
IEEE 1588 Protocol Stack
for Microsoft Windows®

—
Product Documentation

Real-Time Systems GmbH

Gartenstrasse 33

88212 Ravensburg

Germany

——

www.real-time-systems.com

——

info@real-time-systems.com

Document: 000612238

Page 1 of 34

http://www.real-time-systems.com/
mailto:info@real-time-systems.com

Table of Contents
1Notices .. 4

2Introduction ... 5
2.1Important Facts ... 5

2.1.1Ready to go Versions: .. 5
2.1.2Portability: ... 5
2.1.3Interoperability: ... 5

2.2Definition .. 6
2.3Product Features ... 6
2.4Background ... 6
2.5Benefits .. 7
2.6About Real-Time Systems GmbH .. 8
2.7Technical Support ... 8

3Technical overview .. 8
3.1How it works .. 9

3.1.1Basic operation ... 9
3.1.2Message types .. 9
3.1.3Example transaction ... 10
3.1.4Boundary clocks ... 11
3.1.5Literature ... 11

4Overview of the RTS IEEE 1588 Windows Version ... 12

5Installation of the RTS IEEE 1588 Windows Version ... 12
5.132-Bit Windows ... 12
5.264-Bit Windows ... 14

6Uninstall of the RTS IEEE 1588 Windows Version ... 15

7Installer Requirements .. 15

8Use of the RTS IEEE 1588 Windows Version .. 15
8.1Settings .. 17

8.1.1Protocol Version ... 17
8.1.2Slave Only ... 17
8.1.3Master Selection ... 17
8.1.4Stratum .. 18
8.1.5Clock Class, Priority 1, Priority 2 .. 18
8.1.6Announce Interval ... 18
8.1.7Synch Interval ... 18
8.1.8Number of Switches ... 18
8.1.9Domain .. 18
8.1.10Synchronize Windows Time to PTP Time ... 18
8.1.11International Atomic Time Correction .. 18
8.1.12IPV6 ... 18
8.1.13DSCP .. 18
8.1.14Verbosity Level ... 19

8.1.14.1Verbose Output .. 19
8.2Interface Selection .. 23

Page 2 of 34

8.3Open Log Directory ... 23

9API Description of the RTS IEEE 1588 Windows Version ... 23
9.1Time-Representation Data Structure ... 23
9.2Enumerations ... 24
9.3Service Control Functions ... 24

9.3.1ieee1588ServiceStop ... 24
9.3.2ieee1588ServiceStart ... 24
9.3.3ieee1588ServiceGetState .. 25

9.4PTP Specific Functions ... 25
9.4.1ieee1588GetAdapters ... 25
9.4.2ieee1588GetTime ... 25
9.4.3ieee1588GetTimeEx ... 25
9.4.4ieee1588GetGmMac .. 26
9.4.5ieee1588GetState ... 26
9.4.6ieee1588SetInboundLatency ... 26
9.4.7ieee1588SetOutboundLatency ... 26
9.4.8ieee1588SetInitialTime ... 27

9.5Callback Functions .. 27
9.5.1ieee1588SetTimerCallback .. 27
9.5.2ieee1588FreeTimerCallback .. 27

9.6GPIO Functions ... 28
9.6.1Ieee1588ConfigureGpioPeriodicPulse ... 28

9.7Configuration Functions .. 28
9.7.1ieee1588ConfigReadParameter ... 28
9.7.2ieee1588ConfigWriteParameter ... 28
9.7.3Ieee1588ConfigGetInterface .. 29
9.7.4Ieee1588ConfigSetInterface ... 29
9.7.5Ieee1588ConfigGetMasterMacAddress ... 29
9.7.6ieee1588ConfigSetMasterMacAddress ... 30

10Utilities ... 30
10.1PTPManager ... 30
10.2PTPv2Browser .. 32
10.3Wireshark .. 32

10.3.1Protocol releated Wireshark Identifiers .. 33

11END OF DOCUMENT ... 34

Page 3 of 34

1 Notices
All Rights Reserved: Neither this document nor excerpts therefrom may be reproduced, transmitted, or
conveyed to third parties by any means whatsoever without the express permission of Real-Time
Systems GmbH. At the time of publication, the information in this document was carefully verified and
found to be correct. Nonetheless, it cannot be ruled out that discrepancies may arise in the course of
time. This document will be reviewed at reasonable intervals to assure that subsequent editions reflect
the current product status.
Trademarks: Real-Time Systems GmbH is a registered trademark of Real-Time Systems GmbH. All
other product and company names herein may be trademarks of their respective owners. Wind River,
VxWorks and Workbench are registered trademarks of Wind River Systems; Alameda, California;
www.windriver.com. Intel and Pentium are registered trademarks of Intel Corporation; Santa Clara,
California; www.intel.com. Windows, Microsoft Windows and MS Windows are registered trademarks
of Microsoft Corporation; Redmond, Washington; www.microsoft.com.
Undocumented Features: While a complex product such as the one described herein may contain
undocumented features, such features are not considered to be part of the product and their
functionality is therefore not subject to any form of support or guarantee.
Information: Real-Time Systems’ 1588 PTP protocol stack is based on PTPd. In accord with BSD-style
licensing conditions, the following copyright notice - Copyright (c) 2005 Kendall Correll - applies to all
program files that comprise PTPd, just as if the copyright text were included in each PTPd file.

Page 4 of 34

2 Introduction
Real-Time Systems’ IEEE 1588 Protocol Stack is a modular, software product that implements the full
capabilities of the IEEE 1588 Precision Clock Synchronization Protocol for Networked Measurement
and Control Systems. This standard, often called Precision Time Protocol or PTP, fully automates the
synchronization of multiple clocks in a distributed system. Units that participate in such a system must
be linked together by Ethernet.

While there is no limitation to the kind of applications that could benefit from this highly-accurate clock
synchronization technique, a few that naturally come to mind are: measurement, instrumentation,
motion control and process automation.

This handbook presents enough information to give decision-makers some general insight into the
formal methods used by the 1588 protocol. Developers, however, who may require more specific
information, should consult the reference materials listed elsewhere in this manual. 3.1.5 Literature
In this manual, Real-Time Systems GmbH is often abbreviated as RTS

2.1 Important Facts
Even though this product is designed for the Microsoft Windows Operating Systems in conjunction
with the Intel Gigabit Ethernet Controller Intel 82574L, there are different implementations available in
binary format for product evaluation. This product has been used in a lot of different product
environments with different operating systems and on different hardware platforms.

2.1.1 Ready to go Versions:
Real Time-Systems GmbH partners with a lot of companies on the embedded market therefor the
stack has been ported to different hardware platforms and operating systems. The following table
shows the ready to go compatiblity list:

CPU Timestamping Operating System

Intel x86 Software Realtek NIC 8139 VxWorks

Intel x86 Intel E1000 (PCI-E) (82574L and
I350)

Windows XP/7/Server

Intel x86 Intel E1000 (PCI-E) (82574L) VxWorks

Intel x86 Intel E1000 (PCI-E) (82574L) QNX Neutrino

I.MX35 (MSC EXM32) National PHY DP83640 QNX Neutrino

2.1.2 Portability:
The stack has been used in serveral products where hardware platfoms are project specific and not
available for other customers. See below the list of ports done by RTS.

CPU Timestamping Operating System

PPC Software (Board Specific NIC) VxWorks

PPC Freescale PowerQUICC ThreadX

PPC FPGA based QNX Neutrino

2.1.3 Interoperability:
The RTS 1588 Software Stack adheres strictly to the IEEE 1588 Standard. Therefore, any number of
nodes outfitted with the RTS 1588 Software Stack will work in harmony with other diverse network

Page 5 of 34

nodes—such as, switches, routers and master clocks—provided all run in full accordance with the
IEEE 1588 standard.

2.2 Definition
The IEEE 1588 Precision Time Protocol embodies a software technique to synchronize distributed
real-time clocks in a packet-based multicast network (usually Ethernet).

2.3 Product Features
• Supports V1 and V2
• Full Master / Slave Implementation
• Small Footprint
• Hardware supported IEEE1588 via Intel 82574L, I350
• Highly accurate: +/- 3 Micro Seconds in the 82574L and I350 Chip
• Allows to synchronize Windows System Time at +/- 1 ms
• Access to Real-Time Clock through a rich API
• Full logging capabilities
• Intuitive Graphical User Interface for all Settings
• Easy Installation / Automated Setup
• IPV6 Support

2.4 Background
Many real-time and embedded systems use two or more physically independent, computer-based
subsystems, or nodes, connected together in a local area network (LAN), to fulfill the system’s overall
purpose. To act in a harmonious fashion, that is, to perform interdependent work, the various nodes
must accurately synchronize to one another.
Synchronization is a fundamental requirement for many kinds of distributed systems. To achieve it,
three basic techniques may be used: message-based, periodic, or time-based synchronization
techniques.
In message-based synchronization, a central node sends messages to other nodes, which, upon
receiving a message, carry out a related directive. In periodic synchronization, a time-raster is
broadcast throughout the system, causing nodes to carry out specific functions in accord with the
raster-ticks. Time-based synchronization, the third and most modern method, causes a clock in each
participating network node to enter into synchronicity with a master clock; each node then performs
tasks in accord with its own local synchronized clock’s time.
While the first two methods are especially susceptible to jitter or delay and have no relationship to
absolute time, clock time-based systems overcome both objections. Until recently, however, most
time-based solutions have been proprietary to a specific company or product.
Now, the Institute of Electrical and Electronics Engineers - IEEE has developed a standardized clock-
synchronizing protocol that may be used in virtually all multicasting (packet-based) networks such as
Ethernet. The IEEE 1588 standard defines a ‘Precision Clock Synchronization Protocol for Network
and Control Systems’, also known as Precision Time Protocol or PTP for short.

This low-overhead protocol synchronizes multiple clocks in a distributed system either to one another
or to a real-world clock such as GPS. While providing a high degree of interoperability, it has
significant advantages over older methods.

Consider the following characteristics:

Page 6 of 34

• Time: The time base is absolute time, the same as real-world time provided by the master.
• Components: Uses conventional, inexpensive multi-source components, integral to nearly all

LANs.
• Independent: The protocol is defined to be independent of networking topology and

technology, provided it is a multi-cast network like Ethernet.
• Fault tolerant: The protocol uses an algorithm to dynamically compensate for propagation

delays caused by hubs, switches and repeaters.
• Self-configuring: An identical protocol in each unit routinely analyzes network topology and

configures itself in an optimal fashion. This autonomous process eliminates the need for
administrative services.

• Automatic: Since each node automatically exchanges PTP protocol messages with the others,
participating nodes have to do no more than load and start the protocol.

• Hot-plugging: Units may at any time be added to or removed from a running system.
• Master time: No central time authority is required because the system nominates a master

clock automatically. If a GPS clock or other high-accuracy clock is present in the system, it will
be used as a grandmaster clock.

• Precision: The protocol provides a high degree of accuracy. (+/- 3 Micro Seconds on Intel
82574L and I350). Additionally the Windows System time may be synchronized to about 1ms
accuracy.

2.5 Benefits
• Standards: Because Real-Time Systems’ implementation completely conforms to the IEEE

1588 standard, any system that uses it automatically attains interoperability with other
systems or devices that conform to the standard.

• Accuracy: The IEEE 1588 protocol provides a significant improvement in synchronization
accuracy over other network time protocols.

• Administration-free: A network synchronized by the PTP protocol is so flexible that it will
recover and function when powered-up or powered-down (in whole or in part), even when
nodes are added or removed.

• Availability: Now.
• Savings / Investment protection: Real-Time Systems’ PTP protocol stack is a vigorously

maintained, standard product that deploys on virtually all standard host computers that use
conventional Ethernet components.

• Determinism: Since the Ethernet and IP permit collisions, they are not conducive to
deterministic operations in a distributed system. The PTP protocol, on the other hand,
enforces determinism by freeing the real-time applications from network constraints. When all
operations on distributed nodes are based on local, highly-synchronized clocks, the
deterministic behavior of the overall system is assured.

• Low-cost hardware: To successfully synchronize the clocks in a network, Real-Time System’s
PTP implementation for Windows requires only that nodes be equipped with standard network
interface cards (NIC) based on Intel 82574L and I350.

Page 7 of 34

2.6 About Real-Time Systems GmbH
Real-Time Systems GmbH is a leading supplier of products and solutions for operating system
virtualization and precision time synchronization in the embedded and real-time markets. Besides
marketing its own products, Real-Time Systems also offers consulting and engineering services to
their customers.
Real-Time Systems GmbH is privately held and maintains its corporate headquarters in Ravensburg,
Germany with partners in Europe, USA and Asia.

Real-Time Systems GmbH -
the partner you’ve been looking for

Real-Time Systems GmbH
Gartenstrasse 33
88212 Ravensburg, Germany
E-mail inquiries: info@real-time-systems.com
Web: www.real-time-systems.com

2.7 Technical Support
Software updates, help of a knowledgeable software engineer via telephone or e-mail, and e-mail
announcements regarding this and related products are available.

E-mail inquiries: ieee1588@real-time-systems.com

3 Technical overview
The 1588 PTP protocol, firmly grounded in topological mathematics and computer science, is too
complex to present in this manual. For those interested in details, the references listed in Literature
3.1.5 provide a wealth of information. The information offered in this manual is only intended to give
someone not already familiar with the protocol a reasonable notion of what it entails.
The following terms are used in dealing with PTP systems:

• Network device: Network or non-terminal device – such as: router, switch or repeater – that
has more than one network (NIC) connection BUT no 1588 PTP capability.

• Boundary clock: A network device, usually a network switch or router with IEEE 1588
capability. In the PTP protocol, the boundary clock is a branching element, spanning two or
more subnets. Boundary clocks propagate the best master clock time into subnets.

• Master clock: One clock in a subnet, automatically nominated by the best master clock
algorithm, establishes the time standard to which all other clocks in that subnet are
subordinated.

• Best Master Clock (BMC): The PTP protocol uses a complex algorithm to automatically
determine which clock in a subnet will serve as the master clock. If two or more clocks appear
to be equally good, the algorithm makes certain that all but one enter the slave state.

• Slave clock: Clocks in nodes that subordinate themselves to a master clock and synchronize
with the master time. Note: In Real-Time Systems’ implementation, users may optionally force
nodes of their choice to always be ‘slaves’ via a parameter in the start function. Refer to
ieee1588Start. If all nodes except one are forced to be slaves, the remaining clock is certain
to be nominated as master clock.

• Grandmaster clock: The PTP protocol establishes a tree-like hierarchy of all clocks
participating in a synchronized network. A single clock, determined to be at the root of this
hierarchy, is called the grandmaster. If a GPS or other high-precision clock is present in the
system, it will usually be nominated as grandmaster. If a grandmaster clock runs with UTC
(Coordinated Universal Time), then all clocks in the network will be synchronized to UTC.

• Ordinary clock: An ordinary clock is a PTP clock in an end node that is connected to its subnet
by a single network interface card (NIC).

Page 8 of 34

mailto:info@real-time-systems.com
http://www.real-time-systems.com/
mailto:info@real-time-systems.com

• Hardware clock: A hardware clock such as GPS, radio receiver, or a high-frequency oscillator-
based clock may be included in a PTP-managed system. Such a clock will usually be
nominated as a grandmaster clock. If there is no time difference between hardware clocks –
for example, when there is more than one GPS clock in a network – the PTP protocol may
logically partition the network so that there are multiple hierarchical trees. The tree structure
imposed by the PTP protocol is not dependent on the physical network structure; it logically
overlays the physical network.

• Software clocks: Real-Time Systems’ PTP protocol implements one software clock at each
node. It is not required to have a hardware clock anywhere in the system. <<check>>

• Overhead: Approximately every 2 seconds (a parameterized value), nodes exchange PTP
messages that resynchronize and correct subordinated clocks. At such times, a change in the
master clock can also be automatically initiated.

• Precision: Delays and jitter are periodically measured. Data is collected by a routine exchange
of messages which is then used to correct slave clocks, thus keeping all system clocks in very
close harmony. As delivered, the Real-Time Systems’ IEEE 1588 stack will synchronize the
various clocks to an accuracy of ±3 µsec or better in the 82574L and I350 clock.

• Spanning tree: The PTP protocol establishes a logical hierarchy of clocks in a network. This
logical tree structure may or may not agree with the actual physical layout of the network. If
there are two or more GPS clocks in the network, the protocol may logically segment the
network so that a GPS clock will be the grandmaster in each such segment. Such a network
would be synchronized to UTC time.

• Timestamp: Users’ application programs have access (via user-callable functions) to the
software clock’s timestamp function.

• Jitter / Skew: Due to signal propagation times and buffering, the more devices (e.g.: repeater,
hub, switch) that lie on a path to an ordinary clock (end of branch) the greater will be both jitter
and skew. The less often PTP messages are exchanged, the greater the skew among clocks
is likely to be. The frequency of message exchange may be specified by the user. Other (non-
protocol) network traffic can also increase skew.

• Local networks: It is not practical to operate the PTP protocol over the Internet. The protocol is
limited to multicasting networks, such as Ethernet.

• Anomalies: In the RTS IEEE 1588 protocol, provision has been made to prevent isolated
anomalies from adversely affecting the system’s accuracy. If, for example, the PTP software
discovers a synchronizing timestamp with an unreasonable value (70 µsec beyond
expectations), it will not use it in the time-correction algorithm.

3.1 How it works

3.1.1 Basic operation
While the 1588 PTP protocol is a complex state machine realized in software (refer to Chapter 3.1.5
Literature), the following list of basic tasks should give the reader a notion of what the protocol does.
The protocol must...

1. Explore the system to establish boundaries and communications paths.
2. Nominate a master clock.
3. Build a master-slave hierarchy.
4. Start up in an orderly fashion, and, in a running system, reconfigure itself, as necessary.
5. Regularly broadcast master-clock data so that subordinated clocks can synchronize to and

remain synchronized with their master clocks.
6. Provide application programs with access to PTP parameters, including timestamps.

3.1.2 Message types
Within a 1588 PTP protocol system, all communication is accomplished using just five message types.

• Sync Event message
• Follow_Up General message, including timing information

Page 9 of 34

• Delay_Req Event message
• Delay_Resp General message, including timing information
• Management General message (provided access to PTP parameters)

Sync - Issued by a clock in the Master state, Sync messages contain clock characterization
information and the estimated local time of transmission.
Follow_Up - Issued by a clock in the Master state, Follow_Up messages are logically associated
with the preceding Sync message. They contain the precise time of transmission of the Sync
message, which will be used for calculations in precision-alignment algorithms.
Delay_Req - Issued by clocks in the Slave state, Delay_Req messages contain the local time of
transmission from the slave. The slave notes the exact time it sends this message; upon receipt, the
master clock notes it as well.
Delay_Resp - Issued by a clock in the Master state, Delay_Resp messages are logically associated
with the preceding Delay_Req message. It contains the time that a Delay_Req message was
received at the master. The slave node records the precise time this message is received, and, in
connection with the known time that it had sent the Delay_Req, uses the difference to calculate the
actual latency time.
Management - Management messages that are multicast remain within a subnet. Boundary clocks
do, however, forward management messages into other subnets. Management messages convey
configuration information to all nodes in a system.

3.1.3 Example transaction
The following account should give the reader an intuitive idea of how a typical data exchange between
a master and a slave node is used to establish clock synchronicity. It is meant to give the reader a
feeling for how the protocol works. This example transaction is for two-step clocks using the request-
response delay mechanism.

• The master clock transmits a Sync message to the slave clocks. The Sync message does not
contain time information. Upon sending the Sync, the master clock timestamps the outgoing
packet and records this information (local timestamp t1).

• When a slave clock receives the Sync message, it uses its local clock to generate timestamp
(t2). This timestamp is used to remember the Sync message’s time of arrival.

• Afterwards the master clock packs timestamp t1 of the prior sent Sync message in a
Follow_Up message and sends this to the slave clocks.

Page 10 of 34

Master Clock Time Slave Clock Time

Data at
Slave Clock

Follow_Up message
containing value of t1

Delay_Resp message
containing value of t4

t1

t2

Sync message

Delay_Req message

t2

t1, t2

t3

t4

t1, t2, t3

t1, t2, t3, t4

t2m

t3m

time

• Each slave clock, upon receiving the Follow_Up message, transmits a Delay_Req to the
master clock. Upon sending the Delay_Req, the slave clock timestamps the outgoing packet
and records this information (local timestamp t3).

• When the master clock receives the Delay_Req message, it uses its own local clock to
generate timestamp (t4), which corresponds to the exact time it received the Delay_Req from
the slave.

• Using a Delay_Resp message, the master clock then transmits timestamp t4 back to the
slave clock.

• Finally, the slave then uses all four times, i.e. t1, t2, t3 and t4, to compute the offset between
itself and the master clock. It uses differences, offsets and delays for calculations to
synchronize itself to the master clock.

3.1.4 Boundary clocks
Repeaters, routers, hubs and switches are all network devices that forward messages to other network
participants. They traditionally amplify, sort, redirect and sometimes buffer network packets.
A boundary clock is a network device that implements the 1588 functionality. In short: if subnets
running the PTP protocol are connected to one another by a 1588-enabled device, that device is
known as a boundary clock. Since boundary clocks span subnets, they have more than one network
port.
A boundary clock dynamically determines the master-slave hierarchy in a subnet and, according to the
Best Master Clock algorithm (BMC), determines which clock will be at the root of the PTP clock
hierarchy. The clock at the root is called the grandmaster clock.
Caution: Although non-1588 network devices don’t participate in the protocol, they may introduce
delays in the propagation of data packets and can therefore impact the accuracy of PTP clock
synchronization. It would be well, therefore, to consider this when planning the deployment of the PTP
protocol.
While boundary clocks do not propagate Sync, Follow_Up, Delay_Req, or Delay_Resp messages
from one subnet to another, they do, however, forward Management messages into other subnets.
Often, a boundary clock will be nominated as a master clock, but if there is a better clock in the
system, a GPS clock, for example, the protocol will appoint it as a grandmaster clock.
Although each port of a boundary clock appears to be an ordinary node to a subnet, there is, in fact,
only one clock implemented in the boundary device.

3.1.5 Literature

• John C. Eidson, Measurement, Control and Communication Using IEEE 1588, Springer-
Verlag London, ISBN-10: 1846282500

• IEEE Standard 1588-2002, IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems. (2002), The Institute of Electrical and
Electronics Engineers, Inc., New York

• IEEE Standard 1588-2008, IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems

• Web: National Institute of Standards and Technology, IEEE 1588 Website: National Institute
of Standards and Technology - 1588

Page 11 of 34

http://ieee1588.nist.gov/
http://ieee1588.nist.gov/
http://ieee1588.nist.gov/

4 Overview of the RTS IEEE 1588 Windows Version
The RTS IEEE1588-PTP product enables the usage of a Microsoft Windows PC to act as a PTP
master or slave.

The product consists of the following parts:
•The Intel E1000 IEEE1588 Enabled driver for Intel CT Network Cards (igbDrv.sys).
•The IEEE1588 service which implements the Precision Time Protocol (ieee1588Service.exe).
•The IEEE1588 control service which provides GUI access to the PTP service
(ieee1588ControlService.exe).
•The IEEE1588 GUI (running in the system tray) to configure all settings.
•A dynamic link library to provide access to the IEEE1588 service API (ieee1588API.dll).

5 Installation of the RTS IEEE 1588 Windows Version

5.1 32-Bit Windows
1. Start the installation by double-clicking the ieee1588_32_x.x.x.msi file (x.x.x is the version

number).
Note: Please do not install this package over the network as the network driver will be
replaced / installed during the installation process.

2. Click „Next“. Read and accept the license of the RTS IEEE1588-PTP product and click „Next“.

Page 12 of 34

3. Now you can change the destination folder. Click „Next“.
4. Click „Install“ to start the installation.

5. Finish the installation.

Page 13 of 34

5.2 64-Bit Windows
1.Start the installation by double-clicking the ieee1588_64_x.x.x.msi file (x.x.x is the version number).
Note: Please do not install this package over the network as the network driver will be replaced /
installed during the installation process.

2.Click „Next“. Read and accept the license of the RTS IEEE1588-PTP product and click „Next“.

3.Now you can change the destination folder. Click „Next“.
4.Click „Install“ to start the installation.

Page 14 of 34

5.During the installation you will be asked twice for confirmation (To grant administrative rights to the
installer and to accept the driver installation).

6.Finish the installation.

6 Uninstall of the RTS IEEE 1588 Windows Version
Either go to Windows Control Panel and remove the product via the „Add or Remove Programs“
control panel applet or right-click the installation file (.msi file) and choose „Uninstall“.

NOTE: On 64-Bit systems a message box will ask you if you allow the uninstall of the driver.

7 Installer Requirements
1. It is allowed to have Windows Firewall to be configured like you need it. Anyway Windows

Firewall Service must be started (Start->Control Panel->Administrative Tools->Services-
>Windows Firewall/Internet Connection Sharing(ICS)). If the Windows Firewall Service is not
running during installation the Installer will throw two error messages by ignoring both of them
the software will still install successful.

2. It is required you have a Intel Network card of following types plugged in.

VendorID DeviceID

0x8086 0x10D3

0x8086 0x1521

8 Use of the RTS IEEE 1588 Windows Version

Page 15 of 34

The IEEE1588 service starts automatically at boot time and will start PTP tasks according to the
settings. When a user logs on the GUI application will start and show an icon in the system tray.
The icon is shown in different colors representing the current state of the PTP stack:

GRAY Service uninitialized/not started
RED Service is unsynchronized PTP slave
GREEN Service is synchronized PTP slave
BLUE Service is PTP master

A right mouse-click opens a menu with the following options:

Quit terminates the GUI application (PTP keeps running)
Settings opens the settings dialog
Interface Selection opens the interface selection dialog
Open Log Directory opens the log file directory in Windows Explorer
Stop Service stops the PTP service (grayed out if service is stopped)
Start Service start the PTP service (grayed out if service is running)
About IEEE1588... shows version information of the product

Page 16 of 34

8.1 Settings
All settings are stored in the Windows Registry under HKEY_LOCAL_MACHINE\Software\Real-Time-
Systems\ieee1588. Registry keys should not be changed manually. For configuration and Setup use
the dialog of the GUI.

8.1.1 Protocol Version
This is an implementation specific parameter for the RTS IEEE1588 Stack. It allows to choose
different protocol standards.

Value Description

1 Stack sends and receives packets according to the IEEE Standard 1588-2002

2 Stack sends and receives packets according to the IEEE Standard 1588-2008

8.1.2 Slave Only
This is an implementation specific flag for the RTS IEEE1588 Stack. A node which sets that flag will
never become master. To achieve this it automatically configures the protocol settings stratum for
IEEE Standard 1588-2002 or clockClass priority1 and priority2 according to the IEEE Standard 1588-
2008 specification. If this configuration field is checked, stratum is ignored.

8.1.3 Master Selection
To enable the master selection you need to specify the master's MAC Address. In a node where a
specific master selection is active other masters won't be accepted as synchronization source. This
might avoid problems on a topology change which might be caused by a master failure.

Page 17 of 34

8.1.4 Stratum
The Stratum parameter describes the clock quality according to the specification table for protocol
version 1. Default shall be 4 depending on the clock it might increase to 3. A smaller value will result in
a node with a higher priority when calculating the Best Master Clock Algorithm.

8.1.5 Clock Class, Priority 1, Priority 2

8.1.6 Announce Interval
Announce Interval specifies the interval of announce messages according to IEEE Standard 1588-
2008. It is not used for protocol version 1 (IEEE Standard 1588-2002).

8.1.7 Synch Interval
The Synch Interval specifies the interval synch messages are exchanged according to IEEE Standard
1588-2008 or IEEE Standard 1588-2002 (used for both protocol versions).

8.1.8 Number of Switches
This parameter is a RTS-IEEE1588 Stack specific parameter. Number of Network components
(switches) between master and slave which don't support IEEE1588 Time Stamping within their
implementation. This parameter is used to tune the filter algorithms to a specific network topology.
Increasing this value will also result in a loss of synchronization precision.
For maximum precision it is recommended to use network components which support Time Stamping.
In this case Number of Switches should be set to zero.

8.1.9 Domain
Domain parameter specifys the synchronisation domain in which your node is running. With this
parameter you can have serveral different groups of synchronized nodes on the network. This
parameter is specified as values from 0 to 3 the IEEE Standard 1588-2008. In IEEE Standard 1588-
2002 this value is specified as strings _DFLT, _ALT0, _ALT1, _ALT2. The values from GUI are
automatically translated into the selected protocol version.

8.1.10Synchronize Windows Time to PTP Time
This parameter is an RTS-IEEE1588 Stack specific flag. It enables a synchronization loop between the
IEEE1588 time domain and the local Windows time. If a node becomes master the IEEE1588 Time is
initialized with its current Windows System Time.

8.1.11International Atomic Time Correction
Some Masters may provide the correction value for Interntational Atomic Time. This is distributed
within IEEE Standard 1588-2008 Announce Messages or in Sync Messages for IEEE Standard
1588-2002. The message fieled is described as current UTC offset.
If the check box for Internatioin Atomic Time Correction option is set the current UTC offset is
substracted from current IEEE1588 Time. If the check box is selected all API calls provided will report
the corrected time.

8.1.12IPV6
If this flag is set IPV6 is used instead of IPV4. IPV6 protocol has to be installed on the system. IPV6
and IPV4 may not be used at the same time.

8.1.13DSCP
Sets DSCP tag on outgoing frames.

Page 18 of 34

8.1.14Verbosity Level
This parameter lets you set the amount of details logged. Keep the verbosity level at 0 or 1 to only
record the most important system messages. For trouble shooting and detailed system analysis, this
value may be increased. Please note that with high verbosity levels, log files can grow quickly,
consuming a lot of disk space and resulting in delays when opening or viewing log files.

8.1.14.1Verbose Output
Find below a sample of the verbose output of a stack running in slave mode after Stack initalization.

servoLib: servoReInit
servoLib: updateOffset
servoLib: send time 7035s 988343024ns
 recv time 7035s 988343994ns
servoLib: ##master-to-slave delay: 0s 970ns
servoLib: ##last difference: 0s -2685ns
servoLib: servoState: 3
servoLib: master-to-slave delay: 0s 970ns
servoLib: slave-to-master delay: 0s 0ns
servoLib: one-way delay: 0s 1000ns
servoLib: offset from master: 0s -268ns
servoLib: min offset from master: 99999999s 0ns
servoLib: max offset from master: 99999999s -1ns
servoLib: constDriftValue: 0s 0ns
servoLib: updateOffset
servoLib: send time 7038s 5241346ns
 recv time 7038s 5242517ns
servoLib: ##master-to-slave delay: 0s 1171ns
servoLib: ##last difference: 0s 970ns
servoLib: ##master-to-slave delay: 0s 1171ns
servoLib: ##last difference: 0s 970ns
servoLib: result: 0s 201ns
servoLib: servoState: 3
servoLib: master-to-slave delay: 0s 1171ns
servoLib: slave-to-master delay: 0s 0ns
servoLib: one-way delay: 0s 1000ns
servoLib: offset from master: 0s -268ns
servoLib: min offset from master: 99999999s 0ns
servoLib: max offset from master: 99999999s -1ns
servoLib: constDriftValue: 0s 0ns
servoLib: updateOffset
servoLib: send time 7040s 22159627ns
 recv time 7040s 22161001ns
servoLib: ##master-to-slave delay: 0s 1374ns
servoLib: ##last difference: 0s 1171ns
servoLib: ##master-to-slave delay: 0s 1374ns
servoLib: ##last difference: 0s 1171ns
servoLib: result: 0s 203ns
servoLib: servoState: 3
servoLib: master-to-slave delay: 0s 1374ns
servoLib: slave-to-master delay: 0s 0ns
servoLib: one-way delay: 0s 1000ns
servoLib: offset from master: 0s -268ns
servoLib: min offset from master: 99999999s 0ns
servoLib: max offset from master: 99999999s -1ns
servoLib: constDriftValue: 0s 0ns

Page 19 of 34

servoLib: updateDelay
servoLib: updateOffset
servoLib: send time 7042s 38698069ns
 recv time 7042s 38699644ns
servoLib: ##master-to-slave delay: 0s 1575ns
servoLib: ##last difference: 0s 1374ns
servoLib: ##master-to-slave delay: 0s 1575ns
servoLib: ##last difference: 0s 1374ns
servoLib: result: 0s 201ns
servoLib: servoState: 3
servoLib: master-to-slave delay: 0s 1575ns
servoLib: slave-to-master delay: 0s 0ns
servoLib: one-way delay: 0s 1000ns
servoLib: offset from master: 0s -268ns
servoLib: min offset from master: 99999999s 0ns
servoLib: max offset from master: 99999999s -1ns
servoLib: constDriftValue: 0s 0ns
servoLib: updateOffset
servoLib: send time 7044s 54190070ns
 recv time 7044s 54191847ns
servoLib: ##master-to-slave delay: 0s 1777ns
servoLib: ##last difference: 0s 1575ns
servoLib: ##master-to-slave delay: 0s 1777ns
servoLib: ##last difference: 0s 1575ns
servoLib: result: 0s 202ns
array[0]: 0s 201ns
array[1]: 0s 203ns
array[2]: 0s 201ns
array[3]: 0s 202ns
constant: 0s 201ns
servoLib: updateClock
servoLib: corr: 0s 978ns
servoLib: const: 0s 201ns

It starts with a servoReInit that means all previosly calculated values are reinitalized. It starts from
scratch after servoReInit. The starte servoStart 3 is the scratch state for each node. In this state the
node collects data from the sync/follow_up message pairs provided by the master. With this
information it calculates the drift between the clocks. The values of array[0] to array [3] show the 4
samples taken. With the const value is the average of those samples.

servoLib: servoState: 1
servoLib: master-to-slave delay: 0s 1777ns
servoLib: slave-to-master delay: 0s 0ns
servoLib: one-way delay: 0s 1000ns
servoLib: offset from master: 0s 777ns
servoLib: min offset from master: 99999999s 0ns
servoLib: max offset from master: 99999999s -1ns
servoLib: constDriftValue: 0s 201ns
servoLib: updateOffset
servoLib: send time 7046s 71170992ns
 recv time 7046s 71171774ns
servoLib: ##master-to-slave delay: 0s 782ns
servoLib: ##last difference: 0s 1777ns
servoLib: updateClock
servoLib: corr: 0s -17ns
servoLib: const: 0s 201ns
servoLib: servoState: 1
servoLib: master-to-slave delay: 0s 782ns

Page 20 of 34

servoLib: slave-to-master delay: 0s 0ns
servoLib: one-way delay: 0s 1000ns
servoLib: offset from master: 0s -218ns
servoLib: min offset from master: 99999999s 0ns
servoLib: max offset from master: 99999999s -1ns
servoLib: constDriftValue: 0s 201ns
servoLib: updateDelay
delay[0]: 0s 1000ns
delay[1]: 0s 1000ns
delay[2]: 0s 241ns
servoLib: updateOffset

After reaching servoState 1 the clock frequency difference is known and now the stack starts to reduce
the offset from master and recalculate the packet delays on the network. To leave the servoState 1 to
servoState 2 (which means fully synchronized) it must match following criteria:

1. multiple measured delay values must match the filter rules for path delay measurement
2. multiple measured values of offset from master must match the filter rules for sync detection

Please note that for both conditions the stack parameter layer2hops is used to modify the filter rules.
Increasing layer2hops loosens the strength of the filter algorithm.

servoLib: send time 8312s 845515193ns
 recv time 8312s 845515576ns
servoLib: ##master-to-slave delay: 0s 383ns
servoLib: ##last difference: 0s 383ns
servoLib: ##master-to-slave delay: 0s 383ns
servoLib: ##last difference: 0s 383ns
servoLib: result: 0s 0ns
array[0]: 0s 0ns
array[1]: 0s 0ns
array[2]: 0s 0ns
array[3]: 0s 0ns
constant: 0s 0ns
servoLib: updateClock
servoLib: corr: 0s -617ns
servoLib: const: 0s 0ns
servoLib: servoState: 1
servoLib: master-to-slave delay: 0s 383ns
servoLib: slave-to-master delay: 0s 0ns
servoLib: one-way delay: 0s 1000ns
servoLib: offset from master: 0s -617ns
servoLib: min offset from master: 99999999s 0ns
servoLib: max offset from master: 99999999s -1ns
servoLib: constDriftValue: 0s 0ns
servoLib: updateOffset
servoLib: send time 8314s 860127995ns
 recv time 8314s 860128776ns
servoLib: ##master-to-slave delay: 0s 781ns
servoLib: ##last difference: 0s 383ns
servoLib: updateClock
servoLib: corr: 0s -219ns
servoLib: const: 0s 0ns
servoLib: servoState: 1
servoLib: master-to-slave delay: 0s 781ns
servoLib: slave-to-master delay: 0s 0ns
servoLib: one-way delay: 0s 1000ns
servoLib: offset from master: 0s -219ns
servoLib: min offset from master: 99999999s 0ns

Page 21 of 34

servoLib: max offset from master: 99999999s -1ns
servoLib: constDriftValue: 0s 0ns
servoLib: updateDelay
delay[0]: 0s 1000ns
delay[1]: 0s 1000ns
delay[2]: 0s 232ns
servoLib: updateOffset
servoLib: send time 8316s 865310515ns
 recv time 8316s 865311300ns
servoLib: ##master-to-slave delay: 0s 785ns
servoLib: ##last difference: 0s 383ns
servoLib: updateClock
servoLib: corr: 0s 41ns
servoLib: const: 0s 0ns
servoLib: servoState: 1
servoLib: master-to-slave delay: 0s 785ns
servoLib: slave-to-master delay: 0s 0ns
servoLib: one-way delay: 0s 744ns
servoLib: offset from master: 0s 41ns
servoLib: min offset from master: 99999999s 0ns
servoLib: max offset from master: 99999999s -1ns
servoLib: constDriftValue: 0s 0ns
servoLib: updateOffset
servoLib: send time 8318s 881033117ns
 recv time 8318s 881033901ns
servoLib: ##master-to-slave delay: 0s 784ns
servoLib: ##last difference: 0s 383ns
servoLib: updateClock
servoLib: corr: 0s 40ns
servoLib: const: 0s 0ns
servoLib: servoState: 1
servoLib: master-to-slave delay: 0s 784ns
servoLib: slave-to-master delay: 0s 0ns
servoLib: one-way delay: 0s 744ns
servoLib: offset from master: 0s 40ns
servoLib: min offset from master: 99999999s 0ns
servoLib: max offset from master: 99999999s -1ns
servoLib: constDriftValue: 0s 0ns
servoLib: updateOffset
servoLib: send time 8320s 897304238ns
 recv time 8320s 897305023ns
servoLib: ##master-to-slave delay: 0s 785ns
servoLib: ##last difference: 0s 383ns
servoLib: updateClock
servoLib: corr: 0s 41ns
servoLib: const: 0s 0ns
servoLib: servoState: 2
servoLib: master-to-slave delay: 0s 785ns
servoLib: slave-to-master delay: 0s 0ns
servoLib: one-way delay: 0s 744ns
servoLib: offset from master: 0s 41ns
servoLib: min offset from master: 99999999s 0ns
servoLib: max offset from master: 99999999s -1ns
servoLib: constDriftValue: 0s 0ns
servoLib: updateDelay
delay[0]: 0s 1000ns
delay[1]: 0s 232ns
delay[2]: 0s 234ns

Page 22 of 34

Important Note:
If the node starts up as master of the network it will just print servoReInit. If the node will change into
an error state (e.g. wrong sync interval) it will permenently repeat the servoReInit.

8.2 Interface Selection
The interface selection dialog shows a list of available IEEE1588 enabled devices to choose from. If a
new device is chosen the OK button will open a message box and ask you to restart the service. If you
click OK the service is restarted and the new interface will be used for PTP messages.

8.3 Open Log Directory
A Windows Explorer window is opened showing all available log files.

9 API Description of the RTS IEEE 1588 Windows Version

The API is defined in the IEEE1588API.h header file. Sample sources and header files are available
upon request. Please contact ieee1588@real-time-systems.com for more information.

9.1 Time-Representation Data Structure

typedef struct {

 unsigned long seconds;

 signed long nanoseconds;

} TimeRepresentation;

Two data fields to describe time are defined:

unsigned long TimeRepresentation::seconds

TimeRepresentation::seconds holds local clock time expressed in seconds. After the system starts
up, this expresses the number of elapsed seconds since 1970.

signed long TimeRepresentation::nanoseconds

TimeRepresentation::nanoseconds holds local clock time in nanoseconds. After the system has
started, this expresses the number of elapsed nanoseconds since 1970.

Page 23 of 34

mailto:ieee1588@real-time-systems.com

NOTE: if nanoseconds is less than zero, the entire time structure is understood to be negative.

9.2 Enumerations

The possible return values for the ieee1588GetState() function:

enum eIEEE1588State

{

 mSlaveStateNotSynced,

 mSlaveStateSynced,

 mMasterState

};

The possible return values for the ieee1588ServiceGetState() function:

enum eIEEE1588ServiceState
{
 mServiceStopped,
 mServiceRunning,
 mServiceOther,
 mServiceError
};

9.3 Service Control Functions

9.3.1 ieee1588ServiceStop
signed long ieee1588ServiceStop(void)

This function stops the IEEE1588Service.

Returns:

PTPD_OK - If servcie was stopped
PTPD_ERROR - If service could not be stopped

NOTE: Depending on the service state function execution can last up to 20 seconds!

9.3.2 ieee1588ServiceStart
signed long ieee1588ServiceStart(void)

This function starts the IEEE1588Service.

Returns:

PTPD_OK - If servcie was started
PTPD_ERROR - If service could not be started

Page 24 of 34

9.3.3 ieee1588ServiceGetState
enum eIEEE1588ServiceState ieee1588ServiceGetState(void)

This function retrieves the status of the IEEE1588 service.

Returns:

mServiceStopped - If servcie is stopped.
mServiceRunning - If servcie is started.
mServiceOther - If servcie is in transition state (stop or start is pending).
mServiceError - If service state cannot be retrieved (e.g. not installed).

9.4 PTP Specific Functions

9.4.1 ieee1588GetAdapters
signed long ieee1588GetAdapters(IP_ADAPTER_INFO* AdapterInfo,

 signed long MaxAdapters)

This function retrieves information about the IEEE1588 enabled adapters in the system.

Parameters:

AdapterInfo [in/out] – Array of IP_ADAPTER_INFO structs.

MaxAdapters [in] – Number of IP_ADAPTER_INFO structs in AdapterInfo.

Returns:

Number of valid adapters in AdapterInfo array.

9.4.2 ieee1588GetTime
signed long ieee1588GetTime(TimeRepresentation *time)

This function retrieves the current IEEE1588 time.

Parameters:

time [out] - Current IEEE1588 time

Returns:

PTPD_OK - If okay
PTPD_ERROR - If not initialized, not synch)

9.4.3 ieee1588GetTimeEx
signed long ieee1588GetTimeEx(TimeRepresentation *time, __int16 *utcOffset)

This function retrieves the current IEEE1588 time. It does not care about the TAI flag of the
configuration. The time value will always be TAI time. The caller may calculate the UTC time by
substracting time->seconds - *utcOffset.

Parameters:

time [out] - Current IEEE1588 time

utcOffset [out] – Current offset to UTC in seconds

Returns:

Page 25 of 34

PTPD_OK - If okay
PTPD_ERROR - If not initialized, not synch)

9.4.4 ieee1588GetGmMac
signed long ieee1588GetGmMac(char *masterId)

This function returns the mac of the current grand master selected by bmc.

Parameters:
masterId [out] area to store mac id of grand master field size must 6 bytes

Returns:

PTPD_OK - If okay
PTPD_ERROR - If not initialized

9.4.5 ieee1588GetState
enum eIEEE1588State ieee1588GetState(void)

This function returns the current IEEE1588 state.

enum returns:

mSlaveStateNotSynced- Slave and not synchronized to master.
MslaveStateSynced - Slave and synchronized to master.
MmasterState - Master.

9.4.6 ieee1588SetInboundLatency
signed long ieee1588SetInboundLatency(signed long nanoseconds)

This function sets the inbound latency.

Parameters:

nanoseconds [in] measured inbound latency in nanoseconds [should always be >= 0]
Returns:

PTPD_OK - If inbound latency was set
PTPD_ERROR - If service cannot be accessed

9.4.7 ieee1588SetOutboundLatency
signed long ieee1588SetOutboundLatency(signed long nanoseconds)

This function sets the outbound latency.

Parameters:

nanoseconds [in] measured outbound latency in nanoseconds [should always be =<0]

Returns:

PTPD_OK - If inbound latency was set
PTPD_ERROR - If service cannot be accessed

Page 26 of 34

9.4.8 ieee1588SetInitialTime
signed long ieee1588SetInitialTime(__int64 time_sec)

This function sets the initial time for the IEEE1588 stack.

Parameters:

time_sec [in] time in seconds since 1970

Returns:

PTPD_OK - If okay
PTPD_ERROR - If failed (e.g. not master)

9.5 Callback Functions

9.5.1 ieee1588SetTimerCallback
NOTE: As Microsoft Windows is not a deterministic Operating System, it is not guaranteed that the
intervals are always constant, especially if an interval smaller than e.g. 10ms has been selected. Still,
it is ensured that no callbacks are lost.

HANDLE ieee1588SetTimerCallback(IEEE1588_TIME_CALLBACK CallBackFunc,
 unsigned long interval)

This function allows to set a callback function to get cyclic IEEE1588 time.

Parameters:

CallBackFunc [in] Functionpointer to a callback function (see below)

interval [in] Callback interval in milliseconds (minimum is 1 millisecond)

Returns:

HANDLE - If okay
INVALID_HANDLE_VALUE - If failed

Callback Function:

The callback function has to meet the following definition.

typedef void (CALLBACK *IEEE1588_TIME_CALLBACK)(TimeRepresentation *, BOOL);

e.g.

void CALLBACK TimeCallback(TimeRepresentation *time, BOOL bValid);

9.5.2 ieee1588FreeTimerCallback
signed long ieee1588FreeTimerCallback(HANDLE hHandle)

This function frees the callback installed via ieee1588SetTimerCallback().

Parameters:

hHandle [in] The handle returned by ieee1588SetTimerCallback().

Page 27 of 34

Returns:

PTPD_OK - If okay
PTPD_ERROR - If failed

9.6 GPIO Functions

9.6.1 Ieee1588ConfigureGpioPeriodicPulse
signed long ieee1588ConfigureGpioPeriodicPulse(unsigned long pin,

TimeRepresentation *period,
unsigned dutyCycle,
unsigned polarity)

For Intel I350 cards a GPIO pin may be configured to generate a periodic pulse synchronized to the
IEEE1588 clock.

NOTE: Before setting a new pulse period you have to turn off pulse generstion by setting period to 0.

Parameters:

pin [in] – desired output pin
period [in] – pulse period (0 turns off pulse generation)
dutyCycle [in] – pulse duty cycle in percent (1-100)
polarity [in] – desired polaritye (0 is positive, 1 is negative)

Returns:

PTPD_OK - If okay
PTPD_ERROR - If failed (e.g. not synchronized)

9.7 Configuration Functions
A set of functions to read and write the settings is provided.

9.7.1 ieee1588ConfigReadParameter
signed long ieee1588ConfigReadParameter(enum eIeee1588Parameter parameter,

 unsigned long *value)

This function reads a IEEE1588 configuration parameter.

Parameters:

parameter [in] desired parameter (see enum eIeee1588Parameter).

value [out] – value of parameter.

Returns:

PTPD_OK - If okay
PTPD_ERROR - If failed

9.7.2 ieee1588ConfigWriteParameter
signed long ieee1588ConfigWriteParameter(enum eIeee1588Parameter parameter,

unsigned long value,
BOOL bRestartService)

Page 28 of 34

This function writes a IEEE1588 configuration parameter.

Parameters:

parameter [in] desired parameter (see enum eIeee1588Parameter).

value [in] – value of parameter.
bRestartService [in] – Restart service after parameter change.

Returns:

PTPD_OK - If okay
PTPD_ERROR - If failed

9.7.3 Ieee1588ConfigGetInterface
signed long ieee1588ConfigGetInterface(char *interfaceName,

 unsigned len)

This function reads the currently selected interface.

Parameters:

interfaceName [out] zero terminated string containing the interface name.

len [in] – max. length of interfaceName string in bytes.

Returns:

PTPD_OK - If okay
PTPD_ERROR - If failed

9.7.4 Ieee1588ConfigSetInterface
signed long ieee1588ConfigSetInterface(char *interfaceName,
 unsigned len,

 BOOL bRestartService)
This function selects a interface to use for the service.

Parameters:

interfaceName [in] zero terminated string containing the interface name.

len [in] – length of interfaceName string in bytes.
bRestartService [in] – Restart service after parameter change.

Returns:

PTPD_OK - If okay
PTPD_ERROR - If failed

9.7.5 Ieee1588ConfigGetMasterMacAddress
signed long ieee1588ConfigGetMasterMacAddress(char *masterMac,

 unsigned len)

This function reads the current MAC address of the master.

Parameters:

Page 29 of 34

masterMac [out] zero terminated string containing the master MAC

 (Format "00:11:22:33:44:55").
len [in] – length of masterMac string in bytes.

Returns:

PTPD_OK - If okay
PTPD_ERROR - If failed

9.7.6 ieee1588ConfigSetMasterMacAddress
signed long ieee1588ConfigSetMasterMacAddress(char *masterMac,

 unsigned len,
 BOOL bRestartService)

This function sets a master MAC address.

Parameters:

masterMac [in] zero terminated string containing the master MAC

 (Format "00:11:22:33:44:55").
len [in] – length of interfaceName string in bytes.
bRestartService [in] – Restart service after parameter change.

Returns:

PTPD_OK - If okay
PTPD_ERROR - If failed

10 Utilities
Two software tools are available, free-of-charge, for debugging purposes.

10.1PTPManager
This convenient utility program from Zurich University of Applied Sciences (Switzerland) permits one to
graphically view and edit all datasets defined by the IEEE 1588 PTP standard. In particular, it performs
the following services:

• It does only support to talk to IEEE1588-2002 nodes
• Displays graphically the PTP network’s synchronization hierarchy
• Displays graphically various views of PTP clock data such as the current offset of a local

node’s protocol clock from the master clock vs. time
• Collects and logs PTP clock data in .XML files, which may be easily viewed.
• Written in JAVA, the code is platform independent.

The PTPManager can be downloaded, for example, from a Real-time Systems’ Web page.
Refer to: IEEE1588-2002 PTPManager.

Using the PTPManager [from Zurich University of Applied Sciences (Switzerland)], not only can the
PTP software clock’s initializing data be read, but the activities of the slave-nodes in the system being
examined can also be recorded and visualized. Using the menu item Graph, graphical displays of up
to 100 values captured from the oneWayDelay and offsetFromMaster variables can be generated.
Using the PTManager’s Log feature, values from the IEEE 1588 protocol stack can be extracted,
written to .XML files and displayed in an easy-to-read format.

Page 30 of 34

http://www.real-time-systems.com/ieee_1588_tools/index.php

Page 31 of 34

10.2PTPv2Browser
This tiny Windows tool provides management functionality for IEEE1588-2008 nodes. In particular it
provides following features:

• Set/get of parameters in the data sets of each PTP device
• Group set function
• Slave offset monitoring with real time graphical view
• Configuration parameters and log results to/from files locally stored

Refer to: IEEE1588-2008 PTPv2Browser

10.3Wireshark
This network protocol analyzer, implemented entirely in software, works very much like a hardware
network analyzer. That is, it monitors, captures, and displays packets being transferred in a network
cable. Because it is sensitive to 1588 PTP messages, it can display them in meaningful formats.
The tool is distributed under a GNU General Public License (GPL), and versions are available for a
variety of host platforms, including Windows, OS X, and Linux.
The current version of the Wireshark program may be downloaded from the following website:
www.wireshark.org.
Communication between a master and a slave and communication and between the PTPManager and
the slave may be seen in the following screenshot.

Page 32 of 34

http://www.wireshark.org/
http://www.ontimelabs.com/ptpbrowser.htm

10.3.1Protocol releated Wireshark Identifiers
Following table describes a set of parameters configurable on stack startup. If you have nodes where
you don't know the current configuration of these parameters you might use WireShark to determine
how to configure the stack to operate with those devices.

Protocol
Version

Wireshark Identifier Description

V1 SyncInterval (part of
sync message)

Represents the time between Sync Messages sent by the Master.
2^syncInterval = sync interval in seconds
Default value is 1. Configuration must be equal on all nodes in the
same domain otherwise nodes may change into a faulty state.
This interval is configurable with the stack parameter:
syncInterval

V1 SubDomain (part of
sync message)

Domain identifier (String) which groups nodes that belong to the
same synchronization area. For example nodes may exist that are in
different functional groups eg. Group 1: control units and Group 2:
monitoring units which share the same physical network but do not
use the same base time. Group 2 may have a real world time
provided by a master with GPS. Group 1 may have a time based on
a central control unit where the time starts at 0 when you turn on the
central control unit.
Default is „_DFLT“ already specified domains are „_ALT1“, „_ALT2“ ,
„ALT_3“.
This is configured with the parameter „domain“ on stack startup.

V2 LogMessagePeriod
(part of sync
message)

Represents the time between Sync Messages sent by the Master.
2^LogMessagePeriod = sync interval in seconds
Default value is 0. Configuration must be equal on all nodes in the
same domain otherwise nodes may change into a faulty state.
This interval is configurable with the stack parameter:
syncInterval

V2 LogMessagePeriod
(part of announce
message)

Represents the time between Announce Messages sent by the
Master.
2^LogMessagePeriod = announce interval in seconds
Default value is 1. Configuration must be equal on all nodes in the
same domain otherwise nodes may change into a faulty state.
This parameter is not configurable and represents
DEFAULT_ANNOUNCE_INTERVAL which is 1.

V2 subdomainNumber Domain identifier. It is mapped accordingly V1 -> V2 mapping.
„_DFLT“ : 0
„_ALT1“ : 1
„_ALT1“ : 2
„_ALT1“ : 3

Default value is 0.
It is configured with the domain parameter on stack startup.

Page 33 of 34

11 END OF DOCUMENT

Page 34 of 34

	1 Notices
	2 Introduction
	2.1 Important Facts
	2.1.1 Ready to go Versions:
	2.1.2 Portability:
	2.1.3 Interoperability:

	2.2 Definition
	2.3 Product Features
	2.4 Background
	2.5 Benefits
	2.6 About Real-Time Systems GmbH
	2.7 Technical Support

	3 Technical overview
	3.1 How it works
	3.1.1 Basic operation
	3.1.2 Message types
	3.1.3 Example transaction
	3.1.4 Boundary clocks
	3.1.5 Literature

	4 Overview of the RTS IEEE 1588 Windows Version
	5 Installation of the RTS IEEE 1588 Windows Version
	5.1 32-Bit Windows
	5.2 64-Bit Windows

	6 Uninstall of the RTS IEEE 1588 Windows Version
	7 Installer Requirements
	8 Use of the RTS IEEE 1588 Windows Version
	8.1 Settings
	8.1.1 Protocol Version
	8.1.2 Slave Only
	8.1.3 Master Selection
	8.1.4 Stratum
	8.1.5 Clock Class, Priority 1, Priority 2
	8.1.6 Announce Interval
	8.1.7 Synch Interval
	8.1.8 Number of Switches
	8.1.9 Domain
	8.1.10 Synchronize Windows Time to PTP Time
	8.1.11 International Atomic Time Correction
	8.1.12 IPV6
	8.1.13 DSCP
	8.1.14 Verbosity Level
	8.1.14.1 Verbose Output

	8.2 Interface Selection
	8.3 Open Log Directory

	9 API Description of the RTS IEEE 1588 Windows Version
	9.1 Time-Representation Data Structure
	9.2 Enumerations
	9.3 Service Control Functions
	9.3.1 ieee1588ServiceStop
	9.3.2 ieee1588ServiceStart
	9.3.3 ieee1588ServiceGetState

	9.4 PTP Specific Functions
	9.4.1 ieee1588GetAdapters
	9.4.2 ieee1588GetTime
	9.4.3 ieee1588GetTimeEx
	9.4.4 ieee1588GetGmMac
	9.4.5 ieee1588GetState
	9.4.6 ieee1588SetInboundLatency
	9.4.7 ieee1588SetOutboundLatency
	9.4.8 ieee1588SetInitialTime

	9.5 Callback Functions
	9.5.1 ieee1588SetTimerCallback
	9.5.2 ieee1588FreeTimerCallback

	9.6 GPIO Functions
	9.6.1 Ieee1588ConfigureGpioPeriodicPulse

	9.7 Configuration Functions
	9.7.1 ieee1588ConfigReadParameter
	9.7.2 ieee1588ConfigWriteParameter
	9.7.3 Ieee1588ConfigGetInterface
	9.7.4 Ieee1588ConfigSetInterface
	9.7.5 Ieee1588ConfigGetMasterMacAddress
	9.7.6 ieee1588ConfigSetMasterMacAddress

	10 Utilities
	10.1 PTPManager
	10.2 PTPv2Browser
	10.3 Wireshark
	10.3.1 Protocol releated Wireshark Identifiers

	11 END OF DOCUMENT

