

Subject: Connecting 20XX and 31XX Workstations To A Mitsubishi FXon PLC AN# 1071A Date: January 2, 1998 Name: Shiu Moy Page: 1 of 4 Description: Hardware and software settings to connect 20XX and 31XX workstations to a Mitsubishi FXon PLC

Mitsubishi FXon PLC version 1.20 or higher supports the A series protocol which allows the 20XX and 31XX series workstations to communicate using the SoftScreen Melsec A driver. Hardware and software setting details are described below.

Hardware Setup

Connect the SoftScreen workstations to a FXon PLC using the following setup and cabling.

SoftScreen workstation setup

RS422 Cabling to the Mitsubishi PLC

PLC Settings

Setting the transmission specification

The least significant byte of register D8120 is used for setting the transmission specification.

	Bit Number									
	7	6	5	4	3	2	1	0		
Functions		Baud	Rates		Stop Bits	Pa	nrity	Data Length		
	0111 =	300	0111 = 4	800	0 = 1 Stop Bit	00 = No Pa	rity	0 = 7 Data Bits		
	0100 =	600	1000 = 9	600	1 = 2 Stop Bits	01 = Even	Parity	1 = 8 Data Bits		
	0101 = 1	200	1001 = 19	200		11 = Odd P	arity			
	0110 = 2	2400								

Subject: Connecting 20XX and 31XX Workstations To A Mitsubishi FXon PLC AN# 1071A
Date: January 2, 1998
Name: Shiu Moy
Page: 2 of 4
Description: Hardware and software settings to connect 20XX and 31XX workstations to a Mitsubishi FXon PLC

Setting the transmission control protocol

The most significant byte of register D8120 is used for setting the transmission protocol.

	Bit Number							
	15	14	14 13			10	9	8
Function	Transmission Control	Protocol	Sum Check		1			
	Protocol							
	0 = Dedicated	0 = Dedicated	0 = Sum Check	Bit 8 to) Bit 12 =	= 0		
	Protocol Format 1	Protocol is	not added					
	is used	not used	1 = Sum Check					
	1 = Dedicated	1 = Dedicated	added**					
	Protocol Format 4	Protocol is						
	is used	used						

**Sum Check must be enabled

Example 1

To set up communications for 9600,N,8,1 using Protocol Format 1.

							Bit Nu	ımber							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	1

The bit pattern above translates to a value of 6081 hex or 24705 decimal.

Example 2

To set up communications for 19200,E,7,1 using Protocol Format 4.

							Bit Nu	ımber							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	0	0	0	0	0	1	0	0	1	0	0	1	0

The bit pattern above translates to a value of E092 hex or 57490 decimal.

Subject: Connecting 20XX and 31XX Workstations To A Mitsubishi FXon PLC AN# 1071A Date: January 2, 1998 Name: Shiu Moy Page: 3 of 4 Description: Hardware and software settings to connect 20XX and 31XX workstations to a Mitsubishi FXon PLC

In both of the above examples, when the value is written to the register (on-line using Medoc or coded into the ladder program) the power to the PLC must be cycled in order for the changes to take effect.

Setting the station address

The station address of the PLC is set by writing a valid number in the range 0-15 to register D8121. Again, once this has been set, the power to the PLC must be cycled.

Setting the time-out check time

This setting refers to the duration after termination of a failed transmission from the Xycom to the PLC, until the Send sequence is initialized. When 1 character is 12 bits, the minimum setting of the time-out check time is as follows:

Baud rate (bps)	Time to receive 1 character (ms)	Time-out check time (set value)
300	40	50 ms (5)
600	20	30 ms (3)
1200	10	20 ms (2)
2400	5	10 ms (1)
4800	2.5	10 ms (1)
9600	1.25	10 ms (1)
19200	0.625	10 ms (1)

The desired set value should be written to register D8129. There is no need to cycle power. Consult the FX-485PC-IF user's manual for more information about setting up the FXon.

Xycom Settings

Port settings for SoftScreen for DOS and driver configuration for SoftScreen for Windows95 must match the settings in the Mitsubishi registers D8120 and D8121.

Subject: Connecting 20XX and 31XX Workstations To A Mitsubishi FXon PLC AN# 1071A Date: January 2, 1998 Name: Shiu Moy Page: 4 of 4 Description: Hardware and software settings to connect 20XX and 31XX workstations to a Mitsubishi FXon PLC

FXon Address

The following FXon addresses are accessible using Mitsubishi SoftScreen driver. This table is not comprehensive.

Data Type	Range
Input relay (X)	X000-X0177
Output relay (Y)	Y000-Y0177
Auxiliary relay (M)	M000-M0511
Timer contact (TS)	TS000-TS063
Counter contact (CS)	CS000-CS031
	CS235-CS254
Timer preset Value (TN)	TN000-TN063 (16-bit)
	TN000-TN062 (32-bit)
Counter preset value (CN)	CN000-CN031 (16-bit)
	CN000-CN030 (32-bit)
Data register (D)	D000-D0255 (16-bit)
	D000-D0254 (32-bit)