitions from FALSE to TRUE.
Q is set to TRUE and ET is set to zero.

D. IN transitions from TRUE to FALSE and ET indicates that the timer has
begun timing.

E. EN transitions from TRUE to FALSE, disabling the timer.
ET, which had been timing, holds at its current value, and Q is set to
FALSE.

F. EN transitions from FALSE to TRUE, re-enabling the timer.
ET resumes timing, and Q is set to TRUE.

G. When ET equals PT, Q transitions from TRUE to FALSE.

84 • Counters and Timers ASIC-200 Language Reference

Timer On Delay (TON)

Description Turns on an output after a preset time delay.

RLL

ST Function TONName.IN := Start; (*Assign inputs*)
TONName.PT := PresetTime;
TONName (); (*Call*)
Output := TONName.Q; (*Access outputs*)
ElapsedTime := TONName.ET;

Where

 TONName Unique name for the timer.

 Start
(IN)

 Starts the timer. Data type: BOOL. Rung input in RLL.

 PresetTime (PT) The timer period. Data type: TIME.

 Output
(Q)

 TRUE when timer times out. Rung output in RLL.

 ElapsedTime (ET) The current elapsed time. Data type: TIME.

 Enable (EN) Enables the timer. Data type: BOOL.

 Enable Output
(ENO)

 Echoes EN. Data type: BOOL.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.
 3. Refer to Structured Text for information on using function blocks with

the Structured Text language.

ASIC-200 Language Reference Counters and Timers • 85

Operation • When the enable input EN is TRUE, the timer is enabled.
• When input IN transitions to TRUE, the timer is active,

storing the elapsed time in output ET.
• When the elapsed time ET equals preset time PT, TON sets

the rung output Q to TRUE.
• When EN is set to FALSE, TON freezes ET in its current state

and sets Q to zero. When EN is set to TRUE again, Q is
restored to its original value.

• If input IN becomes FALSE, the system resets ET to zero and
sets output Q to FALSE.

• Enable output ENO echoes the value of EN.

TON Variables You can reference the TON timer variables by prefixing the variable with the
counter instance name (TONName) as follows:

TONName.IN
TONName.PT
TONName.Q
TONName.ET
TONName.EN
TONName.ENO

Example An example operation of the TON is shown in the following timing diagram.

86 • Counters and Timers ASIC-200 Language Reference

A. EN and ENO have been previously set to TRUE.

• When IN transitions from FALSE to TRUE, ET indicates that the
timer has begun timing.

B. ET equals PT and Q transitions from FALSE to TRUE.

C. When IN transitions from TRUE to FALSE, ET and Q are set to zero.

D. When IN transitions from FALSE to TRUE, ET indicates that the timer
has begun timing.

E. When EN transitions from TRUE to FALSE, the timer is disabled.

• ET, which had been timing, holds at its current value, and Q is set to
FALSE.

F. When EN transitions from FALSE to TRUE, the timer is re-enabled.

• ET resumes timing.

G. ET equals PT, and Q transitions from FALSE to TRUE.

ASIC-200 Language Reference Counters and Timers • 87

Timer Pulse (TP)

Description The TP function block times the duration of an event. After its input pulses
from off to on, the TP keeps time to the preset interval and sets an output
FALSE, which makes the TP an off-delay timer.

RLL

ST Function TPName.IN := Start; (*Assign inputs*)
TPName.PT := PresetTime;
TPName (); (*Call*)
Output := TPName.Q; (*Access outputs*)
ElapsedTime := TPName.ET;

Where

 TPName Unique name for the timer.

 Start
(IN)

 Starts the timer. Data type: BOOL. Rung input in RLL.

 PresetTime
(PT)

 Specifies the period for which the timer times.
Data type: TIME.

 Output
(Q)

 Changes to FALSE when timer times out. Data type:
BOOL. Rung output in RLL.

 ElapsedTime (ET) Contains the current elapsed time. Data type: TIME.

 Enable (EN) Enables the timer. Data type: BOOL.

 Enable Output
(ENO)

 Echoes EN. Data type: BOOL.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using function blocks with the

Instruction List language.
 3. Refer to Structured Text for information on using function blocks with

the Structured Text language.

88 • Counters and Timers ASIC-200 Language Reference

Operation • When the enable input EN is TRUE the timer is enabled.
• When input IN transitions to TRUE, the timer increments,

storing the elapsed time in output ET. The timer continues to
time up, even if IN transitions to FALSE. Therefore, a
FALSE-to-TRUE pulse can start a timer that is enabled.

• When the elapsed time ET equals preset time PT, TP sets the
rung output Q to FALSE.

• If enable input EN becomes FALSE, TP freezes CV in its
current state and sets Q to FALSE. When EN becomes TRUE
again, Q is restored to its previous value.

• ENO echoes the value of EN.

TP Variables You can reference the TP timer variables by prefixing the variable with the
counter instance name (TPName) as follows:

TPName.IN
TPName.PT
TPName.Q
TPName.ET
TPName.EN
TPName.ENO

Timing Diagram An example of the TP timing diagram is shown in the following figure.

ASIC-200 Language Reference Counters and Timers • 89

A. EN and ENO have been previously set to TRUE. IN transitions from
FALSE to TRUE, Q is set to TRUE, and ET indicates that the timer has
begun timing. While the timer is timing, IN can toggle without affecting
ET or Q.

B. ET equals PT and Q transitions from TRUE to FALSE.

C. IN transitions from TRUE to FALSE. ET is set to zero.

D. IN transitions from FALSE to TRUE, Q is set to TRUE, and ET indicates
that the timer has begun timing.

E. EN transitions from TRUE to FALSE, disabling the timer. ET, which had
been timing, holds at its current value, and Q is set to FALSE.

F. EN transitions from FALSE to TRUE, re-enabling the timer. ET resumes
timing, and Q is set to TRUE.

G. ET equals PT and Q transitions from TRUE to FALSE.

ASIC-200 Language Reference Edge Detection • 91

Edge Detection

Introduction
Edge detection function blocks include:

Falling edge trigger (F_TRIG) Turns on an output when triggered by a
falling edge trigger.

Rising edge trigger (R_TRIG) Turns on an output when triggered by a
rising edge trigger.

92 • Edge Detection ASIC-200 Language Reference

Falling Edge Trigger (F_TRIG)

Description The F_TRIG function block sets an output to TRUE for one scan when the
input to the function block transitions from TRUE to FALSE.

RLL

ST Function FtrigName.CLK := Clock; (*Assign input*)
FTrigName (); (*Call*)
Output := FTrigName.Q; (*Access output*)

Where

 FTrigName Unique name for the function block.

 Clock
(CLK)*

 Enables function input (BOOL) to execute when it
transitions from TRUE to FALSE. Data type: BOOL.

 Output
(Q)*

 Output is set to TRUE when CLK transitions from TRUE
to FALSE. Data type: BOOL.

 * In Relay Ladder Logic, although CLK and Q are Boolean data types, the
only way to access them is through the rung.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using function blocks with the

Instruction List language.
 3. Refer to Structured Text for information on using function blocks with

the Structured Text language.

Operation When the input to the FTRIG transitions from TRUE to FALSE, the FTRIG
sets output Q to TRUE for one scan.

You can use the FTRIG input and output in any expression, contact or coil
instead of a symbol of the same type. However, they are local variables and
cannot be used in DDE applications. To reference an FTRIG input or output,
enter the function block name followed by a period and the specific input or
output suffix. For example, FTRIG1.Q refers to the output of FTRIG1.

ASIC-200 Language Reference Edge Detection • 93

Rising Edge Trigger (R_TRIG)

Description The RTRIG function block sets an output to TRUE for one scan when the
input to the function block transitions from FALSE to TRUE.

RLL

ST Function RTrigName.CLK := Clock; (*Assign input*)
RTrigName (); (*Call*)
Output := RTrigName .Q; (*Access output*)
Where

 RTrigName Unique name for the function block.

 Clock
(CLK)*

 Rung input enables the function block rung input
(BOOL) to execute when it transitions from FALSE to
TRUE.

 Output
(Q)*

 Rung output is set to TRUE when CLK transitions from
FALSE to TRUE.

 * In Relay Ladder Logic, although CLK and Q are Boolean data types, the
only way to access them is through the rung.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using function blocks with the

Instruction List language.
 3. Refer to Structured Text for information on using function blocks with

the Structured Text language.

Operation When the input to the RTRIG transitions from FALSE to TRUE, the RTRIG
sets output Q to TRUE for one scan.

You can use the RTRIG input and output in any expression, contact or coil
instead of a symbol of the same type. However, they are local variables and
cannot be used in DDE applications. To reference an RTRIG input or output,
enter the function block name followed by a period and the specific input or
output suffix. For example, RTRIG1.Q refers to the output of RTRIG1.

ASIC-200 Language Reference Extended PID • 95

Extended PID

Introduction
There is one extended PID function block:

Extended PID (EX_PID) Provides automatic closed-loop operation of
continuous process control loops.

Also refer to the PID system object PID Loop Control (PID).

96 • Extended PID ASIC-200 Language Reference

EX_PID

Description A PID is an instruction providing automatic closed-loop operation of
continuous process control loops. For each loop the instruction performs
proportional control and optionally integral control, derivative control, or
both:

• Proportional control - causes an output signal to change as a direct ratio
of the error signal variation.

• Integral control - causes an output signal to change as a function of the
integral of error signal over the time duration.

• Derivative control - causes an output signal to change as a function of
the rate of change of the error signal.

RLL

ASIC-200 Language Reference Extended PID • 97

ST Function PIDFBName.SP:= SetPoint; (*Assign inputs*)
PIDFBName.PVF:= ProcessVariable;
PIDFBName.FF:= FeedForward;
PIDFBName.KP:= PGain;
PIDFBName.KI:= IGain;
PIDFBName.KD:= DGain;
PIDFBName.OVR:= ManOverride;
PIDFBName.SPR:= SPRamping;
PIDFBName.OHL:= HighOutLimit;
PIDFBName.OLL:= LowOutLimit;
PIDFBName.IHL:= HighIntegralLimit;
PIDFBName.ILL:= LowIntegralLimit;
PIDFBName.IHLD:= IntegralHold;
PIDFBName.MAN:= AutoManual;
PIDFBName(); (*Call*)
PIDOut:= PIDFBName.OUT; (*Access Outputs*)
PIDFE:= PIDFBName.FE;
PIDLimited:= PIDFBName.LMTD;

Where

 EN Enable. Data type: BOOL.

 SP Set point. Data type: REAL.

 PVF Process variable (feedback). Data type: REAL.

 FF Output feed forward. Data type: REAL.

 KP Proportional gain. Data type: REAL.

 KI Integral gain. Data type: REAL.

 KD Derivative gain. Data type: REAL.

 OVR Manual override. Data type: REAL.

 SPR Set point ramping. Note: If this parameter is zero or
negative, set point ramping is turned off. Data type:
REAL.

 OHL High output limit. Note: If OHL=OLL, the limiting function
is ignored. Data type: REAL.

 OLL Low output limit. Note: If OHL=OLL, the limiting function
is ignored. Data type: REAL.

 IHL High integral limit. Data type: REAL.

 ILL Low integral limit. Data type: REAL.

98 • Extended PID ASIC-200 Language Reference

 IHLD Integral hold. Data type: BOOL.

 MAN Auto/manual control. Data type: BOOL.

 ENO Enable output. Data type: BOOL.

 OUT Output. Data type: REAL.

 FE Following error. Data type: REAL.

 LMTD Output limited. Data type: BOOL.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using function blocks with the

Instruction List language.
 3. Refer to Structured Text for information on using function blocks with

the Structured Text language.
 4. Not all parameters are available within the RLL editor. If used, you must

set these parameters by some other means; for example, in structured
text.

ASIC-200 Language Reference Extended PID • 99

Operation A PID symbol is a named local symbol of type PIDFB. The SP input should
be connected to the symbol providing the setpoint value for the process. The
PVF input should be connected to the symbol providing the feedback input
from the process. The OUT value should be connected to the symbol that
will be sent to control the process. The rate of change of the internal SP input
will be limited by the SPR value.

The KP, KI and KD are the programmable gains for the process. The FF input
provides an optional FeedForward value for the PID output (OUT). It can be
used to feed forward a value to offset the PID output either dynamically or
statically. The PID is evaluated every I/O scan. The output (OUT) of the PID
function is approximately equal to:

OUT = KP * (FE + KD * derivative(FE) + Iterm) + FF
Where Iterm = integral(KI * FE)

FE = SP - PVF

The PID output is limited by OHL as the high limit and OLL as the lower
limit. LMTD output will be set if the computed OUT was greater than OHL
or less than IHL, and is reset otherwise.

The contribution of the Integral Term is limited to a maximum of IHL and a
minimum of ILL. The accumulation of the Integral Term can be held and its
value frozen by making the IHLD input TRUE. The Integral Term is
automatically frozen internally whenever the PID output (OUT) reaches the
OHL or OLL limits.

The function of the PID can be overridden by placing the PID into manual
mode by making the MAN input TRUE. In manual mode the PID output
(OUT) will be equal to the OVR input. When the PID mode is switched back
to automatic mode by making the MAN input FALSE, the transfer of the PID
output will occur bumplessly by internally loading the Integral Term with
the amount of the current PID output (OUT) minus the FF value and the
amount that would be contributed by the Proportional term (KP) given the
current SP and PV: Iterm = (OUT - FF - KP*(SP-PV)) / KP. This will prevent
the PID output from making a sudden discontinuous change when the PID
mode is switched from manual to automatic.

100 • ASIC-200 Language Reference

Operation
Notes

 1. A symbol of type PID should only be defined as a local variable. A global

PID symbol will be solved once per I/O scan per running program. This
effect will cause instability and unpredictable results in PID outputs.

 2. If SPR < 0, then no setpoint ramping will occur and the PID loop will use
the raw SP value.

 3. When MAN = FALSE (AUTO mode), the OVR is set equal to OUT each
time the PID is evaluated.

 4. IHL, ILL and IHLD will affect the bumpless transfer result.
 5. FF can be used as either static bias or as a dynamic FeedForward term

or both.

ASIC-200 Language Reference Extended Timers • 101

Extended Timers

Introduction
Extended timers include:

Extended Timer Off Delay (XTOF) Provides off-delay timing of events.

Extended Timer On Delay (XTON) Provides on-delay timing of events.

Extended Timer Pulse (XTP) Activated by a pulse, provides off-
delay timing of events.

Also see Counter and Timers.

102 • Extended Timers ASIC-200 Language Reference

Extended Timer Off Delay (XTOF)

Description Turns off an output after a preset time delay. The XTOF timer has two
additional inputs (LoadTime and NewTime, described below), but otherwise
works the same as the TOF timer.

RLL

ST Function XTOFName.IN := Start; (*Assign inputs*)
XTOFName.PT := PresetTime;
XTOFName.LD := LoadTime;
XTOFName.NT := NewTime;
XTOFName (); (*Call*)
Output := XTOFName.Q; (*Access outputs*)
ElapsedTime := XTOFName.ET;

Where

 XTOFName Unique name for the timer.

 Start (IN) Starts the timer. Data type: BOOL. Rung input in RLL.

 PresetTime (PT) Specifies the timer period. Data type: TIME.

 LoadTime (LD) A transition from low to high of LD causes NT to be
loaded directly into the internal time accumulator of the
timer. The NT is immediately reflected in the timer's ET
output. Any transition of other timer inputs during the
transition from low to high of LD are ignored except for
EN. If EN goes low at the same time LD goes high, the
LD input is ignored and the timer is disabled. Data type:
BOOL.

 NewTime (NT) The time value loaded by LoadTime. Data type: WORD.

 Output (Q) FALSE when timer times out. Data type: BOOL. Rung
output in RLL.

 ElapsedTime (ET) The current elapsed time. Data type: TIME.

 Enable (EN) Enables the timer. Data type: BOOL.

ASIC-200 Language Reference Extended Timers • 103

 Enable Output
(ENO)

 Echoes EN. Data type: BOOL.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using function blocks with the

Instruction List language.
 3. Refer to Structured Text for information on using function blocks with

the Structured Text language.

Operation • When EN is TRUE the timer is enabled.
• When IN is FALSE, the timer is active, storing the elapsed

time in ET.
• When the elapsed time ET equals preset time PT, TOF sets the

rung output Q to FALSE.
• When EN is set to FALSE, TOF freezes ET in its current state

and sets Q to zero. When EN is set TRUE again, Q is restored
to its previous value.

• When IN is set TRUE, ET is reset to zero and Q is set to
FALSE. (Note: If PT is zero, then Q is TRUE.)

• A transition from low to high of LD will cause NT to be
loaded directly into the internal time accumulator of the timer.
The NT will immediately be reflected in the timer's ET output.
Any transition of other timer inputs during the transition from
low to high of LD are ignored except for EN. If EN goes low
at the same time LD goes high, the LD input is ignored and
the timer is disabled.

• ENO echoes the value of EN.

Variables You can reference the XTOF timer variables by prefixing the variable with
the counter instance name (XTOFName) as follows:

XTOFName.IN
XTOFName.PT
XTOFName.LD
XTOFName.NT
XTOFName.Q
XTOFName.ET
XTOFName.EN
XTOFName.ENO

104 • Extended Timers ASIC-200 Language Reference

Extended Timer On Delay (XTON)

Description Turns on an output after a preset time delay. The XTON timer has two
additional inputs (LoadTime and NewTime, described below), but otherwise
works the same as the TON timer.

RLL

ST Function XTONName.IN := Start; (*Assign inputs*)
XTONName.PT := PresetTime;
XTONName.LD := LoadTime;
XTONName.NT := NewTime;
XTONName (); (*Call*)
Output := XTONName.Q; (*Access outputs*)
ElapsedTime := XTONName.ET;

Where

 XTONName Unique name for the timer.

 Start
(IN)

 Starts the timer. Data type: BOOL. Rung input in RLL.

 PresetTime (PT) The timer period. Data type: TIME.

 LoadTime (LD) A transition from low to high of LD will cause NT to be
loaded directly into the internal time accumulator of the
timer. The NT will immediately be reflected in the timer's
ET output. Any transition of other timer inputs during the
transition from low to high of LD are ignored except for
EN. If EN goes low at the same time LD goes high, the
LD input is ignored and the timer is disabled. Data type:
BOOL.

 NewTime (NT) The time value loaded by LoadTime. Data type: WORD.

 Output
(Q)

 TRUE when timer times out. Rung output in RLL.

 ElapsedTime (ET) The current elapsed time. Data type: TIME.

 Enable (EN) Enables the timer. Data type: BOOL.

ASIC-200 Language Reference Extended Timers • 105

 Enable Output
(ENO)

 Echoes EN. Data type: BOOL.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.
 3. Refer to Structured Text for information on using function blocks with

the Structured Text language.

Operation • When the enable input EN is TRUE, the timer is enabled.
• When input IN transitions to TRUE, the timer is active,

storing the elapsed time in output ET.
• When the elapsed time ET equals preset time PT, TON sets

the rung output Q to TRUE.
• When EN is set to FALSE, TON freezes ET in its current state

and sets Q to zero. When EN is set to TRUE again, Q is
restored to its original value.

• If input IN becomes FALSE, the system resets ET to zero and
sets output Q to FALSE.

• A transition from low to high of LD will cause NT to be
loaded directly into the internal time accumulator of the timer.
The NT will immediately be reflected in the timer's ET output.
Any transition of other timer inputs during the transition from
low to high of LD are ignored except for EN. If EN goes low
at the same time LD goes high, the LD input is ignored and
the timer is disabled.

• Enable output ENO echoes the value of EN.

Variables You can reference the XTON timer variables by prefixing the variable with
the counter instance name (XTONName) as follows:

XTONName.IN
XTONName.PT
XTONName.LD
XTONName.NT
XTONName.Q
XTONName.ET
XTONName.EN
XTONName.ENO

106 • Extended Timers ASIC-200 Language Reference

Extended Timer Pulse (XTP)

Description The XTP function block times the duration of an event. After its input pulses
from off to on, the XTP keeps time to the preset interval and sets an output
FALSE, which makes the XTP an off-delay timer. The XTP timer has two
additional inputs (LoadTime and NewTime, described below), but otherwise
works the same as the TP timer.

RLL

ST Function XTPName.IN := Start; (*Assign inputs*)
XTPName.PT := PresetTime;
XTPName.LD := LoadTime;
XTPName.NT := NewTime;
XTPName (); (*Call*)
Output := XTPName.Q; (*Access outputs*)
ElapsedTime := XTPName.ET;

Where

 XTPName Unique name for the timer.

 Start
(IN)

 Starts the timer. Data type: BOOL. Rung input in RLL.

 PresetTime
(PT)

 Specifies the period for which the timer times.
Data type: TIME.

 LoadTime (LD) A transition from low to high of LD will cause NT to be
loaded directly into the internal time accumulator of the
timer. The NT will immediately be reflected in the timer's
ET output. Any transition of other timer inputs during the
transition from low to high of LD are ignored except for
EN. If EN goes low at the same time LD goes high, the
LD input is ignored and the timer is disabled. Data type:
BOOL.

 NewTime (NT) The time value loaded by LoadTime. Data type: WORD.

 Output
(Q)

 Changes to FALSE when timer times out. Data type:
BOOL. Rung output in RLL.

ASIC-200 Language Reference Extended Timers • 107

 ElapsedTime (ET) Contains the current elapsed time. Data type: TIME.

 Enable (EN) Enables the timer. Data type: BOOL.

 Enable Output
(ENO)

 Echoes EN. Data type: BOOL.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using function blocks with the

Instruction List language.
 3. Refer to Structured Text for information on using function blocks with

the Structured Text language.

Operation • When the enable input EN is TRUE the timer is enabled.
• When input IN transitions to TRUE, the timer increments,

storing the elapsed time in output ET. The timer continues to
time up, even if IN transitions to FALSE. Therefore, a
FALSE-to-TRUE pulse can start a timer that is enabled.

• When the elapsed time ET equals preset time PT, TP sets the
rung output Q to FALSE.

• If enable input EN becomes FALSE, TP freezes CV in its
current state and sets Q to FALSE. When EN becomes TRUE
again, Q is restored to its previous value.

• A transition from low to high of LD will cause NT to be
loaded directly into the internal time accumulator of the timer.
The NT will immediately be reflected in the timer's ET output.
Any transition of other timer inputs during the transition from
low to high of LD are ignored except for EN. If EN goes low
at the same time LD goes high, the LD input is ignored and
the timer is disabled.

• ENO echoes the value of EN.

XTP Variables You can reference the XTP timer variables by prefixing the variable with the
counter instance name (XTPName) as follows:

XTPName.IN
XTPName.PT
XTPName.LD
XTPName.NT
XTPName.Q
XTPName.ET
XTPName.EN
XTPName.ENO

ASIC-200 Language Reference File • 109

File

Introduction
File functions include:

Append File Writes data to the end of the file.

Close File Closes a file that has been opened by the
OPENFILE function.

Copy File Copies an existing file.

Delete File Deletes an existing file.

New File Creates a new file.

Open File Opens a file for operations, such as reading
or writing.

Read File Reads data from a file.

Rewind File Positions the internal file pointer to the
beginning of a file.

Write File Writes data to a file.

Note: File functions (New File, Open File, etc.) default to the project
directory, unless a path is provided in the file name.

File Control Block Variable
File operations are performed using a file control block variable to identify
the file. For example, to open a file, the Structured Text statement similar to
the following is used:

OPENFILE(File01, FILE:= "DataFile");
Where "DataFile" is the name of the file to open. Further references to the file
are made using the file control variable File01, not "DataFile". The file control
block handles access to the file and error conditions. All file functions that
operate on the same file must use the same file control block variable.

110 • File ASIC-200 Language Reference

Note: The file control block variable should not be declared as a
variable in the Symbol Manager.

You can perform only one operation for each file control block at a time.
When you use file I/O operations within a step in an SFC, subsequent
commands in the step cannot be executed, and the step cannot be terminated
until the file operation has completed. The system automatically handles this
coordination and suspends the execution of the SFC step until the
FCBVar.BUSY flag is reset. Any other logic in the SFC program outside of
the step containing the file operation executes normally.

File Status Variables
Other file variables provide status information about the file; for example, if
the file is open or an error has occurred. By default, the status variables are
accessed as local variables in the form: FCBVar.FStatus, where FCBVar is the
file control block variable and FStatus is one of the file status variables. In
the RLL Editor, status variables can be given explicitly defined symbol
names. For example, File01.ERR would contain the error code of the file
referenced by the file control variable File01.

You can use any of the file status variables in any expression, contact, or coil
instead of a symbol of the same type. They are local variables, and cannot be
used within the Watch Window, Operator Interface, or DDE applications.

Status Variable Description
FCBVar.OPEN
(File Open)

A Boolean variable indicating the open/closed status of the
file. The system sets the File Open variable to true when
the file is open.

FCBVar.BUSY
(File Control Busy)

A Boolean variable indicating that the file is being accessed.
The system sets the File Control Busy variable to true when
the file is being accessed by another file function.

FCBVar.EFLAG
(File Error)

A Boolean variable indicating when an error occurs. Each
time the system accesses the file, it sets the File Error
variable to FALSE. If an error occurs during a file operation,
the system sets the File Error variable to TRUE.

FCBVar.ERR
(File Error Code)

An integer variable containing the error code if an error
occurs. Each time the system accesses the file, it writes a
zero to the File Error Code integer. If an error occurs during
a file operation, the system writes an error code to the File
Error Code integer.
For a listing of the error codes, refer to File Error Codes.

FCBVar.RDN
(File Read Done)

A Boolean variable indicating that a read operation has
been completed. The system sets the File Read Done
variable to TRUE when the read operation is finished.

ASIC-200 Language Reference File • 111

Status Variable Description
FCBVar.WDN
(File Write Done)

A Boolean variable indicating that a write operation has
been completed. The system sets the File Write Done
variable to TRUE when the write operation is finished.

FCBVar.CLSD
(File Close)

A Boolean variable indicating that a file has been closed.
The system sets the File Close variable to TRUE when it
has closed the file.

FCBVar.EOF
(End of File)

A Boolean variable indicating the system encountered an
End of File. The system sets the End of File variable to
TRUE when it encounters the EOF.

Note: FCBVar is the name of the file control block.

File Error Codes
These error codes are written into the File Error Code variable.

Error Code Description Error Code Description
15 File control block is busy 20 Read failed
16 No file name specified 21 File copy failed
17 File has not been

opened
22 Write failed

18 File not found 23 End of line expected
19 Disk full 24 End of file expected

112 • File ASIC-200 Language Reference

Append File

Description Writes data to the end of a file specified by the file control block.

RLL (not applicable)

ST Function APPENDFILE (FCBVar, IN:= Structure, F:= FieldSep, S:= StringSep, T:=
EOL)

Where

 FCBVar The name of the file control block that handles
operations for this file.

 Structure A user-defined data type containing the data structure to
write to the file.

 FieldSep Optional string used to separate fields in the file. The
default is the space character.

 StringSep Optional string used to separate strings in the file.

 EOL Optional string used to indicate the end of a line in the
file.

 return None.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to File Status Variables for information on using function blocks

with the Structured Text language.

Example APPENDFILE (fcbrpt, IN:= datstruct, F:= “,”, S:= “$””, T:= “$n”);

The system accesses the data structure defined by datstruct and writes the
data to the file referenced by the file control block called fcbrpt. The comma is
used to separate fields, strings are enclosed within double quotation marks,
and an end of line is indicated by $n.

ASIC-200 Language Reference File • 113

Close File

Description Closes a file that has been opened by the OPENFILE function.

RLL

ST Function CLOSEFILE (FCBVar)

Where

 FCBVar The name of the file control block that handles
operations for this file.

 BUSY, OPEN,
ERR, EFLAG

 For information about the file status variables, refer to
File Status Variables.

 return None.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to File Status Variables for information on using function blocks

with the Structured Text language.

Example CLOSEFILE (datrpt);

The system closes the file associated with the file control block called datrpt.

114 • File ASIC-200 Language Reference

Copy File

Description Copies the file specified by FromFilename to a new file and assigns it the
name that is specified by ToFilename.

RLL

ST Function COPYFILE (FCBVar, OUT:= ToFilename, IN:= FromFilename)

Where

 FCBVar The name of the file control block that handles
operations for this file

 ToFilename
(Destination File
Name)

 The name of the file to which the source is copied. Data
type: STRING.

 FromFilename
(Source File
Name)

 The name of the file to be copied. Data type: STRING.

 BUSY, OPEN,
ERR, EFLAG

 For information about the file status variables, refer to
File Status Variables.

 return None.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to File Status Variables for information on using function blocks

with the Structured Text language.

Example COPYFILE (datrpt, OUT:= newdatcopy IN:= olddatcopy);

The system makes a copy of the file called olddatcopy and names it
newdatcopy.

ASIC-200 Language Reference File • 115

Delete File

Description Deletes the file specified by Filename.

RLL

ST Function DELETEFILE (FCBVar, IN:= Filename)

Where

 FCBVar The name of the file control block that handles
operations for this file.

 Filename Name of the file to be deleted. Data type: STRING.

 BUSY, OPEN,
ERR, EFLAG

 For information about the file status variables, refer to
File Status Variables.

 return None.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to File Status Variables for information on using function blocks

with the Structured Text language.

Example DELETEFILE (datrpt, IN:= olddatcopy);

The system deletes the file called olddatcopy.

116 • File ASIC-200 Language Reference

New File

Description Creates the file specified by Filename and assigns it a file control block
variable FCBVar. The file control block handles access to the file and error
conditions. All file functions that operate on the same file must use the same
file control block name.

RLL

ST Function NEWFILE (FCBVar, FILE:= Filename);

Where

 FCBVar The name of the file control block that handles
operations for this file.

 Filename Name of the file to be created. Data type: STRING.

 BUSY, OPEN,
ERR, EFLAG

 For information about the file status variables, refer to
File Status Variables.

 return None.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to File Status Variables for information on using function blocks

with the Structured Text language.

Example NEWFILE (fcbdatrpt, FILE:= datareport);

The system creates a new file called datareport.

ASIC-200 Language Reference File • 117

Open File

Description Opens the file specified by Filename and assigns it a file control block
variable FCBVar. The file control block handles access to the file and error
conditions. All file functions that operate on the same file must use the same
file control block name. After the file is opened, it is ready for file operations
such as reading or writing.

RLL

ST Function OPENFILE (FCBVar, FILE:= Filename);

Where

 FCBVar The name of the file control block that handles
operations for this file.

 Filename Name of the file to be opened. Data type: STRING.

 BUSY, OPEN,
ERR, EFLAG

 For information about the file status variables, refer to
File Status Variables.

 return None.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to File Status Variables for information on using function blocks

with the Structured Text language.

Example OPENFILE (fcbrpt, FILE:= report);

The system opens the file called report.

118 • File ASIC-200 Language Reference

Read File

Description Reads data from the file specified by FCBVar and stores the data in the user
defined structure specified by Structure. The Open File or the New File
function must open the file before the Read File function can read it.

RLL

ST Function READFILE (FCBVar, OUT:= Structure, F:= FieldSep, S:= StringSep, T:=
EOL);

Where

 FCBVar The name of the file control block that handles
operations for this file.

 Structure
(Data)

 A user-defined data type containing the data structure
appropriate for the data read from the file. Data type:
user type.

 FieldSep
(Field Separator)

 Optional string used to separate fields in the file. The
default is the space character. Data type: STRING
(character).

 StringSep
(String Delimiter)

 Optional string used to separate strings in the file. Data
type: STRING (character).

 EOL
(EOL Delimiter)

 Optional string used to indicate the end of a line in the
file. Data type: STRING (character).

 BUSY, OPEN,
ERR, EFLAG

 For information about the file status variables, refer to
File Status Variables.

 return None.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to File Status Variables for information on using function blocks

with the Structured Text language.

Example READFILE (fcbrpt, OUT:= datstruct, F:= “,”, S:= “$””, T:= “$n”);

The system accesses the file referenced by the file control block called fcbrpt
and uses the data structure defined by datstruct. The comma is used to

ASIC-200 Language Reference File • 119

separate fields, strings are enclosed within double quotation marks, and an
end of line is indicated by $n.

To read an individual structure element of an array, specify the index
(ArrayName[Index]). To read an entire array of structures, specify only the
name of the array of structures with no index (ArrayOfStructureElements).

Note: READFILE can read an entire line from a file into a STRING variable in
the following manner:

• If the S parameter (string separator) is zero length ("), the function
searches for the F parameter (field separator) on either side of the string.

• If both the S and F parameters are zero length, then the function searches
for the T parameter (end-of-line) and returns the entire line up to the
end-of-line terminator.

120 • File ASIC-200 Language Reference

Rewind File

Description Sets the file pointer to the beginning of the file specified by FCBVar. This lets
the next file operation to begin at the start of the file. This operation is done
automatically when you open a file with Open File.

RLL

ST Function REWINDFILE (FCBVar)

Where

 FCBVar The name of the file control block that handles
operations for this file.

 BUSY, OPEN,
ERR, EFLAG

 For information about the file status variables, refer to
File Status Variables.

 return None.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to File Status Variables for information on using function blocks

with the Structured Text language.

Example REWINDFILE (fcbrpt);

The system rewinds the file referenced by the file control block called fcbrpt.

ASIC-200 Language Reference File • 121

Write File

Description Writes the data in the structure variable specified by Structure to the file
specified by FCBVar. The Open File or the New File function must open the
file before the Write File function can write it.

RLL

ST Function WRITEFILE (FCBVar, IN:= Structure, F:= FieldSep, S:= StringSep, T:=
EOL);

Where

 FCBVar The name of the file control block that handles
operations for this file.

 Structure
(Data)

 A user-defined data type containing the data structure
being written to the file. Data type: user type.

 FieldSep
(Field Separator)

 Optional string used to separate fields in the file. The
default is the space character. Data type: STRING
(character).

 StringSep
(String Delimiter)

 Optional string used to separate strings in the file. Data
type: STRING (character).

 EOL
(EOL Delimiter)

 Optional string used to indicate the end of a line in the
file. Data type: STRING (character).

 BUSY, OPEN,
ERR, EFLAG

 For information about the file status variables, refer to
File Status Variables.

 return None.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to File Status Variables for information on using function blocks

with the Structured Text language.

Example WRITEFILE (fcbrpt, IN:= datstruct, F:= “,”, S:= “$””, T:= “$n”);

The system accesses the data structure defined by datstruct and writes the
data to the file referenced by the file control block called fcbrpt. The comma is

122 • File ASIC-200 Language Reference

used to separate fields, strings are enclosed within double quotation marks,
and an end of line is indicated by $n.

To write an individual structure element of an array, specify the index
(ArrayName[Index]). To write an entire array of structures, specify only the
name of the array of structures with no index (ArrayOfStructureElements).

ASIC-200 Language Reference Mathematical • 123

Mathematical

Introduction
Mathematical functions include:

ABS Computes the absolute value of a number.

ADD Adds two numbers.

DIV Divides one number by another.

EXPT Raises the first number to the power specified by the
second number.

MOD Divides one number by another and stores the
remainder.

MOVE Copies data from one location to another.

MUL Multiplies two numbers.

NEG Negates (changes sign of) the input.

SQRT Computes the square root of a number.

SUB Subtracts one number from another.

124 • Mathematical ASIC-200 Language Reference

Absolute Value (ABS)

Description Returns the absolute value of the input.

RLL

ST Function ABS(AnyNum)

IL Function CALC ABS(OUT:=VarNum,AnyNum)

Where

 AnyNum (IN) The value for which the absolute value is to be
calculated. Data type: ANY_NUM.

 return (OUT) The absolute value of the input. Data type: ANY_NUM.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example absNum := ABS(num);

If num = -99, then absNum = 99.

ASIC-200 Language Reference Mathematical • 125

Addition (ADD)

Description Returns the result of summing the inputs.

RLL

ST Function ADD(AnyNumOrBit1, AnyNumOrBit2)

ST Operator Out := AnyNumOrBit1 + AnyNumOrBit2;

IL Function CALC ADD(OUT:=VarNumOrBit, AnyNumOrAnyBit1, AnyNumOrAnyBit2)

Where

 AnyNumOrBit1,
AnyNumOrBit2
(IN1, IN2)

 Contain the values to be added. Data type: ANY_NUM
or ANY_BIT (excluding BOOL).

 return (OUT) The sum of the addition of the inputs. Data type:
ANY_NUM or ANY_BIT (excluding BOOL).

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

126 • Mathematical ASIC-200 Language Reference

Division (DIV)

Description Returns the result of dividing the first input value by the second input value.

RLL

ST Function DIV(AnyNumOrBit1, AnyNumOrBit2)

ST Operator out := AnyNumOrBit1 / AnyNumOrBit2;

IL Function CALC DIV(OUT:=VarNumOrBit, AnyNumOrAnyBit1, AnyNumOrAnyBit2)

Where

 AnyNumOrBit1
(IN1)

 The dividend. Data type: ANY_NUM or ANY_BIT
(excluding BOOL).

 AnyNumOrBit2
(IN2)

 The divisor. Data type: ANY_NUM or ANY_BIT
(excluding BOOL).

 return (OUT) The quotient of the division of AnyNumOrBit1 by
AnyNumOrBit2. Data type: ANY_NUM or ANY_BIT
(excluding BOOL).

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

ASIC-200 Language Reference Mathematical • 127

Exponent (EXPT)

Description Returns the result of raising a value to the power specified by a second
value.

RLL

ST Function EXPT(AnyNum1, AnyNum2)

ST Operator out := AnyNum1 ** AnyNum2;

IL Function CALC EXPT(OUT:=VarNum, AnyNum1, AnyNum2)

Where

 AnyNum1
(IN1)

 Contains the value to be raised to the power.
Data type: ANY_NUM.

 AnyNum2
(IN2)

 Contains the value used as the exponent.
Data type: ANY_NUM.

 return (OUT) The result of AnyNum1 raised to the power of AnyNum2.
Data type: ANY_NUM.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example numexp := EXPT (vala, valb);

If vala = 2.5, and valb = 5, then numexp = 97.656250.

128 • Mathematical ASIC-200 Language Reference

Modulus (MOD)

Description Returns the remainder of dividing the first input by the second input.

RLL

ST Function MOD(AnyNumOrBit1, AnyNumOrBit2)

ST Operator out := AnyNumOrBit1 MOD AnyNumOrBit2;

IL Function CALC MOD(OUT:=VarNumOrBit, AnyNumOrAnyBit1, AnyNumOrAnyBit2)

Where

 AnyNumOrBit1
(IN1)

 Contains the dividend.
Data type: ANY_NUM or ANY_BIT (excluding BOOL).

 AnyNumOrBit2
(IN2)

 Contains the divisor.
Data type: ANY_NUM or ANY_BIT (excluding BOOL).

 return (OUT) The modulus of the division of AnyNumOrBit1 by
AnyNumOrBit2. Data type: ANY_NUM or ANY_BIT
(excluding BOOL).

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example realout := (real1 MOD real2);

If real1=11.5 and real2=5, then realout=1.5.

ASIC-200 Language Reference Mathematical • 129

Move (MOVE)

Description Returns the result of converting the input value to the same data type as the
output.

RLL

ST Function MOVE(Any)

IL Function CALC MOVE(OUT:=VarAny, Any)

Where

 Any
(IN)

 The value to be copied. Data type: ANY.

 return (OUT) The result of the move operation. Data type: ANY.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

130 • Mathematical ASIC-200 Language Reference

Multiplication (MUL)

Description Returns the result of multiplying the input values.

RLL

ST Function MUL(AnyNumOrBit1, AnyNumOrBit2)

ST Operator out := AnyNumOrBit1 * AnyNumOrBit2;

IL Function CALC MUL(OUT:=VarNumOrBit, AnyNumOrAnyBit1, AnyNumOrAnyBit2)

Where

 AnyNumOrBit1,
AnyNumOrBit2
(IN1)

 The values to be multiplied.
Data type: ANY_NUM or ANY_BIT (excluding BOOL).

 return (OUT) The product of the multiplication of the inputs.
Data type: ANY_NUM or ANY_BIT (excluding BOOL).

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

ASIC-200 Language Reference Mathematical • 131

Negation (NEG)

Description Returns the result of changing the sign of the input value.

RLL

ST Function NEG(AnyNum)

ST Operator out := -AnyNum;

IL Function CALC NEG(OUT:=VarNum, AnyNum)

Where

 AnyNum
(IN)

 The value to be negated. Data type: ANY_NUM.

 return (OUT) The negated value of IN. Data type: ANY_NUM.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

132 • Mathematical ASIC-200 Language Reference

Square Root (SQRT)

Description Returns the square root of the input value.

RLL

ST Function SQRT(AnyNum)

IL Function CALC SQRT(OUT:=VarNum, AnyNum)

Where

 AnyNum
(IN)

 The value for which the square root is to be calculated.
Data type: ANY_NUM.

 return (OUT) The square root of the input.
Data type: ANY_NUM.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example sqrtNum := SQRT(num);

If num = 132 (integer), then sqrtNum = 11.

If num = 132.0 (real), then after the operation, sqrtNum = 11.489125.

ASIC-200 Language Reference Mathematical • 133

Subtraction (SUB)

Description Returns the result of subtracting the second input value from the first input
value.

RLL

ST Function SUB(AnyNumOrBit1, AnyNumOrBit2)

ST Operator out := AnyNumOrBit1 - AnyNumOrBit2;

IL Function CALC SUB(OUT:=VarNumOrBit, AnyNumOrAnyBit1, AnyNumOrAnyBit2)

Where

 AnyNumOrBit1
(IN1)

 Contains the minuend, the number from which a value is
subtracted.
Data type: ANY_NUM or ANY_BIT (excluding BOOL).

 AnyNumOrBit2
(IN2)

 Contains the subtrahend, the number that is subtracted.
Data type: ANY_NUM or ANY_BIT (excluding BOOL).

 return (OUT) The result of the subtraction of AnyNumOrBit2 from
AnyNumOrBit1.
Data type: ANY_NUM or ANY_BIT (excluding BOOL).

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

ASIC-200 Language Reference Miscellaneous • 135

Miscellaneous

Introduction
Miscellaneous functions include:

Abort All Aborts all programs in the runtime subsystem.

Change MMI Screen Displays an operator interface screen under
program control.

Display Message Displays a message in a Windows message box.

Initialize Array Initializes all of the elements of an array to a
specified value.

Message Window Displays a message in the Program Editor Output
Window.

136 • Miscellaneous ASIC-200 Language Reference

Abort All

Description Aborts all programs in the runtime subsystem.

RLL

ST Function ABORT_ALL

IL Function CALC ABORT_ALL

Where

 No parameters.

 return None.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example From Structured Text execute the following statements:

IF (In1) THEN
ABORT_ALL;

END_IF;

When the IF statement is evaluated as TRUE the ABORT_ALL function is
executed and all programs in the runtime subsystem are aborted.

ASIC-200 Language Reference Miscellaneous • 137

Change MMI Screen

Description Displays a specified HMI screen from an RLL, SFC, structured text, or
instruction list program.

RLL

ST Function ChangeMMIScreen (ScreenName);

IL Function CALC ChangeMMIScreen(ScreenName)

Where

 ScreenName Name of the HMI screen to display. Data type: STRING.

 return Always returns TRUE.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

 Operation If the HMI is not running, the function does nothing. If the HMI is running
but the specified screen does not exist, the HMI displays an error message.
Otherwise, the specified screen appears.

Example From structured text execute the following statement:

ChangeMMIScreen("PID Screen");
If the HMI is running and the screen "PID Screen" is in the active HMI
configuration, it is displayed.

138 • Miscellaneous ASIC-200 Language Reference

Display Message

Description Displays a message in a Windows message box. Program execution
continues uninterrupted while the message window is displayed. The
operator can click on OK to dismiss the message.

RLL

ST Function DSPMSG (StringA, StringB)

Where

 StringA (IN1) The message. Data type: STRING.

 StringB (IN2) The message box title. Data type: STRING.

 return None.

 Note

 Refer to Function Execution Control for a description of using the EN
input and ENO output.

Example DSPMSG (‘Open Valves’, Phase);
If variable Phase = "Drain Phase", then the window appears as shown.

The following is an example of the RLL MSGB function:

ASIC-200 Language Reference Miscellaneous • 139

Initialize Array

Description Initializes all of the elements of an array to a specified value.

RLL (not applicable)

ST Function INIT(AnyArray, Value);

Where

 AnyArray The array to be initialized. Data type: ANY.

 Value The value to which all elements in the array are to be
initialized. Data type: ANY (must be the same as the
array elements).

 return The value to which the array was initialized. Data type:
ANY (must be the same as Value).

 Note

 Refer to Instruction List for information on using functions with the
Instruction List language.

Example Status:= INIT(my_array, 10);

When this statement is executed all the elements in the array my_array are
set to 10, and the variable Status is set to 10.

140 • Miscellaneous ASIC-200 Language Reference

Message Window

Description Displays a message in the Program Editor Output Window.

RLL

ST Function MSGWND (StringA, StringB)

Where

 StringA (IN1) The message. Data type: STRING.

 StringB (IN2) The message title. Data type: STRING.

 return None.

 Note

 Refer to Function Execution Control for a description of using the EN
input and ENO output.

Example MSGWND (‘Open Valves’, Phase);
If the variable Phase = "Drain Phase", then the Output Window displays the
message as shown below. Multiple message lines can appear in the Output
Window .

The following is an example of the MSGW function block:

ASIC-200 Language Reference PMAC 2 Functions • 141

PMAC 2 Functions

Introduction
This function is for the PMAC 2 card only. PMAC 2 functions include:

ClosedLoopEStop Stops axes motion and maintains the closed loop
state.

142 • PMAC 2 Functions ASIC-200 Language Reference

ClosedLoopEStop

Description Stops axes motion at the E-Stop deceleration rate and maintains the closed
loop state. This function is for the PMAC 2 driver only.

RLL

ST Function ClosedLoopEStop(BoardID)

IL Function CALC ClosedLoopEStop(BoardID)

Where

 BoardID PMAC board identification as defined by the system.
Data type: DWORD.

 return An integer value indicating the command result:

 0 Success.

 -1 Fail.

 -2 Invalid board identification.

 Data type: Integer.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

ASIC-200 Language Reference Selection • 143

Selection

Introduction
MAX Determines the largest value of the inputs and uses

that value as the output.

MIN Determines the minimum value of the inputs and
uses that value as the output.

144 • Selection ASIC-200 Language Reference

Maximum (MAX)

Description The MAX extensible function determines the largest value of the inputs and
returns that value as the output. The function supports up to 16 inputs.

ST Function MAX(Input1, Input2, … Input16)
 Input1 through
Input16

 The list of input values to be examined. Data type:
Any_Num, Any_Bit, String, Any_Date, Time.

 Return Data from the greatest input. Data type:
Any_Num, Any_Bit, String, Any_Date, Time.

Example result := MAX (vala, valb);

If vala = 14, and valb = 5.752, then result = 14.

ASIC-200 Language Reference Selection • 145

Minimum (MIN)

Description The MIN extensible function determines the minimum value of the inputs
and uses that value as the output. The function can have up to 16 inputs.

ST Function MAX(Input1, Input2, … Input16)

Where

 Input1 to Input16 The list of input values to be examined. Data type:
Any_Num, Any_Bit, String, Any_Date, Time.

 Return Data from the least input. Data type:
Any_Num, Any_Bit, String, Any_Date, Time.

Example result := MIN (vala, valb);

If vala = 3.7415, and valb = 5.752, then result = 3.7415.

ASIC-200 Language Reference System Objects • 147

System Objects

Introduction
System objects include:

PID Loop Control (PID) Providing automatic closed-loop
operation of continuous process control
loops.

Program control block (PRGCB) Allows an SFC application program to
compile and control the execution of
other SFC and RLL or RS-274D
application programs.

Timer (TMR) Implements a timer in the Structured
Text language.

148 • System Objects ASIC-200 Language Reference

PID Loop Control (PID)

Description A PID is an instruction providing automatic close-loop operation of
continuous process control loops. For each loop the instruction performs
proportional control and optionally integral control, derivative control, or
both:

• Proportional control - causes an output signal to change as a direct ratio
of the error signal variation.

• Integral control - causes an output signal to change as a function of the
integral of error signal over the time duration.

• Derivative control - causes an output signal to change as
a function of the rate of change of the error signal.

Note: Also refer to the PID function block EX_PID.

PID Inputs Parameter Variable/Type Units Example

 Proportional Gain KP : Real Output/Input W/°C

 Integral Gain KI : Real KP/sec W/°C/sec

 Derivative Gain KD : Real KP * sec W/°C * sec

 Process Variable
(Feedback)

 PVF : Real Input °C

 SetPoint SP : Real Input °C

 SetPoint Ramping SPR : Real Input/sec °C/sec

 Output Feed
Forward

 FF : Real Output W

 High Output Limit OHL : Real Output W

 Low Output Limit OLL : Real Output W

 High Integral Limit IHL : Real Output W

 Low Integral Limit ILL : Real Output W

 Integral Hold IHLD : BOOL T/F F

 Auto/Manual
Control

 MAN : BOOL T/F T

 Enable EN : BOOL T/F F

ASIC-200 Language Reference System Objects • 149

 Manual Override OVR : Real Output W

PID Outputs Parameter Variable/Type Units Example

 Output OUT : Real Output W

 Following Error FE : Real Input °C

 Output Limited LMTD : BOOL T/F F

 Enable Output ENO : BOOL T/F F

Operation A PID symbol is a named local symbol of type PID. The SP input should be
connected to the symbol providing the setpoint value for the process. The
PVF input should be connected to the symbol providing the feedback input
from the process. The OUT value should be connected to the symbol that
will be sent to control the process. The rate of change of the internal SP input
will be limited by the SPR value.

The KP, KI and KD are the programmable gains for the process. The FF input
provides an optional FeedForward value for the PID output (OUT). It can be
used to feed forward a value to offset the PID output either dynamically or
statically. The PID is evaluated every I/O scan. The output (OUT) of the PID
function is approximately equal to:

OUT = KP * (FE + KD * derivative(FE) + Iterm) + FF
Where Iterm = integral(KI * FE)

FE = SP - PVF

The PID output is limited by OHL as the high limit and OLL as the lower
limit. LMTD output will be set if the computed OUT was greater than OHL
or less than IHL, and is reset otherwise.

The contribution of the Integral Term is limited to a maximum of IHL and a
minimum of ILL. The accumulation of the Integral Term can be held and its
value frozen by making the IHLD input TRUE. The Integral Term is
automatically frozen internally whenever the PID output (OUT) reaches the
OHL or OLL limits.

The function of the PID can be overridden by placing the PID into manual
mode by making the MAN input TRUE. In manual mode the PID output
(OUT) will be equal to the OVR input. When the PID mode is switched back
to automatic mode by making the MAN input FALSE, the transfer of the PID
output will occur bumplessly by internally loading the Integral Term with
the amount of the current PID output (OUT) minus the FF value and the

150 • System Objects ASIC-200 Language Reference

amount that would be contributed by the Proportional term (KP) given the
current SP and PV: Iterm = (OUT - FF - KP*(SP-PV)) / KP. This will prevent
the PID output from making a sudden discontinuous change when the PID
mode is switched from manual to automatic.

Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. A symbol of type PID should only be defined as a local variable. A global

PID symbol will be solved once per I/O scan per running program. This
effect will cause instability and unpredictable results in PID outputs.

 3. If SPR < 0, then no setpoint ramping will occur and the PID loop will use
the raw SP value.

 4. When MAN = FALSE (AUTO mode), the OVR is set equal to OUT each
time the PID is evaluated.

 5. IHL, ILL and IHLD will affect the bumpless transfer result.
 6. FF can be used as either static bias or as a dynamic FeedForward term

or both.

Example To use a PID in Structured Text
1. Create a local variable of type PID.
2. Set initial values of KP, KI, KD, OHL, OLL, IHL, ILL, IHLD, SPR, MAN,

FF.
3. Create program to constantly update SP, PVF, and FF (optional) and

store OUT.
4. Set EN to start the PID updating.

ASIC-200 Language Reference System Objects • 151

152 • System Objects ASIC-200 Language Reference

Program Control Block (PRGCB)

Description The Program Control Block (PRGCB) allows an SFC application program to
compile and control the execution of other SFC and RLL or RS-274D
application programs.

PRGCB
Inputs

Variable Name Type Description Read/
Write

System User

 prcgb.NAME STRING Program name to
control

 R/W - S

 prgcb.RUN BOOL Executes program R/W C S

 prgcb.ABORT BOOL Cancels program
execution

 R/W C S

 prgcb.GEN BOOL Generates .SFC and
.SST files from .NC text
files

 R/W C S

 prgcb.REWIND BOOL On rise, rewind program R/W C S

 prgcb.SINGLE BOOL Activates single block
execution

 R/W - S/C

 prgcb.BLKDEL BOOL Activates block delete R/W - S/C

PRGCB
Outputs

Variable Name Type Description Read/
Write

System User

 prgcb.BLKNO INT Active block number of
RS-274 program

 R S -

 prgcb.STATUS INT Program status R S -

 prgcb.INCYCLE BOOL Indicates program is
running

 R S/C -

 Key:
 R - Read Capability W - Write Capacity
 C - Cleared (Reset) by S - Set by

ASIC-200 Language Reference System Objects • 153

Example To use the PRGCB
1. Create an SFC program and define a local variable (e.g. prgcb) of type

PRGCB.

2. Store a STRING containing the path and filename of the program to
control in prgcb.NAME.

3. Use the PRGCB Boolean inputs to control the program.

4. Use the PRGCB outputs to obtain information about the program.

Controlling the Flow of RLL and Structured Text
Application Programs
The Program Control Block (PRGCB) lets an SFC application program to
compile and control the execution of other SFC and RLL or RS-274D
application programs.

Using the PRGCB Status Code
PRGCB.STATUS allow users to monitor the various states of control
program execution. This unique variable returns an integer value that can be
used both from within the control program itself and displayed as an
indicator on the Operator Interface screen. Prgcb.STATUS indicates the
following:

0 - Initialized 8 - Program Complete

1 - File Not Found 9 - Program Aborting

2 - File Opened 10 - Program Aborted

3 - File Parsing 11 - Program Faulted

4 - Parse Error Occurred 12 - Program At Breakpoint

5 - Parse Complete 13 - Program Suspended

6 - Program Running 14- Program Rewound (REWIND
functionality)

7 - Program Stopped 15 - Program Not Rewound
(REWIND functionality)

Using the PRGCB Rewind Function
After a control program (not ending in M30) has run through to completion,
it will not run again until the user has set the local program control variable
prgcb.REWIND, thus effectively rewinding the program.

A program's rewind functionality can be controlled by two MCodes: M30
and M02. The incorporation of an M30 MCode in the last RS-274D block of
your control program will automatically rewind the program upon
completion without the need to set prgcb.REWIND. The incorporation of the

154 • System Objects ASIC-200 Language Reference

M02 M Code in the last RS-274D block explicitly states for the program to
"not rewind". Again, M02 (not rewound) is the default for every program.

A program's rewind status can be monitored via the prgcb.STATUS variable.

ASIC-200 Language Reference System Objects • 155

Timer (TMR)

Description Implements a timer in the Structured Text language.

Timer
Symbols

The TMR has three system symbols, which are identified by the timer name
plus an extension. A TMR symbol is valid in any instruction or function
block that accepts an ANY or TMR data type.

 Symbol Description

 Tmr_name.PT Contains the preset time value. The preset value can be
a REAL data value, which is interpreted as a value in
seconds, or a TIME data value: a T# or t# followed by a
sequence of one or more numbers and time unit
specifiers.

 Tmr_name.EN Starts/stops the TMR and is a BOOLEAN data type.

 Tmr_name.ET Contains the elapsed time of the TMR in seconds.

Operation
• When tmr_name.EN transitions from FALSE to TRUE, tmr_name.ET is

set to zero and the timer begins to time.

• When tmr_name.ET equals the preset, then tmr_name.EN is
automatically reset. You can design the program to reset tmr_name.EN
earlier than the preset time.

• If tmr_name.EN is set to FALSE, tmr_name.ET is frozen at its last value.

• The elapsed time tmr_name.ET can be read at any time.

ASIC-200 Language Reference TCP/IP Sockets • 157

TCP/IP Sockets

Introduction
Notes:
1. All descriptions in this document refer specifically to how the control

system TCP/IP sockets operate.

2. Refer to the TWO_CLIENT_ONE_SERVER_DEMO.cfg in the samples
folder for an example of TCP/IP sockets communications.

3. To set or determine the IP address and information on port numbers,
refer to IP Address.

A TCP/IP socket is a connection end point in a TCP/IP host. A socket is
uniquely identified by its IP address and port number:

A connection can be made between two sockets, allowing hosts to exchange
data through the connection:

158 • TCP/IP Sockets ASIC-200 Language Reference

Most socket applications are client/server applications. The client end of a
connection actively connects to the remote socket. The server end of a
connection waits for the client to connect. TCP/IP Sockets require that one
end of a connection to be defined as a client socket. The other end must be a
server socket. Once connected, the host can send/receive application specific
data to/from the remote host through the local socket.

TCP/IP Sockets can support multiple socket connections. Note that a host
creates one socket for each connection.

ASIC-200 Language Reference TCP/IP Sockets • 159

Socket Addressing

TCP/IP Sockets are uniquely identified by its IP address/port number pair.
Socket addresses are ASCII strings of the following form:

a.b.c.d:p
Where a.b.c.d is the IP address; and p is the port number. Each socket on a
host must have a unique socket address.

Socket Types
TCP/IP Sockets support two socket types: Stream and Datagram.

Stream
Socket

Provides a reliable byte stream connection. It uses TCP (transport)
for data delivery, which ensures reliable communications.

Datagram
Socket

Provides a packet-based connection where datagrams are
exchanged through the socket. Datagrams are buffers of a fixed
(typically small) maximum length. The maximum length is
determined by the physical network (ethernet, token-ring, etc.).
Because UDP is used for data delivery, the connection is unreliable.
The application must be able to handle lost or duplicate packets.

Socket Buffers
Associated with each TCP/IP Socket is an internal input and output buffer.
The size of each buffer is configurable. API functions allow the application to
build and send messages from the output buffer; and to receive messages
into the input buffer and to extract data from each message.

TCP/IP Sockets API Summary

Function Type Functions
TCP/IP Initialization TCP_START_SOCKET_SERVICE

WAIT_TCP_START_SOCKET_SERVICE
Socket Creation and Connection TCP_CREATE

WAIT_TCP_CREATE
TCP_CONNECT
WAIT_TCP_CONNECT

Socket Message Transmission TCP_CLEAR_SEND_BUFFER
TCP_APPEND_datatype
TCP_SEND_BUFFER

160 • TCP/IP Sockets ASIC-200 Language Reference

Function Type Functions
WAIT_TCP_SEND_BUFFER

Socket Message Reception TCP_RECV_BUFFER
WAIT_TCP_RECV_BUFFER
TCP_EXTRACT_datatype
TCP_GET_EXTRACT_ERROR
TCP_RESET_RECV_BUFFER

Socket Closure TCP_CLOSE
WAIT_TCP_CLOSE

IP Address
In Windows NT4.0, the IP address is available from the Microsoft TCP/IP
Properties windows. This window is accessed as follows:

1. Open the Control Panel from the Settings menu on the Windows Start
menu.

2. Next open the Network application.

3. Select the Protocols tab

4. Select the TCP/IP Protocol and choose Properties. The Microsoft TCP/IP
Properties dialog box appears as shown in the figure.

You can specify or observe the PC's IP address.

Regarding the port number, typically port numbers 4000 and above are
available. However, you may need to consult with your network
administrator if you run into problems.

ASIC-200 Language Reference TCP/IP Sockets • 161

162 • TCP/IP Sockets ASIC-200 Language Reference

TCP_APPEND_datatype

Functions INT TCP_APPEND_INT (INT handle, INT val, BOOL conversion)

INT TCP_APPEND_DINT (INT handle, INT val, BOOL conversion)

INT TCP_APPEND_REAL (INT handle, REAL val)

INT TCP_APPEND_LREAL (INT handle, REAL val)

INT TCP_APPEND_BYTE (INT handle, BYTE val)

INT TCP_APPEND_WORD (INT handle, WORD val, BOOL conversion)

INT TCP_APPEND_DWORD (INT handle, DWORD val, BOOL conversion)

Description Appends the specified data item to the end of the message in the output
buffer. The valid data types are:

TYPE SIGN SIZE

INT Signed 2 bytes

DINT Signed 4 bytes

REAL Signed 4 bytes

LREAL Signed 8 bytes

BYTE Unsigned 1 byte

WORD Unsigned 2 bytes

DWORD Unsigned 4 bytes

Parameters handle: socket handle returned from the TCP_CREATE command.

val: Data to append to end of output message.

conversion: Data conversion switch:

FALSE = no conversion

TRUE = convert to network byte order

ASIC-200 Language Reference TCP/IP Sockets • 163

Returns ReturnVal < -1 TCP_APPEND_datatype command failed. See error codes
below for the specific error.

ReturnVal = 0 TCP_APPEND_datatype command completed successfully.

Notes 1. Prior to building a new output message, call TCP_CLEAR_SEND_BUFFER
to empty the output buffer.

2. Use the append functions to sequentially build an output message,
starting with the beginning of the message.

3. The socket must be connected, or this command will fail.

4. A string must not exceed 255 characters in length (not including the
NULL) or this function will fail. This function appends a NULL character
(00h) to the end of the string in the output buffer.

Error codes -1003 TCPINVALIDHANDLE Invalid handle.

-1006 TCPNOTCONNECTED Socket not connected.

-1007 TCPOVERRUN Data could not be appended to
message — no more space in output
buffer.

-1008 TCPBUSY A command is already in progress for
this socket.

-1022 TCPSTARTING Can’t perform specified operation —
socket service startup in progress.

-1026 TCPINVSTRINGLENGTH Invalid string length. Length is
limited to 0 to 255 characters.

164 • TCP/IP Sockets ASIC-200 Language Reference

TCP_CLEAR_SEND_BUFFER

Function INT TCP_CLEAR_SEND_BUFFER(INT handle)

Description Clears the output buffer for the specified socket.

Parameters handle: socket handle returned from the TCP_CREATE command.

Returns ReturnVal < -1 TCP_CLEAR_SEND_BUFFER command failed. See error
codes below for the specific error.

ReturnVal = 0 TCP_CLEAR_SEND_BUFFER command completed
successfully.

Notes 1. Prior to building a new output message, call this function to empty the
output buffer.

2. The socket must be connected, or this command will fail.

Error codes -1003 TCPINVALIDHANDLE Invalid handle.

-1006 TCPNOTCONNECTED Socket not connected.

-1008 TCPBUSY A command is already in progress for
this socket.

-1022 TCPSTARTING Can’t perform specified operation —
socket service startup in progress.

ASIC-200 Language Reference TCP/IP Sockets • 165

TCP_CLOSE

Function INT TCP_CLOSE(INT handle)

Description Disconnects and closes the specified socket.

Parameters handle: socket handle returned from the TCP_CREATE command.

Returns ReturnVal < -1 TCP_CLOSE command failed. See error codes below for the
specific error.

ReturnVal = 0 TCP/IP Socket service is closing this socket. Call
WAIT_TCP_CLOSE to wait for the TCP_CLOSE function call to complete.

Notes The application MUST call WAIT_TCP_CLOSE to wait for the TCP_CLOSE
command to complete. If the application attempts to create the same socket
before the socket closure completes, the TCP_CREATE function call will fail.

Error codes -1003 TCPINVALIDHANDLE Invalid handle.

-1022 TCPSTARTING Can’t perform specified operation —
socket service startup in progress.

166 • TCP/IP Sockets ASIC-200 Language Reference

TCP_CONNECT

Function INT TCP_CONNECT(INT handle, STRING remote_sock_addr,BYTE mode,
DWORD timeout)

Description Creates a connection between the local socket and the specified remote
socket. Once connected, the application can send/receive data through the
connection.

Parameters handle: socket handle returned from the TCP_CREATE
command.

remote_sock_addr: The remote socket address of the form:
“a.b.c.d:p”

mode: 0 = Client Application. The TCP_CONNECT
command will actively attempt to connect to the
specified remote socket.

1 = Server Application. The TCP_CONNECT
command will wait for a connection request from
the specified remote socket.

timeout: Timeout, in seconds. 0 means infinite. Specifies
how long to wait for the socket to connect before
returning an error.

Returns ReturnVal < -1 TCP_CONNECT failed. See the error codes below for the
specific error.

ReturnVal = 0 Socket is connecting. Call WAIT_TCP_CONNECT to wait for
the TCP_CONNECT command to complete.

Notes 1. Call WAIT_TCP_CONNECT to wait for the TCP_CONNECT command to
complete.

2. To create a connection between two sockets, one socket must connect as a
Client -- the other as a Server. Client sockets actively initiate connections.
Server sockets wait for connection requests. If both sockets are configured as
a Client socket, or both as a Server Socket, then the sockets will not connect.

3. The application must connect the socket before it can send/receive data.

ASIC-200 Language Reference TCP/IP Sockets • 167

Error codes -1000 TCPINVALIDADDRESS Invalid socket address.

-1003 TCPINVALIDHANDLE Invalid handle.

-1004 TCPINVALIDMODE Invalid connect mode.

-1005 TCPALREADYCONN Socket already connected.

-1017 TCPNOTCREATED Socket not created yet, or is being
closed.

-1022 TCPSTARTING Can’t perform specified operation —
socket service startup in progress.

168 • TCP/IP Sockets ASIC-200 Language Reference

TCP_CREATE

Function INT TCP_CREATE(STRING local_sock_addr, BYTE sock_type,WORD
in_size, WORD out_size)

Description Creates an ASIC-200 or ASIC-300 TCP/IP Socket.

Parameters local_sock_addr: The local socket address of the form: “a.b.c.d:p”

sock_type: 0 = Datagram

1 = Stream

in_size: Size of the input buffer, in bytes. Range 1 — 65535
bytes. Default is 1024 bytes.

out_size: Size of the output buffer, in bytes. Range 1 — 65535
bytes. Default is 1024 bytes.

Returns ReturnVal < -1 TCP_CREATE failed. See error codes below for the specific
error.

ReturnVal > 0 Socket is being created. Value returned is the socket handle.
Call WAIT_TCP_CREATE to wait for the command to complete.

Notes 1. Call WAIT_TCP_CREATE to wait for the command to complete.

2. Datagram Socket: Provides a packet-based connection where datagrams
are exchanged through the socket. Datagrams are buffers of a fixed (typically
small) maximum length. The maximum length is determined by the physical
network (ethernet, token-ring, etc.). Because UDP is used for data delivery,
the connection is unreliable. The application must be able to handle lost or
duplicate packets.

3. Streams Socket: Provides a reliable byte stream connection. It uses TCP
(transport) for data delivery, which ensures reliable communications. For
ASIC to ASIC communications, always use Streams Sockets.

ASIC-200 Language Reference TCP/IP Sockets • 169

Error codes -1000 TCPINVALIDADDRESS Invalid socket address.

-1001 TCPINVALIDSOCKTYPE Invalid socket type.

-1002 TCPINVALIDBUFSIZE Invalid buffer size.

-1013 TCPNOHANDLES No more API handles available.

-1014 TCPNOTHREAD Could not create worker thread for
socket.

-1015 TCPDUPADDRESS Local socket address already in use.

-1022 TCPSTARTING Can’t perform specified operation —
socket service startup in progress.

170 • TCP/IP Sockets ASIC-200 Language Reference

TCP_EXTRACT_datatype

Functions INT TCP_EXTRACT_INT (INT handle, BOOL conversion)

INT TCP_EXTRACT_DINT (INT handle, BOOL conversion)

REAL TCP_EXTRACT_REAL (INT handle)

REAL TCP_EXTRACT_LREAL (INT handle)

BYTE TCP_EXTRACT_BYTE (INT handle)

WORD TCP_EXTRACT_WORD (INT handle, BOOL conversion)

DWORD TCP_EXTRACT_DWORD (INT handle, BOOL conversion)

Description Extracts the next data item from the message in the input buffer. A
subsequent extract function call will extract the data item following this item.
The valid data types are:

TYPE SIGN SIZE

INT Signed 2 bytes

DINT Signed 4 bytes

REAL Signed 4 bytes

LREAL Signed 8 bytes

BYTE Unsigned 1 byte

WORD Unsigned 2 bytes

DWORD Unsigned 4 bytes

ASIC-200 Language Reference TCP/IP Sockets • 171

Parameters Handle: socket handle returned from the TCP_CREATE command.

Conversion: Data conversion switch:

FALSE = no conversion

TRUE = convert from network byte order

Returns If successful, returns the requested data item.

On error, a value of zero is returned. Call TCP_GET_EXTRACT_ERROR to
get the specific error. See error codes below.

Notes 1. Use these extraction functions to sequentially extract each data item from a
received message, starting at the beginning of the message. After a new
message is received via a TCP_RECV_BUFFER function call, data extraction
begins at the beginning of the message. The contents of the input buffer
remain intact until the next receive function call. After data is extracted from
the buffer, the application can call TCP_RESET_RECV_BUFFER to reset
extraction to the beginning of the message.

2. The socket must be connected, or this command will fail.

3. The received string MUST be NULL terminated (00h) and 0 to 255
characters in length or the EXTRACT function will fail.

Error codes -1006 TCPNOTCONNECTED Socket not connected.

-1008 TCPBUSY A command is already in progress for
this socket.

-1009 TCPOUTOFDATA Not enough input data to fulfill this
request.

-1026 TCPINVSTRINGLENGTH A received string must not exceed 255
characters in length

172 • TCP/IP Sockets ASIC-200 Language Reference

TCP_GET_EXTRACT_ERROR

Function INT TCP_GET_EXTRACT_ERROR(INT handle)

Description Returns the error code associated with the last TCP_EXTRACT operation on
the specified socket.

Parameters handle: socket handle returned from the TCP_CREATE command.

Returns ReturnVal < -1 The last extraction command did not complete successfully.
The value returned is the specific error code.

ReturnVal = 0 The last extraction command completed without errors.

Error codes -1006 TCPNOTCONNECTED Socket not connected.

-1008 TCPBUSY A command is already in progress for
this socket.

-1009 TCPOUTOFDATA Not enough input data to fulfill this
request.

-1026 TCPINVSTRINGLENGTH A received string must not exceed 255
characters in length

ASIC-200 Language Reference TCP/IP Sockets • 173

TCP_RECV_BUFFER

Function INT TCP_RECV_BUFFER(INT handle, WORD count, DWORD timeout)

Description Receives message data into the input buffer.

Parameters handle: socket handle returned from the TCP_CREATE command.

count: Number of bytes to receive.

Ignored for Datagram sockets.

timeout: Timeout, in seconds. 0 means infinite. Specifies how long to
wait for the requested data.

Returns ReturnVal < -1 TCP_RECV_BUFFER failed. See the error codes below for the
specific error.

ReturnVal = 0 Socket is attempting to receive a message. Call
WAIT_TCP_RECV_BUFFER to wait for the TCP_RECV_BUFFER command to
complete.

Notes 1. Call WAIT_TCP_RECV_BUFFER to wait for the TCP_RECV_BUFFER
command to complete.

2. Data in the input buffer is lost — replaced by any newly received data.

3. For Datagram sockets, a message is sent over the physical link as a single
packet. This same packet is also received as an integral unit. Therefore,
TCP_RECV_BUFFER returns the entire packet in the input buffer. If the
datagram message is too large to fit into the input buffer, the recv will fail.
The count parameter is ignored for Datagram sockets.

4. For Datagram sockets, messages are sent using UDP. This protocol does
not guarantee delivery of messages. It is the responsibility of the application
to handle lost packets. For Datagram sockets, you should specify a timeout
period to recover from a lost packet error during receive.

5. Use the TCP_EXTRACT_datatype function calls to extract each data item
from the newly received message.

6. The socket must be connected, or this command will fail.

174 • TCP/IP Sockets ASIC-200 Language Reference

Error codes -1003 TCPINVALIDHANDLE Invalid handle.

-1006 TCPNOTCONNECTED Socket not connected.

-1008 TCPBUSY A command is already in progress for
this socket.

-1010 TCPINVALIDCOUNT Read count invalid or larger then the
input buffer size.

-1022 TCPSTARTING Can’t perform specified operation —
socket service startup in progress.

ASIC-200 Language Reference TCP/IP Sockets • 175

TCP_RESET_RECV_BUFFER

Function INT TCP_RESET_RECV_BUFFER(INT handle)

Description Resets the pointer to the beginning of the input buffer for the specified
socket. The next TCP_EXTRACT_datatype function call will extract the first
data item from the message in the input buffer.

Parameters handle: socket handle returned from the TCP_CREATE command.

Returns ReturnVal < -1 TCP_RESET_RECV_BUFFER command failed. See error
codes below for the specific error.

ReturnVal = 0 TCP_RESET_RECV_BUFFER command completed
successfully.

Notes 1. The application can process a received message repeatedly using this reset
function in conjunction with the data extraction functions. The contents of
the input buffer remain intact until the next recv function is issued.

2. The socket must be connected, or this command will fail.

Error codes -1003 TCPINVALIDHANDLE Invalid handle.

-1006 TCPNOTCONNECTED Socket not connected.

-1008 TCPBUSY A command is already in progress for
this socket.

-1022 TCPSTARTING Can’t perform specified operation —
socket service startup in progress.

176 • TCP/IP Sockets ASIC-200 Language Reference

TCP_SEND_BUFFER

Function INT TCP_SEND_BUFFER(INT handle)

Description Sends the message contained in the output buffer.

Parameters handle: socket handle returned from the TCP_CREATE command.

Returns ReturnVal < -1 TCP_SEND_BUFFER failed. See the error codes below for the
specific error.

ReturnVal = 0 Socket is sending the message. Call
WAIT_TCP_SEND_BUFFER to wait for the TCP_SEND_BUFFER command to
complete.

Notes 1. Call WAIT_TCP_SEND_BUFFER to wait for the TCP_SEND_BUFFER
command to complete.

2. For Datagram sockets, the message is sent over the physical link as a single
packet. The message length should not exceed the maximum datagram size
for the physical link (ethernet, token-ring, etc) or the send may fail. FYI:
maximum amount of data that can be transferred on Ethernet is 1500 bytes.

3. The socket must be connected, or this command will fail.

Error codes -1003 TCPINVALIDHANDLE Invalid handle.

-1006 TCPNOTCONNECTED Socket not connected.

-1008 TCPBUSY A command is already in progress for
this socket.

-1019 TCPNODATA No data to send.

-1022 TCPSTARTING Can’t perform specified operation —
socket service startup in progress.

ASIC-200 Language Reference TCP/IP Sockets • 177

TCP_START_SOCKET_SERVICE

Function INT TCP_START_SOCKET_SERVICE()

Description Initializes the TCP/IP Socket service. The application MUST call this
function prior to calling any of the other API functions.

Call WAIT_TCP_START_SOCKET_SERVICE to wait for the
TCP_START_SOCKET_SERVICE function call to complete.

Parameters None

Returns None

Notes 1. Call WAIT_TCP_START_SOCKET_SERVICE to wait for the
TCP_START_SOCKET_SERVICE function call to complete.

2. This function closes all open sockets. Calling this function at the beginning
of the application ensures that all sockets that were opened during a
previous execution of the application are closed. For example: when a
program is aborted, then restarted.

3. Failure to call this function may cause the API functions to fail due to the
Windows Socket being opened already (error —1015).

4. Call this function only ONCE during the startup of your application.

178 • TCP/IP Sockets ASIC-200 Language Reference

WAIT_TCP_CONNECT

Function INT WAIT_TCP_CONNECT(INT handle)

Description Waits for the TCP_CONNECT function call to complete.

Parameters handle: socket handle returned from the TCP_CREATE command.

Returns ReturnVal < -1 TCP_CONNECT command failed. See error codes below for
the specific error.

ReturnVal = -1 TCP_CONNECT command still in progress. Continue to call
WAIT_TCP_CONNECT to determine when the command has completed.

ReturnVal = 0 TCP_CONNECT command completed successfully.

Notes After the TCP_CONNECT command has successfully completed, the
application can send/receive data through the connection.

Error codes -1003 TCPINVALIDHANDLE Invalid handle.

-1012 TCPTIMEOUT Timeout.

-1018 TCPNOCONNECT Attempt to wait for connect failed —
socket is not being connected.

-1022 TCPSTARTING Can’t perform specified operation —
socket service startup in progress.

-10014 WSAEFAULT The Windows Sockets
implementation was unable to
allocate needed resources for its
internal operations.

-10024 WSAEMFILE The queue is nonempty upon entry to
accept and there are no descriptors
available.

-10049 WSAEADDRNOTAVAIL The specified address is not available
from the local machine.

-10050 WSAENETDOWN The network subsystem has failed.

ASIC-200 Language Reference TCP/IP Sockets • 179

-10051 WSAENETUNREACH The network cannot be reached from
this host at this time.

-10055 WSAENOBUFS No buffer space is available. The
socket cannot be connected.

-10056 WSAEISCONN The socket is already connected
(connection-oriented sockets only).

-10061 WSAECONNREFUSED The attempt to connect was forcefully
rejected.

180 • TCP/IP Sockets ASIC-200 Language Reference

WAIT_TCP_CLOSE

Function INT WAIT_TCP_CLOSE(INT handle)

Description Waits for the TCP_CLOSE function call to complete.

Parameters handle: socket handle returned from the TCP_CREATE command.

Returns ReturnVal < -1 TCP_CLOSE command failed. See error codes below for the
specific error.

ReturnVal = -1 TCP_CLOSE command still in progress. Continue to call
WAIT_TCP_CLOSE to determine when the command has completed.

ReturnVal = 0 TCP_CLOSE command completed successfully. The
specified handle is now invalid.

Error codes -1003 TCPINVALIDHANDLE Invalid handle.

-1022 TCPSTARTING Can’t perform specified operation —
socket service startup in progress.

-1023 TCPNOCLOSE Attempt to wait for socket closure
failed — not closing this socket.

ASIC-200 Language Reference TCP/IP Sockets • 181

WAIT_TCP_CREATE

Function INT WAIT_TCP_CREATE(INT handle)

Description Waits for the TCP_CREATE function call to complete.

Parameters handle: socket handle returned from TCP_CREATE.

Returns ReturnVal < -1 TCP_CREATE command failed. See error codes below. The
handle should be closed by calling TCP_CLOSE.

ReturnVal = -1 TCP_CREATE command still in progress. Continue to call
WAIT_TCP_CREATE to determine when the command has completed.

ReturnVal = 0 TCP_CREATE command complete.

Notes Create a socket first. Then use TCP_CONNECT to connect the socket to a
remote host.

Error codes -1003 TCPINVALIDHANDLE Invalid handle.

-1016 TCPNOCREATE Attempt to wait for create failed —
socket is not being created.

-1022 TCPSTARTING Can’t perform specified operation —
socket service startup in progress.

-1024 TCPOUTOFMEMORY Out of memory.

-10024 WSAEMFILE No more socket descriptors are
available.

-10050 WSAENETDOWN The network subsystem or the
associated service provider has failed.

-10055 WSAENOBUFS No buffer space is available. The
socket cannot be created.

182 • TCP/IP Sockets ASIC-200 Language Reference

WAIT_TCP_RECV_BUFFER

Function INT WAIT_TCP_RECV_BUFFER(INT handle)

Description Waits for the TCP_RECV_BUFFER function call to complete.

Parameters handle: socket handle returned from the TCP_CREATE command.

Returns ReturnVal < -1 TCP_RECV_BUFFER command failed. See error codes below
for the specific error.

ReturnVal = -1 TCP_RECV_BUFFER command still in progress. Continue to
call WAIT_TCP_RECV_BUFFER to determine when the command has
completed.

ReturnVal >= 0 TCP_RECV_BUFFER command completed successfully. The
value returned is the number of bytes read into the input buffer. If the
receive command timed-out, the number of bytes returned may be less than
the requested amount of data.

Notes The socket must be connected, or this command will fail.

Error codes -1003 TCPINVALIDHANDLE Invalid handle.

-1006 TCPNOTCONNECTED Socket not connected.

-1021 TCPNORECV Attempt to wait for receive failed —
not receiving data on this socket.

-1022 TCPSTARTING Can’t perform specified operation —
socket service startup in progress.

-1025 TCPCONNCLOSED Connection closed.

-10040 WSAEMSGSIZE The message was too large to fit into
the specified buffer and was
discarded.

-10050 WSAENETDOWN The network subsystem has failed.

-10052 WSAENETRESET The connection has been broken due
to the remote host resetting.

ASIC-200 Language Reference TCP/IP Sockets • 183

-10053 WSAECONNABORTED The virtual circuit was terminated due
to a time-out or other failure. The
application should close the socket as
it is no longer usable.

-10054 WSAECONNRESET The virtual circuit was reset by the
remote side executing a “hard” or
“abortive” close. The application
should close the socket as it is no
longer usable. On a UDP datagram
socket this error would indicate that a
previous send operation resulted in
an ICMP "Port Unreachable" message.

-10057 WSAENOTCONN The socket is not connected.

-10060 WSAETIMEDOUT The connection has been dropped
because of a network failure or
because the peer system failed to
respond.

184 • TCP/IP Sockets ASIC-200 Language Reference

WAIT_TCP_SEND_BUFFER

Function INT WAIT_TCP_SEND_BUFFER(INT handle)

Description Waits for the TCP_SEND_BUFFER function call to complete.

Parameters handle: socket handle returned from the TCP_CREATE command.

Returns ReturnVal < -1 TCP_SEND_BUFFER command failed. See error codes below
for the specific error.

ReturnVal = -1 TCP_SEND_BUFFER command still in progress. Continue to
call WAIT_TCP_SEND_BUFFER to determine when the command has
completed.

ReturnVal = 0 TCP_SEND_BUFFER command completed successfully.

Notes The socket must be connected, or this command will fail.

Error codes -1003 TCPINVALIDHANDLE Invalid handle.

-1017 TCPNOTCREATED Socket not created yet, or is being
closed.

-1020 TCPNOSEND Attempt to wait for send failed — not
sending data on this socket.

-1022 TCPSTARTING Can’t perform specified operation —
socket service startup in progress.

-10040 WSAEMSGSIZE The socket is message oriented, and
the message is larger than the
maximum supported by the
underlying transport.

-10050 WSAENETDOWN The network subsystem has failed.

-10052 WSAENETRESET The connection has been broken due
to the remote host resetting.

-10053 WSAECONNABORTED The virtual circuit was terminated due
to a time-out or other failure. The
application should close the socket as
it is no longer usable.

ASIC-200 Language Reference TCP/IP Sockets • 185

-10054 WSAECONNRESET The virtual circuit was reset by the
remote side executing a “hard” or
“abortive” close. For UPD sockets, the
remote host was unable to deliver a
previously sent UDP datagram and
responded with a "Port Unreachable"
ICMP packet. The application should
close the socket as it is no longer
usable.

-10055 WSAENOBUFS No buffer space is available.

-10057 WSAENOTCONN The socket is not connected.

-10060 WSAETIMEDOUT The connection has been dropped,
because of a network failure or
because the system on the other end
went down without notice.

-10065 WSAEHOSTUNREACH The remote host cannot be reached
from this host at this time.

186 • TCP/IP Sockets ASIC-200 Language Reference

TCP/IP Sockets API Error Codes

-1000 TCPINVALIDADDRESS Invalid socket address.

-1001 TCPINVALIDSOCKTYPE Invalid socket type.
-1002 TCPINVALIDBUFSIZE Invalid buffer size.
-1003 TCPINVALIDHANDLE Invalid handle.
-1004 TCPINVALIDMODE Invalid connect mode.
-1005 TCPALREADYCONN Socket already connected.
-1006 TCPNOTCONNECTED Socket not connected.
-1007 TCPOVERRUN Data could not be appended to message – no more

space in output buffer.
-1008 TCPBUSY A command is already in progress for this socket.
-1009 TCPOUTOFDATA Not enough input data to fulfill this request.
-1010 TCPINVALIDCOUNT Read count invalid or larger then the input buffer size.
-1011 TCPOVERFLOW Message received is too large to fit into the input buffer –

packet discarded.
-1012 TCPTIMEOUT Timeout.
-1013 TCPNOHANDLES No more API handles available.
-1014 TCPNOTHREAD Could not create worker thread for socket.
-1015 TCPDUPADDRESS Local socket address already in use.
-1016 TCPNOCREATE Attempt to wait for create failed – socket is not being

created.
-1017 TCPNOTCREATED Socket not created yet, or is being closed.
-1018 TCPNOCONNECT Attempt to wait for connect failed – socket is not being

connected.
-1019 TCPNODATA No data to send.
-1020 TCPNOSEND Attempt to wait for send failed – not sending data on this

socket.
-1021 TCPNORECV Attempt to wait for receive failed – not receiving data on

this socket.
-1022 TCPSTARTING Can’t perform specified operation – socket service

startup in progress.
-1023 TCPNOCLOSE Attempt to wait for socket closure failed – not closing this

socket.
-1024 TCPOUTOFMEMORY Out of memory.
-1025 TCPCONNCLOSED Connection closed.
-1026 TCPINVSTRINGLENGTH A string must not exceed 255 characters in length.

ASIC-200 Language Reference TCP/IP Sockets • 187

Windows Sockets 2.0 Error Codes
The following information is copyright Microsoft Corporation.

-10004 WSAEINTR Interrupted
function call.

A blocking operation was interrupted
by a call to WSACancelBlockingCall.

-10013 WSAEACCES Permission
denied.

An attempt was made to access a
socket in a way forbidden by its access
permissions. An example is using a
broadcast address for sendto without
broadcast permission being set using
setsockopt(SO_BROADCAST).

-10014 WSAEFAULT Bad address. The system detected an invalid pointer
address in attempting to use a pointer
argument of a call. This error occurs if
an application passes an invalid
pointer value, or if the length of the
buffer is too small. For instance, if the
length of an argument which is a struct
sockaddr is smaller than sizeof(struct
sockaddr).

-10022 WSAEINVAL Invalid
argument.

Some invalid argument was supplied
(for example, specifying an invalid level
to the setsockopt function). In some
instances, it also refers to the current
state of the socket - for instance,
calling accept on a socket that is not
listening.

-10024 WSAEMFILE Too many
open files.

Too many open sockets. Each
implementation may have a maximum
number of socket handles available,
either globally, per process or per
thread.

-10035 WSAEWOULD
BLOCK

Resource
temporarily
unavailable.

This error is returned from operations
on non-blocking sockets that cannot be
completed immediately, for example
recv when no data is queued to be
read from the socket. It is a non-fatal
error, and the operation should be
retried later. It is normal for
WSAEWOULDBLOCK to be reported
as the result from calling connect on a
non-blocking SOCK_STREAM socket,
since some time must elapse for the
connection to be established.

188 • TCP/IP Sockets ASIC-200 Language Reference

-10036 WSAEINPROGRESS Operation now
in progress.

A blocking operation is currently
executing. Windows Sockets only
allows a single blocking operation to be
outstanding per task (or thread), and if
any other function call is made
(whether or not it references that or
any other socket) the function fails with
the WSAEINPROGRESS error.

-10037 WSAEALREADY Operation
already in
progress.

An operation was attempted on a non-
blocking socket that already had an
operation in progress - i.e. calling
connect a second time on a non-
blocking socket that is already
connecting, or canceling an
asynchronous request
(WSAAsyncGetXbyY) that has already
been canceled or completed.

-10038 WSAENOTSOCK Socket
operation on
non-socket.

An operation was attempted on
something that is not a socket. Either
the socket handle parameter did not
reference a valid socket, or for select,
a member of an fd_set was not valid.

-10039 WSAEDESTADDR
REQ

Destination
address
required.

A required address was omitted from
an operation on a socket. For example,
this error will be returned if sendto is
called with the remote address of
ADDR_ANY.

-10040 WSAEMSGSIZE Message too
long.

A message sent on a datagram socket
was larger than the internal message
buffer or some other network limit, or
the buffer used to receive a datagram
into was smaller than the datagram
itself.

-10041 WSAEPROTOTYPE Protocol wrong
type for socket.

A protocol was specified in the socket
function call that does not support the
semantics of the socket type
requested. For example, the ARPA
Internet UDP protocol cannot be
specified with a socket type of
SOCK_STREAM.

-10042 WSAENOPROTOOPT Bad protocol
option.

An unknown, invalid or unsupported
option or level was specified in a
getsockopt or setsockopt call.

-10043 WSAEPROTONOSUPPORT Protocol not
supported.

The requested protocol has not been
configured into the system, or no
implementation for it exists. For
example, a socket call requests a
SOCK_DGRAM socket, but specifies a
stream protocol.

ASIC-200 Language Reference TCP/IP Sockets • 189

-10044 WSAESOCKTNOSUPPORT Socket type not
supported.

The support for the specified socket
type does not exist in this address
family. For example, the optional type
SOCK_RAW might be selected in a
socket call, and the implementation
does not support SOCK_RAW sockets
at all.

-10045 WSAEOPNOTSUPP Operation not
supported.

The attempted operation is not
supported for the type of object
referenced. Usually this occurs when a
socket descriptor to a socket that
cannot support this operation, for
example, trying to accept a connection
on a datagram socket.

-10046 WSAEPFNO
SUPPORT

Protocol family
not supported.

The protocol family has not been
configured into the system or no
implementation for it exists. Has a
slightly different meaning to
WSAEAFNOSUPPORT, but is
interchangeable in most cases, and all
Windows Sockets functions that return
one of these specify
WSAEAFNOSUPPORT.

-10047 WSAEAFNO
SUPPORT

Address family
not supported
by protocol
family.

An address incompatible with the
requested protocol was used. All
sockets are created with an associated
"address family" (i.e. AF_INET for
Internet Protocols) and a generic
protocol type (i.e. SOCK_STREAM).
This error will be returned if an
incorrect protocol is explicitly
requested in the socket call, or if an
address of the wrong family is used for
a socket, e.g. in sendto.

-10048 WSAEADDRINUSE Address
already in use.

Only one usage of each socket
address (protocol/IP address/port) is
normally permitted. This error occurs if
an application attempts to bind a
socket to an IP address/port that has
already been used for an existing
socket, or a socket that wasn't closed
properly, or one that is still in the
process of closing. For server
applications that need to bind multiple
sockets to the same port number,
consider using
setsockopt(SO_REUSEADDR). Client
applications usually need not call bind
at all - connect will choose an unused
port automatically.

190 • TCP/IP Sockets ASIC-200 Language Reference

-10049 WSAEADDRNOT
AVAIL

Cannot assign
requested
address.

The requested address is not valid in
its context. Normally results from an
attempt to bind to an address that is
not valid for the local machine, or
connect/sendto an address or port that
is not valid for a remote machine (e.g.
port 0).

-10050 WSAENETDOWN Network is
down.

A socket operation encountered a
dead network. This could indicate a
serious failure of the network system
(i.e. the protocol stack that the
WinSock DLL runs over), the network
interface, or the local network itself.

-10051 WSAENETUNREACH Network is
unreachable.

A socket operation was attempted to
an unreachable network. This usually
means the local software knows no
route to reach the remote host.

-10052 WSAENETRESET Network
dropped
connection on
reset.

The host you were connected to
crashed and rebooted. May also be
returned by setsockopt if an attempt is
made to set SO_KEEPALIVE on a
connection that has already failed.

-10053 WSAECONN
ABORTED

Software
caused
connection
abort.

An established connection was
aborted by the software in your host
machine, possibly due to a data
transmission timeout or protocol error.

-10054 WSAECONNRESET Connection
reset by peer.

A existing connection was forcibly
closed by the remote host. This
normally results if the peer application
on the remote host is suddenly
stopped, the host is rebooted, or the
remote host used a "hard close" (see
setsockopt for more information on the
SO_LINGER option on the remote
socket.)

-10055 WSAENOBUFS No buffer
space
available.

An operation on a socket could not be
performed because the system lacked
sufficient buffer space or because a
queue was full.

-10056 WSAEISCONN Socket is
already
connected.

A connect request was made on an
already connected socket. Some
implementations also return this error if
sendto is called on a connected
SOCK_DGRAM socket (For
SOCK_STREAM sockets, the to
parameter in sendto is ignored),
although other implementations treat
this as a legal occurrence.

ASIC-200 Language Reference TCP/IP Sockets • 191

-10057 WSAENOTCONN Socket is not
connected.

A request to send or receive data was
disallowed because the socket is not
connected and (when sending on a
datagram socket using sendto) no
address was supplied. Any other type
of operation might also return this error
- for example, setsockopt setting
SO_KEEPALIVE if the connection has
been reset.

-10058 WSAESHUTDOWN Cannot send
after socket
shutdown.

A request to send or receive data was
disallowed because the socket had
already been shut down in that
direction with a previous shutdown call.
By calling shutdown a partial close of a
socket is requested, which is a signal
that sending or receiving or both has
been discontinued.

-10060 WSAETIMEDOUT Connection
timed out.

A connection attempt failed because
the connected party did not properly
respond after a period of time, or
established connection failed because
connected host has failed to respond.

-10061 WSAECONN
REFUSED

Connection
refused.

No connection could be made because
the target machine actively refused it.
This usually results from trying to
connect to a service that is inactive on
the foreign host - i.e. one with no
server application running.

-10064 WSAEHOSTDOWN Host is down. A socket operation failed because the
destination host was down. A socket
operation encountered a dead host.
Networking activity on the local host
has not been initiated. These
conditions are more likely to be
indicated by the error
WSAETIMEDOUT.

-10065 WSAEHOSTUN
REACH

No route to
host.

A socket operation was attempted to
an unreachable host. See
WSAENETUNREACH

-10067 WSAEPROCLIM Too many
processes.

A Windows Sockets implementation
may have a limit on the number of
applications that may use it
simultaneously. WSAStartup may fail
with this error if the limit has been
reached.

192 • TCP/IP Sockets ASIC-200 Language Reference

-10091 WSASYSNOTREADY Network
subsystem is
unavailable.

This error is returned by WSAStartup if
the Windows Sockets implementation
cannot function at this time because
the underlying system it uses to
provide network services is currently
unavailable. Users should check:
• that the appropriate Windows
Sockets DLL file is in the current path,
• that they are not trying to use more
than one Windows Sockets
implementation simultaneously. If there
is more than one WINSOCK DLL on
your system, be sure the first one in
the path is appropriate for the network
subsystem currently loaded.
• the Windows Sockets implementation
documentation to be sure all necessary
components are currently installed and
configured correctly.

-10092 WSAVERNOT
SUPPORTED

WINSOCK.DLL
version out of
range.

The current Windows Sockets
implementation does not support the
Windows Sockets specification version
requested by the application. Check
that no old Windows Sockets DLL files
are being accessed.

-10093 WSANOT
INITIALISED

Successful
WSAStartup
not yet
performed.

Either the application hasn’t called
WSAStartup or WSAStartup failed. The
application may be accessing a socket
which the current active task does not
own (i.e. trying to share a socket
between tasks), or WSACleanup has
been called too many times.

-10094 WSAEDISCON Graceful
shutdown in
progress.

Returned by recv, WSARecv to
indicate the remote party has initiated
a graceful shutdown sequence.

-11001 WSAHOST_NOT_
FOUND

Host not found. No such host is known. The name is
not an official hostname or alias, or it
cannot be found in the database(s)
being queried. This error may also be
returned for protocol and service
queries, and means the specified
name could not be found in the
relevant database.

ASIC-200 Language Reference TCP/IP Sockets • 193

-11002 WSATRY_AGAIN Non-
authoritative
host not found.

This is usually a temporary error during
hostname resolution and means that
the local server did not receive a
response from an authoritative server.
A retry at some time later may be
successful.

-11003 WSANO_RECOVERY This is a non-
recoverable
error.

This indicates some sort of non-
recoverable error occurred during a
database lookup. This may be because
the database files (e.g. BSD-
compatible HOSTS, SERVICES or
PROTOCOLS files) could not be
found, or a DNS request was returned
by the server with a severe error.

-11004 WSANO_DATA Valid name, no
data record of
requested type.

The requested name is valid and was
found in the database, but it does not
have the correct associated data being
resolved for. The usual example for
this is a hostname -> address
translation attempt (using
gethostbyname or
WSAAsyncGetHostByName) which
uses the DNS (Domain Name Server),
and an MX record is returned but no A
record - indicating the host itself exists,
but is not directly reachable.

ASIC-200 Language Reference Trigonometric and Logarithmic • 195

Trigonometric and Logarithmic

Introduction
Trigonometric and logarithmic functions include:

Arc Cosine (ACOS) Computes the arc cosine of a number.

Arc Sine (ASIN) Computes the arc sine of a number.

Arc Tangent(ATAN) Computes the arc tangent of a number

Cosine (COS) Computes the cosine of a number.

Exponent (EXP) Computes the natural log exponentiation of a
number.

Natural Logarithm (LN) Computes the natural log of a number.

Logarithm (LOG) Computes the log (base 10) of a number.

Sine (SIN) Computes the sine of a number.

Tangent (TAN) Computes the tangent of a number.

196 • Trigonometric and Logarithmic ASIC-200 Language Reference

Arc Cosine (ACOS)

Description Calculates the arc cosine of the input. The result is in radians.

RLL

ST Function ACOS(AnyReal)

IL Function CALC ACOS(OUT:= VarReal, AnyReal)

Where

 AnyReal (IN) Contains the value for which the arc cosine is calculated.
If AnyReal is out of range for the selected data type,
ENO is set FALSE. Data type: ANY_REAL (-1.0 to +
1.0).

 return (OUT) The arc cosine of AnyReal. Data type: ANY_REAL.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example angle := ACOS(num);

If num = 0.7071067, then angle = 0.7853975.

ASIC-200 Language Reference Trigonometric and Logarithmic • 197

Arc Sine (ASIN)

Description Calculates the arc sine of the input. The result is in radians.

RLL

ST Function ASIN(AnyReal)

IL Function CALC ASIN(OUT:= VarReal, AnyReal)

Where

 AnyReal (IN) Contains the value for which the arc sine is calculated. If
AnyReal is out of range for the selected data type, ENO
is set FALSE. Data type: ANY_REAL (-1.0 to + 1.0).

 return (OUT) The arc sine of AnyReal. Data type: ANY_REAL.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example angle := ASIN(num);

If num = 0.5, then angle = 0.5235983.

198 • Trigonometric and Logarithmic ASIC-200 Language Reference

ARC Tangent (ATAN)

Description Calculates the arc tangent of the input. The result is in radians.

RLL

ST Function ATAN(AnyReal)

IL Function CALC ATAN(OUT:= VarReal, AnyReal)

Where

 AnyReal (IN) Contains the value for which the arc tangent is
calculated. If AnyReal is out of range for the selected
data type, ENO is set FALSE. Data type: ANY_REAL.

 return (OUT) The arc tangent of AnyReal. Data type: ANY_REAL.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example angle := ATAN(num);

If num = 1.0, then angle = 0.78539816.

ASIC-200 Language Reference Trigonometric and Logarithmic • 199

Cosine (COS)

Description Calculates the cosine of the input, which must be in radians.

RLL

ST Function COS(AnyReal)

IL Function CALC COS(OUT:= VarReal, AnyReal)

Where

 AnyReal (IN) Contains the value in radians for which the cosine is
calculated. If AnyReal is out of range for the selected
data type, ENO is set FALSE. Data type: ANY_REAL.

 return (OUT) The cosine of AnyReal. Data type: ANY_REAL.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example cosangle := COS(angle);

If angle = 6.0, then cosangle = 0.96017029.

200 • Trigonometric and Logarithmic ASIC-200 Language Reference

Exponential (EXP)

Description Calculates the natural log exponentiation of the input value (raises e to the
power of the input).

RLL

ST Function EXP (AnyReal)

IL Function CALC EXP(OUT:= VarReal, AnyReal)

Where

 AnyReal (IN) Contains the value used as the exponent for e. Data
type: ANY_REAL.

 return (OUT) The result of e raised to the power of AnyReal. Data
type: ANY_REAL.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example newval := EXP (val);

If val = 2.5 then newval = 12.182494.

ASIC-200 Language Reference Trigonometric and Logarithmic • 201

Natural Log (LN)

Description Calculates the natural logarithm of a value.

RLL

ST Function LN (AnyReal)

IL Function CALC LN(OUT:= VarReal, AnyReal)

Where

 AnyReal (IN) Contains the value for which the natural logarithm is
calculated. If AnyReal is out of range for the selected
data type, ENO is set FALSE. Data type: ANY_REAL.

 return (OUT) The natural logarithm of AnyReal Data type:
ANY_REAL.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example ln_num := LN (num);

If num = 674.3, then ln_num = 6.51368.

202 • Trigonometric and Logarithmic ASIC-200 Language Reference

Logarithm (LOG)

Description Calculates the base 10 logarithm of a value.

RLL

ST Function LOG (AnyReal)

IL Function CALC LOG(OUT:= VarReal, AnyReal)

Where

 AnyReal (IN) Contains the value for which the logarithm is calculated.
If AnyReal is out of range for the selected data type,
ENO is set FALSE. Data type: ANY_REAL.

 return (OUT) The logarithm of AnyReal. Data type: ANY_REAL.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example lognum := LOG (num);

If num = 14.0, then lognum = 1.146128.

ASIC-200 Language Reference Trigonometric and Logarithmic • 203

Sine (SIN)

Description Calculates the sine of the input, which must be in radians.

RLL

ST Function SIN(AnyReal)

IL Function CALC SIN(OUT:= VarReal, AnyReal)

Where

 AnyReal (IN) Contains the value in radians for which the sine is
calculated. If AnyReal is out of range for the selected
data type, ENO is set FALSE. Data type: ANY_REAL.

 return (OUT) The sine of AnyReal. Data type: ANY_REAL.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example sinangle := SIN(angle);

If angle = 6.0, then sinangle = -0.27941550.

204 • Trigonometric and Logarithmic ASIC-200 Language Reference

Tangent (TAN)

Description Calculates the tangent of the input, which must be in radians.

RLL

ST Function TAN(AnyReal)

IL Function CALC TAN(OUT:= VarReal, AnyReal)

Where

 AnyReal (IN) Contains the value in radians for which the tangent is
calculated. If AnyReal is out of range for the selected
data type, ENO is set FALSE. Data type: ANY_REAL.

 return (OUT) The tangent of AnyReal. Data type: ANY_REAL.

 Notes

 1. Refer to Function Execution Control for a description of using the EN

input and ENO output.
 2. Refer to Instruction List for information on using functions with the

Instruction List language.

Example tanngle := TAN(angle);

If angle = 6.0, then tanngle = -0.2910062.

ASIC-200 Language Reference Index • 205

Index

A
Abort all 136, 142
ABORT_ALL 136
ABS 124
Absolute Value 124
ABTAL 136
ACOS 196
ADD 125
Addition 125
AND 28
Append file 112
APPENDFILE 112
Arc Cosine 196
Arc Sine 197
Arc Tangent 198
ARRAY_TO_STRING 56
ASIN 197
ATAN 198
ATOI 64
ATOR 65

B
BATOS 56
Bit string functions 27
BOOL 4
BYTE 5
Byte array to string 56

C
CAT 38
Change MMI screen 137
ChangeMMIScreen 137
Character string functions 37
Close file 113
ClosedLoopEStop 142
CLOSEFILE 113
Comparision functions 47

CONCAT 38
Concatenate 38
Conversion functions 55
Copy file 114
COPYFILE 114
COS 199
Cosine 199
Counter function blocks 69

Using 69
Creating an Array of Symbols 14
CTD 71
CTU 74
CTUD 77

D
Data types

BOOL 4
BYTE 5
DATE 5
DINT 5
DWORD 5
INT 6
REAL 6
STRING 6
TIME 6, 7
TOD 7
UINT 7
WORD 7

DATE 5
Date to string 57
DateToString 57
DELETE 39
Delete file 115
DELETEFILE 115
DINT 5
Display message 138
DIV 126
Division 126
Down counter 71
DSPMSG 138
DWORD 5

E
Edge detection function blocks 91
EN and ENO 22
EQ 48
Equal 48
EX_PID 96
Exclusive OR 31
EXP 200
Exponent 127

206 • Index ASIC-200 Language Reference

Exponential 200
EXPT 127
Extended PID 95
Extended timer function blocks 101

F
F_TRIG 92
Falling edge trigger 92
FCLOS 113
FCOPY 114
FDEL 115
File

Append 112
Close 113
Copy 114
Delete 115
New 116
Open 117
Read 118
Rewind 120
Write 121

File functions 109
File control block variable 109
File error codes 111
File status variables 110

FIND 40
FNEW 116
FOPEN 117
FREAD 118
FRWND 120
Function blocks 22
Function execution control 22
Functions 22
FWRT 121

G
GE 49
Greater than 50
Greater than or equal 49
GT 50

I
INIT 139
Initialize array 139
INS 41
INSERT 41
Instruction List 24
INT 6
INT_TO_STRING 58
Integer to string 58

ITOA 58

L
LE 51
LEFT 42
LEN 43
Length 43
Less than 52
Less than or equal 51
LN 201
LOG 202
Logarithm 202
Logarithmic functions 195
LT 52

M
Mathematical functions 123
MAX 144
Maximum 144
Memory Usage 18
Message window 140
MID 44
Middle 44
MIN 145
MIN Example 145
Minimum 145
Miscellaneous functions 135
MOD 128
Modulus 128
MOVE 129
MSGB 138
MSGW 140
MSGWND 140
MUL 130
Multiplication 130

N
Natural Log 201
NE 53
NEG 131
Negation 131
New file 116
NEWFILE 116
NOT 29
Not equal 53

O
OPENFILE 117
OR 30

ASIC-200 Language Reference Index • 207

P
PAMC closed loop E stop 142
PID 148
PID function block 95, 96
PID loop control 148
PMAC DLL functions 141
Predefined System Symbols 17
PRGCB 152

Controlling application programs 153
Rewind function 153
Status code 153

Program control block 152

R
R_TRIG 93
R2INT 59
READFILE 118
REAL 6
Real to Integer 59
Real to string 60
REAL_TO_STRING 60
REPLACE 45
Reserved system symbols 19
REWINDFILE 120
RGB to DWORD 61
RIGHT 46
Rising edge trigger 93
RLL Diagrams 23
ROL 32
ROR 33
Rotate left 32
Rotate right 33
RPLC 45
RTOA 60

S
Scan Rate 18
Selection functions 143
Shift left 34
Shift right 35
SHL 34
SHR 35
SIN 203
Sine 203
SQRT 132
Square Root 132
Status Symbols 18

Average Scan 18
First Scan 18
Last Scan 18

Max Scan 18
Memory Usage 18
Scan Overrun 18
Scan Rate 18

STOBA 62
STRING 6
String to byte array 62
String to date 63
String to integer 64
String to real 65
String to time-of-day 66
STRING_TO_ARRAY 62
StringToDate 63
StringToTOD 66
Structured Text 23
Structured Text Statement Types

MIN Example 145
SUB 133
Subtraction 133
Symbol

Creating an Array 14
Predefined 17
Reserved system symbols 19
System Status 18

Symbol Data Types
User-Defined Data Type 14

System 147

T
TAN 204
Tangent 204
TCP/IP Sockets 157

API Error Codes 186
API Summary 159
Socket addressing 159
Socket Buffers 159
Socket Types 159
Windows Sockets 2.0 Error Codes 187

TCP_ CREATE 168
TCP_ RESET_RECV_BUFFER 175
TCP_APPEND_datatype 162
TCP_CLEAR_SEND_BUFFER 164
TCP_CLOSE 165
TCP_CONNECT 166
TCP_EXTRACT_datatype 170
TCP_GET_EXTRACT_ERROR 172
TCP_RECV_BUFFER 173
TCP_SEND_BUFFER 176
TCP_START_SOCKET_SERVICE 177
TIME 6, 7
Time of day to string 67
Timer 155

208 • Index ASIC-200 Language Reference

Timer function blocks 69
Extended 101
Timer preset 70
Using 69

Timer off delay 81
Extended 102

Timer on delay 84
Extended 104

Timer Preset 70
Timer pulse 87

Extended 106
TMR 155
TOD 7
TODToString 67
TOF 81
TON 84
TP 87
Trigonometric functions 195
TRUNC 68
Truncate 68
Type Conversion 8

U
UINT 7
Up counter 74
Up/down counter 77
User-Defined Data Type 14

W
WAIT_TCP_CLOSE 180
WAIT_TCP_CONNECT 178
WAIT_TCP_CREATE 181
WAIT_TCP_RECV_BUFFER 182
WAIT_TCP_SEND_BUFFER 184
WORD 7
WRITEFILE 121

X
XOR 31
XTOF 102
XTON 104
XTP 106

Xycom Automation, LLC.
750 North Maple Road
Saline, MI 48176–129

734-429-4971

Fax: 734-429-1010

http://www.profaceamerica.com

139183(C)

	Contents
	Introduction
	Identifiers
	Literals
	Numeric Literals
	Character String Literals
	Time Duration Literals
	Time of Day and Date Literals

	Data Types
	BOOL (Boolean)
	BYTE
	DATE
	DINT (Double Integer)
	DWORD (Double WORD)
	INT (Integer)
	REAL
	STRING
	TIME
	TOD (TIME_OF_DAY)
	UINT (Unsigned Integer)
	WORD

	Data Type Overrange/Rollover Conditions
	Type Conversion
	BOOL
	BYTE
	WORD (DWORD)
	REAL (LREAL)
	INT (SINT, DINT)
	UINT (USINT, DINT)
	TOD, DATE, DATE_AND_TIME
	TIME
	STRING

	Generic Data Types
	User-Defined Data Type
	Arrays
	Pointer Symbols
	System Symbols
	Predefined System Symbols
	Run-Time Symbols
	Keywords

	Functions and Function Blocks
	Function Execution Control
	RLL Diagrams
	Structured Text
	Instruction List

	Bit String
	Introduction
	AND
	NOT
	OR
	Exclusive OR (XOR)
	Rotate Left (ROL)
	Rotate Right (ROR)
	Shift Left (SHL)
	Shift Right (SHR)

	Character String
	Introduction
	Concatenate
	Delete
	Find
	Insert
	Left
	Length
	Middle
	Replace
	Right

	Comparison
	Introduction
	Equal (EQ)
	Greater Than or Equal (GE)
	Greater Than (GT)
	Less Than or Equal (LE)
	Less Than (LT)
	Not Equal (NE)

	Conversion
	Introduction
	Byte Array to String (BATOS)
	Date to String (DateToString)
	Integer to String (ITOA)
	Real to Integer (R2INT)
	Real to String (RTOA)
	RGB to DWORD
	String to Byte Array (STOBA)
	String to Date (StringToDate)
	String to Integer (ATOI)
	String to Real (ATOR)
	String to TOD (StringToTOD)
	Time of Day to String (TODToString)
	Truncate (TRUNC)

	Counters and Timers
	Introduction
	Using Counter and Timer Function Blocks
	Setting a Timer Preset
	To enter the duration directly:

	Count Down (CTD)
	Count Up (CTU)
	Count Up/Down (CTUD)
	Timer Off Delay (TOF)
	Timer On Delay (TON)
	Timer Pulse (TP)

	Edge Detection
	Introduction
	Falling Edge Trigger (F_TRIG)
	Rising Edge Trigger (R_TRIG)

	Extended PID
	Introduction
	EX_PID

	Extended Timers
	Introduction
	Extended Timer Off Delay (XTOF)
	Extended Timer On Delay (XTON)
	Extended Timer Pulse (XTP)

	File
	Introduction
	File Control Block Variable
	File Status Variables
	File Error Codes

	Append File
	Close File
	Copy File
	Delete File
	New File
	Open File
	Read File
	Rewind File
	Write File

	Mathematical
	Introduction
	Absolute Value (ABS)
	Addition (ADD)
	Division (DIV)
	Exponent (EXPT)
	Modulus (MOD)
	Move (MOVE)
	Multiplication (MUL)
	Negation (NEG)
	Square Root (SQRT)
	Subtraction (SUB)

	Miscellaneous
	Introduction
	Abort All
	Change MMI Screen
	Display Message
	Initialize Array
	Message Window

	PMAC 2 Functions
	Introduction
	ClosedLoopEStop

	Selection
	Introduction
	Maximum (MAX)
	Minimum (MIN)

	System Objects
	Introduction
	PID Loop Control (PID)
	Program Control Block (PRGCB)
	Controlling the Flow of RLL and Structured Text Application Programs
	Using the PRGCB Status Code
	Using the PRGCB Rewind Function

	Timer (TMR)

	TCP/IP Sockets
	Introduction
	Socket Addressing
	Socket Types
	Socket Buffers
	TCP/IP Sockets API Summary
	IP Address
	TCP_APPEND_datatype
	TCP_CLEAR_SEND_BUFFER
	TCP_CLOSE
	TCP_CONNECT
	TCP_CREATE
	TCP_EXTRACT_datatype
	TCP_GET_EXTRACT_ERROR
	TCP_RECV_BUFFER
	TCP_RESET_RECV_BUFFER
	TCP_SEND_BUFFER
	TCP_START_SOCKET_SERVICE
	WAIT_TCP_CONNECT
	WAIT_TCP_CLOSE
	WAIT_TCP_CREATE
	WAIT_TCP_RECV_BUFFER
	WAIT_TCP_SEND_BUFFER
	TCP/IP Sockets API Error Codes
	Windows Sockets 2.0 Error Codes

	Trigonometric and Logarithmic
	Introduction
	Arc Cosine (ACOS)
	Arc Sine (ASIN)
	ARC Tangent (ATAN)
	Cosine (COS)
	Exponential (EXP)
	Natural Log (LN)
	Logarithm (LOG)
	Sine (SIN)
	Tangent (TAN)

	Index
	Online Documents

